
Application Compatibility
Guide

Micro Focus
The Lawn
22-30 Old Bath Road
Newbury, Berkshire RG14 1QN
UK
http://www.microfocus.com

© Copyright 2020 Micro Focus or one of its affiliates.

MICRO FOCUS, the Micro Focus logo and Visual COBOL and Enterprise Developer are
trademarks or registered trademarks of Micro Focus or one of its affiliates.

All other marks are the property of their respective owners.

2020-05-04

ii

Contents

Application Compatibility Guide ...4
Compatibility Overview ..5
PL/I Application Compatibility .. 6
COBOL Language Compatibility ...7
Third-party Compatibility ...8
SOA/IMTK Interface Definition Table (IDT) Compatibility 9
Visual COBOL and Enterprise Developer Windows C Runtime Compatibility

... 10
Visual COBOL and Enterprise Developer UNIX and Linux C Runtime Compatibility

... 14
Glossary of Definitions .. 19

Contents | 3

Application Compatibility Guide
If you are planning to upgrade or update to a newer Micro Focus product, then you will be giving some
thought to how your existing applications will be affected.

Micro Focus supports the forward compatibility of callable artifacts built with one version of a product, and
then deployed and executed on a later version of the product running on the same platform, and in the
same Product Family, unless explicitly specified in the release documentation. The same may also be true
for main executable programs (.exe files), although these files have an extra dependency on the version of
the C runtime associated with the products used to build and to run the application.

This guide aims to demonstrate exactly which products are compatible with each other, and whether or not
you can just deploy your existing applications on a newer product without the need to recompile or relink
them. This guide covers recommendations for both COBOL and PL/I applications.

Use the tables and diagram in the Runtime Compatibility sections of this document to determine exactly
which products are compatible with each other.

Note: Some of the older products in these tables are now out of support. Check the Product
Availability section on the Micro Focus SupportLine Web site - https://supportline.microfocus.com/
prodavail.aspx - for more information.

4 | Application Compatibility Guide

HTTPS://SUPPORTLINE.MICROFOCUS.COM/PRODAVAIL.ASPX
HTTPS://SUPPORTLINE.MICROFOCUS.COM/PRODAVAIL.ASPX

Compatibility Overview
On a Microsoft Windows platform, when building to a main COBOL executable (.exe), compatibility
depends on the Microsoft C runtime associated with the products used to build and run the executable. The
executable is compatible with any future COBOL products that share a common C runtime with the product
on which it was built. See the Visual COBOL and Enterprise Developer Windows C Runtime Compatibility
sections for details on C runtimes used with COBOL products on Windows.

However, if the application has a main COBOL executable, and if the product being used for deployment is
based on a C runtime that is later than that in the product used for building the application, then
compatibility cannot be guaranteed. If the behavior of the application changes when you run with the later
version then Micro Focus strongly recommends that the main executable is relinked with the later product.
This will ensure that the COBOL runtime fully handles any runtime error conditions that may occur.

Relinking (to the new run time system) enables you to create a new executable capable of running on the
later product, without the need to recompile. To relink, you must use the object code that was generated
when the executable was originally compiled.

On UNIX and Linux, COBOL products are built with specific C and C++ compilers, and tested against
specific versions of the C and C++ runtime. In general, COBOL application artifacts can be executed with
later versions of the C and C++ runtime, unless the C/C++ vendor has specified otherwise; see the Visual
COBOL and Enterprise Developer UNIX and Linux C Runtime Compatibility section for more details. The
compatibility of glibc versions is similar in nature to a third-party component, such as a Relational
Database Management System or Java Application Server, so version checking is advised.

Micro Focus does not test all application deployment combinations, but will support valid configurations and
respond to reported incidents if incompatibilities are found, and then make reasonable commercial efforts
to provide a solution. However, in some of these circumstances, recompiling with a later version might be
the required action.

There are other situations in which recompilation or relinking are the only valid courses of action; for
example, debug and diagnostic output from a mixed deployment environment can only be processed with
the corresponding latest development product that matches the deployment environment. Changes in
platform could also require the application to be modified, recompiled or relinked if external components
introduce incompatibilities.

When compiling and running managed COBOL applications, applications compiled for .NET managed
code contain references to specific versions of the .NET framework and the COBOL runtime assemblies,
but in general, backward compatibility is provided in updated versions. COBOL applications compiled for
JVM managed code do not specifically target later Java versions, and in general, will be compatible when
using a supported Java version.

Compatibility Overview | 5

PL/I Application Compatibility
PL/I applications currently have more restrictive compatibility support. It is recommended that PL/I
applications are rebuilt on every release, to ensure application execution behavior is compatible with the
PL/I runtime.

6 | PL/I Application Compatibility

COBOL Language Compatibility
The syntactical and semantic definition of the COBOL language is defined by ANSI, and has been
extended by different vendors such as IBM and Micro Focus. Emulation of a particular standard or vendor
version can by controlled by the use of compiler directives and runtime configuration.

The COBOL language definition refers to non-standard usage as having either undefined behavior or
undefined results - any application that relies upon this syntax can be subject to changes in behavior
between product versions when recompiled.

Occasionally, incompatibilities or defects are discovered and corrected. Applications that rely on previously
incorrect behavior can also be subject to change in later products when recompiled.

Upgrading to the latest product on a regular basis will help identify any incremental incompatibilities or
reliance on undefined behavior, making your applications more portable and less prone to changes
between subsequent versions. If there is an extended interval between upgrade and recompilation, then it
increases the risk of application remediation work being required.

If you want to take advantage of new product capabilities, such as performance improvements or language
extensions, then recompilation on the latest product will be required.

COBOL Language Compatibility | 7

Third-party Compatibility
Historically, Micro Focus has indicated that an operating system or third-party component is supported
once testing has been completed on that version against a reference COBOL product.

The following extended classification of third-party components provides more guidance for customers who
are planning to upgrade to a component before Micro Focus officially classifies it as supported.

Stage Commitment

Planned • Will apply to updated versions of operating systems or
third-party components where Micro Focus already
supports an earlier version.

• Customers can report incompatibility issues, and
commercial best-efforts will be made to provide a
resolution, but no commitment before full Tested state,
which may be the next release.

Tested • Appropriate levels of testing have been performed and
Micro Focus can state full support for a given
operating system or third-party component.

Previously Tested • Typically applies to products that have reached EOS,
that Micro Focus previously tested, but no longer
tests.

Note: If the vendor no longer supports the
operating system or third-party component, Micro
Focus is under no obligation to resolve issues.

Not Currently Planned • Covers products where Micro Focus either predicts or
knows about a compatibility problem with no known
resolution.

<Not Specified> • The absence of any status typically indicates that
there is no support, and support is not currently
planned.

Note: Planned and Tested status means that Micro Focus will accept incident reports.

Micro Focus may also accept incidents for unsupported operating systems if those operating systems
are fully-compatible with a supported operating system. In such circumstances, the incident would be
tested on the supported operating system, and if the behavior is consistent, it can be investigated. If
the problem is believed to be non-Micro Focus related (e.g. an environment issue), you must refer to
the vendor for support.

8 | Third-party Compatibility

SOA/IMTK Interface Definition Table (IDT)
Compatibility

The IDT is both forwards- and backwards-compatible: that is, the IDT-related behavior is dependent on the
product used to build the IDT and the product version used to execute the program that includes the IDT.
For example, the latest Visual COBOL product can handle old Net Express IDTs in the same way as Net
Express did. Similarly, an IDT created with Visual COBOL should theoretically be usable by Net Express
and give the same behavior as if it had been created with Net Express. However, to benefit from the latest
behavior that is available, the most recent version of Visual COBOL is always recommended for both
creation and execution.

If you are using a Micro Focus Web or EJB client to communicate with a service running under Enterprise
Sever, then the most important thing is to always make sure the client and server are fully in sync (and so
contain the same IDT). Problems can occur when customers have updated the client, and then either
forgotten to re-deploy the service or thought they just didn't need to. Failure to do either of these will cause
problems.

32- and 64-bit Compatibility

The IDT contains no information related to bitism and can generally be used for both 32- and 64-bit
deployment without change.

The only exception to this is when the interface COBOL data contains an item that varies in size between
32- and 64-bit (such as a pointer or procedure-pointer item), as this may change the alignment of data
fields - this is information stored in the IDT, which comes from the COBOL dictionary file. Up to Visual
COBOL/Enterprise Developer 3.0, these pointer types could only be an issue if they existed in the original
interface of a COBOL service being deployed in Enterprise Server, which admittedly is very rare. However,
new support in Visual COBOL/Enterprise Developer 4.0 onwards will itself now use pointers in the
interfaces, and so this may now become more of an issue.

SOA/IMTK Interface Definition Table (IDT) Compatibility | 9

Visual COBOL and Enterprise Developer
Windows C Runtime Compatibility

The following tables show the version of the C Runtime that is used with each Windows product:

10 | Visual COBOL and Enterprise Developer Windows C Runtime Compatibility

Recommendations

The optimum deployment configuration is to match the build and execution environment versions, as this
combination has the most extensive compatibility testing.

To take advantage of the latest deployment product and its associated capabilities and features, such as
platform support, performance, security and product features in a timely manner, you could employ a
staged transition of deploying objects built with earlier development products.

The compatibility options are described within the following sections, and vary depending on: the products
used, the format of the COBOL application artifacts, and the deployment platform and associated external
components.

The following table shows the compatibility of each object type, if a staged transition was to be used:

Object Type OS Compatibility Notes

.int All Platform Slowest format, not shared

.gnt All Platform Not shared

.dll Windows Product Family Code shared between
processes at OS level

.exe Windows Product C Library Requires relinking when C
library changes

.so Unix/Linux Product Family Code shared between
processes at OS level

<executable> Unix/Linux Product Family Requires relinking when C
vendor indicates

If you do not intend to keep the development and deployment product versions aligned, it is recommended
that you keep the intermediate object code (.obj, .o) from the COBOL compiler and the linker command
line options from the final build prior to deployment. If you subsequently upgrade the deployment product to
one that requires the standalone executable to be relinked, then you can rebuild the executable, without
having to recompile the application from source with the new COBOL compiler.

Compatibility between build and run products

The following sections show the compatibility between build and run products, on Windows platforms.

Visual COBOL and Enterprise Developer Windows C Runtime Compatibility | 11

As previously mentioned, unless explicitly stated in your current release documentation, the callable
artifacts of your application will be forward-compatible when running on the same platform, and using a
later product, in the same Product Family, to the one in which they were originally built.

Use the following flow diagram to determine if you need to recompile when building your programs with one
product, and then running them with another:

Note: If you deploy to an enterprise server, a main executable is not deployed; therefore, you only
need to ensure that your callable artifacts are compatible, using the criteria above.

12 | Visual COBOL and Enterprise Developer Windows C Runtime Compatibility

Visual COBOL and Enterprise Developer Windows C Runtime Compatibility | 13

Visual COBOL and Enterprise Developer
UNIX and Linux C Runtime Compatibility

The following table shows the compatibility of Visual COBOL Development Hub and Enterprise Developer
UNIX Components products on UNIX/Linux platforms, and their associated C runtime versions.

Product Operating system Version C Runtime Version Notes

Visual COBOL
Development Hub 2.x

Enterprise Developer
UNIX Components
2.x

AIX 6.1 TL7 SP4 IBM xlC.rte 11.1.0.2 C Runtime (xlC.rte
package) is
independent of the
OS install, so Micro
Focus has chosen to
install these versions
on our reference test
machines.

6.1 TL9 SP8 IBM xlC.rte 13.1.3.1

7.1 TL4 SP3 IBM xlC.rte 13.1.3.1

7.2 TL1 SP1 IBM xlC.rte 13.1.3.1

HP 11i v3 (1603) aC++ runtime A.
06.28

C runtime is separate
to the OS.

11i v3 (1109) aC++ runtime A.
06.25.01

Oracle Linux RH
Kernel

7.3 glibc 2.17

Oracle Linux
Unbreakable Kernel

6.8 glibc 2.12

7.3 glibc 2.17

RHEL 6 glibc 2.12

6.2 glibc 2.12

6.8 glibc 2.12

7.1 glibc 2.17

7.3 glibc 2.17

Solaris 10 Solaris Studio 12.2

11 Solaris Studio 12.2

11.3 Solaris Studio 12.2

SUSE 11 glibc 2.9

11 SP1 glibc 2.11

11 SP4 glibc 2.11

12 glibc 2.19

12 SP2 glibc 2.22

Visual COBOL
Development Hub 3.0

AIX 7.1 TL4 SP3 IBM xlC.rte 13.1.3.1 C Runtime (xlC.rte
package) is
independent of the

14 | Visual COBOL and Enterprise Developer UNIX and Linux C Runtime Compatibility

Product Operating system Version C Runtime Version Notes

Enterprise Developer
UNIX Components
3.0

OS install, so Micro
Focus has chosen to
install this version on
our reference test
machines.

HP 11i v3 (1603) aC++ runtime A.
06.25

C runtime is separate
to the OS.

11i v3 (1109) aC++ runtime A.
06.25.01

Oracle Linux RH
Kernel

7.3 glibc 2.17

Oracle Linux
Unbreakable Kernel

6.8 glibc 2.12

7.3 glibc 2.17

RHEL 6 glibc 2.12

6.2 glibc 2.12

6.8 glibc 2.12

7.1 glibc 2.17

7.3 glibc 2.17

Solaris 10 Solaris Studio 12.2

11.3 Solaris Studio 12.6

SUSE 11 glibc 2.9

11 SP1 glibc 2.11

11 SP4 glibc 2.11

12 glibc 2.19

12 SP2 glibc 2.22

Visual COBOL
Development Hub 4.0

Enterprise Developer
UNIX Components
4.0

AIX 7.1 TL4 SP3 IBM xlC.rte 13.1.3.1 C Runtime (xlC.rte
package) is
independent of the
OS install, so Micro
Focus has chosen to
install these versions
on our reference test
machines.

7.2 TL2 SP2 IBM xlC.rte 13.1.3.1

HP 11iv3 (1703) aC++ runtime A.
06.28

C runtime is separate
to the OS.

11i v3 (1109) aC++ runtime A.
06.25.01

Oracle Linux RH
Kernel

7.4 glibc 2.17

Oracle Linux
Unbreakable Kernel

6.9 glibc 2.12

Visual COBOL and Enterprise Developer UNIX and Linux C Runtime Compatibility | 15

Product Operating system Version C Runtime Version Notes

7.4 glibc 2.17

RHEL 6 glibc 2.12

6.2 glibc 2.12

6.9 glibc 2.12

7.1 glibc 2.17

7.4 glibc 2.17

Solaris 10 Solaris Studio 12.2

11.3 Solaris Studio 12.6

SUSE 12 SP2 glibc 2.22

12 SP3 glibc 2.22

Visual COBOL
Development Hub 5.0

Enterprise Developer
UNIX Components
5.0

AIX 7.1 TL4 SP3 IBM xlC.rte 13.1.3.1 C Runtime (xlC.rte
package) is
independent of the
OS install, so Micro
Focus has chosen to
install these versions
on our reference test
machines.

7.2 TL2 SP2 IBM xlC.rte 13.1.3.1

HP 11i v3 (2016 update) aC++ runtime A.
06.28

C Runtime (aC++
package) is
independent of the
OS install. Micro
Focus has chosen to
install these versions
on our reference test
machines.

11i v3 (2018 update) aC++ runtime A.
06.25.01

Oracle Linux RH
Kernel

7.6 glibc 2.17

Oracle Linux
Unbreakable Kernel

6.10 glibc 2.12

7.6 glibc 2.17

RHEL 6 glibc 2.12

6.2 glibc 2.12

6.10 glibc 2.12

7.1 glibc 2.17

7.6 glibc 2.17

Solaris 11.4 Solaris Studio 12.6 C Runtime (Solaris
Studio package) is
independent of the
OS install, so Micro
Focus has chosen to
install these versions

16 | Visual COBOL and Enterprise Developer UNIX and Linux C Runtime Compatibility

Product Operating system Version C Runtime Version Notes

on our reference test
machines.

SUSE 12 SP2 glibc 2.22

15 glibc 2.26

Visual COBOL
Development Hub 6.0

Enterprise Developer
UNIX Components
6.0

AIX 7.1 TL4 SP3 IBM xlC.rte 13.1.3.1 C Runtime (xlC.rte
package) is
independent of the
OS install, so Micro
Focus has chosen to
install these versions
on our reference test
machines.

7.2 TL2 SP2 IBM xlC.rte 13.1.3.1

HP 11i v3 (2019 update) aC++ runtime A.
06.28

C Runtime (aC++
package) is
independent of the
OS install. Micro
Focus has chosen to
install these versions
on our reference test
machines.

Oracle Linux RH
Kernel

7.7 glibc 2.17

Oracle Linux
Unbreakable Kernel

6.10 glibc 2.12

7.7 glibc 2.17

RHEL 6 glibc 2.12

6.2 glibc 2.12

6.10 glibc 2.12

7.7 glibc 2.17

8.1 glibc 2.28

Solaris 11.4 Solaris Studio 12.6 C Runtime (Solaris
Studio package) is
independent of the
OS install, so Micro
Focus has chosen to
install these versions
on our reference test
machines.

SUSE 12 SP5 glibc 2.22

15 glibc 2.26

CentOS 7.7 glibc 2.17

8.0 glibc 2.28

Ubuntu 18.04 glibc 2.27

Visual COBOL and Enterprise Developer UNIX and Linux C Runtime Compatibility | 17

Note: Enterprise Developer UNIX Components is an integrated component of the Enterprise
Developer product, and was first introduced in Enterprise Developer 2.1.

18 | Visual COBOL and Enterprise Developer UNIX and Linux C Runtime Compatibility

Glossary of Definitions
Callable
artifacts

Binary objects such as .int, .gnt, .lbr, .dll, and .so files that are loaded/called
by a standalone executable.

Main
executable

Binary objects that are executable by the system with a main entry point and are run as
a separate process, for example .exe on Windows.

Object code Binary output from the Compiler, created in platform-defined format (.obj, .o), that can
be linked into a standalone executable or callable object, depending on the application.

Platform The operating system and third-party components such as RDBMS clients and servers,
Java App Servers, JRE and .NET framework, on which the COBOL application is built
and executed.

Product
Family

A set of product releases that have a common base. For example, Visual COBOL for
Visual Studio 2012 and Enterprise Developer for Visual Studio 2012.

Relinking The action of relinking links a main application executable with the latest run time
system. Relinking does not require recompilation, but the process does require the
original object files that were generated at the point of original compilation. Relink using
the cbllink command line tool.

Glossary of Definitions | 19

	Contents
	Application Compatibility Guide
	Compatibility Overview
	PL/I Application Compatibility
	COBOL Language Compatibility
	Third-party Compatibility
	SOA/IMTK Interface Definition Table (IDT) Compatibility
	Visual COBOL and Enterprise Developer Windows C Runtime Compatibility
	Visual COBOL and Enterprise Developer UNIX and Linux C Runtime Compatibility
	Glossary of Definitions

