

OpenText RM/COBOL™

CodeBridge User’s Guide

Copyright 2018 - 2023 Open Text.

The only warranties for products and services of Open Text and its affiliates and licensors
(“Open Text”) are as may be set forth in the express warranty statements accompanying such
products and services. Nothing herein should be construed as constituting an additional
warranty. Open Text shall not be liable for technical or editorial errors or omissions contained
herein. The information contained herein is subject to change without notice.

Revised 2023-11-16 for version 12.20.

CodeBridge User's Guide Contents • iii

Contents

Preface .. 3

Welcome to CodeBridge ... 3
Who Should Use CodeBridge .. 3
Organization of Information ... 4
Related Publications ... 5
Symbols and Conventions .. 5
Technical Support ... 7

Support Guidelines .. 7
Test Cases ... 8

Chapter 1: Introduction .. 9

What is CodeBridge? ... 9
CodeBridge Components ... 10
Benefits of Using CodeBridge .. 10
Requirements for Developing Applications Using CodeBridge 11

Using this Manual .. 11
Developers Who are New to C Programming ... 12
Developers Who are Evaluating CodeBridge ... 12
Developers Who Wish to Use Existing C Libraries or Write New Non-
COBOL Subprograms .. 12
Developers Who Have Written Non-COBOL Subprograms for Previous
Versions of RM/COBOL .. 13
Developers Who Need Assistance in Testing and Debugging 13

Typical Development Procedure .. 13
Typical Development Example ... 16

Example 1: Calling a Standard C Library Function 16

Chapter 2: Concepts ... 21

Using Template File Components .. 21
Attributes ... 22
Attribute Lists .. 22

Parameter Attribute Lists ... 22
Global Attribute Lists .. 25

Passing Information to a C Function ... 25
Passing COBOL Arguments .. 26

Passing COBOL Numeric Arguments .. 26
Passing COBOL Non-Numeric Arguments .. 30

iv • Contents CodeBridge User's Guide

Passing COBOL Pointer Arguments .. 31
Passing Null-Valued Pointer Arguments ... 33

Passing COBOL Argument Properties ... 34
Passing COBOL Descriptor Data .. 34
Passing String Length Information .. 35

Passing Miscellaneous Information .. 36
Managing Omitted Arguments ... 36

Returning C Error Values ... 37
Consistent Return Values ... 38
Specifying Both errno and get_last_error .. 38
Function Return Value (Status) Versus Error Values 39

Associating C Parameters with COBOL Arguments ... 40
Explicit Association ... 40
Automatic Association ... 41

Automatic Association of the C Function Return Value with a COBOL
Argument ... 41
Automatic Association of C Parameters with COBOL Arguments 41

Examples of Associating Parameters with Arguments 42
Example 1: Automatic Versus Explicit Association 42
Example 2: Multiple Attribute Lists for a C Parameter 44
Example 3: No Attribute List for a C Parameter 45

Working with a Variable Number of C Parameters ... 46
Repeating C Numeric Parameters ... 46
Repeating C String Parameters .. 47

numeric_string... 47
general_string .. 47
string .. 47

Modifying COBOL Data Areas ... 47
Using the out Direction Attribute .. 48
Passing the Address of COBOL Data ... 49

Passing Buffer Addresses .. 50
Using P-Scaling .. 50
Working with Arrays .. 51

Numeric Arrays .. 51
String Arrays .. 52
COBOL Array References .. 53

CodeBridge Builder .. 54
Using the CodeBridge Builder ... 55

Appendix A: CodeBridge Errors .. 57

CodeBridge Builder Error Messages .. 57
CodeBridge Builder Exit Codes ... 59
CodeBridge Library Error Messages .. 59

Appendix B: CodeBridge Examples .. 63

Example 1: Calling a Standard C Library Function ... 63
Example 2: Calling a Windows API Function .. 64
Example 3: Accommodating a Variable Number of Parameters 66

CodeBridge User's Guide Contents • v

Example 4: Accessing COBOL Pointer Arguments .. 70
Example 5: Packing and Unpacking Structures ... 73
Example 6: Converting Buffered C Data.. 76
Example 7: Calling C++ Libraries from CodeBridge ... 78
Example 8: Using errno .. 81
Example 9: Using get_last_error .. 83

Appendix C: Useful C Information... 87

Understanding C Language Concepts ... 87
Case Sensitivity ... 88
Data Types ... 88
Data Declarations .. 89
Type Definitions and Macros ... 89
Calling Conventions .. 90
Function Prototypes .. 90

Compiling and Linking C Functions ... 91
Compiling on Windows ... 91
Compiling on UNIX .. 92
Linking on Windows .. 92
Linking on UNIX ... 93
Multiple Template Files .. 93

Appendix D: Global Attributes ... 95

Global Attributes Overview ... 95
banner Attribute ... 96
convention Attribute .. 96
diagnostic Attribute ... 96
load_message Attribute .. 97
replace_type Attribute ... 97

Appendix E: Parameter Attributes... 99

Parameter Attributes Overview .. 99
Argument Number Attributes ... 99
Direction Attributes ... 100
Base and Base Modifier Attributes .. 100

Base Modifiers Common to Base Attributes .. 101
Numeric Base Attributes... 103

Numeric String Formatting and Conversion Rules 103
Base Modifiers that Apply to Numeric Base Attributes 104

string Base Attribute ... 108
Base Modifiers that Apply to the String Base Attribute 108

general_string Base Attribute ... 111
String Length Base Attributes .. 111

Base Modifiers that Apply to String Length Base Attributes 112
Pointer Base Attributes ... 113

Base Modifiers that Apply to Pointer Base Attributes 114
Descriptor Base Attributes ... 114

vi • Contents CodeBridge User's Guide

Base Modifier that Applies to Descriptor Base Attributes 117
Error Base Attributes ... 117

Base Modifiers that Apply to Error Base Attributes............................ 118
Parameter Attributes Summary .. 120
Parameter Attribute Combinations .. 127

Appendix F: CodeBridge Library Functions 131

Library Functions Overview... 131
Specifying the Flags Parameter ... 134
AssertDigits.. 136
AssertDigitsLeft ... 137
AssertDigitsRight ... 138
AssertLength .. 139
AssertSigned .. 139
AssertUnsigned ... 140
BufferLength .. 140
CobolArgCount .. 141
CobolDescriptorAddress ... 142
CobolDescriptorDigits ... 142
CobolDescriptorLength ... 143
CobolDescriptorScale ... 143
CobolDescriptorType... 144
CobolInitialState .. 144
CobolToFloat ... 145
CobolToGeneralString ... 146
CobolToInteger .. 147
CobolToNumericString ... 148
CobolToPointerAddress .. 150
CobolToPointerBase ... 150
CobolToPointerLength .. 151
CobolToPointerOffset ... 151
CobolToPointerSize ... 152
CobolToString .. 152
CobolWindowsHandle ... 153
ConversionCleanup ... 154
ConversionStartup ... 154
DiagnosticMode .. 155
EffectiveLength .. 155
FloatToCobol ... 156
GeneralStringToCobol ... 157
GetCallerInfo .. 158
GetTerminationInfo ... 160
IntegerToCobol .. 161
NumericStringToCobol ... 162
PointerBaseToCobol ... 163
PointerOffsetToCobol ... 164
PointerSizeToCobol ... 164
StringToCobol .. 165

CodeBridge User's Guide Contents • vii

Appendix G: Non-COBOL Subprogram Internals for Windows 167

C Subprograms for Windows .. 167
Methods of Using Non-COBOL Subprograms ... 168
Calling C Subprograms from COBOL for Windows ... 168

COBOL CALL Statement ... 168
C Subprogram Name Table Structure on Windows 169

Example RM_EntryPoints for Windows ... 170
Parameters Passed to the C Subprogram on Windows 171
COBOL Argument Entry Structure for C on Windows 172

Preparing C Subprograms for Windows .. 174
Special Entry Points for Support Modules on Windows 180

RM_AddOnBanner ... 181
RM_AddOnCancelNonCOBOLProgram ... 181
RM_AddOnInit .. 181
RM_AddOnLoadMessage ... 182
RM_AddOnTerminate .. 183
RM_AddOnVersionCheck .. 183
RM_EntryPoints and RM_EnumEntryPoints .. 184

Debugging C Subprograms on Windows ... 185
Calling a CodeBridge Subprogram Library on Windows 185

Appendix H: Non-COBOL Subprogram Internals for UNIX 187

C Subprograms for UNIX... 187
Calling C Subprograms from COBOL for UNIX .. 188

COBOL CALL Statement ... 188
C Subprogram Name Table Structure on UNIX ... 188

Example RM_EntryPoints for UNIX .. 189
Parameters Passed to the C Subprogram on UNIX 189
COBOL Argument Entry Structure for C on UNIX 191

Accessing C Subprograms from UNIX ... 193
Preparing C Subprograms for UNIX ... 194

Creating a Support Module from a C Source .. 195
Creating a Support Module from a C Object (No Source) 196

Special Entry Points for Support Modules on UNIX .. 197
RM_AddOnBanner ... 197
RM_AddOnCancelNonCOBOLProgram ... 198
RM_AddOnInit .. 198
RM_AddOnLoadMessage ... 198
RM_AddOnTerminate .. 199
RM_AddOnVersionCheck .. 199
RM_EntryPoints and RM_EnumEntryPoints .. 200

Calling a CodeBridge Subprogram Library on UNIX .. 201
C Subprograms Performing Terminal I/O .. 201
Debugging C Subprograms on UNIX .. 202
C Subprogram Example .. 202
Runtime Functions for Support Modules ... 202

Appendix I: Calling the CodeBridge Library Directly 205

viii • Contents CodeBridge User's Guide

Overview ... 205
Including cbridge.h .. 206
Declaring the C Function Return Value and Parameters 206
Specifying the COBOL Argument Number ... 207
Declaring C Data Items Used in the Conversion Process 208

Numeric Conversions.. 208
String Conversions .. 208
Address Conversions .. 209
Pointer Numeric Component Conversions .. 209
Other Conversions ... 210
Trivial Conversions .. 210

Initializing and Terminating the Conversion Process 211
Initialization ... 211
Termination ... 211

Converting COBOL Arguments to C Data Items .. 212
Specifying the ArgCount, ArgNumber, and Arguments Parameters 212
Specifying the Parameter Parameter... 212
Specifying the Size Parameter ... 213
Specifying Other Parameters ... 213

Converting C Data Items to COBOL Arguments .. 214
Specifying the ArgCount, ArgNumber, and Arguments Parameters 214
Specifying the Parameter Parameter... 214
Specifying the Size Parameter ... 215
Specifying Other Parameters ... 215

Validating Properties of COBOL Arguments ... 216
Example .. 216

Appendix J: Summary of Enhancements ... 219

Version 12 Enhancements .. 219
Version 11 Enhancements .. 219
Version 10 Enhancements .. 219
Version 9 Enhancements .. 220
Version 8 Enhancements .. 221
Version 7.5 Enhancements ... 221
Version 7.1 Enhancements ... 222
Version 7.0 Enhancements ... 222

Glossary of Terms ... 223

Terms and Definitions ... 223

Index ... 227

CodeBridge User's Guide Contents • ix

List of Figures

Figure 1: Library Error Message Box ... 60

List of Tables

Table 1: CodeBridge Builder Error Messages ... 57
Table 2: CodeBridge Builder Exit Codes ... 59
Table 3: CodeBridge Library Errors ... 60
Table 4: Type Attribute Codes ... 116
Table 5: Parameter Attributes Summary .. 120
Table 6: Parameter Attribute Combinations ... 128
Table 7: CodeBridge Library Functions ... 132
Table 8: CodeBridge Library Flag Definitions ... 135
Table 9: RM/COBOL Data Types as Numbers .. 173
Table 10: RM/COBOL Data Types as Numbers .. 192

CodeBridge User's Guide Preface • 1

CodeBridge User's Guide Preface • 3

Preface

Welcome to CodeBridge

This document describes CodeBridge, RM/COBOL’s cross-language call
system that is designed to simplify communication between RM/COBOL
programs and
non-COBOL subprogram libraries that are written in C.

CodeBridge for Windows and UNIX allows RM/COBOL programs to call non-
COBOL subprograms built from external Application Programming Interfaces
(APIs) or custom-developed C libraries without introducing “foreign”
language data dependencies into either the COBOL program or the called C
functions. This means that developers can write COBOL-callable C functions
using C data types as usual, without worrying about the complexities of
COBOL calling conventions or data types.

CodeBridge runs on Microsoft Windows and UNIX-based operating systems.

The new features for the most recent release of CodeBridge, as well as
significant enhancements in previous releases, are described in Appendix J:
Summary of Enhancements (on page 219).

Who Should Use CodeBridge

CodeBridge is intended for the following audiences:

1. Developers who may or may not be proficient in the C programming
language and who wish to call existing C function libraries or system APIs
without writing any additional
C code.

2. Developers who are proficient in C programming and who wish to write
new C function libraries that may be called from RM/COBOL.

3. Developers who have previously written non-COBOL subprogram libraries
in the form of Windows dynamic-link libraries (DLLs) that are callable
from RM/COBOL and who wish to take advantage of data conversion and
validation features that are available in CodeBridge.

4 • Preface CodeBridge User's Guide

Organization of Information

The following lists the topics that you will find in the CodeBridge manual and
provides a brief description of each.

Chapter 1—Introduction provides a general overview of the CodeBridge
cross-language call system, including components, benefits, requirements,
information on how use this manual, and a typical development procedure
with a basic, illustrative example. More examples are provided in Appendix B:
CodeBridge Examples.

Chapter 2—Concepts describes the concepts that are central to an
understanding of CodeBridge, including using the template file components,
passing information to a C function, returning C error values, associating C
parameters with COBOL arguments, working with a variable number of C
parameters, modifying COBOL data areas, using P-scaling, working with
arrays, and using the CodeBridge Builder.

Appendix A—CodeBridge Errors lists and describes the messages that can
be generated during the use of either the CodeBridge Builder or the
CodeBridge Library. These messages also include the CodeBridge Builder
exit codes.

Appendix B—CodeBridge Examples contains additional examples that use
the typical CodeBridge development procedure outlined in Chapter 1:
Introduction. The examples build from simple to complex, as a means of
introducing CodeBridge concepts.

Appendix C—Useful C Information contains explanations intended to
introduce basic
C concepts to developers who are inexperienced in C. This information is
intended to serve as a starting point for those developers who may not be
proficient with C programming and who wish to call existing C function
libraries without writing any additional C code.

Appendix D—Global Attributes provides detailed descriptions of the global
attributes used in a template file. See Chapter 2: Concepts, for more
information about the basic components of a template file.

Appendix E—Parameter Attributes provides detailed descriptions of the
parameter attributes used in a template file. See Chapter 2: Concepts, for
more information about the basic components of a template file.

Appendix F—CodeBridge Library Functions describes each function in the
CodeBridge Library. These descriptions will help you understand the C code
generated by the CodeBridge Builder and will assist you in debugging
applications developed using CodeBridge. Information on specifying the
Flags parameter is also covered.

Appendix G—Non-COBOL Subprogram Internals for Windows describes the
internal details of how a non-COBOL subprogram is called from an
RM/COBOL program running under Microsoft Windows. It also provides

CodeBridge User's Guide Preface • 5

information on preparing a non-COBOL subprogram for use by an RM/COBOL
program on Windows.

Appendix H—Non-COBOL Subprogram Internals for UNIX describes the
internal details of how a non-COBOL subprogram is called from an
RM/COBOL program running under UNIX. It also provides information on
preparing a non-COBOL subprogram for use by an RM/COBOL program on
UNIX.

Appendix I—Calling the CodeBridge Library Directly includes guidelines for
calling the CodeBridge Library directly rather than having the CodeBridge
Builder generate the interface code from a template file. In order to call the
CodeBridge Library directly, you must use an alternate method for preparing
non-COBOL subprograms, as described in Appendices G and H.

Appendix J—Summary of Enhancements provides an overview of new
features in the current release, and reviews the changes and enhancements
that were added to earlier releases of CodeBridge.

The CodeBridge manual also includes a glossary (on page 223) and an index.

Related Publications

For additional information, refer to the following publications:

RM/COBOL User’s Guide

RM/COBOL Language Reference Manual

RM/COBOL Syntax Summary Help File

CodeWatch User’s Guide

WOW Extensions Designer Help File and WOW Extensions Functions and
Messages Help File

Xcentrisity Business Information Server (BIS) User’s Guide

XML Extensions User’s Guide

Symbols and Conventions

The following typographic conventions are used throughout this manual to
help you understand the text material and to define syntax:

1. Words in all capital letters indicate COBOL reserved words, such as
statements, phrases, and clauses; acronyms; configuration keywords;
environment variables, and RM/COBOL Compiler and Runtime Command
line options.

2. Text that is displayed in a monospaced font indicates user input or
system output (according to context as it appears on the screen). This

6 • Preface CodeBridge User's Guide

type style is also used for sample command lines, program code and file
listing examples, and sample sessions.

3. Bold, lowercase letters represent filenames, directory names, programs, C
language keywords, and CodeBridge attributes.

Words you are instructed to type appear in bold. Bold type style is also
used for emphasis, generally in some types of lists.

4. Italic type identifies the titles of other books and names of chapters in
this guide, and it is also used occasionally for emphasis.

In COBOL syntax, italic text denotes a placeholder or variable for
information you supply, as described below.

5. The symbols found in the COBOL syntax charts are used as follows:

a. italicized words indicate items for which you substitute a specific
value.

b. UPPERCASE WORDS indicate items that you enter exactly as shown
(although not necessarily in uppercase).

c. ... indicates indefinite repetition of the last item.

d. | separates alternatives (an either/or choice).

e. [] enclose optional items or parameters.

f. { } enclose a set of alternatives, one of which is required.

g. {| |} surround a set of unique alternatives, one or more of which is
required, but each alternative may be specified only once; when
multiple alternatives are specified, they may be specified in any order.

6. All punctuation must appear exactly as shown.

7. Key combinations are connected by a plus sign (+), for example, Ctrl+X.
This notation indicates that you press and hold down the first key while
you press the second key. For example, “press Ctrl+X” means to press
and hold down the Ctrl key while pressing the X key. Then release both
keys.

8. The term “Windows” in this document refers to Microsoft Windows
operating systems, including Microsoft Windows 2000, Windows XP,
Windows Server 2003, Windows Vista, or Windows Server 2008.

Note RM/COBOL and CodeBridge no longer support earlier Microsoft
Windows operating systems, including Windows 98, Windows 98 SE,
Windows Me, and Windows NT 4.0.

Furthermore, in this document, any references to these versions, or to the
shorthand notation “Windows 9x-class” or “Windows NT-class” referring
to these operating systems, are included for historical purposes only.

9. RM/COBOL Compile and Runtime Command line options may be
preceded by a hyphen. If any option is preceded by a hyphen, then a

CodeBridge User's Guide Preface • 7

leading hyphen must precede all options. When assigning a value to an
option, the equal sign is optional if leading hyphens are used.

10. If present in the electronic PDF file, this symbol represents a “note” that
allows you to view last-minute comments about a specific topic on the
page in which it occurs. This same information is also contained in the
README text file under the section, Documentation Changes. In Adobe
Reader, you can open comments and review their contents, although you
cannot edit the comments. Notes do not print directly from the comment
that they annotate. You may, however, copy and paste the comment text
into another application, such as Microsoft Word, if you wish.

To review notes, do one of the following:

• To view a note, position the mouse over the note icon until the note
description
pops up.

• To open a note, double-click the note icon.

• To close a note, click the Close box in the upper-left corner of the note
window.

Technical Support

OpenText is dedicated to helping you achieve the highest possible
performance from the RM/COBOL family of products. The OpenText
Customer Care for Micro Focus™ Products team is committed to providing
you prompt and professional service when you have problems or questions
about your OpenText products.

These technical support services are subject to OpenText’ prices, terms, and
conditions in place at the time the service is requested.

While it is not possible to maintain and support specific releases of all
software indefinitely, we offer priority support for the most current release of
each product. For customers who elect not to upgrade to the most current
release of the products, support is provided on a limited basis, as time and
resources allow.

Support Guidelines

When you need assistance, you can expedite your call by having the following
information available for the technical support representative:

1. Company name and contact information.

2. OpenText RM/COBOL product serial number (found on the media label,
registration card, or product banner message).

3. Product version number.

4. Operating system and version number.

8 • Preface CodeBridge User's Guide

5. Hardware, related equipment, and terminal type.

6. Exact message appearing on screen.

7. Concise explanation of the problem and process involved when the
problem occurred.

Test Cases

You may be asked for an example (test case) that demonstrates the problem.
Please remember the following guidelines when submitting a test case:

• The smaller the test case is, the faster we will be able to isolate the cause
of the problem.

• Do not send full applications.

• Reduce the test case to one or two programs and as few data files as
possible.

• If you have very large data files, write a small program to read in your
current data files and to create new data files with as few records as
necessary to reproduce the problem.

• Test the test case before sending it to us to ensure that you have
included all the necessary components to recompile and run the test
case. You may need to include an RM/COBOL configuration file.

When submitting your test case, please include the following items:

1. README text file that explains the problems. This file must include
information regarding the hardware, operating system, and versions of all
relevant software (including the operating system and all OpenText
products). It must also include step-by-step instructions to reproduce the
behavior.

2. Program source files. We require source for any program that is called
during the course of the test case. Be sure to include any copy files
necessary for recompilation.

3. Data files required by the programs. These files should be as small as
possible to reproduce the problem described in the test case.

CodeBridge User's Guide Chapter 1: Introduction • 9

Chapter 1: Introduction

This introductory chapter provides an overview of CodeBridge technology
and its components, and describes the following topics:

• Benefits of using CodeBridge (on page 10)

• Requirements for developing applications using CodeBridge (on page 11)

• Information on using this manual (on page 11)

• Typical development procedure (on page 13)

• Typical development example (on page 16)

What is CodeBridge?

CodeBridge allows RM/COBOL applications to call C functions without being
concerned about the conversion between COBOL arguments and C
parameters.

CodeBridge allows RM/COBOL programs to call non-COBOL subprograms
built from external Application Programming Interfaces (APIs) or custom-
developed C libraries without introducing “foreign” language data
dependencies into either the COBOL program or the called C functions. This
means that developers can write COBOL-callable C functions using C data
types as usual, without worrying about the complexities of COBOL calling
conventions or data types.

The developer augments C function prototypes with global and parameter
attributes described in this manual to produce a template file. The developer
uses the CodeBridge Builder utility to generate a C source file from the
template file. This generated C source file contains the interface logic that,
with the help from the CodeBridge Library, connects the calling COBOL
program to the C function. The developer compiles this C source file, along
with the C functions to be called, and links the generated object files together
to form the completed non-COBOL subprogram library. In many cases,
existing C library functions may be used to generate a non-COBOL
subprogram library without writing any C code.

10 • Chapter 1: Introduction CodeBridge User's Guide

Note For Windows platforms, the generated non-COBOL subprogram library
is a dynamic-link library (DLL). For UNIX platforms, the generated non-COBOL
subprogram library is a “shared object” (normally referred to as an optional
support module).

CodeBridge Components

CodeBridge consists of two main components:

• CodeBridge Builder. The CodeBridge Builder is a standalone program
that functions like a pre-compiler by reading a template file to generate a
C source code file. The template file consists of C function prototypes
that have been augmented with descriptive information. The output of
the CodeBridge Builder is compiled and linked with the C functions to
produce a non-COBOL subprogram library. The CodeBridge Builder is
included in the RM/COBOL development system.

• CodeBridge Library. The CodeBridge Library is a set of functions that
performs conversion operations from COBOL arguments to C parameters
and back again. The CodeBridge Library also contains functions to
validate data and enforce interface constraints. The CodeBridge Library
is part of the RM/COBOL runtime system.

Benefits of Using CodeBridge

CodeBridge provides the following benefits:

• Converts between COBOL and C data formats, eliminating the need for
either the COBOL program or the C function having to deal with “foreign”
language-dependent data types.

• Allows existing C libraries and standard APIs (such as the WIN32 API) to
be used, in many cases, without writing any additional C code.

• Supports basic COBOL data types, including numeric, non-numeric, and
pointer data items.

• Supports basic C data types, including integer and floating-point data
items, numeric ASCII-encoded strings, and standard null-terminated C
strings.

• Provides access to elements of COBOL data descriptors, which describe
the properties of COBOL arguments.

• Provides C functions with the COBOL argument count, the COBOL initial
state flag, and the Windows handle of the calling program.

• Provides data range and integrity checks for COBOL arguments and C
parameters.

• Provides support for omitted arguments and null-valued pointer
arguments.

CodeBridge User's Guide Chapter 1: Introduction • 11

• Provides limited support for calling C functions that allow a variable
number
of parameters.

Requirements for Developing Applications Using
CodeBridge

In order to develop applications using CodeBridge, you must have the
following:

1. An RM/COBOL development system to develop applications using
CodeBridge.

2. RM/COBOL runtime systems for deployment of applications based on
CodeBridge technology.

3. A contemporary C development system:

• For Windows, the C development system must be capable of
generating dynamic-link libraries (DLLs). OpenText selected
Microsoft’s Visual C++ compiler for the development of the Windows
version of CodeBridge. The Windows examples used in this manual
are based on Microsoft command line syntax.

• For UNIX, the C development system must be capable of generating
shared objects. The command line syntax for the UNIX examples
used in this manual is typical of many C compilers on UNIX. A
makefile is provided with the RM/COBOL development and runtime
systems that can be used or modified to build a shared object to be
used as a support module with the RM/COBOL runtime system. For
additional information, see Preparing C Subprograms for UNIX (on
page 194).

4. Some knowledge of C programming. The skill level varies depending on
what the developer wishes to accomplish. For those developers who are
not proficient in C programming and who wish to call existing C function
libraries, only a cursory knowledge of C is required. Appendix C: Useful C
Information (on page 87) contains brief explanations of some C language
concepts and terminology, and may be useful for those developers who
are not proficient in C.

Using this Manual

Depending on your experience level and how you to plan to use CodeBridge,
this section contains information to help you learn to use CodeBridge
effectively and quickly.

12 • Chapter 1: Introduction CodeBridge User's Guide

Developers Who are New to C Programming

A limited understanding of the C programming language is required to use
CodeBridge effectively. If you are unfamiliar with the C programming
language, you will want to refer first to Appendix C: Useful C Information (on
page 87). The explanations in this appendix are intended to introduce basic
C concepts to developers who are inexperienced in C. More in-depth
information can be found in the many resources published about
programming in C. Appendix C also contains information on compiling and
linking C functions.

Developers Who are Evaluating CodeBridge

It is recommended that all CodeBridge developers read and study Chapter 1:
Introduction (on page 9). This chapter presents the main features of
CodeBridge, and acquaints you with an overview and general appearance of a
typical CodeBridge program.

Another good way to become familiar with CodeBridge is to look at the
examples in Appendix B: CodeBridge Examples (on page 63). This appendix
contains examples that introduce and illustrate several CodeBridge concepts
and features. These examples may be helpful in generating CodeBridge
template files that are based on existing C function prototypes.

In addition to these examples, several CodeBridge sample programs are
included with the development system in the CodeBridge samples
subdirectory. Within the cbridge subdirectory on Windows, the file sample.txt
discusses the sample programs, including the .bat files to compile and run
them, the .tpl and .cbl files, and the output they produce. These sample
programs include a template file that contains definitions for a rich subset of
the SQL function calls defined by Microsoft’s ODBC API reference. The
README.txt file in the cbsample subdirectory on UNIX discusses the
CodeBridge sample programs that are included and how to run them.

Developers Who Wish to Use Existing C Libraries or
Write New Non-COBOL Subprograms

For background information, you may wish to refer to the chapters and
appendixes recommended for developers who are inexperienced in C
programming and those who are evaluating CodeBridge.

Then, study Chapter 2: Concepts (on page 21), which focuses on the
fundamentals and structure of CodeBridge.

Two appendices, Appendix D: Global Attributes (on page 95) and Appendix E:
Parameter Attributes (on page 99), serve as reference guides to the attributes
and attribute lists that are used in template files while developing CodeBridge
applications.

CodeBridge User's Guide Chapter 1: Introduction • 13

Developers Who Have Written Non-COBOL
Subprograms for Previous Versions of RM/COBOL

For background information, please refer to the previously recommended
topics for developers who wish to use existing C libraries or who want to
write new non-COBOL subprograms.

Next, read Appendix F: CodeBridge Library Functions (on page 131) and
Appendix I: Calling the CodeBridge Library Directly (on page 205). Please
note that the information in these two appendixes is not intended for a
general audience. Rather, it is targeted to those developers who have
previously written non-COBOL subprogram libraries in the form of Windows
DLLs that are callable from RM/COBOL, and who wish to take advantage of
the data conversion and validation features available in CodeBridge.

Finally, review either Appendix G: Non-COBOL Subprogram Internals for
Windows (on page 167) or Appendix H: Non-COBOL Subprogram Internals
for UNIX (on page 187). These appendices document the interface between
the RM/COBOL runtime system and a C subprogram.

Developers Who Need Assistance in Testing and
Debugging

Developers in this category may refer to Appendix A: CodeBridge Errors (on
page 57), which lists the error messages produced by the CodeBridge Builder
and CodeBridge Library.

The information in Appendix F: CodeBridge Library Functions (on page 131)
would also prove useful to developers who are debugging applications
developed using CodeBridge.

Typical Development Procedure

Note In order to avoid confusion, the term “argument” is used when referring
to COBOL data items; the term “parameter” is used when referring to C data
items.

A typical CodeBridge development procedure would include the following
steps:

1. Selecting the C functions. The first step is to select the C functions that
are to be called from COBOL.

These C functions may be ones that you have written, or that you have
acquired from a software vendor, or received as part of the standard C
library that came with your C compiler, or obtained as part of a standard
API for your operating system, or one of its add-on components.
Regardless of the source of these C functions, there will be one or more
header files that contain descriptions of the functions (using C function
prototypes), and, possibly, definitions of new data types and constants

14 • Chapter 1: Introduction CodeBridge User's Guide

(using macros defined with #define C preprocessor directives and data
types defined with C typedef statements). The information from these
header files will be augmented with additional information, as described
in step 2.

2. Creating the template file. The next step is to create a template file that
describes the relationship between the COBOL arguments and the C
parameters.

The template file, which is described in Chapter 2: Concepts (on page
21), contains modified C function prototypes, where the modifications
provide additional information describing each C parameter and the
function return value. Each block of descriptive information is called an
attribute list. Each attribute list contains one or more attributes. There
are two kinds of attribute lists: parameter and global. Attributes and
attribute lists are described in Appendix D: Global Attributes (on page 95)
and Appendix E: Parameter Attributes (on page 99).

Template files are generally free format in the sense that a line break may
be placed wherever a blank may be placed. A template file line should not
exceed 255 characters in length.

Note C-style comments (/* comment */) may be included in the template
source file. If comments are included, they are accepted by the
CodeBridge Builder, but are not placed in the C source created from the
template file.

In addition to the annotated C function prototypes, it is necessary to add
#include
C preprocessor directives to the template file so that the C code
generated by the CodeBridge Builder can correctly resolve C data types.
For example, if you are using the standard Windows API function,
MessageBox, you must include the header file, windows.h. Note that
Example 2: Calling a Windows API Function (on page 64) demonstrates
this requirement. If you did not write the C functions, documentation that
came with the software, your C compiler, or an SDK (Software
Development Kit), should provide this information.

3. Invoking the CodeBridge Builder. The CodeBridge Builder program uses
the template file to generate C source code that contains the interface
calls to connect the calling COBOL program to the C functions, and to
convert COBOL arguments to and from parameters.

The CodeBridge Builder is normally executed from a command line or
script environment. It has two command line options: a required input
parameter (the name of the template file) followed by an optional output
parameter (the name of the generated C source file).

Template files typically have a .tpl extension. If the optional output
filename is not specified, the output is written to a file with the same
name as the input file with the extension changed to .c.

CodeBridge User's Guide Chapter 1: Introduction • 15

Any errors that occur are written to a file with the same name as the
output file, but with the extension changed to .err. Errors encountered by
the CodeBridge Builder should be fixed before continuing. Although the
CodeBridge source code is generated when there are errors, it should not
be considered valid.

For more information, see CodeBridge Builder and CodeBridge Builder
Error Messages (on page 57).

4. Building the non-COBOL subprogram library. The CodeBridge Builder
generates a C source program that must be compiled. Once the
generated source has been compiled, it must be linked with the object
code for the functions you wish to call from COBOL and with any libraries
required by those functions or by the operating system. This linking
process will produce a non-COBOL subprogram library that your COBOL
program will use. Various compilers can be used to build the non-COBOL
subprogram library, including Microsoft’s Visual C++.

Note 1 When calling existing object libraries other than the standard C
library, you must specify the libraries needed in the link command.

Note 2 When calling an existing Windows DLL, you must supply either a
definition file (.def) or an import library file in the link command.

5. Modifying or creating a COBOL program. The next step is to modify an
existing COBOL program or create a new one that calls the C functions
you have selected.

The USING phrase of the RM/COBOL CALL statement allows you to
specify arguments you wish to pass to the C function. The GIVING
(RETURNING) phrase of the RM/COBOL CALL statement allows you to
specify an argument that would normally receive the return value of the C
function.

CodeBridge is designed to give maximum flexibility in choosing COBOL
data types to be converted to and from the C data types required by the C
function. For more information, see Chapter 2: Concepts (on page 21).

CodeBridge also allows wide latitude in mapping C function parameters
to COBOL arguments. For more information, see Associating C
Parameters with COBOL Arguments (on page 40).

6. Compiling the COBOL program. Use the RM/COBOL compiler to compile
your COBOL program.

7. Running the application. Execute the COBOL program, specifying the
name of the non-COBOL subprogram library using the L Option of the
RM/COBOL Runtime Command (runcobol). Alternatively, you may use
the Command Line Options Registry property on Windows or the
command line options in the UNIX resource file to specify the name of the
non-COBOL subprogram library. (For more details, see “Setting
Miscellaneous Properties” in Chapter 3: Installation and System
Considerations for Microsoft Windows, and the “UNIX Resource File”
section in Chapter 2: Installation and System Considerations for UNIX, of

16 • Chapter 1: Introduction CodeBridge User's Guide

the RM/COBOL User’s Guide). You may specify the name of the non-
COBOL subprogram with the appropriate file extension. For an example,
see page 19.

Note There is an option to automatically load your subprogram library
without the need to specify the L Option on the Runtime Command. Once
your subprogram library is tested to your satisfaction, you may

• On UNIX, copy the .so (support module) to the rmcobolso
subdirectory of the runtime execution directory (normally, /usr/bin).

• On Windows, copy the .dll (support module) to the rmautold
subdirectory of the runtime execution directory (normally, c:\program
files\rmcobol).

For additional information, see Preparing C Subprograms for UNIX (on page
194). For a general discussion of support modules and how RM/COBOL uses
them, see Appendix D: Support Modules (Non-COBOL Add-Ons) of the
RM/COBOL User’s Guide.

Typical Development Example

The following example uses the typical development procedure outlined in
the previous section. More examples can be found in Appendix B:
CodeBridge Examples (on page 63) and in the CodeBridge samples
subdirectory (cbridge on Windows and cbsample on UNIX).

Example 1: Calling a Standard C Library Function

This example demonstrates calling a standard C library function without
writing any C code. Parameter attribute lists are also presented.

1. Start with the function prototype for the standard C library cosine
function, cos:

double cos(double x);

2. Create a template file called trig.tpl in the src directory that consists of
the following lines:

#include <math.h>

[[float out rounded]] double cos(

[[float in]] double x);

The #include C preprocessor directive is added to the template file so
that the generated C source code can correctly resolve C data types.
Because the cosine function is defined in the header file math.h, you
should include this file in the template.

CodeBridge User's Guide Chapter 1: Introduction • 17

Parameter attribute lists (for example, [[float out rounded]]) are
constructed by placing the attributes between sets of double brackets.
The parameter attribute lists are placed just before C data type
references (in this example, double).

A parameter attribute list must contain a base attribute (in this case, float,
for floating-point). A parameter attribute list may contain a direction
attribute (either in or out, or both), although a direction attribute is not
always required. Optionally, a parameter attribute list may contain base
modifier attributes (in this case, rounded, to indicate that COBOL
rounding rules are to be applied).

Note Unlike COBOL, C is a case-sensitive programming language. Thus,
the case is significant for words in this example template file.

3. Invoke the CodeBridge Builder by using the following command line:

cbridge src\trig.tpl

This command reads the input file from src\trig.tpl and writes its output
file to src\trig.c. Any errors would be written to the file src\trig.err.

4. Compile and link the non-COBOL subprogram library with the C compiler
of your choice, using commands similar to the following:

For Windows

Start with the Visual Studio command prompt for the VS version and
bitness corresponding with your installation of RM/COBOL

• Run the command prompt as administrator.

• If you have a 32 RM/COBOL, select the standard Visual Studio
command prompt or the “x86 Native Tools Command Prompt”

• For 64 bit RM/COBOL, select the Visual Studio “x64 Native Tools
Command Prompt”

Compile:

cl –c –MD –Zp1 -I <RMC dir> src\trig.c

Link:

link –nologo -section:.edata,RD -subsystem:windows

 –out:trig.dll trig.obj

• The samples directory has a trig.bat file as well as the trig.tpl and
trig.cbl files needed to run this example.

For UNIX

• A makefile is provided with the RM/COBOL development and runtime
systems that can be used or modified to build a shared object to be
used as a support module with the RM/COBOL runtime system. For
additional information, see Preparing C Subprograms for UNIX (on
page 194).

18 • Chapter 1: Introduction CodeBridge User's Guide

Compile (Linux gcc):

cc [-m32|-m64] -c src/trig.c -I <RMC dir> -fPIC

• Requires cbridge.h included in the RM/COBOL installation
directory. This requires you to specifiy the directory with an
include (-I).

• The bitness [-m32 |-m64] of the object you are creating should
match the version of RM/COBOL you expect to run with.

• -fPIC for position independent code is required for creating the
shared object.

Link (Linux gcc):

cc [-m32|-m64] -shared -o trig.so trig.o -lm

• Some linkers will require you specify the math library (-lm).

• -shared required for linking a shared library

5. Create a COBOL program in a file called trig.cbl that contains the following
source fragments:

77 X-DEGREES PIC S999V99.

77 X-RADIANS PIC S99V9(16).

77 RESULT PIC S99V9(06).

78 PI Value 3.14159265359.

COMPUTE X-RADIANS = X-DEGREES / 180 * PI.

CALL "cos" USING X-RADIANS GIVING RESULT.

A full example program for trig.cbl:

 IDENTIFICATION DIVISION.

 PROGRAM-ID.

 trig.

 DATA DIVISION.

 WORKING-STORAGE SECTION.

 78 PI Value 3.14159265359.

 77 X-DEGREES PIC S999V99.

 77 X-RADIANS PIC S99V9(16).

 77 RESULT PIC S99V9(06).

 77 X-DEGREES-D PIC 999 USAGE DISPLAY.

 77 X-RADIANS-D PIC 99.9(16) USAGE DISPLAY.

 77 RESULT-D PIC -9.9(06) USAGE DISPLAY.

 PROCEDURE DIVISION.

 MAIN.

 DISPLAY "Enter 3 digit value for Degrees:"

 ACCEPT X-DEGREES-D FROM CONSOLE.

 move X-DEGREES-D to X-DEGREES

 COMPUTE X-RADIANS = X-DEGREES / 180 * PI.

 CALL "cos" USING X-RADIANS GIVING RESULT.

 move X-RADIANS to X-RADIANS-D

 move X-DEGREES to X-DEGREES-D

 move RESULT to RESULT-D

 DISPLAY "DEGREES = " X-DEGREES-D.

 DISPLAY "RADIANS = " X-RADIANS-D.

 DISPLAY "COS = " RESULT-D

 GO TO MAIN.

CodeBridge User's Guide Chapter 1: Introduction • 19

Note: Either numeric edited or any COBOL numeric usage may be
specified in the data descriptions for X-RADIANS and RESULT.

6. Compile the COBOL program with the RM/COBOL compiler by using the
following command line:

rmcobol trig

7. Run the application, specifying the name of the COBOL program and the
name of the non-COBOL subprogram library.

You may specify the name of the non-COBOL subprogram with the
appropriate file extension. The following two commands illustrate how to
specify a Windows DLL or a UNIX shared object (generally known as
support modules). Since the COBOL program and the non-COBOL
subprogram have the same root name (trig), it is necessary to specify the
correct file extension.

For Windows

runcobol trig -l trig.dll

For UNIX

runcobol trig -l trig.so

If the preceding examples had used different root names for the COBOL
program and the non-COBOL subprogram, it would not be necessary to
specify the file extension. For example, if the COBOL program were
named “myprog”, then the following command could be used for either
Windows or UNIX:

runcobol myprog -l trig

This example assumes that both the COBOL program and the non-COBOL
subprogram are in the current directory.

CodeBridge User's Guide Chapter 2: Concepts • 21

Chapter 2: Concepts

This chapter describes concepts that are central to an understanding of
CodeBridge:

• Using template file components (attributes and attribute lists), as
discussed below

• Passing information to a C function (on page 25):

− Passing COBOL arguments (on page 26)

− Passing COBOL argument properties (on page 34)

− Passing miscellaneous information (on page 36)

− Managing omitted arguments (on page 36)

• Returning C error values (on page 37)

• Associating C parameters with COBOL arguments (on page 40)

• Working with a variable number of C parameters (on page 46)

• Modifying COBOL data areas (on page 47)

• Using P-scaling (on page 50)

• Working with arrays (on page 51)

• Using the CodeBridge Builder (on page 55)

Using Template File Components

In order to use the CodeBridge Builder (on page 54), you must provide a
template file that describes each C function to be called from COBOL.
Attribute lists are used in the template file to supplement information from
the C function prototypes. An attribute list is a collection of attributes.
Detailed information about attributes is provided in Appendix D: Global
Attributes (on page 95) and Appendix E: Parameter Attributes (on page 99).

Note 1 As you read through this manual, keep in mind that the term
“parameter attribute” is a shorthand notation for an attribute that occurs in a

22 • Chapter 2: Concepts CodeBridge User's Guide

parameter attribute list. Likewise, “global attribute” indicates that the
attribute can be found in a global attribute list.

Note 2 C-style comments (/* comment */) may be included in the template
source file. If comments are included, they are accepted by the CodeBridge
Builder, but are not placed in the C source created from the template file.

Attributes

An attribute is a keyword, such as integer, or a keyword with an associated
value in parentheses, such as occurs(3). Attribute keywords are case-
sensitive and must be entered as shown.

The associated value is a constant. The CodeBridge Builder does not detect
errors in the construction of the associated value.

A collection of attributes is known as an attribute list.

Attribute Lists

Two kinds of attribute lists, parameter and global, are used in a template file.

A parameter attribute list (described in the next section) is formed by
enclosing one or more attributes in double brackets. For example:

[[integer in occurs(3)]]

A global attribute list (on page 25) is formed by enclosing one or more
attributes between the characters [# and #]. For example:

[# replace_type (VOID_PTR; void *) #]

See the sample template files using a parameter attribute list (on page 24)
and a global attribute list (on page 25).

Parameter Attribute Lists

A parameter attribute list is associated with a C parameter or function return
value. Each parameter attribute list describes the following:

• How COBOL arguments are to be validated and converted into C
parameters before the C function is called.

• How C parameters are to be validated and converted back to COBOL
arguments when the C function returns.

Zero or more parameter attribute lists may immediately precede the type
information for each C parameter or function return value.

Attribute lists for a parameter or function return value may be omitted if the
parameter or function return value is to be ignored.

CodeBridge User's Guide Chapter 2: Concepts • 23

Within a parameter attribute list, the parameter attributes need not be
presented in any particular order. For example, [[integer in]] is the
same as [[in integer]]. When a parameter is used for both input and
output, specify both the in and out direction attributes in either order.

The attributes in a parameter attribute list belong to one of the following
categories:

• Base. Base attributes indicate the general classification of a parameter
(numeric, string, string length, pointer, descriptor, or error). Each
parameter attribute list must contain exactly one base attribute, except
that the alias(name) base modifier attribute may be used by itself if the
return value is to be ignored. Therefore, within this document, a
parameter attribute list is sometimes identified by its base attribute. For
example, the phrase “an integer attribute list” refers to an attribute list
that contains the integer base attribute. For more information, see Base
and Base Modifier Attributes (on page 100).

• Base Modifier. Base modifier attributes perform several tasks, such as:
parameter conversion, parameter validation, error handling, array
processing, handling of a variable number of C parameters, overriding the
default size of a parameter, or supplying default values for omitted
arguments. For more information, see Base and Base Modifier Attributes
(on page 100).

• Direction. A direction attribute, in and/or out, is sometimes required so
that CodeBridge knows whether to generate code to convert a COBOL
argument to a C parameter before calling the C function and/or to convert
a C parameter to a COBOL argument when returning to the COBOL
program. For more information, see Direction Attributes (on page 100).

The base attributes, float, general_string, integer, numeric_string,
pointer_base, pointer_offset, pointer_size, and string, apply to both input
parameters and output parameters, and, therefore, require that a direction
attribute be specified.

All other base attributes apply only to input parameters, and, therefore,
assume the presence of the in direction attribute. These base attributes
do not allow the in direction attribute to be specified.

• Argument Number. CodeBridge provides a default automatic method of
associating the C parameters and function return value from the C
function prototype with COBOL arguments from the USING phrase and
GIVING (RETURNING) phrase of the CALL statement. This default
automatic association method is able to handle most cases. Note that
for the more than 60 functions described in the file sql.tpl in the cbridge
subdirectory (Windows only), none required using argument number
attributes. (For more information, see Argument Number Attributes (on
page 99).

There are, however, situations that the default automatic association
method will not handle. See Example 4: Accessing COBOL Pointer
Arguments (on page 70) and Associating C Parameters with COBOL

24 • Chapter 2: Concepts CodeBridge User's Guide

Arguments (on page 40). For these cases, use the explicit association
method by specifying argument number attributes, arg_num or ret_val, to
override the automatic association method.

For an alphabetized summary of the parameter attributes, see the table in
Parameter Attributes Summary (on page 120).

Sample Template File Using Parameter Attribute Lists

The following C function prototype:

int MyFunction(char *Name, short NameSize);

may be modified by adding parameter attribute lists to produce the following
template file:

[[integer out]] int MyFunction(

[[string in]] char *Name,

[[buffer_length]] short NameSize);

For each usage of a data item in the C function prototype (either for the
function return value or for a parameter), a parameter attribute list has been
added.

Since the C function returns an int, the integer base attribute and the out
direction attribute are used.

For the Name parameter, the string base attribute and the in direction
attribute are used to specify that the C function expects a string (array of
char) as input.

The buffer_length base attribute is used to specify the size (in bytes) of the
buffer used to contain the converted COBOL argument. By default, the
buffer_length base attribute refers to the same COBOL argument number as
was applicable in the attribute list that immediately precedes the attribute list
containing the buffer_length base attribute; an argument number attribute
may be specified in the attribute list containing the buffer_length attribute in
order to override the default argument number. For further clarification
regarding the COBOL argument referenced by a buffer_length base attribute,
see String Length Base Attributes (on page 111) and Automatic Association
of C Parameters with COBOL Arguments (on page 41). Because the
buffer_length base attribute may be used only with input parameters, it is
neither necessary nor allowed to add the in direction attribute to the attribute
list.

The COBOL program would call the C function with the following statement:

CALL "MyFunction" USING Name-1, GIVING Result-1.

CodeBridge User's Guide Chapter 2: Concepts • 25

Global Attribute Lists

A global attribute list provides information about one or more C function
prototypes that is not specific to any given parameter. This information also
could be used to modify the default behavior of the CodeBridge Builder.

Global attribute settings take effect at the point the global attribute list
occurs and are valid until another global attribute list alters these settings. A
global attribute list is not associated with any particular function, argument,
or parameter.

Sample Template File Using Global Attribute Lists

The following C function prototype:

SQLRETURN SQL_API SQLParamData(SQLHSTMT StatementHandle,

 SQLPOINTER *ValuePtrPtr);

may be modified by adding global and parameter attribute lists to produce
the following template file:

#include "sqltypes.h"

 [# replace_type(SQLPOINTER; void *) #]

 [# convention(SQL_API) #]

[[integer out]] SQLRETURN SQL_API SQLParamData(

[[integer in]] SQLHSTMT StatementHandle,

[[address]] SQLPOINTER *ValuePtrPtr);

The replace_type global attribute is used to expand the definition of
SQLPOINTER to void *. The convention global attribute is used to identify
function calling conventions.

Note 1 This example is based on the ODBC API, which is provided by
Microsoft
on Windows platforms. Other companies provide ODBC API implementations
for some UNIX platforms.

Note 2 The header file, sqltypes.h, is included so that the C source code
generated by CodeBridge will be able to resolve the data types, SQLRETURN
and SQLHSTMT.

Passing Information to a C Function

CodeBridge is designed to simplify the process of calling C functions from
COBOL programs. It is possible to call existing C library and standard API
functions without writing additional C code. Even though no additional C
code is required when using only existing C library or standard API functions,
some knowledge of C programming is required in order to create the
CodeBridge template file and to compile and link the CodeBridge non-COBOL
subprogram library. Further knowledge of C programming is required if the

26 • Chapter 2: Concepts CodeBridge User's Guide

developer desires to write new C programs or if intermediate functions must
be written to pack scalars into structure or union parameters.

CodeBridge handles the conversion between COBOL and C data formats,
which eliminates the need for either the COBOL program or the C function
having to deal with “foreign” language-dependent data types. During the
conversion process, CodeBridge can also perform data range and validity
checks to verify that specified interface constraints are maintained.

CodeBridge allows three categories of information to be passed to the C
function: COBOL arguments, COBOL argument proprieties, and
miscellaneous information. For more information, see the following topics:

• Passing COBOL Arguments, as discussed below

• Passing COBOL Argument Properties (on page 34)

• Passing Miscellaneous Information (on page 36)

Furthermore, a COBOL program may omit an argument in the information
passed to a C function, as discussed in Managing Omitted Arguments (on
page 36).

Passing COBOL Arguments

COBOL arguments may be numeric, non-numeric, or pointer data items.
COBOL numeric arguments may be passed to C integer, floating-point, and
numeric string parameters. COBOL non-numeric arguments must be passed
to C string parameters. As a special case
for C functions designed to interpret a null-valued pointer as an omitted
parameter, a COBOL null-valued pointer argument may be passed in place of
a numeric or non-numeric argument and the C function parameter will be set
to a null-valued pointer. COBOL pointer data
items contain three components: base address, offset, and size. The
address component
must be passed to C pointer parameters; the offset and size components
must be passed to
C numeric parameters.

Passing COBOL Numeric Arguments

CodeBridge supports all RM/COBOL numeric data types, including display,
numeric edited, packed, unpacked, and binary. A COBOL numeric argument
may be passed to one of three C parameter types: integer, floating-point, and
string. When passed to a string, the numeric value is converted to and from a
string representation. Therefore, in this document, this form is referred to as
a numeric string.

Note While the COBOL language defines the numeric edited category as
belonging to the alphanumeric class, CodeBridge treats numeric edited data
items as numeric. It is currently an error to pass a numeric edited argument

CodeBridge User's Guide Chapter 2: Concepts • 27

to a parameter described with the string base attribute. Instead, a numeric
edited argument should be passed to a parameter described with either the
numeric_string or general_string base attributes.

Numeric Arguments with C Integer Parameters

A C integer parameter is described in the template file using the integer base
attribute. The integer base attribute may be used with any of the C integer
data types, including char, short, int, and long, with or without the C signed
type specifier keywords signed and unsigned. These data types can be used
directly (such as “int Name”), indirectly (“int *pName”), and with array
declarations (“int ArrayName[]”).

When used directly (“int Name”), the parameter is passed to the C function
“by value”. As such, it is unable to modify the value of the actual parameter.
Passing a parameter “by value” usually means that it is an input parameter,
which indicates that the in direction attribute should be specified in the
attribute list for the parameter.

When used indirectly (“int *pName”), the parameter is passed to the C
function “by reference”. This means that the C function is given a pointer to
the parameter and, therefore, is able to modify the value of the actual
parameter. Passing a parameter “by reference” usually means that it is an
output (or input/output) parameter, which indicates that the out direction
attribute (or both the in and out direction attributes) should be specified in
the attribute list for the parameter.

As a special case for C integer parameters that are passed indirectly,
CodeBridge will pass the C null pointer to the C function when the COBOL
argument is a null-valued COBOL pointer. For more information, see Passing
Null-Valued Pointer Arguments (on page 33).

When used as an array (“int ArrayName[]”), the address of the array is passed
to the C function. For more information, see Working with Arrays (on page
51).

The conversion process for C integer parameters may be modified by using
the following base modifier attributes: no_size_error, occurs(value),
repeat(value), rounded, scaled(value), silent, unsigned, and
value_if_omitted(value). For more information, see Base Modifiers that Apply
to Numeric Base Attributes (on page 104).

Interface constraints for C integer parameters may be specified by using the
following base modifier attributes: assert_digits(min;max),
assert_digits_left(min;max), assert_digits_right(min;max),
assert_length(min;max), assert_signed, assert_unsigned, integer_only,
no_null_pointer, and optional. For more information, see Base Modifiers that
Apply to Numeric Base Attributes (on page 104).

28 • Chapter 2: Concepts CodeBridge User's Guide

Numeric Arguments with C Floating-Point Parameters

A C floating-point parameter is described in the template file using the float
base attribute. The float base attribute may be used with either of the C
floating-point data types, float or double. These data types can be used
directly (such as “float Name”), indirectly (“float *pName”), and with array
declarations (“float ArrayName[]”).

When used directly (“float Name”), the parameter is passed to the C function
“by value”. As such, it is unable to modify the value of the actual parameter.
Passing a parameter “by value” usually means that it is an input parameter,
which indicates that the in direction attribute should be specified in the
attribute list for the parameter.

When used indirectly (“float *pName”), the parameter is passed to the C
function “by reference”. This means that the C function is given a pointer to
the parameter and, therefore, is able to modify the value of the actual
parameter. Passing a parameter “by reference” usually means that it is an
output (or input/output) parameter, which indicates that the out direction
attribute (or both the in and out direction attributes) should be specified in
the attribute list for the parameter.

As a special case for C floating-point parameters that are passed indirectly,
CodeBridge will pass the C null pointer to the C function when the COBOL
argument is a null-valued COBOL pointer. For more information, see Passing
Null-Valued Pointer Arguments (on page 33).

When used as an array (“float ArrayName[]”), the address of the array is
passed to the C function. For more information, see Working with Arrays (on
page 51).

The conversion process for C floating-point parameters may be modified by
using the following base modifier attributes: no_size_error, occurs(value),
repeat(value), rounded, silent, and value_if_omitted(value). For more
information, see Base Modifiers that Apply to Numeric Base Attributes (on
page 104).

Interface constraints for C floating-point parameters may be specified by
using the following base modifier attributes: assert_digits(min;max),
assert_digits_left(min;max), assert_digits_right(min;max),
assert_length(min;max), assert_signed, assert_unsigned, no_null_pointer,
and optional. For more information, see Base Modifiers that Apply to
Numeric Base Attributes (on page 104).

Numeric Arguments with C Numeric String Parameters

A C numeric string parameter is described in the template file using either the
numeric_string or the general_string base attributes. The numeric_string or
general_string base attributes may be used with any of the C string data
types: char *, signed char *, and unsigned char *.

Note 1 The C parameter declarations “char *String” and “char String[]” are
equivalent.

CodeBridge User's Guide Chapter 2: Concepts • 29

Note 2 C strings are one-dimensional arrays of characters. C always passes
array parameters “by reference”, which means that the address of the first
character of the string is passed to the C function.

Although string parameters are always passed “by reference”, this does not
mean
that a C string parameter is always an output parameter. Depending on its
use in the C function, it may be an input parameter, an output parameter, or
an input/output parameter. Its use indicates whether the in direction
attribute (input), the out direction attribute (output), or both the in and out
direction attributes (input/output) should be specified in the attribute list for
the parameter.

As a special case for C numeric string parameters, CodeBridge will pass the
C null pointer to the C function when the COBOL argument is a null-valued
COBOL pointer. For more information, see Passing Null-Valued Pointer
Arguments (on page 33).

During the conversion process, CodeBridge dynamically allocates a buffer to
hold either the converted COBOL argument (for input conversions) or the C
string generated by the C function (for output conversions). While
processing string parameters, the C function may need to know the size of
the string or the size of the string conversion buffer. CodeBridge provides
three attributes for obtaining this string length information. The length base
attribute provides the length of the COBOL argument. The buffer_length
base attribute provides the size of the allocated string buffer. The
effective_length base attribute provides the actual number of characters
stored in the string buffer, not including the null character terminating the
string.

When passing an array of C strings (“char *StringArray[]”), the address of the
first string pointer is passed to the C function. For more information, see
Working with Arrays (on page 51).

The conversion process for C numeric string parameters may be modified by
using the following base modifier attributes: leading_minus, leading_sign,
no_size_error, occurs(value), repeat(value), rounded, silent, size(value),
trailing_credit, trailing_debit, trailing_minus, trailing_sign, and
value_if_omitted(value). For more information, see Base Modifiers that Apply
to Numeric Base Attributes (on page 104).

Interface constraints for C numeric string parameters may be specified by
using the following base modifier attributes: assert_digits(min;max),
assert_digits_left(min;max), assert_digits_right(min;max),
assert_length(min;max), assert_signed, assert_unsigned, no_null_pointer,
and optional. For more information, see Base Modifiers that Apply to
Numeric Base Attributes (on page 104).

String base modifier attributes that are allowed when the general_string base
attribute is specified are ignored for numeric arguments.

30 • Chapter 2: Concepts CodeBridge User's Guide

Passing COBOL Non-Numeric Arguments

CodeBridge supports all RM/COBOL non-numeric data types, including
alphabetic and alphanumeric elementary items. CodeBridge also supports
passing group items. A COBOL non-numeric argument must be passed to a
C string parameter.

Note While the COBOL language defines the numeric edited category as
belonging to the alphanumeric class, CodeBridge treats numeric edited data
items as numeric. It is currently an error to pass a numeric edited argument
to a parameter described with the string base attribute. Instead, a numeric
edited argument should be passed to a parameter described with either the
numeric_string or general_string base attributes.

Non-Numeric Arguments with C String Parameters

A C string parameter is described in the template file using either the string
or the general_string base attributes. The string or general_string base
attributes may be used with any of the C string data types: char *, signed
char *, and unsigned char *.

Note 1 The C parameter declarations “char *String” and “char String[]” are
equivalent.

Note 2 C strings are one-dimensional arrays of characters. C always passes
array parameters “by reference”, which means that the address of the first
character of the string is passed to the C function.

Although string parameters are always passed “by reference”, this does not
mean that a C string parameter is always an output parameter. Depending on
its use in the C function, it may be an input parameter, an output parameter,
or an input/output parameter. Its use indicates whether the in direction
attribute (input), the out direction attribute (output), or both the in and out
direction attributes (input/output) should be specified in the attribute list for
the parameter.

As a special case for C string parameters, CodeBridge will pass the C null
pointer to the C function when the COBOL argument is a null-valued COBOL
pointer. For more information, see Passing Null-Valued Pointer Arguments
(on page 33).

During the conversion process, CodeBridge dynamically allocates a buffer to
hold the converted COBOL argument (for input conversions) or hold the C
string generated by the C function (for output conversions). While
processing string parameters, the C function may need to know the size of
the string or the size of the conversion buffer. CodeBridge provides three
attributes for obtaining this string length information. The length base
attribute provides the length of the COBOL argument. The buffer_length
base attribute provides the size of the allocated string buffer. The
effective_length base attribute provides the actual number of characters
stored in the string buffer, not including the null character terminating the
string.

CodeBridge User's Guide Chapter 2: Concepts • 31

Note If a COBOL non-numeric argument contains a C null character (0x00),
conversion of the argument to a C string parameter may produce unexpected
results. The input conversion process ends when all characters have been
copied or a C null character is encountered.

When passing an array of C strings (“char *StringArray[]”), the address of the
first string pointer is passed to the C function. For more information, see
Working with Arrays (on page 51).

The conversion process for C non-numeric string parameters may be
modified by using the following base modifier attributes: leading(value),
leading_spaces, occurs(value), repeat(value), silent, size(value),
trailing(value), trailing_spaces, and value_if_omitted(value). For more
information, see Base Modifiers that Apply to the String Base Attribute (on
page 108).

Interface constraints for C non-numeric string parameters may be specified
by using the following base modifier attributes: assert_length(min;max),
no_null_pointer, and optional. For more information, see Base Modifiers that
Apply to the String Base Attribute (on page 108).

Numeric string base modifier attributes that are allowed when the
general_string base attribute is specified are ignored for non-numeric
arguments.

Groups with C String Parameters

COBOL group items are hierarchical data structures that contain subordinate
groups and elementary data items. CodeBridge does not provide support for
accessing data items subordinate to a group.

A COBOL group is non-numeric but may contain numeric and pointer data.
Because it is non-numeric, a group can be passed to a C string parameter.
Since it may contain numeric and pointer data, the likelihood of unexpected
results from encountering a C null character (0x00) is greater than when
passing elementary non-numeric arguments.

An RM/COBOL variable-length group argument is always passed as a fixed-
length group of the maximum size so that the called program has the
opportunity to increase the variable size if desired. Thus, passing variable-
length groups does not support passing variable-length strings to C.

Passing COBOL Pointer Arguments

The pointer data type is a feature of RM/COBOL. A COBOL pointer describes
a block of memory and consists of three components: base address, offset,
and size.

CodeBridge provides two methods for passing COBOL pointers. The first
method is useful when the C function wishes to access only memory
referenced by the pointer. The second method is useful if the C function

32 • Chapter 2: Concepts CodeBridge User's Guide

wishes to access the components of the COBOL pointer data item directly.
For more information, see Pointer Base Attributes (on page 113).

Method 1: Passing Pointer Address and Pointer Length

With this method, you can pass the address or the length of the block of
memory to an input parameter in the C function. Given the address and
length of the memory to which the pointer refers, the C function may read or
modify the contents of that memory block. It is the C programmer’s
responsibility to confine any such references to lie wholly within the memory
block described by the given pointer values. However, the C function cannot
change the base address, offset, or size of the COBOL pointer.

Use the pointer_address base attribute in the template file to describe a C
pointer parameter and instruct CodeBridge to pass the effective address of
the memory block (base address plus offset) to the C function as the
parameter value.

Use the pointer_length base attribute in the template file to describe a C
numeric parameter and instruct CodeBridge to pass the effective length of
the memory block (size minus offset) to the C function as the parameter
value.

Method 2: Passing and Modifying Pointer Components

With this method, you can pass the base address, offset, or size of the block
of memory to an input, output, or input/output parameter in the C function.
Given the base address, offset, and size of the memory to which the pointer
refers, the C function may read or modify the contents of that memory block.
It is the C programmer’s responsibility to confine any such references to lie
wholly within the memory block described by the given pointer values. In
addition, for output and input/output parameters, the C function can also
modify the base address, offset, or size component values of the COBOL
pointer.

Use the pointer_base base attribute in the template file to describe a C
pointer parameter, instruct CodeBridge to pass the base address of the
memory block to the C function for input conversions, and set the base
address component of the COBOL pointer for output conversions. The
output conversion process may be modified by using the following base
modifier attributes: pointer_max_size and pointer_reset_offset. For more
information, see Base Modifiers that Apply to Pointer Base Attributes (on
page 114).

Use the pointer_offset base attribute in the template file to describe a C
numeric parameter, instruct CodeBridge to pass the offset component of the
COBOL pointer to the C function for input conversions, and set the offset
component of the COBOL pointer for output conversions. The output
conversion process may be modified by using the pointer_max_size base
modifier attribute.

CodeBridge User's Guide Chapter 2: Concepts • 33

Use the pointer_size base attribute in the template file to describe a C
numeric parameter, instruct CodeBridge to pass the size component of the
COBOL pointer to the C function for input conversions, and set the size
component of the COBOL pointer for output conversions. The output
conversion process may be modified by using the pointer_reset_offset base
modifier attribute.

Passing Null-Valued Pointer Arguments

Null-valued pointer arguments arise in one of three ways: the argument is the
figurative constant NULL (NULLS), the argument is a COBOL pointer that has
been set to NULL (NULLS), or the argument is a pointer that has been set
from another null-valued pointer. Based on the properties of the C parameter
associated with a pointer argument, CodeBridge handles pointer arguments
as follows:

• Numeric or non-numeric parameter (direct or indirect)

For related information, see Passing COBOL Numeric Arguments (on
page 26) and Passing COBOL Non-Numeric Arguments (on page 30).

A COBOL program may pass a COBOL null-valued pointer data item as an
argument that is associated with any of these base attributes: float,
general_string, integer, numeric_string, or string. Associating a null-
valued pointer with a parameter having one of these base attributes has
meaning only when the C parameter is a pointer (indirect) parameter.

Some C functions are designed to interpret the occurrence of a null-
valued pointer parameter to indicate that the parameter is omitted and
that the function should not read or write indirectly through the parameter
pointer value. If a COBOL program passes a COBOL null-valued pointer,
the C function will receive a C null-valued pointer in order to support this
design.

If the C parameter is not a pointer, it is meaningless to pass a COBOL null-
valued pointer argument. For a direct numeric or non-numeric parameter,
an uninitialized variable will be passed as the parameter value when a
null-valued pointer argument is provided. The no_null_pointer base
modifier attribute may be specified to cause CodeBridge to return an error
if a COBOL null-valued pointer is passed to the parameter.

If a null-valued pointer argument is used for an output parameter that is
numeric or non-numeric, the parameter result value is ignored as if the
out direction attribute had not been specified.

A null-valued pointer argument may not be used for a numeric or non-
numeric parameter that specifies the no_null_pointer base modifier
attribute.

A pointer argument with a value other than null always causes an error for
a numeric or non-numeric parameter. Since COBOL pointer data items
are not typed (that is, they are essentially equivalent to (void *) in C),

34 • Chapter 2: Concepts CodeBridge User's Guide

CodeBridge does not have enough information to dereference the COBOL
pointer (that is, to convert the data that the pointer references).

• Pointer parameter, where the C function needs a COBOL pointer value

For related information, see Passing COBOL Pointer Arguments (on page
31).

When a COBOL program passes a pointer argument associated with a
parameter described with the pointer_address or pointer_base base
attributes, the pointer value is passed to the C function as the parameter
value, regardless of whether the pointer value is null or non-null.

The out direction attribute may be specified with the pointer_base base
attribute to modify the base address of the pointer argument upon return
from the C function. It is an error to specify either of the in or out
direction attributes with the pointer_address base attribute.

The pointer_offset, pointer_size, and pointer_base base attributes yield a
zero for a null-valued pointer argument on input to the C function but
allow the corresponding component of the pointer argument to be
changed on output if the out direction attribute is specified and the base
address of the pointer is also changed to a non-zero value.

Passing COBOL Argument Properties

CodeBridge supports two categories of COBOL argument properties: COBOL
descriptor data and string length information. Each of these may be passed
to the C function. For more information, see the following topics:

• Passing COBOL Descriptor Data, as discussed below

• Passing String Length Information (on page 35)

Passing COBOL Descriptor Data

Prior to CodeBridge, if a developer wanted information about the properties
of the COBOL arguments, it was necessary for the C program to obtain the
information for each argument from a structure known as the COBOL data
descriptor. The COBOL data descriptor contains properties of the COBOL
argument, including its address, length and type, digit count and scale factor
(for numeric arguments), and encoded picture (for numeric edited and
alphanumeric edited arguments). CodeBridge supports the passing of all
these properties except for the encoded picture. See either Appendix G:
Non-COBOL Subprogram Internals for Windows (on page 167) or Appendix H:
Non-COBOL Subprogram Internals for UNIX (on page 187) for more
information about the earlier method of calling non-COBOL subprograms.

In CodeBridge, the following descriptor base attributes may be used to pass a
component of the COBOL argument to the C function. For further details, see
Descriptor Base Attributes (on page 114).

CodeBridge User's Guide Chapter 2: Concepts • 35

Use the address base attribute in the template file to describe a C pointer
parameter and instruct CodeBridge to pass the address of the COBOL
argument to the C function as the parameter value.

Note Passing the address of the COBOL argument data item to a C function
as a parameter value should be a rare occurrence when using CodeBridge.
Use of the data item address requires the C function to know the details of
COBOL data formats and is not subject to the data validation and interface
constraints that CodeBridge provides.

Use the digits base attribute in the template file to describe a C numeric
parameter and instruct CodeBridge to pass the digit count, that is, the
number of 9’s in the PICTURE character-string, of the COBOL numeric
argument to the C function as the parameter value. For non-numeric
arguments, the value is not defined.

Use the length base attribute in the template file to describe a C numeric
parameter and instruct CodeBridge to pass the length of the COBOL
argument to the C function as the parameter value.

Use the scale base attribute in the template file to describe a C numeric
parameter and instruct CodeBridge to pass the scale factor of the COBOL
numeric argument to the C function as the parameter value. For non-numeric
arguments, the value is not defined.
The value of the scale passed is the arithmetic complement of the value in
the COBOL argument descriptor.

Use the type base attribute in the template file to describe a C numeric
parameter and instruct CodeBridge to pass the type of the COBOL argument
to the C function as the parameter value.

See also the discussion of passing miscellaneous information to a C function
in Passing Miscellaneous Information (on page 36).

Passing String Length Information

In addition to COBOL data descriptor components, CodeBridge can supply
string length information for input conversions. The C function can be
supplied the length of the COBOL argument (from the COBOL data
descriptor), the length of the conversion buffer, or the effective length of the
C string (after conversion).

Use the length base attribute in the template file to describe a C numeric
parameter and instruct CodeBridge to pass the length of the COBOL
argument to the C function as the parameter value. For more information,
see Descriptor Base Attributes (on page 114).

Use the buffer_length base attribute in the template file to describe a C
numeric parameter and instruct CodeBridge to pass the length of the
conversion buffer to the C function as the value of the parameter. For more
information, see String Length Base Attributes (on page 111). The length of
the buffer is determined by the base attribute that is used to describe the
string parameter associated with the same argument, as follows:

36 • Chapter 2: Concepts CodeBridge User's Guide

• For the string base attribute, the buffer length defaults to one more than
the length of the passed COBOL argument, which allows space for the
characters of the argument value and a null-termination character.

• For the numeric_string base attribute, the buffer length defaults to four
more than the digit length of the passed COBOL argument, which allows
space for the digits of the argument value and the sign, decimal point,
and null-termination characters.

• For the general_string base attribute, the buffer length defaults to the
greater of one more than the length of the passed COBOL argument and
four more than the digit length of the passed COBOL argument, which
allows space for either a non-numeric or numeric argument conversion.

The default values for buffer_length may be overridden by using the
size(value) base modifier attribute in the attribute list that contains the string,
numeric_string, or general_string base attribute that is associated with the
same argument as buffer_length. For more information, see Base Modifiers
that Apply to the String Base Attribute (on page 108).

Use the effective_length base attribute in the template file to describe a C
numeric parameter and instruct CodeBridge to pass the actual number of
characters stored in the conversion buffer, not including the null character
that terminates the string (after the input conversion process is complete), to
the C function as the parameter value. For more information, see String
Length Base Attributes (on page 111).

Passing Miscellaneous Information

CodeBridge also can supply the number of COBOL arguments specified in the
USING phrase of the CALL statement, the COBOL initial state flag, and the
Windows handle for the COBOL program. For more information, see
Descriptor Base Attributes (on page 114).

Use the arg_count base attribute in the template file to describe a C numeric
parameter and instruct CodeBridge to pass the number of COBOL arguments
to the C function as the parameter value.

Use the initial_state base attribute in the template file to describe a C
numeric parameter and instruct CodeBridge to pass the COBOL initial state
flag to the C function as the parameter value.

Use the windows_handle base attribute in the template file to describe a C
numeric parameter and instruct CodeBridge to pass the Windows handle for
the COBOL program to the C function as the parameter value.

Managing Omitted Arguments

A COBOL program may omit an argument by specifying fewer arguments in
the USING phrase of the CALL statement than expected by the C function or
by explicitly specifying the OMITTED keyword for an argument in the USING

CodeBridge User's Guide Chapter 2: Concepts • 37

phrase of the CALL statement. The GIVING argument may be omitted by not
specifying the GIVING (RETURNING) phrase in the CALL statement.

An omitted argument will cause an error if it is passed to a numeric or non-
numeric parameter that does not also specify either the optional or
value_if_omitted base modifier attributes. The descriptor base attributes are
implicitly optional and return default values for an omitted argument; the
optional base modifier attribute is not allowed with the descriptor base
attributes.

For an omitted argument passed to a parameter described with the optional
in attributes, an appropriate default is passed to the C function as the
parameter value. The default value associated with an integer or float base
attribute is a numeric zero. The default value associated with a
general_string, numeric_string, or string base attribute is an empty string
(the first character of the string is a null character). If the
value_if_omitted(value) base modifier attribute has been specified, value is
passed instead of the default value.

An omitted argument is assumed to satisfy any of the assertion base
modifier attributes. If a default value is provided with the
value_if_omitted(value) base modifier attribute, it is the user’s responsibility
to provide a default value that satisfies all interface constraints.

For the descriptor base attributes, an omitted argument has the following
results, regardless of whether the argument is missing from the USING
phrase or explicitly specified as OMITTED:

• The address base attribute for an omitted argument supplies the value
NULL.

• The digits base attribute for an omitted argument supplies zero.

• The length base attribute for an omitted argument supplies zero.

• The scale base attribute for an omitted argument supplies zero.

• The type base attribute for an omitted argument supplies the value
RM_OMITTED, which has the value 32 as shown in the Type Attribute
Codes table in Descriptor Base Attributes (on page 114).

If an argument is omitted for a parameter described with the optional out
attributes, the parameter result value is ignored. However, the CodeBridge
Builder does not currently allow this combination of attributes. That is,
output arguments are required in the current implementation of CodeBridge.

Returning C Error Values

Two base attributes, called error base attributes, support returning C error
values to the COBOL program. The errno error base attribute returns the
value of the external variable errno, which is set by many C library functions.
The get_last_error error base attribute returns the value returned by the

38 • Chapter 2: Concepts CodeBridge User's Guide

Windows API function GetLastError. The error base attributes are necessary
because the RM/COBOL runtime system uses C library functions, and, on
Windows, Windows API functions, during the return to the COBOL program
that modifies the error values. Thus, any error values set by the CodeBridge-
called C function are modified before the COBOL program has a chance to
obtain them. The error base attributes solve this problem by causing the
CodeBridge Builder to generate code to preserve the error value set by the C
function specified in the CodeBridge template. The preserved value is
returned in an associated COBOL argument for access by the calling COBOL
program. Complete details regarding the error base attributes are found in
the section Error Base Attributes (on page 117). In addition, some general
concepts and examples of error base attributes are provided in the sections
that follow.

Consistent Return Values

For those C library functions that set the external variable errno, it is
considered correct behavior not to modify the value of errno if no error
occurs. In other words, if no error is detected, the external variable errno will
have the same value that it had before the C function was called. The code
sequence that is generated by the CodeBridge Builder guarantees the value
of errno is zero just prior to the C function call. The generated code
sequence is as follows:

errno = 0;

__RETURN__open = open(filename, oflag);

__save_errno = errno;

Similarly, for those Windows API functions that set a value to be returned by
the function GetLastError, it is also considered correct behavior not to modify
the last error value if no error occurs. In other words, if no error is detected
by the C function, the call to GetLastError will return the same value it would
have if it were called just prior to the C function. The code sequence that is
generated by the CodeBridge Builder guarantees that the value returned by
GetLastError will be zero if no error is detected by the C function call. The
generated code sequence is as follows:

SetLastError(0);

__RETURN__CreateDirectory = CreateDirectory(DirName,SecAttr);

__save_lastError = GetLastError();

Specifying Both errno and get_last_error

It is possible to use the error base attributes errno and get_last_error in the
same function description. Functions that return an error code in the external
variable errno have a function return value of -1. Functions that return an
error through GetLastError have a function return value of FALSE (zero). On
the surface, this seems meaningless (and in most cases, it probably is);
however, there is no reason to disallow this behavior. It is possible for a

CodeBridge User's Guide Chapter 2: Concepts • 39

Windows API function to call a C library function that could set a value in the
external variable errno. It may be of value to the COBOL program to
interrogate both error conditions.

The generated code sequence when both attributes are specified is as
follows:

SetLastError(0);

errno = 0;

__RETURN__CreateDirectory = CreateDirectory(DirName, SecAttr);

__save_errno = errno;

__save_lastError = GetLastError();

Function Return Value (Status) Versus Error Values

In many cases, the return value from a C library function or a Windows API
function is merely a simple binary indication of success or failure.

C library functions that set the external variable errno generally return –1 as
the function return value. If the return value is not –1, the value may or may
not indicate anything of significance. For example, the C library function,
mkdir, always returns 0 (for success) or –1 (for failure). On the other hand,
the C library function, open, returns a file handle if the operation succeeded
or –1 if the operation failed. Windows API functions normally return non-zero
to indicate success and zero to indicate an error.

For those C library and Windows API functions where the return value is a
simple indication of success or failure, it may be inefficient to have the
COBOL program examine both the return value and the value of the argument
associated with the errno or get_last_error attribute.

If you are certain that the C function return value is not needed—except to
show success or failure—you need not access this parameter from COBOL.
The following template illustrates how to obtain the _mkdir function return
value and the value of the external variable errno:

[[integer out]] int _mkdir(

 [[string in trailing_spaces]] const char *DirName

 [[errno]]);

This function could be called from COBOL with this statement:

CALL "_mkdir" USING File-Name Err-No

 GIVING Return-Status.

There is no real need to examine Return-Status in the COBOL program,
since examining Err-No is sufficient (it is guaranteed that Err-No will be
zero if no error occurred). You may alter the template so that Err-No
becomes the return value with a template similar to the following:

 int _mkdir(

[[string in trailing_spaces arg_num(1)]]

 const char *DirName

[[errno ret_val]]);

40 • Chapter 2: Concepts CodeBridge User's Guide

The COBOL calling sequence could then be simplified as follows:

CALL "_mkdir" USING File-Name

 GIVING Err-No.

Besides making the COBOL calling sequence simpler, this technique also
simplifies the C source code that is generated by the CodeBridge Builder.

Associating C Parameters with COBOL Arguments

Using CodeBridge, a single C parameter or return value may be associated
with multiple COBOL arguments by the use of more than one attribute list, but
each attribute list associates a parameter with, at most, one argument from
the COBOL CALL statement. Also, multiple C parameters may be associated
with a single COBOL argument. That is, the CodeBridge association of C
parameters with COBOL arguments allows a many-to-many relationship.

CodeBridge has two methods of associating C parameters with COBOL
arguments: explicit association and automatic association. You can
explicitly specify the association of a C parameter with a COBOL argument, or
you can have CodeBridge automatically associate C parameters with COBOL
arguments for you. If you do not use the explicit association method,
CodeBridge will use the automatic association method by default. If the
attribute list for any parameter of a function specifies explicit association of
the C parameter to a COBOL argument, the attribute lists for all parameters
for that function—except those attribute lists containing a base attribute that
does not refer to an argument in the COBOL CALL statement—must specify
explicit association. Different functions within a single template file may use
different association methods.

Explicit Association

CodeBridge is designed to handle most C-parameter-to-COBOL-argument
association situations without requiring you to explicitly specify the
associations in the attribute lists of your template file. For those situations
where the CodeBridge automatic association method does not produce the
desired result, you must use the explicit association method. Even when the
automatic association method produces the correct result, you may use the
explicit association method. For instance, you might elect to use the explicit
association method to clearly document the association of parameters with
arguments.

To explicitly specify the association of the C function return value or a C
parameter to a particular COBOL argument, you include either the ret_val or
the arg_num(value) argument number attribute in the attribute list for the
return value or parameter. For more information, see Argument Number
Attributes (on page 99). If you explicitly specify an argument number
attribute in any attribute list for an individual C function, you must do so for

CodeBridge User's Guide Chapter 2: Concepts • 41

every attribute list for that function—except for those attribute lists containing
a base attribute that does not refer to an argument.

Automatic Association

The following material explains automatic association of C parameters with
COBOL arguments. Each attribute list refers either to the C function return
value or to a single
C parameter.

Automatic Association of the C Function Return Value with a
COBOL Argument

When there is no attribute list associated with the C function return value, the
function return value is ignored.

If there is an attribute list for the C function return value, the return value is
associated with the argument specified by the GIVING (RETURNING) phrase
of the RM/COBOL CALL statement. In the automatic association method, if
there are multiple attribute lists associated with the C function return value,
they all associate the return value with the GIVING argument. If the return
value is to be stored other than in the GIVING argument, the explicit
association method must be used.

Note Only base attributes that allow the out direction attribute may be used
in the attribute list associated with the function return value. These base
attributes include float, general_string, integer, numeric_string, pointer_base,
pointer_offset, pointer_size,
and string.

Automatic Association of C Parameters with COBOL Arguments

When there is no attribute list associated with a C parameter, there is no
associated COBOL argument. For such a parameter there are no input
conversions, so the parameter is passed an uninitialized variable, and there
are no output conversions, so the final value of the parameter is ignored.

If there are one or more attribute lists associated with a C parameter,
CodeBridge uses the required base attribute of each attribute list to
determine the association with a COBOL argument. For each attribute list,
CodeBridge associates the parameter with a COBOL argument in one of three
ways. The parameter may associate with one of the following:

• An implied argument

• The next argument

• The current argument

42 • Chapter 2: Concepts CodeBridge User's Guide

Automatic Association with an Implied Argument

The arg_count, initial_state, and windows_handle base attributes do not refer
to a COBOL argument specified in the CALL statement. The CodeBridge
Library supplies the value for the C parameter from an implied argument
provided by the runtime environment at the time the CALL statement is
executed.

Automatic Association with the Next Argument

The address, float, general_string, integer, numeric_string, pointer_address,
pointer_base, and string base attributes refer to the next COBOL argument
not yet associated with a C parameter. The first parameter attribute list
(ignoring any attribute lists specified for the function return value) that
contains one of these base attributes will associate the described C
parameter with the first argument in the USING phrase of the COBOL CALL
statement. The second such parameter attribute list will associate the
described C parameter with the second argument in the USING phrase, and
so forth.

A single C parameter may be associated with multiple COBOL arguments by
the use of multiple attribute lists for that parameter.

Automatic Association with the Current Argument

The buffer_length, digits, effective_length, length, pointer_length,
pointer_offset, pointer_size, scale, and type base attributes associate the
described C parameter with the current COBOL argument. This behavior
makes it possible to have a single COBOL argument supply values for several
contiguous C parameters. The current COBOL argument is the one last used
by the automatic association method for the next argument, as described in
the previous topic, “Automatic Association with the Next Argument.” If an
attribute list containing a base attribute that associates with the next
argument has not yet been specified, the current COBOL argument is the
argument in the GIVING (RETURNING) phrase.

Examples of Associating Parameters with Arguments

Example 1: Automatic Versus Explicit Association

The following set of examples illustrates methods of associating parameters
with arguments.

Example 1a: Automatic Association

In the following example, the C function moves the value of the parameter
named FloatIn to the parameter named FloatOut after checking that the value
will fit (using the values of the parameters named Digits and Scale). The
function return value indicates success or failure.

CodeBridge User's Guide Chapter 2: Concepts • 43

The template file for the C function contains the following lines:

[[integer out]] int fn(

[[float out]] float *FloatOut,

[[digits]] int Digits,

[[scale]] int Scale,

[[float in]] float FloatIn);

The C function is called using the following COBOL statement:

CALL "fn" USING Float-Out, Float-In GIVING Fn-Status.

CodeBridge uses the automatic association method to associate the function
return value with the GIVING argument named Fn-Status. The first three C
parameters associate with the first USING argument named Float-Out, as
follows:

• The first float base attribute causes the C parameter named FloatOut to
be associated with the next (that is, in this case, the first) unassociated
COBOL argument named Float-Out.

• The digits base attribute associates the C parameter named Digits with
the current COBOL argument, which is the first argument named Float-
Out.

• Similarly, the scale base attribute associates the parameter named Scale
with the current argument, which is the first argument named Float-Out.

Finally, the second float base attribute associates the C parameter named
FloatIn with the next (that is, in this case, the second) COBOL argument
named Float-In.

Example 1b: Optional Explicit Association

The following template file accomplishes the same associations as in
Example 1a, but by using the explicit association method:

[[integer out ret_val]] int fn(

[[float out arg_num(1)]] float *FloatOut,

[[digits arg_num(1)]] int Digits,

[[scale arg_num(1)]] int Scale,

[[float in arg_num(2)]] float FloatIn);

Example 1c: Required Explicit Association

The automatic association method is possible only when the C parameters
occur in the same order as the COBOL arguments. When they do not and you
cannot change the C function, then the explicit association method is
required. If the function in Example 1a were changed by moving the output
floating-point parameter from first to last, then there would be no automatic
association method that could achieve the desired result. In this case, the
following explicit association method template file would be required:

44 • Chapter 2: Concepts CodeBridge User's Guide

[[integer out ret_val]] int fn(

[[digits arg_num(1)]] int Digits,

[[scale arg_num(1)]] int Scale,

[[float in arg_num(2)]] float FloatIn,

[[float out arg_num(1)]] float *FloatOut);

Example 2: Multiple Attribute Lists for a C Parameter

The following group of examples illustrates how to associate multiple
attribute lists with a single C parameter.

Example 2a: Associating a Parameter with Multiple Arguments

In the following example, the C function has a single input/output parameter,
but the COBOL program wishes to pass the C function one input argument
and two output arguments. This would allow one copy of the result to be
stored in binary form while the other is stored in numeric edited form.

The template file for the C function contains the following lines:

void fn([[float in]]

 [[float out]]

 [[float out]] float *FloatInOut);

The C function is called using the following COBOL statement:

CALL "fn" USING Float-In, Binary-Out, Numeric-Edited-Out.

CodeBridge uses the automatic association method to associate each float
base attribute with the next unassociated COBOL argument. This results in
the C parameter named FloatInOut being associated with the first USING
argument, named Float-In, during the input conversion process, and with the
second and third arguments, named Binary-Out and Numeric-Edited-Out,
respectively, during the output conversion process. The final value of the
parameter named FloatInOut is converted by CodeBridge, during the output
conversion process after the C function returns, to a COBOL binary number
(assuming argument Binary-Out was described as a binary data item) and to
a COBOL numeric edited number (assuming argument Numeric-Edited-Out
was described as a numeric edited data item).

The following template file shows the equivalent explicit association method
for this example:

void fn([[float in arg_num(1)]]

 [[float out arg_num(2)]]

 [[float out arg_num(3)]] float *FloatInOut);

Example 2b: In Direction Attribute for Multiple Attribute Lists

Normally, when using multiple attribute lists with a single C parameter, only
one of the attribute lists should contain the in direction attribute for a given C
parameter. Consider the following modified template file:

CodeBridge User's Guide Chapter 2: Concepts • 45

void fn([[float in arg_num(1)]]

 [[float in arg_num(2)]]

 [[float out arg_num(3)]] float *FloatInOut);

Now there are two input arguments and only one output argument. The C
function is called by the following COBOL statement:

CALL "fn" USING Float-In-1, Float-In-2, Binary-Out.

During the input conversion process, CodeBridge first converts the argument
named Float-In-1 and stores the result in the parameter named FloatInOut,
and second converts the argument named Float-In-2 and stores it in the
parameter named FloatInOut. The value of argument Float-In-1 previously
stored in parameter FloatInOut is lost. This may be useful in a few
circumstances where the side effects of the first conversion are desired (for
example, checking the data type), but is probably almost never what was
intended.

Example 2c: Compatibility between Multiple Attribute Lists

When using multiple attribute lists with a single C parameter, you must make
sure that the attribute lists are compatible. Consider the following template
file:

void fn([[float in arg_num(1)]]

 [[float out arg_num(2)]]

 [[string out arg_num(3)]] float *FloatInOut);

The first two attribute lists describe a parameter that must be described with
the C type specifiers float or double. The third attribute list describes a
parameter that must be a C string parameter, that is, an array of type char. A
single C parameter cannot be both types of data at the same time. Because
the base attribute also determines the allowed types of COBOL arguments (in
this case, a numeric argument is required), an error would occur when trying
to convert the floating-point parameter, named FloatInOut, to the non-numeric
argument, named String-Out, of the following COBOL statement:

CALL "fn" USING Float-In, Binary-Out, String-Out.

Example 3: No Attribute List for a C Parameter

In addition to allowing one or more attribute lists for a single C parameter,
CodeBridge also allows C parameters without an attribute list. For such a
parameter there are no input conversions, so the parameter is passed an
uninitialized variable, and there are no output conversions, so the final value
of the parameter is ignored.

In the following example, the C function takes a floating-point value as input
and returns two output parameters, the integer part and the fractional part of
the input parameter. The function return value indicates whether the
fractional part is zero. If your COBOL program needs only the integer part,
use the following template file:

46 • Chapter 2: Concepts CodeBridge User's Guide

int fn([[float in]] float FloatIn,

 [[integer out]] long *IntegerPartOut,

 long *FractionPartOut);

Call the C function using the following COBOL statement:

CALL "fn" USING Float-In, Integer-Part-Out.

Working with a Variable Number of C Parameters

When using a variable number of parameters in a C function prototype, the
last parameter in the parameter list (the parameter that precedes the ellipsis)
is used as a model for the additional parameters that may occur. In effect,
the last listed parameter is treated as the first element of an array that
contains a variable number of elements.

All attributes in the template file that apply to the last listed parameter also
apply to the additional parameters. To specify that there are additional C
parameters, use the repeat(value) base modifier attribute, as described in the
base modifier topics that apply to numeric base attributes (on page 106) and
to the string base attribute (on page 110), in the attribute list for the last
listed parameter. For an illustration, see Example 3: Accommodating a
Variable Number of Parameters (on page 66).

The following limitations apply when using a variable number of C
parameters:

• Neither the last listed parameter nor any of the additional parameters
may
be arrays.

• All additional parameters must be of the same C data type as the last
listed parameter.

• The ANSI C convention for variable number of parameters is supported.
The older UNIX convention is not supported.

CodeBridge has limited support for C functions with a variable number of
parameters. The following sections describe that support for numeric and
string C parameters.

Repeating C Numeric Parameters

For numeric parameters that use the float and integer base attributes, all
additional parameters must be the same type and size as the last listed
parameter.

CodeBridge User's Guide Chapter 2: Concepts • 47

Repeating C String Parameters

For a variable number of C parameters where the trailing repeated parameter
is a string parameter, the CodeBridge support depends upon the base
attributes, numeric_string, general_string, or string, associated with the
repeated parameter discussed in the following sections.

numeric_string

For C string parameters that use the numeric_string base attribute, the last
listed parameter and all additional parameters must be numeric strings. The
default size of the repeating parameters is based on the maximum default
size determined from all of the COBOL arguments passed as repeating
arguments. For parameters with the numeric_string base attribute, the
default size is four more than the digit length of the passed COBOL
argument. However, the size(value) base modifier attribute (on page 107)
may be used to modify the default size as necessary.

general_string

For C string parameters that use the general_string base attribute, the last
listed parameter and all additional parameters must be strings. The
general_string base attribute allows some of the additional string parameters
to be passed as numeric arguments while others are passed as non-numeric
arguments. The default size of the repeating parameters is based on the
maximum default size determined from all of the COBOL arguments passed
as repeating arguments. For parameters with the general_string base
attribute, the default size is the greater of one more than the length and four
more than the digit length of the passed COBOL argument. The size(value)
base modifier attribute (on page 110) may be used to modify the default size
as necessary.

string

For C string parameters that use the string base attribute, the last listed
parameter and all additional parameters must be non-numeric strings. The
default size of the repeating parameters is based on the maximum default
size determined from all of the COBOL arguments passed as repeating
arguments. For parameters with the string base attribute, the default size is
one more than the length of the passed COBOL argument. The size(value)
base modifier attribute (on page 110) may be used to modify the default size
as necessary.

Modifying COBOL Data Areas

CodeBridge allows two ways of modifying COBOL data areas. You can use
the out direction attribute to tell CodeBridge to convert a C output (or

48 • Chapter 2: Concepts CodeBridge User's Guide

input/output) parameter and store the results in the COBOL argument.
Alternatively, you can pass the address of the COBOL data area to a C
pointer.

The preferred method is using the out direction attribute to have CodeBridge
store the result in the COBOL argument data item. The alternative method of
passing the address requires the C function to know the details of COBOL
data formats, thus negating one of the major benefits of using CodeBridge.
Passing the address of the COBOL argument data item to your C function
allows the C function to directly modify the value of the COBOL argument,
even for input parameters.

Using the out Direction Attribute

Using the out direction attribute, possibly in conjunction with the in direction
attribute, is the preferred method of modifying COBOL data areas. It provides
all the flexibility of CodeBridge data conversion as well as the safety afforded
by CodeBridge error checking and data validation. There are, however,
several ways in which you may not get the results you were expecting.

By way of review, the CodeBridge-generated code performs the following
steps when a COBOL program calls a C function:

1. If requested, the code performs input argument validation.

2. For parameters with the in direction attribute specified or assumed,
CodeBridge converts input arguments from COBOL to C data formats
(performing error checks in the process) and stores the result in a
temporary C data item.

3. CodeBridge calls the C function, passing to each parameter either the
value or address of its temporary C data item.

4. If requested, the code performs output parameter validation.

5. For parameters with the out direction attribute specified, CodeBridge
converts the final value for the temporary C data item from C to COBOL
data format (performing error checks in the process) and stores the result
in the COBOL argument.

There are several reasons that the C function will fail to change the value of
the COBOL argument:

• The first is that if step 3 passes the temporary C data item “by value” to
the C function, the function cannot change the value of the temporary C
data item, which will, therefore, be unchanged even if it is stored in step 5.

• The second is that if the parameter does not have the out direction
attribute specified, step 5 is skipped and any change to the temporary C
data item is discarded.

• The third is that if the COBOL program passed the COBOL argument using
the BY CONTENT phrase (analogous to a C call “by value”), then step 5

CodeBridge User's Guide Chapter 2: Concepts • 49

will modify the contents of the temporary COBOL data area for the
argument, which will then be discarded, leaving the original COBOL
argument value unchanged.

• The fourth is that if the CALL statement omits the argument (either by
specifying the OMITTED reserved word or specifying fewer arguments
than expected) or if the COBOL argument is a null-valued pointer passed
to a numeric or string parameter, step 5 has no place to store the
modified value. (However, the CodeBridge Builder does not currently
allow the optional base modifier attribute with the out direction attribute.)

In summary, you must do all of the following to modify a COBOL argument
with the
C function:

1. In the COBOL CALL statement, pass the COBOL argument BY REFERENCE
rather than BY CONTENT. Since the BY REFERENCE phrase is the default
for RM/COBOL, it does not have to be explicitly specified unless a
preceding BY CONTENT phrase has overridden the default. RM/COBOL
always passes the argument in the GIVING (RETURNING) phrase BY
REFERENCE. Also, do not pass a
null-valued pointer (on page 33) or omit the argument (on page 36).

2. In the CodeBridge template file, specify the out direction attribute for the
C parameter. For the function return value, out is assumed.

3. In the C function, specify the parameter as called “by reference” so that
the address of the temporary C data item is passed in step 3. In the
following example, the first parameter is passed “by value” (as the value
of an integer), while the second is passed “by reference” (as a pointer to
an integer):

fn(int byValue, int *byReference);

Passing the Address of COBOL Data

There are times when you may choose to pass the address of the argument
or the address of memory that is accessible by the COBOL run unit through a
pointer data item. CodeBridge provides three base attributes that may be
used for this purpose.

• Using the address base attribute passes the address of a COBOL
argument to the C function as the parameter value and allows the C
function to modify the COBOL data area directly. In the case of a pointer
argument, the address base attribute returns the address of the pointer
data item, which is not the address referred to by the pointer data item.
The length base attribute may be used to determine the size of the
COBOL argument.

• Using the pointer_address base attribute passes the effective address
(base address plus offset) of a COBOL pointer argument to the C function
as the parameter value and allows it to manipulate the contents of the

50 • Chapter 2: Concepts CodeBridge User's Guide

block of memory directly. However, using the pointer_address base
attribute prevents the C function from changing the value of the COBOL
pointer. The pointer_length base attribute may be used to determine the
effective length (size minus offset) of the memory block.

• Using the pointer_base base attribute passes the base address
component value of a COBOL pointer argument to the C function as the
parameter value and allows the C function to change the value of the
pointer base address component as well as the contents of the block of
memory. The pointer_offset and pointer_size base attributes may be
used to manipulate the offset and size components of the COBOL pointer
argument.

Note The C function may save in static storage the address obtained by
using any of the three base attributes described above. The saved address
may then be used in subsequent calls. It is the developer’s responsibility to
avoid use of a saved address that points to a data item in a COBOL program
that has been canceled or to a dynamically allocated memory block that the
COBOL program has subsequently deallocated.

Passing Buffer Addresses

In some existing APIs, it is necessary to pass a buffer address to a C
function. Later, that buffer address is used by another C function in the API
to store a result value as a C data item. In such cases, the preferred method
of using the out direction attribute cannot be used and the address of the
buffer must be passed instead. CodeBridge may still be used in such cases
to convert the C data item to a COBOL data format after the result has been
stored in the buffer. See Example 6: Converting Buffered C Data (on page
76) for details on the CodeBridge solution to this problem for a C string result
in the buffer.

Using P-Scaling

In COBOL, P-scaling is used when working with large integers that have
several trailing zero digits before the decimal point or with small fractions
that have several leading zero digits after the decimal point. It is commonly
used to store values representing thousands, millions, or billions. For
example, the PICTURE clause “PIC 9(4)P(3)” is used to represent all integers
from 0 to 9,999,000 in units of 1000. The value 1,234,000 would be stored as
1,234, but would continue to mean 1,234,000.

For input conversions of P-scaled numbers, CodeBridge supplies the missing
zero digits.
For output conversions, the extra digits are eliminated by truncation or
rounding. Continuing with the example in the preceding paragraph and using
the attribute list [[float in out rounded]] for the input conversion,
CodeBridge would convert the stored value (1,234) and pass the floating-

CodeBridge User's Guide Chapter 2: Concepts • 51

point representation of 1,234,000 to the C function. If the C function added
999 to its parameter, then the output conversion would round 1,234,999 to
1,235,000 and store 1,235 in the COBOL argument. Adding any number up to
499 would leave the COBOL argument unchanged. When the rounded base
modifier attribute is not present, CodeBridge truncates the result on output,
converting 1,234,999 to 1,234,000 and storing 1,234 in the COBOL argument.

P-scaling also affects the scale base attribute. Because of P-scaling, the
scale of the COBOL argument in our example is minus three (-3). As another
example, the PICTURE character-string “VP(3)9(3)” has a scale of six (6),
even though the digit count is only three (3).

Any P-scaling specified in the PICTURE character-string is counted in the digit
length used by CodeBridge when allocating a conversion string buffer for a
parameter described with the general_string or numeric_string base
attribute. That is, the digit length used by CodeBridge is the sum of the
number of 9 and P symbols specified in the PICTURE character-string used to
describe the argument data item.

Working with Arrays

Data items having numeric or string base attributes may be one-dimensional
arrays. Data items with string base attributes may be arrays of char *, which
are similar to two-dimensional arrays.

Numeric Arrays

For simple numeric types, such as integer or floating-point, the
implementation is straightforward. Examples of valid C numeric array
parameters are as follows:

fn(char P1[10],

 char *P2,

 int P3[40],

 float *P4,

 float P5[]);

The first two parameters, which use the char data type, are normally used to
represent character strings. However, you can have a numeric array of
characters. The difference is how the called function interprets the data.

To specify the template file for the preceding C function prototype, you might
start with the following, for example:

fn([[integer in]] char P1[10],

 [[integer in]] char *P2,

 [[integer in]] int P3[40],

 [[float in]] float *P4,

 [[float in]] float P5[]);

52 • Chapter 2: Concepts CodeBridge User's Guide

Although the attribute lists for the variables P2, P4, and P5 are valid C code,
CodeBridge needs to know the size of the array. You could modify the
template file by changing the following:

char *P2 to char P2[20]
float *P4 to float P4[20]
float P5[] to float P5[10]

However, the template file would no longer match the C function prototype.

An alternate method is to specify an occurs count in the attribute list by
modifying the template file as follows:

fn([[integer in occurs(10)]] char P1[10],

 [[integer in occurs(20)]] char *P2,

 [[integer in occurs(20)]] int P3[40],

 [[float in occurs(20)]] float *P4,

 [[float in occurs(10)]] float P5[]);

The attribute lists for variables P2, P3, and P4 now have an array size of 20
elements. For variables P1 and P3, the occurs(value) base modifier attribute
overrides the value specified in the function prototype. For variables P2, P4,
and P5, the occurs(value) base modifier attribute provides a value that was
missing in the function prototype. Note that the attribute list for variable P1
did not change the size of the array, while the attribute list for variable P3
reduced the size of the array. Reducing the size of the array is required if the
COBOL program passes a smaller array since CodeBridge will convert the
number of array elements indicated by the template.

String Arrays

The implementation of these types of arrays is more complex because
strings are already arrays of characters. One-dimensional arrays of C
parameters with a string base attribute are allowed (this means that, as a
special case, two-dimensional arrays of characters are allowed). Examples
of valid C string array parameters are as follows:

fn(char *P1[10],

 char *P2[],

 char **P3);

To specify the template file for the preceding C function prototype, you might
start with the following, for example:

fn([[string in]] char *P1[10],

 [[numeric_string in]] char *P2[],

 [[general_string in]] char **P3);

Note that a difference between string and numeric_string attribute lists is
how the
data is interpreted by the called function. However, both provide null-
terminated arrays
of characters. A general_string base attribute may be used to allow numeric
and

CodeBridge User's Guide Chapter 2: Concepts • 53

non-numeric arguments to be converted to null-terminated arrays of
characters. A general_string base attribute applies the rules for the
numeric_string base attribute when the argument is numeric and applies the
rules for the string base attribute when the argument is non-numeric.

You must modify the attribute list for the variables P2 and P3 because
CodeBridge must know how many string pointers to allocate. Add an
occurs(value) base modifier attribute for variables P2 and P3 and then
modify the C function prototype to make it work correctly (note that you need
to make these changes only in the template file, not in the actual C header
file). For example, modify the template file as follows:

fn([[string in]] char *P1[10],

 [[numeric_string in occurs(10)]] char *P2[],

 [[general_string in occurs(10)]] char *P3[]);

For variables P2 and P3, the occurs(value) base modifier attribute provides
information needed to allocate the string pointer arrays. The definition of
parameter P3 was changed from “char **P3” to the equivalent form “char
*P3[]”.

CodeBridge allocates memory for strings (or arrays of strings) with a single
memory allocation call. The generated code contains declarations in the
form:

char *P1[10];

char *P2[10];

char *P3[10];

Each element of the array is initialized to point to the correct offset within the
allocated block.

The number of elements in the array and the size of each element determine
the size of the allocated block. For a numeric_string, the size of each
element is equal to four more than the digit length of the COBOL argument.
For a string, the size of each element is equal to one more than the length of
the COBOL argument. For a general_string, the size of each element is equal
to the greater of four more than the digit length and one more than the length
of the COBOL argument.

You may override these default element sizes by using the size(value) base
modifier attribute as follows:

fn([[string in size(30)]] char *P1[10],

 [[numeric_string in occurs(10) size(35)]] char *P2[],

 [[general_string in occurs(10) size(20)]] char *P3[]);

COBOL Array References

When passing an array reference from COBOL to C, you must pass the first
item of the COBOL array. For example:

CALL "fn" USING Data-Item (1).

54 • Chapter 2: Concepts CodeBridge User's Guide

The OCCURS information for a COBOL data item is not passed to a non-
COBOL subprogram. This means that CodeBridge cannot determine the
number of elements in a COBOL array from the COBOL descriptor for that
item. This is true for both the maximum number of occurrences (the value in
the TO phrase of the OCCURS clause) and, for a variable occurrence item, the
current number of occurrences (the value of the data item in the DEPENDING
phrase of the OCCURS clause). If desired, the COBOL program could pass
either of these values as separate parameters. The COBOL special registers
COUNT, COUNT-MAX, and COUNT-MIN may be used to obtain the current
number of occurrences, the maximum number of occurrences specified in
the COBOL OCCURS clause, and the minimum number of occurrences
specified in the COBOL OCCURS clause.

CodeBridge converts the number of COBOL occurrences specified in the
template file regardless of the number of actual occurrences in the COBOL
program or any occurrence count parameter. Therefore, the COBOL program
that calls the function described by the template must always pass an array
that has at least as many occurrences as specified by the template. If the
COBOL program defines fewer occurrences than specified in the template,
CodeBridge will convert data following the array argument in the COBOL data
area. In such cases, output conversion will overwrite data following the array
argument, possibly destroying the integrity of the COBOL program.

CodeBridge only handles COBOL table references that are not
SYNCHRONIZED. That is, Data-Item in the preceding example must be
described with the OCCURS clause and must not be described with the
SYNCHRONIZED (SYNC) clause. CodeBridge supports only singly
dimensioned tables of COBOL arguments. A multidimensional table may be
passed, but only the last subscript will be varied by CodeBridge. Further, the
table must contain contiguous elementary items. That is, the last subscript
must be for an OCCURS clause in the argument item description rather than a
group item that contains the argument item.

CodeBridge Builder

This section describes the CodeBridge Builder, which reads a template file as
input and generates C source as output. This generated source provides the
interface between the COBOL program and the C function by calling functions
in the CodeBridge Library to convert between COBOL arguments and C
parameters, as needed, before and after calling the target C function.

For each C function prototype in the template file, a corresponding function is
generated in the dynamic-link library (DLL) interface code. Each function
contains all of the logic needed to do the following:

• Produce an exportable dynamic-link library (DLL) function

• Optionally perform input argument validation

• Convert input arguments from COBOL to C

CodeBridge User's Guide Chapter 2: Concepts • 55

• Call the C function

• Optionally perform output parameter validation

• Convert output parameters from C to COBOL

Using the CodeBridge Builder

The CodeBridge Builder is a command line program (for Windows, a console
application). The application program file is named cbridge.exe.

To start the CodeBridge Builder from the command line, enter:

cbridge <input file> [<output file>] [-f (-F)]

where,

<input file> is the pathname of the template file. This parameter is
required. If you do not supply an extension, the CodeBridge Builder will
add the extension .tpl.

<output file> is the pathname for the generated source file. This
parameter is optional. If it is not specified, the value of <input file> will be
used with the extension changed to .c.

-f (or -F) is a command line option that may be used to force the
CodeBridge Builder to generate C source code, even if errors are
encountered. This parameter is optional. If it is specified, any error
messages will be concatenated to the end of the generated source in
addition to appearing in the error file. The error file is always generated,
regardless of whether the -f option is specified.

Note The generated C source contains a #include C preprocessor directive
that refers to the additional header files: rmc85cal.h, rmport.h, rtarg.h,
rtcallbk.h, and standdef.h. All of these files are installed with CodeBridge.

If errors are encountered, an error file is generated. For more details, see
CodeBridge Builder Error Messages (on page 57). The error file uses the
same pathname as <output file> with the extension changed to .err.

For example, the command:

cbridge src\myfile.tpl

reads src\myfile.tpl, writes the generated source to src\myfile.c, and writes
any error messages to src\myfile.err.

The command:

cbridge tpl\myfile src\myfile.src

reads tpl\myfile.tpl, writes the generated source to src\myfile.src, and writes
any error messages to src\myfile.err.

The CodeBridge Builder checks for errors in the template file and if any errors
are present, it produces a file that contains diagnostic information. If there

56 • Chapter 2: Concepts CodeBridge User's Guide

are errors in the template file, however, no output file will be generated.
When there are errors in the template, the resultant source file should be
considered unusable even though a C compiler might compile it without
errors.

Note The CodeBridge Builder exit codes are also described in Appendix A:
CodeBridge Errors (on page 57).

CodeBridge User's Guide Appendix A: CodeBridge Errors • 57

Appendix A: CodeBridge Errors

This appendix lists and describes the messages that can be generated during
the use of either the CodeBridge Builder or the CodeBridge Library. These
messages also include the CodeBridge Builder exit codes.

CodeBridge Builder Error Messages

The CodeBridge Builder error messages have the following form:

<file>(<line>) <severity> - <message number>: <message text>

where, severity can either be “inform” or “error”.

Table 1 lists the error messages produced by the CodeBridge Builder.

Table 1: CodeBridge Builder Error Messages

Message Number Message Text

100010 The template element is not correctly formed.

100020 The #include directive is not correctly formed.

100030 The user function is not correctly formed.

100040 The attribute is not correctly formed.

100045 The attributes are not correctly formed.

100050 The attribute expression’s element is not correctly formed.

100060 The attribute value clause is not correctly formed.

100070 The attribute clause is not correctly formed.

100080 The C function’s header is not correctly formed.

100090 The name declaration is not correctly formed.

100100 The array declaration is not correctly formed.

100110 The argument list is not correctly formed.

100120 The argument is not correctly formed.

58 • Appendix A: CodeBridge Errors CodeBridge User's Guide

Table 1: CodeBridge Builder Error Messages (Cont.)

Message Number Message Text

100130 There is no such attribute [[attribute_name]].

100140 The attribute [[attribute_name]] cannot have a value.

100150 The attributes [[attribute_name]] and [[attribute_name]]
are incompatible.

100160 One of the minimal attribute combinations must be present:
[[attribute combinations]].

100180 Either the [[arg_num]] or [[ret_val]] attribute must not be
used, since it wasn’t used on a previous parameter.

100190 Either the [[arg_num]] or [[ret_val]] attribute must be
used, since it was used on a previous parameter.

100210 The global attributes are not correctly formed.

100220 The global attribute is not correctly formed.

100230 There is no such global attribute [[attribute_name]].

100240 The attribute [[attribute_name]] must have number
value(s).

100250 The global attribute’s convention value clause is not correctly
formed.

100260 The global attribute’s replace value clause is not correctly
formed.

100270 The global attribute’s normal value clause is not correctly
formed.

100280 The global name declaration is not correctly formed.

100285 Duplicate global attribute: [# attribute_name #].

100290 There is no such diagnostic value: (value).

100300 The number of the argument with [[repeat]] attribute is not
the highest.

The CodeBridge Builder uses the following data files: dllgen.in, dllgen.out,
dllgen.p01, and dllgen.sym. Occasionally, if these files are write-protected,
the CodeBridge Builder may not be able to open them, and an error message
similar to the following will be displayed:

C:\TOOLS\SCANNER.EXE: FAILURE

- Unable to open file 'C:\TOOLS\DLLGEN.xxx'.

If this occurs, modify the attributes of these four files so that they are not
write-protected.

CodeBridge User's Guide Appendix A: CodeBridge Errors • 59

CodeBridge Builder Exit Codes

The CodeBridge Builder will return a completion status (or exit code). This
status can be interrogated by the batch stream or shell script. Table 2 lists
the CodeBridge Builder exit codes.

Table 2: CodeBridge Builder Exit Codes

Code Description

 0 Normal program termination with no diagnostic messages
produced.

 1 Normal program termination with some diagnostic messages
produced.

253 Abnormal program termination—error creating temporary file.

254 Abnormal program termination—error executing program.

255 Abnormal program termination—an internal error occurred.

CodeBridge Library Error Messages

An execution error in the CodeBridge Library causes the called C subprogram
to exit and the COBOL run unit to terminate.

When a CodeBridge Library function detects an error during conversion or
validation, it displays an error message before returning to the calling
program.

Note The errors displayed by the CodeBridge Library are in addition to errors
that may subsequently be displayed by the RM/COBOL runtime system. See
Appendix A: Runtime Messages of the RM/COBOL User’s Guide.

A CodeBridge Library error message contains the following information:

Function: <calling function name>

Argument Number: <number> (or Argument: Return Value)

Operation: <library function name>

Error: <error number> - <message text>

where,

<calling function name> is the Name parameter from the last call to
ConversionStartup (on page 154).

<number> is the one-based argument number of the argument in the
USING phrase. When the alternative, Return Value, is shown, it indicates
the argument in the GIVING (RETURNING) phrase.

<library function name> is the conversion or validation operation
specified as one of the names listed in the “Function Name” column of
the table in the section Library Functions Overview (on page 131). For
example, CobolToInteger (on page 147), would be specified if the error

60 • Appendix A: CodeBridge Errors CodeBridge User's Guide

occurred during conversion of a COBOL numeric argument to a C integer
parameter.

<Error number> is the “Error Code” and <message text> is the “Error Text”
listed in
Table 3 on page 60.

For Windows platforms, a message box with the error message is displayed.
Figure 1 shows an example of a CodeBridge Library error message on
Windows:

Figure 1: Library Error Message Box

For UNIX platforms, the message is written to stderr. The following shows
an example of a CodeBridge Library error message on UNIX:

CodeBridge Library Error

 Function: CINT2INTEGER

 Argument Number: 2

 Operation: CobolToString

 Error: 515 - Non-numeric data expected

Table 3: CodeBridge Library Errors

Error
Code

Error Text

Description

501 Digits count too large One of the base modifier attributes (assert_digits,
assert_digits_left, or assert_digits_right) was
specified and the corresponding number of digits
in the passed COBOL argument was greater than
the indicated maximum.

502 Digits count too small One of the base modifier attributes (assert_digits,
assert_digits_left, or assert_digits_right) was
specified and the corresponding number of digits
in the passed COBOL argument was less than the
indicated minimum.

503 Initialization needed A call was made to a CodeBridge Library function
prior to calling the ConversionStartup function.
This error should never occur when using the
CodeBridge Builder.

504 Integer data expected The integer_only base modifier attribute was
specified and the COBOL argument contains digits
to the right of the decimal point.

505 Internal logic –
Argument setup

This indicates an incompatibility between the
RM/COBOL compiler and runtime. The descriptor

CodeBridge User's Guide Appendix A: CodeBridge Errors • 61

of the COBOL argument contained unexpected
values.

506 Internal logic – Data
type

This indicates an incompatibility between the
RM/COBOL compiler and runtime. The type of the
COBOL argument contained an unexpected value.

507 Internal logic –
Parameter setup

This indicates a logic error in the CodeBridge
Library. While setting up a description of the C
parameter, an unexpected condition was
encountered.

508 Invalid argument
number

The argument number supplied was not valid.
This could indicate an internal error with the
CodeBridge Builder or that the developer used a
bad value when calling a CodeBridge Library
function directly.

509 Invalid C numeric string [[numeric_string out]] was specified and the C
string is not numeric.

510 Invalid data type The COBOL argument contains an unsupported
data type.

511 Invalid sign
specification

The COBOL argument contains an invalid sign.

512 Length too large The assert_length base modifier attribute was
specified and the corresponding length of the
passed COBOL argument was greater than the
indicated maximum.

513 Length too small The assert_length base modifier attribute was
specified and the corresponding length of the
passed COBOL argument was less than the
indicated minimum.

514 Memory allocation error The CodeBridge Library attempted to allocate
memory and encountered an error.

Table 3: CodeBridge Library Errors (Cont.)

Error
Code

Error Text

Description

515 Non-numeric data
expected

A numeric COBOL argument was used with the
string base attribute.

516 Null pointer not allowed The COBOL program passed a null pointer when
the no_null_pointer base modifier attribute was
used.

517 Numeric data expected A non-numeric COBOL argument was used with
one of the following numeric base attributes: float,
integer, or numeric_string.

518 Omitted argument not
allowed

The COBOL argument was omitted for an
argument that was not optional.

519 Pointer data expected The COBOL argument was not a POINTER when a
pointer base attribute was used.

520 Signed argument
expected

An unsigned numeric COBOL argument was used
when the signed base modifier attribute was set.

62 • Appendix A: CodeBridge Errors CodeBridge User's Guide

521 Size error A size error occurred during numeric data
conversion and the no_size_error base modifier
attribute was not set.

522 Size not supported The size of the C parameter does not conform to
one of the supported C numeric data types, such
as int or float.

523 Unsigned argument
expected

A signed numeric COBOL argument was used
when the unsigned base modifier attribute was
set.

524 Version level mismatch This version of the CodeBridge Library does not
support the minimum level of conversion and
validation features indicated by the Version
parameter of the ConversionStartup call.

525 Effective_length occurs
too large

The occurs count for an effective_length base
attribute is larger than the occurs count for the C
parameter associated with the same argument
number. The occurs count for the effective_length
base attribute must be less than or equal to the
occurs count for the associated C parameter.

526 Occurs not allowed with
repeat

An Occurs count value greater than 1 has been
specified with a Repeat count greater than 1 in a
CodeBridge library call. The occurs and repeat
attributes are mutually exclusive for any one
argument. The CodeBridge Builder enforces this
rule, but a user written library call has specified
both for a single argument.

CodeBridge User's Guide Appendix B: CodeBridge Examples • 63

Appendix B: CodeBridge
Examples

This appendix contains examples that use the typical CodeBridge
development procedure outlined in Chapter 1: Introduction (on page 9). The
examples build from simple to complex, as a means of introducing
CodeBridge concepts, which are discussed in Chapter 2: Concepts (on page
21).

In addition to these examples, there are several CodeBridge sample
programs that are included with the development system in the CodeBridge
samples subdirectory (cbridge on Windows and cbsample on UNIX). See the
appropriate README file (and the samples.txt file on Windows) for additional
information about the CodeBridge sample programs that
are included.

Note 1: In the following example template files, bold type is used to indicate
the first instance of a CodeBridge attribute that is being introduced. Detailed
information about attributes and attribute lists is provided in Appendix D:
Global Attributes (on page 95) and Appendix E: Parameter Attributes (on
page 99).

Note 2: Unlike COBOL, C is a case-sensitive programming language. Thus,
the case is significant for words in these example template files.

Example 1: Calling a Standard C Library Function

This example demonstrates calling a standard C library function without
writing any C code. Parameter attribute lists are also presented. See the
details of this example in the topic Typical Development Example (on page
16).

64 • Appendix B: CodeBridge Examples CodeBridge User's Guide

Example 2: Calling a Windows API Function

This example demonstrates calling a Windows API function to display a
message box. Both global attribute lists and parameter attribute lists are
used.

Note: Since this example deals with a Windows API function, it is fully
elaborated only for Windows, where the ODBC API is readily available from
Microsoft. However, the CodeBridge techniques illustrated are general in
nature and may be instructive to developers creating templates for C
subprograms on UNIX systems.

The samples directory contains an mbox exampel that includes both
Example 2 and 3 calls.

1. Start with the function prototype for the Windows API function,
MessageBox:

WINUSERAPI int WINAPI MessageBox(HWND hWnd,

 LPCSTR lpText, LPCSTR lpCaption, UINT uType);

2. Create a template file named mbox.tpl in the src directory that consists of
the following lines:

#include <windows.h>

#include <winuser.h>

[# replace_type(LPCSTR; char *)

[# replace_type(UINT;unsigned int) #]

[# convention(WINUSERAPI)

[# convention(WINAPI) #]

[[integer out]] WINUSERAPI

 int WINAPI MessageBox(

[[windows_handle]] HWND hWnd,

[[string in trailing_spaces]] LPCSTR lpText,

[[string in trailing_spaces]] LPCSTR lpCaption,

[[integer in unsigned]] UINT uType);

The template file needs #include C preprocessor directives for files that
contain any required defined data types (using macros defined with the
#define C preprocessor directives and C data types defined with typedef
statements). In this example, the windows.h and winuser.h header files
are included.

Global attribute lists (for example, [# replace_type(LPCSTR; char
*) #]) are constructed by placing the attributes between the characters
[# and #]. The two global attributes used in this example are
replace_type and convention.

The replace_type global attribute causes CodeBridge to replace a defined
C type with the specified value. In this example, the type LPCSTR is
replaced with the value char *, which is required whenever the definition
of a pointer is hidden within a defined type. The number of levels of

CodeBridge User's Guide Appendix B: CodeBridge Examples • 65

indirection (indicated by asterisks) in a C data type tells the CodeBridge
Builder how to correctly build calls to the C function.

The convention global attribute informs the CodeBridge Builder that a
particular text string represents a calling convention to a C function.
CodeBridge must preserve the calling convention in the constructed
external reference to the C function while removing it from the definition
of the generated variable used to hold the function
return value.

Several new parameter attributes are introduced. The integer base
attribute is used when the type of the C parameter is an integer (such as
char, short, int, unsigned, or long). The string base attribute is used when
the type of the C parameter is a string (an array of characters) and the
type of the COBOL argument is non-numeric.

Some parameter base attributes do not obtain information directly from a
COBOL argument. One of these is the windows_handle base attribute,
which obtains its value from the Windows handle associated with the
calling program (in this case, the Windows handle of the RM/COBOL
runtime system).

There are two input strings in this example. The attribute list [[string

in trailing_spaces]] is used for both. When an input string is
encountered, a conversion buffer is allocated to contain the string. The
data is copied from the COBOL argument and a trailing null is appended.
The trailing_spaces base modifier attribute causes trailing spaces to be
removed before the null character is added for input conversions (for
output conversions the null character is removed, and trailing spaces are
appended).

One of the C parameters is of type UINT, which has a value of unsigned
integer. The unsigned base modifier attribute ensures that the
CodeBridge Library treats the data as unsigned.

3. Invoke the CodeBridge Builder by using the following command line:

cbridge src\mbox.tpl

This command reads the input file from src\mbox.tpl and writes its
output file to src\mbox.c. Any errors would be written to file
src\mbox.err

4. Compile and link the non-COBOL subprogram library with the C compiler
of your choice, using commands similar to the following:

cl -c –MD -Zp1 src\mbox.c

link -nologo -machine:IX86–dll

 -subsystem:windows -out:mbox.dll

 mbox.obj

5. Create a COBOL program in a file named mbox.cbl that contains the
following source fragments:

66 • Appendix B: CodeBridge Examples CodeBridge User's Guide

77 NUMBER-1 PIC 99.

77 NUMBER-2 PIC 99.

77 NUMBER-3 PIC 99.

77 NUMBER-4 PIC 99.

77 NUMBER-5 PIC 99.

77 NUMBER-6 PIC 99.

77 TEXT-1 PIC X(256).

77 RESULT PIC 99.

78 CR-LF Value X"0D0A".

78 MB-OK-BUTTON Value 0.

78 MB-INFO-ICON Value 64.

78 MB-STYLE Value MB-OK-BUTTON + MB-INFO-ICON.

78 MB-CAPTION Value "LOTTERY".

STRING "Today's winning lottery numbers" CR_LF

 NUMBER-1 " – " NUMBER-2 " – " NUMBER-3 " – "

 NUMBER-4 " – " NUMBER-5 " – " NUMBER-6

 DELIMITED BY SIZE INTO TEXT-1.

CALL "MessageBox" USING TEXT-1 MB-CAPTION MB-STYLE

 GIVING RESULT.

The COBOL code creates a message box containing the text, “Today’s
winning lottery numbers xx – xx – xx – xx – xx – xx”, where xx represents
one of the six lottery numbers. (The code for setting NUMBER-1 through
NUMBER-6 is not shown.)

Note: The value of the Windows handle parameter, named hWnd, is
supplied by the RM/COBOL runtime system. It does not have an
associated COBOL argument.

6. Compile the COBOL program with the RM/COBOL compiler by using the
following command line:

rmcobol mbox

7. Run the application with the following command line:

runcobol mbox -l mbox.dll

Example 3: Accommodating a Variable Number of
Parameters

This example uses an alternate method to create the same message box that
was presented in Example 2. It also demonstrates calling a C function that
accepts a variable number of parameters.

Note: Since this example deals with a Windows API function, it is fully
elaborated only for Windows. However, the CodeBridge techniques
illustrated are general in nature and may be instructive to developers creating
templates for C subprograms on UNIX systems.

The samples directory contains an mbox exampel that includes both
Example 2 and 3 calls.

CodeBridge User's Guide Appendix B: CodeBridge Examples • 67

1. Create a C function, message_box (which calls the Windows API function,
MessageBox), in a file named mbox2fn.c in the src directory that consists
of the following lines:

#include <windows.h>

#include <winuser.h>

int message_box(HWND hWnd, int ArgCount,

 int Options, char *Title, char *Text, ...)

{

 int i;

 char MessageText[512];

 va_list Marker;

 strcpy(MessageText, Text);

 va_start(Marker, Text);

 for (i = 4; i <= ArgCount; i++)

 strcat(MessageText, va_arg(Marker, char*));

 va_end(Marker);

 return(MessageBox(hWnd, MessageText, Title, Options));

}

Note 1: The function has a variable number of string parameters
(represented on the function prototype by the ellipsis “…”), which are
concatenated to form a single text string. This allows the calling COBOL
program to pass these strings separately instead of using a STRING
statement to concatenate them as was done in Example 2.

Note 2: Although it would seem logical to name the file that contains the
message_box function mbox2.c and the file that contains the template
mbox2.tpl, the CodeBridge Builder names its output file mbox2.c and
thus would overwrite the file containing message_box were it also named
mbox2.c.

2. Create a template file named mbox2.tpl in the src directory that consists
of the following lines:

[[integer out]] int message_box(

[[windows_handle]] HWND hWnd,

[[arg_count]] int ArgCount,

[[integer in unsigned]] int Options,

[[string in trailing_spaces]] char *Title,

[[general_string in

 trailing_spaces

 leading_minus repeat(20)]] char *Text, ...);

The arg_count base attribute (as the windows_handle base attribute
introduced in Example 2) is not associated with a COBOL argument. It is
used to pass the actual number of COBOL arguments to the C function.
This allows the message_box function to determine, for each call, how
many strings have been passed.

CodeBridge offers several ways to pass a string to a C function:

68 • Appendix B: CodeBridge Examples CodeBridge User's Guide

• The string base attribute is used when the COBOL argument is non-
numeric.

• The numeric_string base attribute is used when the COBOL argument
is numeric.

• The general_string base attribute is used in those cases when it is
desirable to allow a C string parameter to accept either a numeric
COBOL argument or a non-numeric COBOL argument. When a
numeric argument is passed to a parameter described with the
general_string base attribute, the argument is converted as if the
parameter were described with the numeric_string base attribute;
otherwise, the argument is converted as if the parameter were
described with the string base attribute. An attribute list containing
the general_string base attribute allows any additional attributes that
may be used with either a string base attribute or a numeric_string
base attribute. For each call and for each argument passed to a
parameter within a set of a variable number of parameters, attributes
that do not apply to the COBOL argument actually passed are ignored
for the conversion of that argument. That is, for a numeric argument,
base modifier attributes not applicable to the numeric_string base
attribute are ignored and for a non-numeric argument, base modifier
attributes not applicable to the string base attribute are ignored.

In this example, when a non-numeric argument is passed to the
parameter named Text, the trailing_spaces base modifier attribute will be
acted upon and the leading_minus base modifier attribute will be ignored.
When a numeric argument is passed, the opposite will occur.

The leading_minus base modifier attribute is used in numeric_string and
general_string parameter attribute lists to specify that a minus sign
character should be placed before the digits of the parameter value when
the COBOL argument is a negative number. For more information, see
the discussion of the leading_minus base modifier attribute in Base
Modifiers that Apply to Numeric Base Attributes (on page 104).

The repeat(value) base modifier attribute provides partial support for C
functions with a variable number of parameters. The message_box
function uses the ellipsis (…) to indicate that it can accept any number of
parameters following the parameter named Text. While the CodeBridge
Builder does not allow an unspecified number of trailing parameters, it
does support a fixed number of extra parameters (in this example,
repeat(20) specifies up to 20 extra string parameters, which may be
associated with numeric or non-numeric arguments because of the
general_string base attribute).

3. Invoke the CodeBridge Builder by using the following command line:

cbridge src\mbox2.tpl

This command reads the input file from src\mbox2.tpl and writes its
output file to src\mbox2.c. Any errors would be written to file
src\mbox2.err.

CodeBridge User's Guide Appendix B: CodeBridge Examples • 69

4. Compile and link the non-COBOL subprogram library with the C compiler
of your choice. There are now two C files to compile:

• The message_box function (created in step 1) in the file named
mbox2fn.c.

• The file named mbox2.c (created in step 3 by the CodeBridge Builder
when it processed the file named mbox2.tpl, created in step 2).

Use commands similar to the following:

cl -c –MD -Zp1 src\mbox2fn.c

cl -c –MD -Zp1 src\mbox2.c

link -nologo -machine:IX86 –dll

 -subsystem:windows -out:mbox.dll

 mbox2.obj mbox2fn.obj user32.lib

5. Create a COBOL program in a file named mbox2.cbl that contains the
following source fragments:

77 NUMBER-1 PIC 99.

77 NUMBER-2 PIC 99.

77 NUMBER-3 PIC 99.

77 NUMBER-4 PIC 99.

77 NUMBER-5 PIC 99.

77 NUMBER-6 PIC 99.

77 TEXT-1 PIC X(256).

77 RESULT PIC 99.

78 CR-LF Value X"0D0A".

78 MB-OK-BUTTON Value 0.

78 MB-INFO-ICON Value 64.

78 MB-STYLE Value MB-OK-BUTTON + MB-INFO-ICON.

78 MB-CAPTION Value "LOTTERY".

CALL "message_box" USING MB-STYLE MB-CAPTION

 "Today's winning lottery numbers" CR-LF

 NUMBER-1 " – " NUMBER-2 " – " NUMBER-3 " – "

 NUMBER-4 " – " NUMBER-5 " – " NUMBER-6

 GIVING RESULT.

The COBOL code creates a message box containing the text, “Today’s
winning lottery numbers xx – xx – xx – xx – xx – xx”, where xx represents
one of the six lottery numbers. (The code for setting NUMBER-1 through
NUMBER-6 is not shown.)

Note: The parameters to message_box have been reordered so that the
variable parameters occur at the end. For this reason, the arguments of
the COBOL CALL have been similarly reordered. Values for the Windows
handle and argument count parameters, named hWnd and ArgCount,
respectively, are supplied by the RM/COBOL runtime system.

6. Compile the COBOL program with the RM/COBOL compiler by using the
following command line:

rmcobol mbox2

70 • Appendix B: CodeBridge Examples CodeBridge User's Guide

7. Run the application with the following command line:

runcobol mbox2 -l mbox2.dll

Example 4: Accessing COBOL Pointer Arguments

This example shows how to access data described by pointer data items and
demonstrates how dynamic memory management can be implemented. It
also illustrates that a COBOL pointer argument can be used with both the C
function return value and a C parameter. Finally, it shows the use of more
than one attribute list for a single C parameter.

Note While the C functions illustrated in this example could be used for
providing dynamic memory allocation, RM/COBOL supplies the subprograms
C$MemoryAllocate and C$MemoryDeallocate in its subprogram library, as
described in Appendix F: Subprogram Library of the RM/COBOL User's Guide.
Those subprograms, in most circumstances, should be used to provide
dynamic memory allocation in RM/COBOL.

A COBOL pointer data item describes a block of memory. It contains three
components: base address, offset, and size. When a pointer data item is
initialized, the base address contains the starting address of the block, the
offset is set to 0, and the size contains the total length of the block.

CodeBridge pointer base attributes are used when COBOL pointer arguments
are being passed to the C function. CodeBridge provides two approaches for
accessing data described by a pointer data item. The first approach is used
when the C function only needs to access the data referenced by the pointer.
The second approach is used when the C function also needs to access the
components of the pointer argument itself. The following example
demonstrates the second approach.

1. Start with the function prototypes for the standard C library memory
allocation functions, free, malloc, and realloc:

void free(void *memblock);

void *malloc(size_t size);

void *realloc(void *memblock, size_t size);

2. Create a template file named mem.tpl in the src directory that consists of
the following lines:

#include <stdlib.h>

#include <malloc.h>

[#convention(CBDLLIMP)#]

[#convention(CBCDECL)#]

 CBDLLIMP void CBCDECL free(

[[pointer_base in]] void *memblock);

[[pointer_base out

 pointer_reset_offset

CodeBridge User's Guide Appendix B: CodeBridge Examples • 71

 ret_val]] CBDLLIMP void * CBCDECL malloc(

[[integer in arg_num(1)]]

[[pointer_size out ret_val]] size_t size);

[[pointer_base out ret_val]] CBDLLIMP void * CBCDECL realloc(

[[pointer_base in arg_num(1)]] void *memblock,

[[integer in arg_num(2)]]

[[pointer_size out ret_val]] size_t size);

The arg_num and ret_val argument number attributes are used to refer to
COBOL arguments when they are passed by the calling program in an
order that differs from the parameter order of the C function. For more
information on associating C parameters with COBOL arguments, see
Associating C Parameters with COBOL Arguments (on page 40).

Note: When the arg_num or ret_val argument number attributes are used
for any attribute list, they must be used for every attribute list of that
function.

The pointer_base and pointer_size base attributes refer to the base
address component and size component, respectively, of a COBOL
pointer argument. The pointer_reset_offset base modifier attribute is
used with the pointer_base base attribute to set the offset component to
zero.

The free function, which deallocates memory, uses the pointer_base base
attribute to describe an input parameter that provides the base address of
the memory block that will be freed.

The malloc function, which allocates memory, uses the pointer_base
base attribute to describe an output parameter that receives the base
address of the allocated memory using the function return value. The
pointer_reset_offset base modifier attribute sets the offset component to
zero. The malloc function also uses the pointer_size base attribute to
describe an output parameter that sets the pointer size component from
the input parameter named size.

The realloc function, which changes the size and possibly the address of
the block of memory, differs from the malloc function in three ways. It
does not reset the pointer offset component to zero (the old value is
retained). It also expects the address of the current memory block as an
input parameter (in this case, the pointer_base base attribute is used with
argument 1 to satisfy this expectation).

Finally, the parameter named size has two attribute lists. The first
attribute list supplies the new block size from the second COBOL
argument in the USING phrase to the size parameter. The second
attribute list sets the size component of the argument in the GIVING
(RETURNING) phrase from the size parameter.

3. Invoke the CodeBridge Builder by using the following command line:

cbridge src\mem.tpl

72 • Appendix B: CodeBridge Examples CodeBridge User's Guide

This command reads the input file from src\mem.tpl and writes its output
file to src\mem.c. Any errors would be written to file src\mem.err.

4. Compile and link the non-COBOL subprogram library with the C compiler
of your choice, using commands similar to the following:

For Windows

cl -c –MD -Zp1 -I”%RM_PROGRAM_DIR%” src\mem.c

link -nologo –dll -subsystem:windows -out:mem.dll mem.obj

For UNIX

A makefile is provided with the RM/COBOL development and runtime
systems that can be used or modified to build a shared object to be used
as a support module with the RM/COBOL runtime system. For additional
information, see Preparing C Subprograms for UNIX (on page 194).

Compile (Linux gcc):

cc [-m32|-m64] -c src/ mem.c -I <RMC dir> -fPIC

• Requires cbridge.h included in the RM/COBOL installation
directory. This requires you to specifiy the directory with an
include (-I).

• The bitness [-m32 |-m64] of the object you are creating should
match the version of RM/COBOL you expect to run with.

• -fPIC for position independent code is required for creating the
shared object.

Link (Linux gcc):

cc [-m32|-m64] -shared -o mem.so mem.o

• -shared required for linking a shared library

5. Create a COBOL program in a file named mem.cbl that contains the
following source fragments:

01 Pointer-1 USAGE POINTER.

01 Pointer-2 USAGE POINTER.

CALL "malloc" USING 4096 GIVING Pointer-1.

CALL "realloc" USING Pointer-1 8192 GIVING Pointer-2.

IF Pointer-2 NOT = NULL

 SET Pointer-1 TO Pointer-2

END-IF.

CALL "free" USING Pointer-1.

The COBOL code allocates a block of memory that is 4096 bytes long.
After the malloc call, the base address component of Pointer-1 contains
the address of the allocated memory block (or NULL if malloc was unable
to allocate the memory). The offset component of Pointer-1 is zero and
its size component is 4096. Next, the realloc call increases the size of

CodeBridge User's Guide Appendix B: CodeBridge Examples • 73

the memory block to 8192 bytes (or possibly allocates a new block,
copies the data, and frees the original block; also, a NULL may be
returned if the request cannot be satisfied). Finally, the free call
deallocates the 8192-byte block of memory (or the original 4096-byte
block if the call to realloc fails).

Full example program for mem.cbl if you do not want to create your own:
 IDENTIFICATION DIVISION.

 PROGRAM-ID.

 mem.

 DATA DIVISION.

 WORKING-STORAGE SECTION.

 01 Pointer-1 USAGE POINTER.

 01 Pointer-2 USAGE POINTER.

 77 ANYKEY PIC X.

 PROCEDURE DIVISION.

 MAIN.

 DISPLAY "Memory Allocation:"

 DISPLAY " malloc..."

 CALL "malloc" USING 4096 GIVING Pointer-1.

 DISPLAY " realloc..."

 CALL "realloc" USING Pointer-1 8192 GIVING Pointer-2.

 IF Pointer-2 NOT = NULL

 DISPLAY " ... succeeded"

 SET Pointer-1 TO Pointer-2

 END-IF.

 DISPLAY " free..."

 CALL "free" USING Pointer-1.

 DISPLAY "Done."

 ACCEPT ANYKEY FROM CONSOLE.

6. Compile the COBOL program with the RM/COBOL compiler by using the
following command line:

rmcobol mem.cbl

7. Run the application, specifying the name of the COBOL program and the
name of the non-COBOL subprogram library.

You may specify the name of the non-COBOL subprogram with the
appropriate file extension. The following two commands illustrate how to
specify a Windows dynamic-link library (DLL) or a UNIX shared object
(generally referred to as optional support modules). Since the COBOL
program and the non-COBOL subprogram have the same root name
(mem), it is necessary to specify the correct file extension.

For Windows

runcobol mem -l mem.dll

For UNIX

runcobol mem -l mem.so

Example 5: Packing and Unpacking Structures

When a C function uses structures or unions as parameters, you must use an
intermediate function that packs scalars into structure and union parameters.

74 • Appendix B: CodeBridge Examples CodeBridge User's Guide

This example illustrates that process. No new attributes or attribute lists are
presented.

1. Start with the function prototypes for the two standard C library functions,
time and localtime:

time_t time(time_t *timer);

struct tm *localtime(const time_t *timer);

The return value for localtime is a C structure named tm, which is defined
as:

 struct tm {int tm_sec; //seconds [0,59]

 int tm_min; //minutes [0,59]

 int tm_hour; //hours [0,23]

 int tm_mday; //day of month [1,31]

 int tm_mon; //month [0,11]

 int tm_year; //years since 1900!

 int tm_wday; //day of week [0,6]

 int tm_yday; //day of year [0,365]

 int tm_isdst; //daylight savings flag};

Create a C function, time_function, in a file named timefn.c in the src
directory that consists of the following lines:

#include <time.h>

time_function(short *sec, short *min, short *hour)

{

 time_t time_of_day;

 struct tm *tmbuf;

 time_of_day = time(NULL);

 tmbuf = localtime(&time_of_day);

 *sec = tmbuf->tm_sec;

 *min = tmbuf->tm_min;

 *hour = tmbuf->tm_hour;

}

This function calls time and localtime and extracts the structure
members named tm_sec, tm_min, and tm_hour, into scalar output
parameters named sec, min, and hour.

2. Create a template file named mytime.tpl in the src directory that consists
of the following lines:

time_function(

[[integer out]] short *sec,

[[integer out]] short *min,

[[integer out]] short *hour);

3. Invoke the CodeBridge Builder by using the following command line:

cbridge src\mytime.tpl

CodeBridge User's Guide Appendix B: CodeBridge Examples • 75

This command reads the input file from src\mytime.tpl and writes its
output file to src\mytime.c. Any errors would be written to file
src\mytime.err.

4. Compile and link the non-COBOL subprogram library with the C compiler
of your choice. There are two C files to compile:

• The time_function function (created in step 1) in the file named
timefn.c.

• The file named mytime.c (created in step 3 by the CodeBridge Builder
when it processed the file named mytime.tpl, created in step 2).

Use commands similar to the following:

For Windows

cl -c –MD -Zp1 src\timefn.c

cl -c –MD -Zp1 -I”%RM_PROGRAM_DIR%” src\mytime.c

link -nologo –dll-subsystem:windows

 -out:mytime.dll mytime.obj timefn.obj

For UNIX

Compile (Linux gcc):

cc [-m32|-m64] -c src/timefn.c -fPIC

cc [-m32|-m64] -c src/mytime.c -I <RMC dir> -fPIC

• Requires cbridge.h included in the RM/COBOL installation
directory. This requires you to specifiy the directory with an
include (-I).

• The bitness [-m32 |-m64] of the object you are creating should
match the version of RM/COBOL you expect to run with.

• -fPIC for position independent code is required for creating the
shared object.

Link (Linux gcc):

 cc [-m32|-m64] -shared -o mytime.so mytime.o timefn.o

• -shared required for linking a shared library

5. Create a COBOL program in a file named mytime.cbl that contains the
following source fragments:

01 GROUP-1.

 02 TM-SEC PIC 9(2).

 02 TM-MIN PIC 9(2).

 02 TM-HOUR PIC 9(2).

CALL "time_function" USING TM-SEC TM-MIN TM-HOUR.

Full example program for mytime.cbl if you do not want to create your own:
 IDENTIFICATION DIVISION.

 PROGRAM-ID.

76 • Appendix B: CodeBridge Examples CodeBridge User's Guide

 mytime.

 DATA DIVISION.

 WORKING-STORAGE SECTION.

 01 GROUP-1.

 02 TM-SEC PIC 9(2).

 02 TM-MIN PIC 9(2).

 02 TM-HOUR PIC 9(2).

 77 ANYKEY PIC X.

 PROCEDURE DIVISION.

 MAIN.

 CALL "time_function" USING TM-SEC TM-MIN TM-HOUR.

 DISPLAY "Time: " TM-HOUR ":" TM-MIN ":" TM-SEC

 ACCEPT ANYKEY FROM CONSOLE.

6. Compile the COBOL program with the RM/COBOL compiler by using the
following command line:

rmcobol mytime

7. Run the application, specifying the name of the COBOL program and the
name of the non-COBOL subprogram library.

You may specify the name of the non-COBOL subprogram with the
appropriate file extension. The following two commands illustrate how to
specify a Windows dynamic-link library (DLL) or a UNIX shared object
(generally referred to as optional support modules). Since the COBOL
program and the non-COBOL subprogram have the same root name
(mytime), it is necessary to specify the correct file extension.

For Windows

runcobol mytime -l mytime.dll

For UNIX

runcobol mytime -l mytime.so

Example 6: Converting Buffered C Data

When an existing C API uses one C function to establish a buffer address and
another C function to store data into the buffer, the preferred method of using
the out direction attribute to modify COBOL data areas cannot be used. For
more information, see Modifying COBOL Data Areas (on page 47).

Note: This example is fully elaborated only for Windows, where the ODBC API
is readily available from Microsoft. However, the CodeBridge techniques
illustrated are general in nature and may be instructive to developers creating
templates for C subprograms on UNIX, including use of the ODBC API
provided by other companies for some UNIX systems.

An example of this situation occurs in the Microsoft ODBC API. A buffer
location is established with the function SQLBindCol, which binds a result set
column to a storage location. Later, a call to the function SQLFetch obtains
data from the result set and returns the data for each column previously
bound to a storage location with the function SQLBindCol. The data obtained

CodeBridge User's Guide Appendix B: CodeBridge Examples • 77

by the function SQLFetch is stored as C format data, not COBOL format data.
For example, a string would be stored as a null-terminated C string. If a
COBOL program is using CodeBridge to make the calls to the functions,
SQLBindCol and SQLFetch, a method is needed to convert the C format data
to COBOL format data. Such a conversion function can be written using
CodeBridge and a minimal C function supplied by the developer.

This example illustrates a conversion routine that converts a C null-
terminated string into a space-filled COBOL alphanumeric data item.

1. Start by writing a simple C function that copies one C string to another:

#include <string.h>

void cstring2text(char *pInput, char *pOutput)

{ (void)strcpy(pOutput, pInput);

}

2. Create a template file named strcvt.tpl in the src directory that consists
of the following lines:

void cstring2text(

[[address]] char *pInput,

[[string out trailing_spaces]] char *pOutput);

3. Invoke the CodeBridge Builder by using the following command line:

cbridge src\strcvt.tpl

This command reads the input file from src\strcvt.tpl and writes its
output file to src\strcvt.c. Any errors would be written to file
src\strcvt.err.

The CodeBridge Builder generates a C function from the template file.
The generated C function will add trailing space characters to the output
string argument because of the trailing_spaces base modifier attribute
specified in the template file. All the work of the conversion is performed
in the call to StringToCobol (on page 165) in the generated function.

4. Compile and link the non-COBOL subprogram library with the C compiler
of your choice, using commands similar to the following:

cl -c –MD -Zp1 -I”%RM_PROGRAM_DIR%” src\strcvt.c

link -nologo –dll

 -subsystem:windows -out:strcvt.dll

 strcvt.obj

5. Create a COBOL program in a file named strcvt.cbl that contains the
following source fragments:

01 IN-STRING PIC X(257).

01 OUT-STRING PIC X(256).

CALL "cstring2text" USING IN-STRING OUT-STRING.

78 • Appendix B: CodeBridge Examples CodeBridge User's Guide

In this example, it is assumed that the address of IN-STRING was passed
to a C function, for example, the function SQLBindCol, and then
subsequently a C function was called that used this address to store a
string, for example, the function SQLFetch. See Passing the Address of
COBOL Data (on page 49) for an explanation of how the address of a data
item is passed using CodeBridge. These fragments of the COBOL
program are not illustrated here. In this example the data item named IN-
STRING would contain a null-terminated C string and thus should not be
used by the COBOL program other than in the call to the function that
uses it as a buffer address and to the conversion function, cstring2text.

6. Compile the COBOL program with the RM/COBOL compiler by using the
following command line:

rmcobol strcvt

7. Run the application with the following command line:

runcobol strcvt -l strcvt.dll

Example 7: Calling C++ Libraries from CodeBridge

The following example demonstrates how to resolve external references
between the ways that C external names and C++ external names are
represented.

The special techniques described in this example are necessary because the
external function and variable names generated by C and C++ compilers do
not match. C++ embeds type information in the external name that C cannot
use. This type information is present even in C++ code that does not use C++
features. The linker, therefore, cannot resolve a call from C into C++ unless
the C++ function or variable declaration explicitly specifies that the function
or variable be made compatible with C.

To correct this situation, the C++ function definition in the C++ library must
include the notation extern "C" in the definition. For example, modifying

int FunctionName (...)

to

extern "C" int FunctionName (...)

instructs the C++ compiler to generate a function name that is compatible
with both
C and C++.

In many instances, the CodeBridge developer will not have access to the
source for libraries that are written in C++. In such cases, it is necessary to
create intermediate or mapping functions that include the extern "C"
notation.

CodeBridge User's Guide Appendix B: CodeBridge Examples • 79

Within this example, a naming convention is used. Entities that are a part of
the C++ library have names that begin with libfunc or LibFunction, while
entities that are related to the C++ intermediate functions that you write have
names that begin with maplib or MapFunction. The normal C/C++ file
extension name convention is followed throughout this example (that is, .cpp
indicates a C++ file; .c indicates a C file).

This example, although rudimentary, illustrates how you can use CodeBridge
to call programs that are written in C++. Since the C++ programming
language is not the same as C, some expertise in C++ on the developer’s part
will be required. In practice, the intermediate or mapping functions that you
write will be “driver” functions that perform several steps. When dealing with
C++ class libraries or methods, the intermediate program will have to deal
with these C++ language constructs.

1. In this example, the following C++ source files represent the C++ library.
The files named libfunc.cpp and libfunc.h represent components of the
C++ library. The C++ library contains functions named LibFunction1 and
LibFunction2.

The file libfunc.cpp represents the source code that is used to build a C++
library and contains the following lines:

int LibFunction1()

{

 return(1);

}

int LibFunction2()

{

 return(2);

}

The file libfunc.h makes function definitions available externally and
contains the following lines:

int LibFunction1();

int LibFunction2();

Create a C++ source file that will map the function from C++ names to C
names. The file maplib.cpp contains the following lines:

#include "libfunc.h"

extern "C" int MapFunction1()

{

 return(LibFunction1());

}

extern "C" int MapFunction2()

{

 return(LibFunction2());

}

2. Create a template file named maplibcb.tpl that consists of the following
lines:

[[integer out]] int MapFunction1();

[[integer out]] int MapFunction2();

80 • Appendix B: CodeBridge Examples CodeBridge User's Guide

3. Additionally, create a COBOL program in a file named cppcall.cbl that
calls the functions “MapFunction1” and MapFunction2”. This file would
include the following lines:

CALL "MapFunction1" GIVING Result

CALL "MapFunction2" GIVING Result

Full example program for cppcall.cbl if you do not want to create your own:
 IDENTIFICATION DIVISION.

 PROGRAM-ID.

 cppcall.

 DATA DIVISION.

 WORKING-STORAGE SECTION.

 77 ANYKEY PIC X.

 77 RESULT PIC -9(9) USAGE DISPLAY.

 PROCEDURE DIVISION.

 MAIN.

 DISPLAY "Call MapFunction1"

 CALL "MapFunction1" GIVING Result

 DISPLAY " Result = " Result

 DISPLAY "Call MapFunction2"

 CALL "MapFunction2" GIVING Result

 DISPLAY " Result = " Result

 ACCEPT ANYKEY FROM CONSOLE.

4. Invoke the CodeBridge Builder by using the following command line:

cbridge maplibcb.tpl

5. Compile and link the non-COBOL subprogram library with the C and C++
compilers, using commands similar to the following:

For Windows

cl –c –MD –Zp1 -I”%RM_PROGRAM_DIR%” src\maplibcb.c

cl –c –MD –Zp1 src\maplib.cpp

cl –c –MD –Zp1 src\libfunc.cpp

link –nologo –dll -subsystem:windows -out: maplib.dll

 maplib.obj libfunc.obj maplibcb.obj

For UNIX

Compile (Linux gcc):

cc [-m32|-m64] -c src/maplibcb.c -I <RMC dir> -fPIC

c++ [-m32|-m64] -c src/maplib.cpp -fPIC

c++ [-m32|-m64] -c src/libfunc.cpp -fPIC

Link (Linux gcc):

cc -shared -o maplib.so maplibcb.o maplib.o libfunc.o -lstdc++

Note: c++, cc and g++ are interchangable on many Linux environments.
Be sure to check your system documentation for the name used on your
system.
* The -lstdc++ is likely required for the c++ objects when linking.

6. Compile the COBOL program cppcall.cbl that calls “MapFunction1” and
“MapFunction2” by using the following command line:

CodeBridge User's Guide Appendix B: CodeBridge Examples • 81

rmcobol cppcall

7. Run the application, specifying the name of the COBOL program and the
name of the non-COBOL subprogram library, with the following command
line:

runcobol cppcall -l maplib

Example 8: Using errno

This example demonstrates how to use the error base attribute, errno. The
errno attribute supports obtaining the value of the external variable errno that
was set by a call to a C library function. It allows return of the error
information by editing the CodeBridge template instead of the generated
code.

1. Start with the function prototype for the C standard library function,
mkdir.

For Windows

int _mkdir(const char *dirname);

For UNIX

int mkdir (const char *filename, mode_t mode);

2. Create a template file named cmkdircb.tpl in the src directory that
consists of the following lines:

For Windows

[[integer out]] int _mkdir(

 [[string in trailing_spaces]] const char *DirName

 [[errno]]);

For UNIX

#include <sys/stat.h>

[[integer out]] int mkdir(

 [[string in trailing_spaces]] const char *DirName,

 [[integer in]] mode_t Modet

 [[errno]]);

The errno error base attribute associates a COBOL argument with the
value associated with the external C global variable errno. There is no
corresponding parameter in the underlying C function parameter list.

Note: In this example, the errno error base attribute is placed after the
last C parameter. This is a legal operation. The attribute could also have
been placed anywhere any other attribute could have been placed.

3. Invoke the CodeBridge Builder by using the following command line:

82 • Appendix B: CodeBridge Examples CodeBridge User's Guide

cbridge src\cmkdircb.tpl

4. Compile and link the non-COBOL subprogram library with the C compiler
of your choice, using commands similar to the following:

For Windows

cl –c –MD –Zp1 -I”%RM_PROGRAM_DIR%” src\cmkdircb.c

link –nologo –dll -subsystem:windows –out:cmkdir.dll

 cmkdircb.obj

For UNIX

Compile (Linux gcc):
 cc [-m32|-m64] –c src/cmkdircb.c -I <RMC dir> -fPIC

Link (Linux gcc):
 cc [-m32|-m64] –o cmkdir.so cmkdircb.o –shared

5. Create a COBOL program in a file named mkdir.cbl that contains the
following source fragments:

For Windows

01 Err-No PIC S9(9).

01 File-Name PIC X(64) Value "TempDir".

01 Return-Status PIC S9(9).

CALL "_mkdir"

 USING File-Name Err-No

 GIVING Return-Status.

For UNIX

01 Err-No PIC S9(9).

01 File-Name PIC X(64) Value "TempDir".

01 Modet PIC S9(9) Value 1638.

01 Return-Status PIC S9(9).

CALL "mkdir"

 USING File-Name Modet Err-No

 GIVING Return-Status.

Full unix version of the program cmkdir.cbl:

 IDENTIFICATION DIVISION.

 PROGRAM-ID.

 cmkdir.

 DATA DIVISION.

 WORKING-STORAGE SECTION.

 77 ANYKEY PIC X.

 01 Err-No PIC -9(9) USAGE DISPLAY.

 01 File-Name PIC X(64) Value "TempDir".

 01 Modet PIC S9(9) Value 1638.

 01 Return-Status PIC -9(9) USAGE DISPLAY.

 PROCEDURE DIVISION.

 MAIN.

CodeBridge User's Guide Appendix B: CodeBridge Examples • 83

 DISPLAY "Create dir: " File-Name

 CALL "cmkdir"

 USING File-Name Modet Err-No

 GIVING Return-Status.

 DISPLAY "ret code = " Return-Status.

 DISPLAY "error no = " Err-No.

 ACCEPT ANYKEY FROM CONSOLE.

6. Compile the COBOL program with the RM/COBOL compiler by using the
following command line:

rmcobol cmkdir

7. Run the application, specifying the name of the COBOL program and the
name of the non-COBOL subprogram library.

You may specify the name of the non-COBOL subprogram with the
appropriate file extension. The following two commands illustrate how to
specify a Windows dynamic-link library (DLL) or a UNIX shared object.
Since the COBOL program and the non-COBOL subprogram have the
same root name (mkdir), it is necessary to specify the correct file
extension.

For Windows

runcobol cmkdir.cob –l cmkdir.dll

For UNIX

runcobol cmkdir.cob –l cmkdir.so

* Run the program twice to observe the return code and error number. The
first run should return 0 & 0, the second run should return an error as the
directory will already exist.

Example 9: Using get_last_error

This example demonstrates how to use the get_last_error error base
attribute. The get_last_error attribute supports obtaining the value returned
by the Windows API function GetLastError called immediately after another
Windows API function has been called.

Note: The following discussion applies to using this attribute on the
Windows platform only. Some Windows APIs have been ported to UNIX. In
such cases, it may be appropriate to use the get_last_error attribute on UNIX.
(The CodeBridge Builder does support the get_last_error attribute on UNIX.)
However, if the SetLastError and GetLastError functions are not available, the
generated program probably will not compile and certainly would not link
without errors.

1. Start with the function prototype for the Windows API function,
CreateDirectory.

84 • Appendix B: CodeBridge Examples CodeBridge User's Guide

WINBASEAPI BOOL WINAPI CreateDirectory(LPCTSTR DirName,

 LPSECURITY_ATTRIBUTES SecAttr);

2. Create a template file named CreateDir.tpl in the src directory that
consists of the following lines:

#include <windows.h>

[# replace_type(LPCTSTR; char *)

 replace_type(LPSECURITY_ATTRIBUTES; void *)

 convention(WINBASEAPI)

 convention(WINAPI) #]

[[integer out]] WINBASEAPI BOOL WINAPI CreateDirectory(

[[string in trailing_spaces]] LPCTSTR DirName,

[[string in trailing_spaces value_if_omitted(NULL)]]

 LPSECURITY_ATTRIBUTES SecAttr

[[get_last_error]]);

The get_last_error error descriptor attribute associates a COBOL
argument with the value associated with the GetLastError Windows
function. There is no corresponding parameter in the underlying C
function parameter list.

Note: In this example, the get_last_error attribute is placed after the last C
parameter. This is a legal operation. The attribute could also have been
placed anywhere any other attribute could have been placed.

3. Invoke the CodeBridge Builder by using the following command line:

cbridge src\CreateDir.tpl

4. Compile and link the non-COBOL subprogram library with the C compiler
of your choice, using commands similar to the following:

cl –c –MD –Zp1 -I”%RM_PROGRAM_DIR%” src\CreateDir.c

link –nologo –dll -subsystem:windows –out:CreateDir.dll

 CreateDir.obj

5. Create a COBOL program in a file named CreateDir.cbl in the src directory
that contains the following source fragments:

01 Last-Error PIC 9(9).

01 File-Name PIC X(64) Value "TempFile".

01 Return-Status PIC S9(9).

CALL "CreateDirectory"

 USING File-Name NULL Last-Error

 GIVING Return-Status.

A full example:

CodeBridge User's Guide Appendix B: CodeBridge Examples • 85

 Identification Division.

 Program-Id. CreateDir.

 *

 Data Division.

 Working-Storage Section.

 01 X Pic X.

 01 Last-Error PIC 9(9).

 01 File-Name PIC X(64) Value "TempFile".

 01 Return-Status PIC -9(9).

 Procedure Division.

 A.

 CALL "CreateDirectory"

 USING File-Name NULL LAST-ERROR

 GIVING Return-Status.

 DISPLAY "LAST ERROR : " Last-Error.

 DISPLAY "Return Status : " Return-Status.

 Accept X from console.

 STOP RUN.

6. Compile the COBOL program with the RM/COBOL compiler by using the
following command line:

rmcobol src\CreateDir

7. Run the application with the following command line:

runcobol src\CreateDir.cob –l CreateDir.dll

In the above example, if the program is able to create the folder, the return-
status should be 1, and the last-error 0. A subsequent run should give a
return-status of 0(zero) for failure and last error will correspond to the reason;
likely a 183, file exists error.

CodeBridge User's Guide Appendix C: Useful C Information • 87

Appendix C: Useful C
Information

To develop applications using CodeBridge, it is necessary to have a
fundamental understanding of certain C concepts as well as the ability to use
a C compiler and linker. The information provided in this appendix is
intended to serve as a starting point for those developers who may not be
proficient with C programming and who wish to call existing
C function libraries without writing any additional C code. This material
should not be viewed as a formal or complete definition of the language. The
ideas and concepts
presented here are in an informal format. The developer is encouraged to
acquire additional C reference information, as necessary.

The topics presented include:

• Understanding C language concepts (on page 87)

• Compiling and linking C functions (on page 91)

Understanding C Language Concepts

In order to construct a template file, you must understand the concept of a C
function prototype. The template file is based on a “marked-up” C function
prototype. Conceptually, a C function prototype is similar to a COBOL
LINKAGE SECTION. While the LINKAGE SECTION describes the interface to a
COBOL subprogram, a function prototype describes the interface to a C
function.

When using C, it is the preferred practice to use header files to contain the
function prototypes (along with other information that is needed to describe
the interface to a function). Header files are similar to copy files in COBOL.
Providers of C function libraries will normally provide one or more header
files to describe the interface to their libraries. Typically, a header filename
will have a suffix of .h. For example, a provider of a statistics package may
provide a header file named statistics.h. Header files are included in the

88 • Appendix C: Useful C Information CodeBridge User's Guide

source to be compiled with the #include C preprocessor directive and are
thus sometimes referred to as include files.

Before discussing function prototypes (on page 90) in more detail, let’s
explain several concepts that are integral to the construction of function
prototypes. These topics include case sensitivity, data types, data
declarations, type definitions and macros, and calling conventions.

Case Sensitivity

The COBOL programming language is mostly case-insensitive. With a few
exceptions (such as non-numeric literals), the uppercase and lowercase
representations of a given letter are treated as equivalent. On the other hand,
the C programming language is predominately case-sensitive. The attribute
keywords used in the template file are also case-sensitive. This means that
the uppercase and lowercase representations of a given letter are not
equivalent.

For example, the following names are treated as separate entities by C, but
treated as the same entity by COBOL: name, Name, and NAME.

Data Types

C includes predefined data types that may be categorized as integer, floating-
point, pointer, and void.

Integer data types include char, short, int and long. These data types may be
prefixed with the keywords signed or unsigned. Normally, integer types
default to signed. As a shorthand notation, when signed or unsigned appear
without the corresponding integer data type, then int is implied (that is,
unsigned is the same as unsigned int).

C also includes the floating-point data types float and double. Floating-point
is the computer representation of scientific notation. It allows numbers with
a large scale or small scale to be represented with an approximate value. For
the IEEE representation of floating-point, the float type is normally limited to
about 6 or 7 digits of precision with an exponent (scale) of –38 to +38. Also,
the double type is normally limited to about 15 or 16 digits of precision with
an exponent (scale) of –308 to +308.

A pointer data type contains the address of a typed data item and is
represented by the asterisk character (*) in the data declaration or type
definition (these terms are described in the following sections).

The void data type, void, is used to represent untyped or sometimes omitted
data.

Note that other keywords, such as far and near also exist, although their
meaning is mostly historical. Depending on the compiler, one or two
underscore characters may precede some keywords (_far or __far instead of
far).

CodeBridge User's Guide Appendix C: Useful C Information • 89

Data Declarations

A data declaration associates data type information with the name of a
variable.
For example:

int P1

declares a variable named P1 with a type of int. Additional examples are
shown in the following table.

Declaration Variable Name Type

unsigned short P2; P2 unsigned short

float P3; P3 float

int * P4; P4 pointer to an int

char P5[30]; P5 array of char (30 elements in the array)

void * P6; P6 pointer to a void (that is, a generic pointer)

When an array is passed to a C function, the address of (pointer to) the array
is used. In a
C function prototype, a pointer reference and an array reference are
equivalent. That is, char P5[30] is treated the same as char *P5 (with the
exception that the compiler can do some compile time range checking if the
number of elements in the array is explicitly declared).

Type Definitions and Macros

In addition to the standard data types described previously, you can define
additional types that are based on combinations of existing types. Two
techniques are used: type definitions (typedef) and macros.

A typedef defines a new data type. Consider the following examples:

typedef int INT;

typedef unsigned char UCHAR;

typedef char * CHARPTR;

The first definition defines INT to be equivalent to int. That is, the two
definitions of
INT and int are identical. The second definition defines UCHAR to be
equivalent to unsigned char. The third definition defines CHARPTR to be
equivalent to char *
(a pointer to a char).

A typedef renames the underlying data type so that programs are more
portable, because only the typedef needs to be changed when the underlying
data type is changed. Type definitions can also provide better self-
documentation of the program when the new type name in the typedef
statement is chosen carefully.

90 • Appendix C: Useful C Information CodeBridge User's Guide

Although a macro is similar to a typedef, there are some important, yet
subtle, differences. The first two previous examples may be defined as
macros with the #define C preprocessor directive, as follows:

#define INT int

#define UCHAR unsigned char

Macros are implemented as part of the C compiler preprocessor. If INT is
defined in a macro, the compiler will never see INT as a data type; it will
already have been replaced with int.

Additionally, macros provide a powerful text replacement feature that can be
used for more than type redefinition. Macros may contain parameters and
can be used to implement inline functions. For example:

#define MAX(A,B) (A+B)/2 + abs(A-B)/2

Macros are presented here to familiarize you with concepts that might occur
in a header file. Since complex macros tend to be fragile, it is recommended
that the modification of these macros be done with care.

Calling Conventions

A calling convention defines additional type information. It directs how the
compiler generates function-calling sequences and is an optional part of a
function prototype. Examples include __cdecl (or RM_CDECL when writing
code for both Windows and UNIX), __stdcall, and __pascal. Often a calling
convention is hidden with a type definition or a macro. For example, the
following macro definition defines the macro, SQL_API to be the __stdcall
calling convention:

#define SQL_API __stdcall

Function Prototypes

A function prototype may contain or refer to any of the concepts that have
been previously presented (data types, data declarations, type definitions and
macros, and calling conventions).

A function prototype consists of the function name and a list of parameter
names. The name of the function and the name of each parameter are
prefaced with type information to form a data declaration. For example:

double RM_CDECL pow(double X, double Y);

In this example, the type of the function is double, which indicates that the
function returns a value of type double. The parameters are also of type
double. Notice that the calling convention RM_CDECL is included with the
function type information.

An older style of prototype may be encountered. In this case, the function
prototype omits the parameter names since they are only placeholders. The

CodeBridge User's Guide Appendix C: Useful C Information • 91

prototype for the function presented above may appear as follows
(depending on platform and compiler):

double pow(double, double);

Placeholder names must be provided in the template file that is based on one
of these older style prototypes. Any unique (to the function) names will do.
For example:

[[float out rounded]] double pow(

[[float in rounded]] double X,

[[float in rounded]] double Y);

Compiling and Linking C Functions

Throughout the CodeBridge manual, examples of compiling and linking are
presented. The syntax of the Windows examples uses Microsoft’s compiler
and linker conventions to generate Windows dynamic-link libraries (DLLs).
The syntax of the UNIX examples uses conventions that are common to
many compilers and linkers on UNIX to generate shared objects.

Note A makefile is provided with the RM/COBOL development and runtime
systems that can be used or modified to build a shared object to be used as a
support module with the RM/COBOL runtime system. For additional
information, see Preparing C Subprograms for UNIX (on page 194).

This section also includes an example of how to generate multiple template
files.

Compiling on Windows

The following illustrates an example of invoking Microsoft’s Visual C++
compiler to generate Windows object files:

cl -c –MD -Zp1 src\trig.c

where,

cl indicates the name of the compiler.

-c suppresses the implicit call to LINK that normally occurs.

-MD selects the Multithread and DLL options. The developer may choose
-MDd in order to select the debugging option also.

-Zp1 specifies structure member alignment of 1 byte.

Note A structure is the C equivalent of a COBOL group. The -Zp1 option
is recommended because the ARGUMENT_ENTRY structure passed from
the RM/COBOL runtime system is built using the -Zp1 option.

src\trig.c indicates the name of the C source program to be compiled.

92 • Appendix C: Useful C Information CodeBridge User's Guide

Note This example uses the hyphen (-) character to denote compiler
options. Microsoft’s Visual C++ compiler also allows a forward slash (/)
character to be used (for example, /c instead of –c).

Compiling on UNIX

Different platforms use different c compilers. The following example
represents GCC on Linux.

To produce an object file (trig.o):

cc [-m32|-m64] -c src/trig.c -fPIC

where,

cc indicates the name of the compiler/linker.

-m32 | -m64 are required if the object you are generating does not default
to the 32- or 64-bit version that is required to match the version of
RM/COBOL.

-c suppresses the linking stage and does not produce an executable file.

src/trig.c indicates the name of the C source program to be compiled.

-fPIC is required to generate position independent code suitable for a
shared object.

Linking on Windows

The following shows an example involving the Microsoft linker to generate a
Windows DLL:

link -nologo -machine:IX86 –dll

 -subsystem:windows -out:trig.dll trig.obj

where,

link indicates the name of the linker.

-nologo suppresses the startup banner.

-machine:IX86 specifies the target platform. While this option is not
required, it is good practice to include it. (It also eliminates a warning
message.)

-dll builds a DLL as the main output file.

-subsystem:windows specifies the subsystem being supported.

-out:trig.dll names the output file.

trig.obj specifies the name of the object file that is to be included in the
link.

Note In addition to naming the object file(s) that are to be included, the
necessary libraries also should be included. The names of the libraries

CodeBridge User's Guide Appendix C: Useful C Information • 93

are normally provided by the provider of the library functions or by the C
compiler. The default link libraries for DLLs include:

• kernel32.lib • shell32.lib

• user32.lib • ole32.lib

• gdi32.lib • oleaut32.lib

• winspool.lib • uuid.lib

• comdlg32.lib • odbc32.lib

• advapi32.lib • odbccp32.lib

The 32 does not necessarily mean the library is 32 bit. For
example, Windows has a user32.lib for 64 bits that will be linked
with if using the appropriate Visual Studio development setting):

Note: This example uses the hyphen (-) character to denote compiler options.
Microsoft’s linker also allows a forward slash (/) character to be used.

Linking on UNIX

Different platforms use different c compilers. The following example
represents GCC on Linux.

The following illustrates an example of linking a shared object (trig.so):

cc [-m32|-m64] -shared -o trig.so trig.o -lm

where,

cc indicates the name of the compiler/linker.

-m32 | -m64 are required if the object you are generating does not default
to the 32- or 64-bit version that is required to match the version of
RM/COBOL.

-shared produces a shared object.

-o trig.so names the output file.

trig.o specifies the name of the object file that is to be included in the
link.

-lm indicates that the math library is to be included in the link.

Multiple Template Files

The normal practice is to generate only one template file for each non-COBOL
subprogram library that is being constructed. However, some developers
may choose to generate more than one template file.

For Windows platforms, the source generated by the CodeBridge Builder
contains a definition for DllMain. If the CodeBridge Builder generates

94 • Appendix C: Useful C Information CodeBridge User's Guide

multiple files, then errors in linking the DLL will occur because of multiple
definitions. This can be resolved by defining the symbol RM_NO_DLL_MAIN
for all but one of the compilations of generated source files.

For example:

cl -l -MD -Zp1 src\cbfunc1.c

cl -l -MD -Zp1 -DRM_NO_DLL_MAIN src\cbfunc2.c

cl -l -MD -Zp1 -DRM_NO_DLL_MAIN src\cbfunc3.c

CodeBridge User's Guide Appendix D: Global Attributes • 95

Appendix D: Global Attributes

This appendix provides detailed descriptions of the attributes used in a global
attribute list in a template file. For more information about the basic
components of a template file, see Chapter 2: Concepts (on page 21). The
attributes used in a parameter attribute list are discussed in Appendix E:
Parameter Attributes (on page 99). More information about C language
concepts and terms may be found in Appendix C: Useful C Information (on
page 87).

Note As you read through this manual, keep in mind that the term “parameter
attribute” is a shorthand notation for an attribute that occurs in a parameter
attribute list. Likewise, “global attribute” indicates that the attribute can be
found in a global attribute list.

Global Attributes Overview

A global attribute list provides information about one or more C function
prototypes that is not specific to any given parameter. This information also
could be used to modify the default behavior of the CodeBridge Builder.

A global attribute takes effect from the point at which it occurs in a template
file and remains in effect until another global attribute in that template file
alters those settings. There are five global attributes: banner, convention,
diagnostic, load_message, and replace_type.

Attributes are case-sensitive and must be entered as shown.

Note The discussions and examples of the global attributes, replace_type
and convention, use SQL_API and SQLPOINTER, which are a macro and data
type, respectively, defined in the Microsoft Visual C++ header file, sqltypes.h.
Their definitions are:

#define SQL_API __stdcall

typedef void * SQLPOINTER

SQL_API is a calling convention macro defined by the C preprocessor
directive, #define. SQLPOINTER is a data type defined by a C type definition
(that is, a typedef statement).

96 • Appendix D: Global Attributes CodeBridge User's Guide

banner Attribute

Use the banner global attribute to display a text string when a non-COBOL
subprogram built with CodeBridge is loaded by the RM/COBOL runtime
system.

The format of the banner global attribute is as follows:

[# banner(value) #]

where, value is a character string. For example:

[# banner("Copyright (c) 2008, by me.") #]

Such banners are displayed only on UNIX systems when the K Option of the
RM/COBOL Runtime Command (runcobol) is not specified or configured. For
example:

runcobol myprog -l ./mylib.so

This causes a message similar to the following to be displayed:

Copyright (c) 2008, by me.

No banner message is produced by the RM/COBOL for Windows runtime.

convention Attribute

Use the convention attribute to declare C calling conventions (for example,
SQL_API). Calling conventions cannot be placed in the CodeBridge-
generated declarations of variables; however, they must be preserved in the
external function prototype that is used to call the
C function.

The format of the convention global attribute is as follows:

[# convention(name) #]

where, name is the name of a call convention.

SQL_API can be resolved as follows:

[# convention(SQL_API) #]

SQL_API is removed from variable declarations, but is preserved as part of
the external function prototype.

diagnostic Attribute

Use the diagnostic attribute to control error reporting.

CodeBridge User's Guide Appendix D: Global Attributes • 97

The format of the diagnostic global attribute is as follows:

[# diagnostic(value) #]

where, value may be one of the following:

• silent. Use the silent value to instruct CodeBridge not to display
diagnostic messages.

• verbose. Use the verbose value to instruct CodeBridge to display
diagnostic messages even if the silent base modifier attribute is set for
an individual parameter attribute list.

• normal. Use the normal value to instruct CodeBridge to display
diagnostic messages unless the silent base modifier attribute is specified
for an individual parameter attribute list.

For more information about the silent base modifier, see Base Modifiers
Common to Base Attributes (on page 101).

load_message Attribute

Use the load_message attribute to display a text string when a non-COBOL
subprogram built with CodeBridge is loaded by the RM/COBOL runtime
system.

The format of the load_message global attribute is as follows:

[# load_message(value) #]

where, value is a character string. For example:

[# load_message("My math package - Version 1.13") #]

Load messages are displayed only on UNIX systems when the V Option of the
RM/COBOL Runtime Command (runcobol) is specified or configured. For
example:

runcobol myprog -v -l ./mylib.so

This causes a message similar to the following to be displayed:

RM/COBOL: Dynamic library loaded - ./mylib.so - My math

 package - Version 1.13

No load message is produced by the RM/COBOL for Windows runtime.

replace_type Attribute

The CodeBridge Builder program does not resolve C data types. Frequently,
necessary data type information may be hidden in a macro or a type
definition construct (as shown in the definitions above). Specifically,

98 • Appendix D: Global Attributes CodeBridge User's Guide

CodeBridge must know whether a data item is a pointer data type. It is
necessary, therefore, for the template file to resolve some type definitions for
CodeBridge.

Use the replace_type global attribute to allow CodeBridge to resolve pointer
data declarations that hide the C unary pointer operator (*) within the data
type name (for example, SQLPOINTER).

You may choose to use the replace_type attribute as a form of self-
documentation to expand any defined data type, even if the expansion does
not reveal any levels of indirection.

The format of the replace_type global attribute is as follows:

[# replace_type(name;value) #]

where, value is the character string that replaces the data type specified by
name.

The SQLPOINTER data type can be resolved as follows:

[# replace_type(SQLPOINTER; void *) #]

The user-supplied entry for name must be a single token. The user-supplied
entry for value may be any string of characters. The following are all
equivalent:

[# replace_type(SQLPOINTER;void*) #]

[# replace_type(SQLPOINTER;void *) #]

[# replace_type(SQLPOINTER; void *) #]

CodeBridge User's Guide Appendix E: Parameter Attributes • 99

Appendix E: Parameter
Attributes

This appendix provides detailed descriptions of the attributes used in a
parameter attribute list in a template file. See Chapter 2: Concepts (on page
21) for more information about the basic components of a template file. The
attributes used in a global attribute list are discussed in Appendix D: Global
Attributes (on page 95). More information about C language concepts and
terms may be found in Appendix C: Useful C Information (on page 87).

Note As you read through this manual, keep in mind that the term “parameter
attribute” is a shorthand notation for an attribute that occurs in a parameter
attribute list. Likewise, “global attribute” indicates that the attribute can be
found in a global attribute list.

Parameter Attributes Overview

The parameter attributes are organized into the following three groups:

• Argument number attributes (on page 99)

• Direction attributes (on page 100)

• Base and base modifier attributes (on page 100)

Each group is described in the following sections. An alphabetical summary
of all available parameter attributes is shown in Table 5 beginning on page
120.

Attributes are case-sensitive and must be entered as shown.

Argument Number Attributes

The two argument number parameter attributes, arg_num(value) and ret_val,
specify explicitly the COBOL argument number. This invokes the explicit
method of associating

100 • Appendix E: Parameter Attributes CodeBridge User's Guide

C parameters with COBOL arguments rather than using the default automatic
association method.

In the arg_num(value) argument number attribute, value specifies the
argument number as 1 for the first argument in the USING phrase, 2 for the
second argument in the USING phrase, and so forth. The value must be
specified as an integer constant; a macro or constant expression may not be
specified here.

The ret_val argument number attribute specifies the argument in the GIVING
(RETURNING) phrase.

For more information, see Associating C Parameters with COBOL Arguments
(on page 40).

Direction Attributes

The direction attributes are in and out. The in direction attribute specifies an
input parameter to the C function. The out direction attribute specifies an
output parameter from the C function.

Both the in and out direction attributes may be specified in a parameter
attribute list. Within a parameter attribute list, you may present the attributes
in any order. For example, [[integer in]] is the same as [[in
integer]]. When a parameter is used for both input and output, both the in

and out direction attributes are specified in either order.

The direction attributes may be used to protect the calling COBOL program
from unintended modification of data. For example, when the out direction
attribute is not used, then the data in the C parameter is not converted to
COBOL format, and the data is not placed in the address space of the COBOL
program.

For a given parameter, if none of its attribute lists contain the in direction
attribute, an uninitialized value may be passed to the function. No more than
one attribute list (for any given parameter) should be used for input; however,
several output attribute lists may be assigned to the same parameter.

Some base attributes imply a direction and thus do not allow either of the
direction attributes. The error base attributes (on page 117), errno and
get_last_error, imply the out direction attribute. The descriptor base
attributes (on page 114), two of the pointer base attributes (on page 113),
pointer_address and pointer_length, and the string length base attributes (on
page 111) imply the in direction attribute.

Base and Base Modifier Attributes

Base attributes may be categorized as follows:

CodeBridge User's Guide Appendix E: Parameter Attributes • 101

• Numeric. The numeric base attributes (on page 103) are used when
passing COBOL numeric arguments to the C function.

• String. The string base attribute (on page 108) is used when passing
COBOL non-numeric arguments to the C function.

• String Length. The string length base attributes (on page 111) are used
when passing the length of a string or numeric string parameter as a
separate C parameter.

• Pointer. The pointer base attributes (on page 113) are used when
passing COBOL pointer data items to the C function.

• Descriptor. The descriptor base attributes (on page 114) are used when
passing a component of a COBOL data descriptor, the argument count,
the COBOL initial state flag, or the Windows handle to the C function.

• Error. The error base attributes (on page 117) are used to retrieve error
information from a C library or Windows API function that is returned
separately from the calling C function.

Note 1 The numeric_string base attribute (see page 103) is unique because
it associates a C string parameter, rather than a C numeric parameter, with a
COBOL numeric argument. This base attribute refers to a COBOL numeric
argument (whose USAGE clause specifies DISPLAY, PACKED-DECIMAL,
BINARY, and so forth) and is, therefore, a numeric base attribute. However,
the argument value is represented as an ASCII character string in the
C function.

Note 2 The general_string base attribute (on page 111) converts numeric
and non-numeric arguments to null-terminated arrays of characters. If the
COBOL argument is numeric, the conversion behaves as if numeric_string
had been specified as the base attribute. If the COBOL argument is non-
numeric, the conversion behaves as if string had been specified as the base
attribute.

Base attributes can be supplemented with additional information by
specifying base modifier attributes. While some base modifier attributes are
common to several categories of base attributes, as discussed in the
following section, others are specific to a base attribute category. The latter
are described in each base attribute category section to which they apply.

Base Modifiers Common to Base Attributes

Two base modifier attributes, silent and alias(name), are common to several
categories of base attributes:

• silent. The silent base modifier is used with any base attribute to prevent
CodeBridge from displaying diagnostic messages during CodeBridge
Library calls generated for that attribute list. The global attribute,
diagnostic(value), may be used to alter default behavior for every

102 • Appendix E: Parameter Attributes CodeBridge User's Guide

CodeBridge Library call. For more information, see diagnostic Attribute
(on page 96).

• alias(name). The alias(name) base modifier is used in any parameter
attribute list that refers to the function return value (that is, it should not
be used with function parameters). The alias(name) base modifier may
be used in a parameter attribute list with other attributes, or it may be the
only attribute in an attribute list.

If it is the only attribute in a parameter attribute list, no value will be
returned to the calling COBOL program.

Normally, the CodeBridge Builder generates its interface function name
from the C function name. The alias(name) base modifier attribute
makes it possible for the COBOL program to call the C function using a
different name. The following example shows how to implement two
functions, INTEGER_PART and FRACTION_PART, from the standard C
library function, modf.

Use the following template file to construct an interface to the standard C
library function, modf. This function returns the integer part of A in
IntPart and the fraction part of A as the return value.

[[float out]] double modf(

[[float in]] double A,

[[float in out]] double *IntPart);

Use the following template file to return only the integer part:

 double modf(

[[float in arg_num(1)]] double A,

[[float out ret_val]] double *IntPart);

A problem with this example is that the COBOL program must call modf
instead of integer_part. To resolve this problem, use the alias(name)
base modifier attribute as follows:

[[alias(integer_part)]] double modf(

[[float in arg_num(1)]] double A,

[[float out ret_val]] double *IntPart);

A similar function, called fraction_part, uses the return value of the modf
function, as follows:

[[alias(fraction_part)

 float out]] double modf(

[[float in]] double A,

 double *IntPart);

CodeBridge User's Guide Appendix E: Parameter Attributes • 103

Numeric Base Attributes

Three numeric base attributes are used to convert between COBOL numeric
data items and
C data items:

• integer. Use the integer base attribute with C integer data types (such as
char, short, int, and long).

On input, the COBOL numeric argument is converted to an integer C
parameter. If the argument value contains a fractional component after
application of the scaled(value) base modifier attribute, if specified, it will
be truncated (or rounded, if the rounded base modifier is used). On
output, the C parameter is converted to a COBOL numeric argument. If
the argument is described using P-scaling (on page 50), truncation may
occur (or rounding, if the rounded base modifier is used).

• float. Use the float base attribute with C floating-point data types (float
and double).

On input, the COBOL numeric argument is converted to a floating-point C
parameter. If the argument contains more trailing digits than are
supported by the floating-point representation, it is truncated (or rounded
if the rounded base modifier is used). On output, the C parameter is
converted to a COBOL numeric argument. Truncation may occur (or
rounding, if the rounded base modifier is used).

• numeric_string. Use the numeric_string base attribute to pass COBOL
numeric arguments to null-terminated C string parameters, called a
numeric string in this document.

A numeric string is created in a dynamically allocated buffer. By default,
the buffer length is four more than the digit length of the COBOL
argument. This ensures enough room in the buffer to contain the
numeric value, the decimal point character, one or two sign characters,
and a trailing null character. This default length may be overridden using
the size(value) base modifier attribute.

Note Numeric base attributes may be used with arrays. For more
information, see Numeric Arrays (on page 51).

Numeric String Formatting and Conversion Rules

A numeric string parameter is a parameter for which either the
numeric_string or the general_string base attribute has been specified and
for which the COBOL argument is numeric. For use with a C function, a
numeric string is formatted according to the
following rules:

1. The string is composed of two parts: an optional sign and a numeric
value.

104 • Appendix E: Parameter Attributes CodeBridge User's Guide

2. The sign may be a leading sign (occurring before the numeric value) or a
trailing sign (occurring after the numeric value). A leading sign may be a
single character (either “+” or “-”). A trailing sign may be either one
character (either “+” or “-”) or two characters (the debit symbol “DB” or the
credit symbol “CR”).

Note On input conversion before calling the C function, the sign
representation will be placed in the string according to the leading or
trailing sign base modifiers that are selected. On output conversion (after
returning from the C function), any supported sign representation is
allowed. See the description of leading or trailing signs (on page 107) for
the supported sign representations.

3. The numeric value is represented as a string of numeric characters (‘0’
through ‘9’) with an embedded decimal point character, as needed.

Note On input conversion, if the data item contains an integer value, the
resultant numeric string does not contain a decimal point character or
trailing zero characters. Also, on input conversion, if the data item
contains only a fraction value (the absolute value of the data item is non-
zero and less than 1), the resultant numeric string will contain a leading
zero character followed by a decimal point character.

4. Space characters may occur before and after both the numeric value and
the sign. They are ignored.

Note On input conversion to the C function, CodeBridge will not place any
space characters in a numeric string. On output conversion from the C
function, CodeBridge will tolerate embedded spaces.

Some examples of numeric strings are:

" 1 "

" - 1 "

" 2.34 CR"

"0"

Base Modifiers that Apply to Numeric Base Attributes

Numeric base attributes can be supplemented with additional information by
the base modifier attributes that are listed below. Some of the base modifier
attributes apply to all numeric base attributes, while others apply only to a
particular numeric base attribute.

The following base modifier attributes may be used with any numeric base
attributes:

• alias(name). See the description of the alias base modifier (on page
102). Note that the alias base modifier attribute is only allowed when the
parameter attribute list precedes the function name.

CodeBridge User's Guide Appendix E: Parameter Attributes • 105

• assert_digits(min;max). Use this base modifier attribute to verify that the
digit length of the passed COBOL argument is within the range specified
by min and max. For example, [[integer out
assert_digits(5;5)]] indicates that the COBOL data item must
contain exactly five digits.

The use of P-scaling in the COBOL program will increase the digit length
by the number of P symbols specified in the PICTURE character-string.
For example, all of the PICTURE character-strings 9(8), 9(5)P(3), and
VP(3)9(5) describe a data item with a digit length of eight for CodeBridge.

• assert_digits_left(min;max). Use this base modifier attribute to verify
that the number of digits to the left of the decimal point in the passed
COBOL argument is within the range specified by min and max. For
example, [[float assert_digits_left(5;~0)]] indicates that the
COBOL data item must contain five or more digits to the left of the
decimal point, or equivalently, no less than five digits before the decimal
point.

Note The C construct, ~0, denotes a pattern of all ones and represents
the largest positive value that can be stored in a data item. This usage is
preferable to other choices such as 0xffff (which requires knowing the
number of f’s to write) and –1 (which is not allowed C for unsigned data
types).

The use of P-scaling in the COBOL program will increase the number of
digits to the left of the decimal point by the number of P symbols
specified in the PICTURE character-string that occur to the left of the
decimal point. For example, both of the PICTURE character-strings 9(8)
and 9(5)P(3) describe a data item with eight digits to the left of the
decimal point for CodeBridge.

• assert_digits_right(min;max). Use this base modifier attribute to verify
that the number of digits to the right of the decimal point in the passed
COBOL argument is within the range specified by min and max. For
example, [[float assert_digits_right(0;2)]] indicates that the

COBOL data item must contain no more than two digits after the decimal
point.

The use of P-scaling in the COBOL program will increase the number of
digits to the right of the decimal point by the number of P symbols
specified in the PICTURE character-string that occur to the right of the
decimal point. For example, both of the PICTURE character-strings V9(8)
and VP(3)9(5) describe a data item with eight digits to the right of the
decimal point for CodeBridge.

• assert_length(min;max). Use this base modifier attribute to verify that
the actual length of the passed COBOL argument is within the range
specified by min and max. For example, [[integer out
assert_length(10;~0)]] indicates that the COBOL data item must
contain at least ten characters.

106 • Appendix E: Parameter Attributes CodeBridge User's Guide

Note The C construct, ~0, denotes a pattern of all ones and represents
the largest positive value that can be stored in a data item. This usage is
preferable to other choices such as 0xffff (which requires knowing the
number of f’s to write) and –1 (which is not allowed C for unsigned data
types).

• assert_signed. Use this base modifier attribute to verify that the passed
COBOL argument contains a sign.

• assert_unsigned. Use this base modifier attribute to verify that the
passed COBOL argument does not contain a sign.

• no_null_pointer. The calling COBOL program may pass a pointer with a
null value as an argument either by specifying the figurative constant
NULL (NULLS) or by specifying a COBOL pointer argument that has been
set to NULL (NULLS). In this case, CodeBridge would normally pass a null
pointer as a parameter to the C function. If the no_null_pointer base
modifier attribute is used, an error condition will be generated instead.

• no_size_error. During conversion (either COBOL to C or C to COBOL), it is
possible that leading digits will be lost. If this occurs, the normal
behavior is to generate an error condition. If the no_size_error base
modifier attribute is used, the error condition will be ignored.

• occurs(value). Arrays of COBOL numeric arguments may be passed to a
C function. Use the occurs(value) base modifier attribute to specify the
array size. If the C function prototype specifies the array size, it is not
necessary to use the occurs(value) base modifier attribute unless you
need to override the value specified in the function prototype.

• optional. The calling COBOL program may omit the associated argument,
in which case CodeBridge would normally generate an error condition.
For more information on omitted arguments and this attribute, see
Managing Omitted Arguments (on page 36). If the optional base modifier
attribute is used, then a default value is generated and passed to the C
function. The default value associated with an integer or float base
attribute is a numeric zero. The default value associated with a
general_string or numeric_string base attribute is an empty string (the
first character of the string is a null character). If a value other than the
CodeBridge supplied default value is desired, see the
value_if_omitted(value) base modifier attribute description.

Note The current implementation of the CodeBridge Builder only allows
input optional parameters. Output parameters are required by default.

• repeat(value). Use this base modifier attribute with the C parameter
before the ellipsis when a variable number of C parameters is used. value
indicates the maximum number of additional C parameters.

• rounded. Use this base modifier attribute to cause rounding in those
cases where truncation would normally occur (on either input or output).
Rounding is performed using COBOL rounding rules.

• silent. See the description of the silent base modifier (on page 101).

CodeBridge User's Guide Appendix E: Parameter Attributes • 107

• value_if_omitted(value). Use this base modifier attribute to specify a
value to be used when the calling COBOL program omits the associated
argument. For more information on omitted arguments and this attribute,
see Managing Omitted Arguments (on page 36). When this attribute is
used, it is not necessary to also use the optional base modifier attribute.
An integer attribute list must specify an integer value (for example,
value_if_omitted(3)); a float attribute list must specify a floating-
point value (for example, value_if_omitted(3.0)); and a
numeric_string attribute list must specify a string value (for example,
value_if_omitted("3.0")).

In addition to the base modifier attributes that apply to all numeric base
attributes, the following modifiers are specific to the integer base attribute:

• integer_only. Use this base modifier attribute to verify that the passed
COBOL argument represents an integer value (that is, no digits are
allowed to the right of the decimal point). This attribute is equivalent to
the assert_digits_right(0;0) base modifier attribute specification.

• scaled(value). Use this base modifier attribute to scale integer values
during the conversion process. On input, the COBOL argument is
multiplied by 10value. On output, the C parameter is divided by 10value.

For example, if the attribute list is [[integer in out scaled(2)]]

and the COBOL program supplied a value of 1.53, the C function would
receive a value of 153. If the C function changed the value to 4, the
COBOL program would receive .04 back.

• unsigned. Use this base modifier attribute to force CodeBridge to treat
the C parameter as unsigned. The default is to treat C parameters as
signed.

In addition to the modifiers that apply to all numeric base attributes, the
following modifiers are specific to the numeric_string base attribute:

• size(value). Use this base modifier attribute with the numeric_string
base attribute to specify a value that overrides the default length when
the conversion string buffer is dynamically allocated.

• leading or trailing signs. One of the following leading or trailing sign
base modifier attributes may be used with for the numeric_string base
attribute. The default base modifier attribute is leading_sign.

Attribute Sign if positive Sign if negative

leading_sign “+” “-”

leading_minus none “-”

trailing_sign “+” “-”

trailing_minus none “-”

trailing_credit none “CR”

trailing_debit none “DB”

108 • Appendix E: Parameter Attributes CodeBridge User's Guide

string Base Attribute

C strings are a null-terminated array of characters. Although there are many
standard
C library functions that deal with C strings, there is no corresponding COBOL
data type. The string base attribute is used to convert between COBOL non-
numeric arguments and null-terminated C string parameters.

On input, data is copied to a dynamically allocated buffer and a trailing null
character is added. On output, data is copied from the buffer and the trailing
null character is removed. By default, the data buffer is one byte larger that
the length of the COBOL argument so that there is room for the trailing null
character. This default may be overridden using the size(value) base
modifier attribute.

On Windows, a conversion rather than a simple copy is required when the
runtime native character set and the character set expected or returned by
the C function do not match.

The base modifier attributes c_data_is_ansi and c_data_is_oem can be used
to declare the character set used by the C function. When one of these
attributes is specified, CodeBridge will provide the necessary conversion
when the runtime native character set does not match.

Note 1 On Windows platforms, CodeBridge allocates the intermediate buffer
using the SysAllocStringByteLen function. This places additional overhead
information before the start of the string. The SysStringByteLen function
may be used to obtain the length of the buffer. Use the standard C library
function, strlen, to retrieve the length of the string in the buffer.

Note 2 A string base attribute may be used with arrays. For more
information, see String Arrays (on page 52).

Base Modifiers that Apply to the String Base Attribute

One leading character and one trailing character base modifier attribute may
be specified for each parameter. On input, leading and/or trailing characters
are removed as specified. On output, trailing characters (if selected) are
added to left-justified data items, while leading characters (if selected) are
added to right-justified data items.

The string base attribute can be supplemented with additional information by
the base modifier attributes that are listed below.

The following base modifier attributes may be used with the string base
attribute:

• alias(name). See the description of the alias base modifier (on page
102). Note that the alias base modifier attribute is allowed only when the
parameter attribute list precedes the function name.

• assert_length(min;max). Use this base modifier attribute to verify that
the actual length of the passed COBOL argument is within the range

CodeBridge User's Guide Appendix E: Parameter Attributes • 109

specified by min and max. For example, [[string out
assert_length(10;~0)]] indicates that the COBOL data item must
contain at least ten characters.

Note The C construct, ~0, denotes a pattern of all ones and represents
the largest positive value that can be stored in a data item. This usage is
preferable to other choices such as 0xffff (which requires knowing the
number of f’s to write) and –1 (which is not allowed C for unsigned data
types).

• c_data_is_ansi. Use this base modifier attribute to specify that the C
function string characters have code points that are interpreted as being
from the Windows ANSI codepage. If this attribute is specified and the
runtime native character set is OEM, input arguments will be converted
from OEM to ANSI and output arguments will be converted from ANSI to
OEM. On Windows, no conversion is done unless one of the attributes
c_data_is_ansi or c_data_is_oem is specified. The c_data_is_ansi
attribute is mutually exclusive with the c_data_is_oem attribute. This
attribute is ignored
on UNIX.

Note Windows functions generally expect ANSI character data. Thus, the
c_data_is_ansi base modifier attribute should usually be specified in
templates defining an interface to Windows functions if the COBOL
programs that use the interface do not use the C$ConvertOemToAnsi and
C$ConvertAnsiToOem library subprograms to perform the conversions
themselves. (See Appendix F: Subprogram Library of the RM/COBOL
User's Guide.) For historical reasons, the RM/COBOL runtime default
native character set on Windows is OEM.

• c_data_is_oem. Use this base modifier attribute to specify that the C
function string characters have code points that are interpreted as being
from the Windows OEM codepage. If this attribute is specified and the
runtime native character set is ANSI, input arguments will be converted
from ANSI to OEM and output arguments will be converted from OEM to
ANSI. On Windows, no conversion is done unless one of the attributes
c_data_is_ansi or c_data_is_oem is specified. The c_data_is_oem
attribute is mutually exclusive with the c_data_is_ansi attribute. This
attribute is ignored
on UNIX.

• leading_spaces. Use this base modifier attribute to instruct CodeBridge
to remove leading space characters on input, and for right-justified
arguments, add leading space characters on output.

• leading(value). This base modifier attribute is the same as the
leading_spaces
base modifier, except that the character represented by value is used
instead of a
space character.

110 • Appendix E: Parameter Attributes CodeBridge User's Guide

• no_null_pointer. The calling COBOL program may pass a pointer with a
null value as an argument either by specifying the figurative constant
NULL (NULLS) or by specifying a COBOL pointer argument that has been
set to NULL (NULLS). In this case, CodeBridge would normally pass a null
pointer as a parameter to the C function. If the no_null_pointer base
modifier attribute is used, an error condition will be generated instead.

• occurs(value). Arrays of COBOL non-numeric arguments may be passed
to a
C function. Use the occurs(value) base modifier attribute to specify the
array size.
If the C function prototype specifies the array size, it is not necessary to
use the occurs(value) base modifier attribute unless you need to override
the value specified in the function prototype.

• optional. The calling COBOL program may omit the associated argument,
in which case, CodeBridge would normally generate an error condition.
For more information on omitted arguments and this attribute, see
Managing Omitted Arguments (on page 36). If the optional base modifier
attribute is used, then a default value is generated and passed to the
C function. The default value associated with a general_string or string
base attribute is an empty string (the first character of the string is a null
character). If a value other than the CodeBridge supplied default value is
desired, see the value_if_omitted(value) base modifier attribute
description.

Note The current implementation of the CodeBridge Builder only allows
input optional parameters. Output parameters are required by default.

• repeat(value). Use this base modifier attribute with the C parameter
before the ellipsis when a variable number of C parameters is used. value
indicates the maximum number of additional C parameters.

• silent. See the description of the silent base modifier (on page 101).

• size(value). Use this base modifier attribute with the string base attribute
to specify a value that overrides the default length when the conversion
string buffer is dynamically allocated.

• trailing_spaces. Use this base modifier attribute to instruct CodeBridge
to remove trailing space characters on input and, for left-justified
arguments, add trailing space characters on output.

• trailing(value). This base modifier attribute is the same as the
trailing_spaces modifier, except that the character represented by value
is used instead of a space character.

• value_if_omitted(value). Use this base modifier attribute to specify a
value to be used when the calling COBOL program omits the associated
argument. For more information on omitted arguments and this attribute,
see Managing Omitted Arguments (on page 36). When this base modifier
attribute is used, it is not necessary to also use the optional base modifier

CodeBridge User's Guide Appendix E: Parameter Attributes • 111

attribute. A string attribute list must specify a string value (for example,
value_if_omitted("Default")).

general_string Base Attribute

The general_string base attribute is used in those cases when it is desirable
to allow a
C string parameter to accept either a numeric COBOL argument or a non-
numeric COBOL argument. When a numeric argument is passed to a
parameter described with the general_string base attribute, the argument is
converted as if the parameter were described with the numeric_string base
attribute; otherwise, the argument is converted as if the parameter were
described with the string base attribute. An attribute list containing the
general_string base attribute allows any additional attributes that may be
used with either a string base attribute or a numeric_string base attribute.
For each call and for each argument passed to a parameter within a set of a
variable number of parameters, attributes that do not apply to the COBOL
argument actually passed are ignored for the conversion of that argument.
That is, for a numeric argument, base modifier attributes not applicable to the
numeric_string base attribute are ignored and for a non-numeric argument,
base modifier attributes not applicable to the string base attribute are
ignored. For further information, refer to Numeric Base Attributes (on page
103) and string Base Attribute (on page 108).

In general_string attribute lists, base modifier attributes that apply to a
numeric_string or string base attribute may be used together. Those base
modifier attributes that do not apply for a given passed argument are ignored
(for example, trailing_sign for a non-numeric COBOL argument).

String Length Base Attributes

The string length base attributes, buffer_length and effective_length, are
used to pass length information about a string parameter as a separate
parameter to a C function. Attribute lists formed with these base attributes
are used with the attribute lists formed with the general_string,
numeric_string, and string base attributes. By default, these length attributes
refer to the same COBOL argument number as the base attribute in the
preceding attribute list. If the length attribute list does not immediately
follow the associated attribute list, then the arg_num(value) argument
number attribute must be used, where value must be the same as used in an
arg_num(value) attribute of the associated general_string, numeric_string, or
string base attribute.

The string length base attributes include the following:

• buffer_length. The buffer_length base attribute describes a C numeric
parameter and instructs CodeBridge to pass the length of the conversion
buffer to the C function as the value of the parameter. The length of the

112 • Appendix E: Parameter Attributes CodeBridge User's Guide

buffer is determined by the base attribute that is used to describe the
string parameter associated with the same argument, as follows:

− For the string base attribute, the buffer length defaults to one more
than the length of the passed COBOL argument, which allows space
for the characters of the argument value and a null-termination
character.

− For the numeric_string base attribute, the buffer length defaults to
four more than the digit length of the passed COBOL argument, which
allows space for the digits of the argument value and the sign,
decimal point, and null-termination characters.

− For the general_string base attribute, the buffer length defaults to the
greater of one more than the length of the passed COBOL argument
and four more than the digit length of the passed COBOL argument,
which allows space for either a non-numeric or numeric argument
conversion.

The default values for buffer_length may be overridden by using the
size(value) base modifier attribute in the attribute list that contains the
string, numeric_string, or general_string base attribute that is associated
with the same argument as buffer_length.

• effective_length. The effective_length base attribute returns the actual
number of characters stored in the conversion string buffer after the input
conversion process is complete. (This is similar to the standard C library
function, strlen.) This base attribute is used for obtaining the length of
input string parameters denoted by general_string, numeric_string, or
string base attributes.

Note To obtain the length of the COBOL argument, use the length base
attribute (on page 115).

Base Modifiers that Apply to String Length Base Attributes

The following base modifier attributes may be used with the string length
base attributes:

• occurs(value). Arrays of COBOL non-numeric arguments (or numeric
arguments converted by numeric_string) may be passed to a C string
parameter. Use the occurs(value) base modifier attribute to specify the
array size. If the C function prototype specifies the array size, it is not
necessary to use the occurs(value) base modifier attribute unless you
need to override the value specified in the function prototype.

Note The array size for the string length base attributes must be less
than or equal to the array size of the C string parameter associated with
the same argument number.

• silent. See the description of the silent base modifier (on page 101).

CodeBridge User's Guide Appendix E: Parameter Attributes • 113

Pointer Base Attributes

Pointer base attributes are used when passing a component of a COBOL
pointer argument to the C function. These attributes are associated with the
RM/COBOL POINTER data type. A COBOL pointer describes a block of
memory and has three components: base address, offset, and size. When a
pointer data item is initialized, the base address contains the starting address
of the block of memory, the offset is set to zero, and the size contains the
total length of the block. The offset may be modified in an RM/COBOL
program by using the Format 6 SET statement (see the RM/COBOL Language
Reference Manual).

CodeBridge provides two approaches for accessing data described by a
COBOL pointer data item. The first method is useful when the C function
wishes to access or modify memory referenced by the pointer. This
approach uses the following two pointer base attributes, both of which are
defined for input to the C function but not for output:

• pointer_address. Use the pointer_address base attribute to pass the
effective address (base address plus offset) of a passed COBOL pointer
argument to the C function.

• pointer_length. Use the pointer_length base attribute to pass the
effective length (size minus offset) of a passed COBOL pointer argument
to the C function. This is the amount of data between the current value of
the pointer and the end of the block of memory described by the pointer.

The second approach is useful if the C function wishes to access the
components of the COBOL pointer data item directly. This method is useful
when the C function wishes to change one of the components of a COBOL
pointer.

Note Although CodeBridge provides the ability to change the value of COBOL
data areas
or COBOL pointers, caution should be used due to the potential risk of
corrupting the COBOL program.

The second approach uses the following three pointer base attributes, all of
which may be used for both input and output:

• pointer_base. Use the pointer_base base attribute to pass the base
address component of a passed COBOL pointer argument to and from
the C function.

• pointer_offset. Use the pointer_offset base attribute to pass the offset
component of a passed COBOL pointer argument to and from the C
function.

• pointer_size. Use the pointer_size base attribute to pass the size
component of a passed COBOL pointer argument to and from the C
function.

Note A COBOL pointer data item with a zero base address component is
always a null pointer, regardless of the offset and size values. If the base

114 • Appendix E: Parameter Attributes CodeBridge User's Guide

address of a pointer is set to a zero value or remains a zero value, the pointer
offset and size components cannot be set to non-zero values. When a
COBOL pointer data item with a zero base address component is stored, the
pointer offset and size components will be set to zero.

Base Modifiers that Apply to Pointer Base Attributes

In addition to the alias(name) and silent base modifier attributes (on page
101), two other base modifier attributes are available for the second
approach described above:

• pointer_max_size. Use this base modifier attribute when either the
pointer_base or pointer_offset base attribute is used for output to force
the pointer size component to a value of all ones.

• pointer_reset_offset. Use this base modifier attribute when either the
pointer_base or pointer_size base attribute is used for output to force the
pointer_offset component to a value of zero. For an example of using
pointer_reset_offset, see Example 4: Accessing COBOL Pointer
Arguments (on page 70).

Descriptor Base Attributes

Sometimes it may be necessary to pass individual data descriptor
components for a COBOL argument, as well as the argument count, the
COBOL initial state flag, or the Windows handle, directly as C parameters.
See Passing COBOL Descriptor Data (on page 34) and Passing Miscellaneous
Information (on page 36).

The following lists the descriptor base attributes:

• address. Use the address base attribute when passing the address of a
passed COBOL argument to the C function. By using this attribute, the C
function may modify the COBOL data area directly. When the address of
a COBOL data item is passed in this way, the C function is responsible for
any parameter conversion that is required. The address may be saved by
the C function and used by this or other functions in the non-COBOL
subprogram later in the run unit. However, if the address refers to a data
item in a COBOL program that is later canceled, the saved address may
no longer be valid. It is the programmer’s responsibility to prevent such
situations.

• arg_count. Use the arg_count base attribute to pass the actual number of
COBOL arguments to the C function. The arg_count base attribute does
not refer to a COBOL argument.

The argument count is the number of actual arguments specified in the
USING phrase of the CALL statement, including any arguments explicitly
specified by the OMITTED keyword. The count does not include the
argument specified in the GIVING (RETURNING) phrase.

CodeBridge User's Guide Appendix E: Parameter Attributes • 115

Note When using the explicit argument association method, it is an error
to specify the argument number attribute, arg_num(value), with the
arg_count base attribute since this base attribute does not refer to a
COBOL argument.

• digits. Use the digits base attribute when passing the digit count, that is,
the number
of 9’s in the PICTURE character-string, of a passed COBOL numeric
argument to the
C function. If the item is not numeric, the results are undefined.

• initial_state. Use the initial_state base attribute to pass the COBOL initial
state flag to the C function. The initial_state base attribute does not refer
to a COBOL argument. It returns information about the state of the called
program within the run unit.

When the COBOL initial state flag is zero, the C function may choose to
reinitialize any “state” variables it contains. When it is non-zero, the C
function uses the current values of any “state” variables. For more
information, see item number 4 in either Parameters Passed to the C
Subprogram on Windows (on page 171) or Parameters Passed to the C
Subprogram on UNIX (on page 189).

Note 1 A “state” variable is one whose contents are normally preserved
between function calls.

Note 2 When using the explicit argument association method, it is an
error to specify the argument number attribute, arg_num(value), with the
initial_state base attribute since this base attribute does not refer to a
COBOL argument.

• length. Use the length base attribute when passing the length (in bytes)
of a passed COBOL argument to the C function. The length attribute may
be used for the same argument as the address base attribute to allow a C
function to modify the COBOL data area directly. Other uses also exist;
for example, the length base attribute may be used for the same
argument as the string base attribute to pass the maximum size that a
string may occupy (it does not include space for the trailing null
character).

• scale. Use the scale base attribute when passing the digit count of the
number of
digits to the right of the decimal point in a passed COBOL numeric
argument to the
C function. If the item is not numeric, the results are undefined. The
scale value is the arithmetic complement of the scale value in the COBOL
argument descriptor.

Note If the COBOL data item uses P-scaling, the scaling factor may be
negative. For example, for a PIC 9(7)P(3) data item, using this attribute
will pass -3 to the C function; for a PIC P(3)9(7) data item, using this
attribute will pass 10 to the C function.

116 • Appendix E: Parameter Attributes CodeBridge User's Guide

• type. Use the type base attribute when passing the type code of a passed
COBOL argument to the C function. Type codes, which are defined in the
header file rmc85cal.h, are included in Table 4 for easy reference. Note
that some values are classified as “reserved” in the “Classification”
column. They either refer to internal formats that are not used by
CodeBridge or to values that are reserved for future use.

Table 4: Type Attribute Codes

Name Value Classification Description

RM_NSE 0 Numeric Numeric String Edited

RM_NSU 1 Numeric Display String Unsigned

RM_NTS 2 Numeric Display Trailing Separate

RM_NTC 3 Numeric Display Trailing Combined

RM_NLS 4 Numeric Display Leading Separate

RM_NLC 5 Numeric Display Leading Combined

RM_NCS 6 Numeric Comp (unpacked) Signed

RM_NCU 7 Numeric Comp (unpacked) Unsigned

RM_NPP 8 Numeric Packed Positive

RM_NPS 9 Numeric Packed Signed

RM_NPU 10 Numeric Packed Unsigned

RM_NBS 11 Numeric Binary Signed

RM_NBU 12 Numeric Binary Unsigned or Index

 13 – 15 Reserved

RM_ANS 16 Non-numeric Alphanumeric String

RM_ANSR 17 Non-numeric Alphanumeric (Right Justified)

RM_ABS 18 Non-numeric Alphabetic String

RM_ABSR 19 Non-numeric Alphabetic (Right Justified)

RM_ANSE 20 Non-numeric Alphanumeric String Edited

RM_ABSE 21 Non-numeric Alphabetic String Edited

RM_GRPF 22 Non-numeric Group

 23 – 24 Reserved

RM_PTR 25 Pointer COBOL Pointer

RM_NBSN 26 Numeric Binary Signed Native

RM_NBUN 27 Numeric Binary Unsigned Native

 28 – 31 Reserved

RM_OMITTED 32 Omitted Omitted argument

CodeBridge User's Guide Appendix E: Parameter Attributes • 117

• windows_handle. Use the windows_handle base attribute to pass the
Windows handle associated with the run unit to the C function. This
attribute, which is available only for Windows systems, is useful when
calling some Windows APIs. For example, when opening a new window,
it may be necessary to supply the handle of the parent’s window. The
windows_handle base attribute does not refer to a COBOL argument.

Note 1 The windows_handle base attribute is not available on UNIX
platforms as it can cause compilation errors.

Note 2 When using the explicit argument association method, it is an
error to specify the argument number attribute, arg_num(value), with the
windows_handle base attribute since this base attribute does not refer to
a COBOL argument.

Base Modifier that Applies to Descriptor Base Attributes

Only one base modifier attribute, silent, is used with descriptor base
attributes. See the description of the silent base modifier (on page 101).

Error Base Attributes

Occasionally, either the C library or one of the Windows API functions will
return error information that must be retrieved separately from the C function
that is called.

The C library often places error information in the external variable, errno. If
the called function returns a value of –1, then in the calling program value of
the external variable errno is the error code.

Some Windows APIs return error information that must be retrieved by calling
the
C function, GetLastError. If the called function returns a status of FALSE
(numeric zero), then the calling program must call the function GetLastError
to obtain the error number. In many cases, however, the value that would
have been returned by GetLastError likely will be modified by the RM/COBOL
runtime between successive calls from the COBOL program, making it
impossible to call GetLastError as a separate function.

Error base attributes associate with a COBOL argument for which there is no
corresponding C function return or parameter. Two error base attributes
have been added to CodeBridge that deal with these situations:

• errno. Use the errno base attribute to retrieve the contents of the
external variable, errno. Specifying the base attribute errno is similar to
specifying integer out, except that it does not associate with a C function
return or parameter. While this attribute does not associate with the C
function return or any parameter, the position of the attribute list within
the C function prototype in which it appears is significant for determining
the COBOL argument number when automatic argument association is
used. For more information, see Automatic Association (on page 41).

118 • Appendix E: Parameter Attributes CodeBridge User's Guide

The external variable errno, which is the source item for the attribute
errno, has the C type of int, which is signed. The assumed direction
attribute is out; a direction attribute is not allowed with the attribute errno.

• get_last_error. Use the get_last_error base attribute to retrieve the
contents returned by the C function, GetLastError. Specifying
get_last_error is similar to specifying integer out unsigned, except that it
does not associate with a C function return or parameter. While this
attribute does not associate with the C function return or any parameter,
the position of the attribute list within the C function prototype in which it
appears is significant for determining the COBOL argument number when
automatic argument association is used. For further details, see
Automatic Association (on page 41). The return value of GetLastError,
which is the source item for the attribute get_last_error, has the Windows
type of DWORD, which is unsigned. The assumed direction attribute is
out; a direction attribute is not allowed with the attribute get_last_error.

Error base attributes refer to an argument in the COBOL CALL statement, but
do not refer to any C function return value or parameter. These attributes
cause the CodeBridge Builder to generate separate code sequences to return
the value of the external variable errno or the return value of the Windows
GetLastError function. For additional information, see Returning C Error
Values (on page 37).

Error base attributes are, in a certain sense, the opposite of descriptor base
attributes (these include arg_count, initial_state, and windows_handle). The
error base attributes describe a COBOL argument for which there is no
corresponding C parameter, because the source item for these attributes is
not described in the C function prototype, and are output (to the COBOL
argument) only. The descriptor base attributes are used to develop input
values for C parameters from a source other than a COBOL argument or from
the description of a COBOL argument.

Base Modifiers that Apply to Error Base Attributes

The error base attributes may be used in an attribute list with the same base
modifier attributes as for the base attribute integer with the following
exception:

• The unsigned attribute is not allowed. It would be incorrect for errno and
is implied for get_last_error.

The error base attributes can be supplemented with additional information by
the base modifier attributes listed below:

• alias(name). See the description of the alias base modifier (on page
102). Note that the alias base modifier attribute is only allowed when the
parameter attribute list precedes the function name.

• assert_digits(min;max). Use this base modifier attribute to verify that the
digit length of the passed COBOL argument is within the range specified

CodeBridge User's Guide Appendix E: Parameter Attributes • 119

by min and max. For example, [[errno assert_digits(9;18)]]
indicates that the COBOL data item must contain from 9 to 18 digits.

The use of P-scaling in the COBOL program will increase the digit length
by the number of P symbols specified in the PICTURE character-string.
For example, all of the PICTURE character-strings 9(8), 9(5)P(3), and
VP(3)9(5) describe a data item with a digit length of eight for CodeBridge.

• assert_digits_left(min;max). Use this base modifier attribute to verify
that the number of digits to the left of the decimal point in the passed
COBOL argument is within the range specified by min and max. For
example, [[get_last_error assert_digits_left(5;~0)]]
indicates that the COBOL data item must
contain five or more digits to the left of the decimal point, or equivalently,
no less
than five digits before the decimal point.

Note The C construct, ~0, denotes a pattern of all ones and represents
the largest positive value that can be stored in a data item. This usage is
preferable to other choices such as 0xffff (which requires knowing the
number of f’s to write) and –1 (which is not allowed C for unsigned data
types).

The use of P-scaling in the COBOL program will increase the number of
digits to the left of the decimal point by the number of P symbols
specified in the PICTURE character-string that occur to the left of the
decimal point. For example, both of the PICTURE character-strings 9(8)
and 9(5)P(3) describe a data item with eight digits to the left of the
decimal point for CodeBridge.

• assert_digits_right(min;max). Use this base modifier attribute to verify
that the
number of digits to the right of the decimal point in the passed COBOL
argument
is within the range specified by min and max. For example, [[errno

assert_digits_right(0;0)]] indicates that the COBOL data item
must
contain no digits after the decimal point.

The use of P-scaling in the COBOL program will increase the number of
digits to the right of the decimal point by the number of P symbols
specified in the PICTURE character-string that occur to the right of the
decimal point. For example, both of the PICTURE character-strings V9(8)
and VP(3)9(5) describe a data item with eight digits to the right of the
decimal point for CodeBridge.

• assert_length(min;max). Use this base modifier attribute to verify that
the actual length of the passed COBOL argument is within the range
specified by min and max. For example, [[get_last_error
assert_length(10;~0)]] indicates that the COBOL data item must
contain at least ten characters.

120 • Appendix E: Parameter Attributes CodeBridge User's Guide

Note The C construct, ~0, denotes a pattern of all ones and represents
the largest positive value that can be stored in a data item. This usage is
preferable to other choices such as 0xffff (which requires knowing the
number of f’s to write) and –1 (which is not allowed C for unsigned data
types).

• assert_signed. Use this base modifier attribute to verify that the passed
COBOL argument contains a sign.

• assert_unsigned. Use this base modifier attribute to verify that the
passed COBOL argument does not contain a sign.

• no_size_error. During conversion (either COBOL to C or C to COBOL), it is
possible that leading digits will be lost. If this occurs, the normal
behavior is to generate an error condition. If the no_size_error base
modifier attribute is used, the error condition will be ignored.

• rounded. Use this base modifier attribute to cause rounding in those
cases where truncation would normally occur (on either input or output).
Rounding is performed using COBOL rounding rules.

• scaled(value). Use this base modifier attribute to scale integer values
during the conversion process. On output, the C value is divided by
10value.

For example, if the attribute list is [[errno scaled(2)]] and the C
function changed the value of the external variable errno to 123, the
COBOL program would receive 1.23 back.

• silent. See the description of the silent base modifier (on page 101).

Parameter Attributes Summary

Table 5 lists all available parameter attributes in alphabetical order. The
“Attribute Category” column contains the category of the parameter attribute
as one of the categories: Argument Number, Direction, Base or Base
Modifier, as discussed in earlier sections. The “Modifier Usage” column
indicates whether base modifier attributes affect the COBOL argument, the C
data item, or the C function name. The “Description” column presents a brief
overview of the function of the parameter attribute.

Table 5: Parameter Attributes Summary

Parameter
Attribute

Attribute
Category

Modifier
Usage

Description

address Base
(Descriptor)

 Passes the address of a passed
COBOL argument to the C function.
See
page 114.

Alias(name) Base
Modifier

C Function
Name

Changes the generated function
name to be the name specified by

CodeBridge User's Guide Appendix E: Parameter Attributes • 121

name. See
page 101.

Arg_count Base
(Descriptor
)

 Passes the actual number of
COBOL arguments to the C
function. See
page 114.

Arg_num(value) Argument
Number

 Explicitly specifies the COBOL
argument number of an argument
in the USING phrase rather than
accepting the default argument
association. See page 99.

Assert_digits
(min;max)

Base
Modifier

COBOL
Argument

Insures that the number of digits in
the passed COBOL argument is
within the range specified by min
and max. This modifier is used with
numeric base attributes. See page
105.

Assert_digits_lef
t
(min;max)

Base
Modifier

COBOL
Argument

Insures that the number of digits to
the left of the decimal point in the
passed COBOL argument is within
the range specified by min and
max. This modifier is used with
numeric base attributes. See page
105.

Assert_digits_rig
ht
(min;max)

Base
Modifier

COBOL
Argument

Insures that the number of digits to
the right of the decimal point in the
passed COBOL argument is within
the range specified by min and
max. This modifier is used with
numeric base attributes. See page
105.

Assert_length
(min;max)

Base
Modifier

COBOL
Argument

Insures that the length of the
passed COBOL argument is within
the range specified by min and
max. This modifier is used with
numeric or string base attributes.
See pages 105 and108.

Table 5: Parameter Attributes Summary (Cont.)

Parameter
Attribute

Attribute
Category

Modifier
Usage

Description

Assert_signed Base
Modifier

COBOL
Argument

Insures that the passed COBOL
argument is signed. This modifier
is used with numeric base
attributes. See page 106.

assert_unsigned Base
Modifier

COBOL
Argument

Insures that the passed COBOL
argument is unsigned. This
modifier is used with numeric base
attributes. See page 106.

122 • Appendix E: Parameter Attributes CodeBridge User's Guide

buffer_length Base
(String
Length)

 Passes the size (in bytes) of the
string buffer to the C function.
buffer_length is one greater than
the length of a non-numeric COBOL
argument or four greater than the
digit length of a numeric COBOL
argument. See page 111.

c_data_is_ansi Base
Modifier

COBOL
Arguments

Indicates that the C function
expects character data represented
in the system ANSI codepage on
Windows. If the runtime native
character set is OEM, CodeBridge
will convert COBOL character data
from OEM to ANSI for input
arguments and ANSI to OEM for
output arguments. This attribute is
mutually exclusive with the
c_data_is_oem attribute. This
modifier is used with string base
attributes. See page 108.

c_data_is_oem Base
Modifier

COBOL
Arguments

Indicates that the C function
expects character data represented
in the system OEM codepage on
Windows. If the runtime native
character set is ANSI, CodeBridge
will convert COBOL character data
from ANSI to OEM for input
arguments and OEM to ANSI for
output arguments. This attribute is
mutually exclusive with the
c_data_is_ansi attribute. This
modifier is used with string base
attributes. See page 108.

digits Base
(Descriptor
)

 Passes the number of digits in a
passed COBOL numeric argument
to the C function. See page 115.

effective_length Base
(String
Length)

 Passes the effective size (in bytes)
of the string buffer to the C
function. This is similar to the
standard C library function, strlen.
See page 112.

Table 5: Parameter Attributes Summary (Cont.)

Parameter
Attribute

Attribute
Category

Modifier
Usage

Description

errno Base
(Error)

 Causes the external variable errno
to be set to zero before the function
call and the value of the external
variable errno after the function call
to be returned to a COBOL numeric
argument. See page 117.

CodeBridge User's Guide Appendix E: Parameter Attributes • 123

float Base
(Numeric)

 Converts COBOL numeric
arguments to C floating-point
parameters (such as float or
double). See page 103.

general_string Base
(Numeric
or String)

 Converts numeric and non-numeric
COBOL arguments to null-
terminated
C strings. Numeric COBOL
arguments are treated as if the
numeric_string base attribute were
specified. Non-numeric COBOL
arguments are treated as if the
string base attribute were specified.
See page 111.

Get_last_error Base
(Error)

 Causes the Windows error code to
be set to zero by a call to
SetLastError before the function
call and the value returned from a
call to GetLastError after the
function call to be returned to a
COBOL numeric argument. See
page 117.

In Direction Specifies an input parameter to the
C function. See page 100.

Initial_state Base
(Descriptor
)

 Passes the COBOL initial state flag
to the C function. See page 115.

Integer Base
(Numeric)

 Converts COBOL numeric
arguments to C integer parameters
(such as char, short, int, or long).
See page 103.

Integer_only Base
Modifier

COBOL
Argument

Insures that the passed COBOL
argument is an integer (no digits
are allowed to the right of the
decimal point). This modifier is
used with the integer base
attribute. See page 107.

Leading(value) Base
Modifier

C
Parameter

Specifies the use of leading strip/fill
characters indicated by value. This
modifier is used with the string
base attribute. See page 109.

Table 5: Parameter Attributes Summary (Cont.)

Parameter
Attribute

Attribute
Category

Modifier
Usage

Description

Leading_minus Base
Modifier

C
Parameter

Forces a minus sign character (“-”)
to be placed before the numeric
value when the value is negative.
Positive values do not contain a
sign character. This modifier is

124 • Appendix E: Parameter Attributes CodeBridge User's Guide

used with the numeric_string base
attribute. See page 107.

Leading_sign Base
Modifier

C
Parameter

Forces a sign character, either a
plus (“+”) or a minus (“-”),
depending on the sign of the value,
to be placed before the numeric
value. This modifier is used with
the numeric_string base attribute.
See page 107.

Leading_spaces Base
Modifier

C
Parameter

Specifies the use of leading strip/fill
space characters. This modifier is
used with the string base attribute.
See page 109.

Length Base
(Descriptor
)

 Passes the size (in bytes) of a
passed COBOL argument to the C
function. See page 115.

no_null_pointer Base
Modifier

COBOL
Argument

Returns an error if the COBOL
program passes a pointer with a
null value as an argument. This
modifier is used with numeric or
string base attributes. See pages
106 and 110.

no_size_error Base
Modifier

COBOL
Argument

Causes numeric conversion errors
to be ignored. This modifier is used
with numeric base attributes. See
page 106.

numeric_string Base
(Numeric)

 Converts COBOL numeric
arguments to null-terminated C
strings. See
page 103.

occurs(value) Base
Modifier

C
Parameter

Specifies that the parameter is an
array containing value elements.
This modifier is used with numeric
or string base attributes. It is also
used with the buffer_length and
effective_length base attributes.
See pages 106 and 110.

optional Base
Modifier

COBOL
Argument

Allows the COBOL program to omit
an input argument even though a C
parameter is associated with that
argument. This modifier is used
with numeric or string base
attributes. See pages 106 and 110.

Table 5: Parameter Attributes Summary (Cont.)

Parameter
Attribute

Attribute
Category

Modifier
Usage

Description

out Direction Specifies an output parameter from
the
C function and causes an output

CodeBridge User's Guide Appendix E: Parameter Attributes • 125

conversion into the associated
COBOL argument. See page 100.

pointer_address Base
(Pointer)

 Passes the effective address (base
address component plus offset
component) of a passed COBOL
pointer argument to the C function.
See page 113.

pointer_base Base
(Pointer)

 Passes the base address
component of a passed COBOL
pointer argument to the C function.
See page 113.

pointer_length Base
(Pointer)

 Passes the effective length (size
component minus offset
component) of a passed COBOL
pointer argument to the C function.
See page 113.

pointer_max_siz
e

Base
Modifier

COBOL
Argument

Sets the size component of a
passed COBOL pointer argument to
the maximum value (all ones) on
output. This modifier is used with
the pointer_base or pointer_offset
base attributes. See page 114.

pointer_offset Base
(Pointer)

 Passes the offset component of a
passed COBOL pointer argument to
the C function. See page 113.

pointer_reset_offs
et

Base
Modifier

COBOL
Argument

Sets the offset component of a
passed COBOL pointer argument to
zero on output. This modifier is
used with the pointer_base or
pointer_size base attributes. See
page 114.

pointer_size Base
(Pointer)

 Passes the size component of a
passed COBOL pointer argument to
the
C function. See page 113.

repeat(value) Base
Modifier

C
Parameter

Used when the C function expects a
variable number of parameters.
This modifier is used for numeric or
string base attributes. See pages
106 and 110.

ret_val Argument
Number

 Explicitly specifies the COBOL
argument in the GIVING
(RETURNING) phrase rather than
accepting the default argument
association. See page 99.

Table 5: Parameter Attributes Summary (Cont.)

Parameter
Attribute

Attribute
Category

Modifier
Usage

Description

126 • Appendix E: Parameter Attributes CodeBridge User's Guide

rounded Base
Modifier

COBOL
Argument

Causes rounding (instead of
truncation) to occur during
parameter conversion when trailing
digits must be removed. This
modifier is used with numeric base
attributes. See
page 106.

scale Base
(Descriptor
)

 Passes the scale of a passed
COBOL numeric argument to the C
function. If a COBOL argument had
a picture of 999V99, the scale used
by COBOL is –2. This value is
negated and passed as +2 to the C
function. If the picture contains “P”
characters, this value may appear
unusual. See page 115.

scaled(value) Base
Modifier

C
Parameter

On input, multiplies the passed
COBOL argument by a 10value. On
output, divides the C parameter by a
10value. This modifier is used with
the integer base attribute. See
page 107.

silent Base
Modifier

C
Parameter

Suppresses display of errors
detected during conversion or
validation. See page 101.

size(value) Base
Modifier

C
Parameter

Used with numeric_string and string
base attributes to override the
default length (its size or precision)
of the passed COBOL argument.
See
pages 107 and 110.

String Base
(String)

 Converts COBOL non-numeric
arguments to null-terminated C
strings. See page 108.

Trailing(value) Base
Modifier

C
Parameter

Specifies the use of trailing strip/fill
characters indicated by value. This
modifier is used with the string
base attribute. See page 110.

Trailing_credit Base
Modifier

C
Parameter

Forces a credit symbol (“CR”) to be
placed after the numeric value
when the value is negative. Positive
values do not contain a sign
representation. This modifier is
used with the numeric_string base
attribute. See page 107.

Trailing_debit Base
Modifier

C
Parameter

Forces a debit symbol (“DB”) to be
placed after the numeric value
when the value is negative. Positive
values do not contain a sign
representation. This modifier is
used with the numeric_string base
attribute. See page 107.

CodeBridge User's Guide Appendix E: Parameter Attributes • 127

Table 5: Parameter Attributes Summary (Cont.)

Parameter
Attribute

Attribute
Category

Modifier
Usage

Description

trailing_minus Base
Modifier

C
Parameter

Forces a minus sign character (“-”)
to be placed after the numeric value
when the value is negative. Positive
values do not contain a sign
character. This modifier is used
with the numeric_string base
attribute. See page 107.

trailing_sign Base
Modifier

C
Parameter

Forces sign character, either a plus
(“+”) or a minus (“-”) sign character,
depending on the sign of the value,
to be placed after the numeric
value. This modifier is used with
the numeric_string base attribute.
See page 107.

trailing_spaces Base
Modifier

C
Parameter

Specifies the use of trailing strip/fill
space characters. This modifier is
used with the string base attribute.
See page 110.

type Base
(Descriptor
)

 Passes the type-code of a passed
COBOL argument to the C function.
See page 116.

unsigned Base
Modifier

C
Parameter

Indicates that the C parameter is
unsigned. If this attribute is not
used, all integer C parameters are
treated as signed. This modifier is
used with the integer base
attribute. See page 107.

value_if_omitted
(value)

Base
Modifier

COBOL
Argument

Assigns a default value when the
COBOL program omits the
associated argument. This
modifier is used with the numeric or
string base attributes. See pages
107 and 110.

windows_handle Base
(Descriptor
)

 Passes the Windows handle of the
current COBOL CALL to the C
function. This attribute is available
only for Windows systems. See
page 117.

Parameter Attribute Combinations

The CodeBridge Builder recognizes various parameter attribute
combinations. Table 6 is a quick reference that lists the allowed
combinations. For instance, some base modifier attributes make sense only
for input or output. In those cases, there are separate rows for “in only” and
“out only”.

128 • Appendix E: Parameter Attributes CodeBridge User's Guide

Note When the “Direction” column contains “in (assumed)”, the direction is
always assumed to be “in”, but the in direction attribute is not allowed.

Table 6: Parameter Attribute Combinations

Base

Direction

Argument
Number

Modifiers

address in
(assumed)

arg_num silent

arg_count in
(assumed)

none silent

buffer_length in
(assumed)

arg_num occurs silent

digits in
(assumed)

arg_num silent

effective_lengt
h

in
(assumed)

arg_num occurs silent

errno out
(assumed)

ret_val alias
assert_digits
assert_digits_left
assert_digits_rig
ht
assert_length
assert_signed

assert_unsigned
no_size_error
rounded
scaled
silent

 out
(assumed)

arg_num assert_digits
assert_digits_left
assert_digits_rig
ht
assert_length
assert_signed

assert_unsigned
no_size_error
rounded
scaled
silent

float in only optional value_if_omitted

 out only ret_val alias

 either arg_num assert_digits
assert_digits_left
assert_digits_rig
ht
assert_length
assert_signed
assert_unsigned

no_null_pointer
no_size_error
occurs
repeat
rounded
silent

Table 6: Parameter Attribute Combinations (Cont.)

Base

Direction

Argument
Number

Modifiers

general_strin
g

in only leading_minus
leading_sign
optional
trailing_credit

trailing_debit
trailing_minus
trailing_sign
value_if_omitted

 out only ret_val alias

CodeBridge User's Guide Appendix E: Parameter Attributes • 129

 either arg_num assert_digits
assert_digits_left
assert_digits_rig
ht
assert_length
assert_signed
assert_unsigned
c_data_is_ansi
c_data_is_oem
leading
leading_spaces

no_null_pointer
no_size_error
occurs
repeat
rounded
silent
size
trailing
trailing_spaces

get_last_erro
r

out
(assumed)

ret_val alias
assert_digits
assert_digits_left
assert_digits_rig
ht
assert_length
assert_signed

assert_unsigned
no_size_error
rounded
scaled
silent

 out
(assumed)

arg_num assert_digits
assert_digits_left
assert_digits_rig
ht
assert_length
assert_signed

assert_unsigned
no_size_error
rounded
scaled
silent

initial_state in
(assumed)

none silent

integer in only integer_only
optional

value_if_omitted

 out only ret_val alias

 either arg_num assert_digits
assert_digits_left
assert_digits_rig
ht
assert_length
assert_signed
assert_unsigned
no_null_pointer

no_size_error
occurs
repeat
rounded
scaled
silent
unsigned

length in
(assumed)

arg_num silent

Table 6: Parameter Attribute Combinations (Cont.)

Base

Direction

Argument
Number

Modifiers

numeric_strin
g

in only leading_minus
leading_sign
optional
trailing_credit

trailing_debit
trailing_minus
trailing_sign
value_if_omitted

 out only ret_val alias

 either arg_num assert_digits
assert_digits_left

no_size_error
occurs

130 • Appendix E: Parameter Attributes CodeBridge User's Guide

assert_digits_rig
ht
assert_length
assert_signed
assert_unsigned
no_null_pointer

repeat
rounded
silent
size

pointer_addre
ss

in
(assumed)

arg_num silent

pointer_base in only

 out only ret_val alias
pointer_max_size

pointer_reset_off
set

 either arg_num silent

pointer_lengt
h

in
(assumed)

arg_num silent

pointer_offse
t

in only

 out only ret_val alias pointer_max_siz
e

 either arg_num silent

pointer_size in only

 out only ret_val alias pointer_reset_offs
et

 either arg_num silent

scale in
(assumed)

arg_num silent

string in only optional value_if_omitted

 out only ret_val alias

 either arg_num assert_length
c_data_is_ansi
c_data_is_oem
leading
leading_spaces
no_null_pointer

occurs
repeat
silent
size
trailing
trailing_spaces

Table 6: Parameter Attribute Combinations (Cont.)

Base

Direction

Argument
Number

Modifiers

type in
(assumed)

arg_num silent

windows_handl
e

in
(assumed)

none silent

Note This attribute is available only
for Windows systems. See page 117.

CodeBridge User's Guide Appendix F: CodeBridge Library Functions • 131

Appendix F: CodeBridge
Library Functions

The CodeBridge Library is a collection of functions that are included in the
RM/COBOL runtime system. These functions are used to convert input data
from COBOL arguments to C parameters on entry and from C parameters to
COBOL arguments just prior to exit. The CodeBridge Library also contains
functions that perform data range and integrity checks.

This appendix describes each function in the CodeBridge Library. These
descriptions will help you understand the C code generated by the
CodeBridge Builder. Information on specifying the Flags parameter is also
covered. The information in this appendix will also prove useful if you are
debugging applications developed using CodeBridge.

Note The information presented here assumes a working knowledge of the C
programming language. The material in Appendix C: Useful C Information
(on page 87), is not comprehensive enough to provide this necessary
background.

Library Functions Overview

The CodeBridge Library consists of the conversion and validation functions
as shown in Table 7. (These functions are described in detail beginning on
page 136.) Input functions are called before the C function is called. Output
functions are called after the C function is called but before returning to the
calling COBOL program.

Note Each of these routines, except for the GetCallerInfo and
GetTerminationInfo functions, returns FALSE if an error condition occurs.
Logic in the C source code file (generated by the CodeBridge Builder) will
terminate the dynamic-link library (DLL) and return an error to the RM/COBOL
runtime system, which will terminate the calling COBOL program. See
CodeBridge Library Error Messages (on page 59) for a table listing these
errors. The two Get… functions each return a pointer to a data structure,
which contains the requested information.

132 • Appendix F: CodeBridge Library Functions CodeBridge User's Guide

Table 7: CodeBridge Library Functions

Function Name Input or Output Used For

AssertDigits (on page
136)

Either [[numeric assert_digits]]

AssertDigitsLeft (on
page 137)

Either [[numeric assert_digits_left]]

AssertDigitsRight (on
page 138)

Either [[numeric assert_digits_right]]

AssertLength (on
page 139)

Either [[numeric assert_length]] or
[[string assert_length]]

AssertSigned (on
page 139)

Either [[numeric assert_signed]]

AssertUnsigned (on
page 140)

Either [[numeric assert_unsigned]]

BufferLength (on page
140)

Input [[buffer_length]]

CobolArgCount (on
page 141)

Input [[arg_count]]

CobolDescriptorAddre
ss (on page 142)

Input [[address]]

CobolDescriptorDigits
(on page 142)

Input [[digits]]

CobolDescriptorLengt
h (on page 143)

Input [[length]]

CobolDescriptorScale
(on page 143)

Input [[scale]]

CobolDescriptorType
(on page 144)

Input [[type]]

CobolInitialState (on
page 144)

Input [[initial_state]]

CobolToFloat (on
page 145)

Input [[float]]

CobolToGeneralString
(on page 146)

Input [[general_string]]

CobolToInteger (on
page 147)

Input [[integer]]

CobolToNumericStrin
g (on page 148)

Input [[numeric_string]]

CobolToPointerAddre
ss (on page 150)

Input [[pointer_address]]

CobolToPointerBase
(on page 150)

Input [[pointer_base in]]

CobolToPointerLengt
h (on page 151)

Input [[pointer_length]]

CodeBridge User's Guide Appendix F: CodeBridge Library Functions • 133

CobolToPointerOffset
(on page 151)

Input [[pointer_offset in]]

CobolToPointerSize
(on page 152)

Input [[pointer_size in]]

CobolToString (on
page 152)

Input [[string]]

CobolWindowsHandle
(on page 153)

Input [[windows_handle]]

ConversionCleanup
(on page 154)

Neither Cleanup during conversion exit.

ConversionStartup (on
page 154)

Neither Initialization of conversion process.

DiagnosticMode (on
page 155)

Global [# diagnostic(flag) #]

EffectiveLength (on
page 155)

Input [[effective_length]]

FloatToCobol (on
page 156)

Output [[float out]]

GeneralStringToCobol
(on page 157)

Output [[general_string out]]

Table 7: CodeBridge Library Functions

Function Name Input or Output Used For

GetCallerInfo (on page
158)

Neither Obtaining information about the
calling COBOL program.

GetTerminationInfo
(on page 160)

Neither Obtaining information about
runtime termination.

IntegerToCobol (on
page 161)

Output [[integer out]]

NumericStringToCobo
l (on page 162)

Output [[numeric_string out]]

PointerBaseToCobol
(on page 163)

Output [[pointer_base out]]

PointerOffsetToCobol
(on page 164)

Output [[pointer_offset out]]

PointerSizeToCobol
(on page 164)

Output [[pointer_size out]]

StringToCobol (on
page 165)

Output [[string out]]

The series of functions that begin with “Assert” are designated as “Either” in
the Input or Output column. It is recommended that these functions be called
prior to the execution of the C function.

134 • Appendix F: CodeBridge Library Functions CodeBridge User's Guide

The ConversionStartup, ConversionCleanup, and GetCallerInfo functions are
designated as “Neither” in the Input or Output column. The
ConversionStartup function should be called once just after entry from
COBOL. The ConversionCleanup function should be called once just prior to
returning to COBOL. The GetCallerInfo function may be called at any time; it
is usually called after an error is detected in order to add calling program
information to an error message.

The DiagnosticMode function is designated as “Global” in the Input or Output
column. This function may be called at any time, including multiple times,
after the call to ConversionStartup and prior to the call to ConversionCleanup.

Specifying the Flags Parameter

The behavior of the CodeBridge Library conversion and validation functions is
determined by flag settings in the Flags parameter. In some cases, the
behavior requested by a flag requires that additional information be passed in
another parameter. For example, when passing an array, you must set both
the PF_OCCURS flag and pass the array size in the Occurs parameter.

Values for the Flags parameter, which is used with most of the CodeBridge
Library functions, are defined in cbridge.h. These values correspond to the
base modifier attributes that can be specified in template files. See Table 8
for a list of flag definitions.

Normally, the PF_IN flag is used only for documentation purposes. However,
when a Numeric or String output conversion function (FloatToCobol,
GeneralStringToCobol, IntegerToCobol, NumericStringToCobol, and
StringToCobol) is used, the corresponding Numeric or String input conversion
function (CobolToFloat, CobolToGeneralString, CobolToInteger,
CobolToNumericString, and CobolToString) must also be called. This is true
even when the COBOL argument is not used as an input to the C function.
For these reasons, the setting of the PF_IN flag is critical for Numeric and
String input conversions. When the PF_IN flag is not set, initialization of the C
data item is not performed, but the initialization necessary for the output
conversion is performed.

The PF_OCCURS, PF_OUT, and PF_RETURN_VALUE flags are not used in the
current implementation of the CodeBridge Library and, therefore, are used
only for documentation purposes. However, because of possible changes to
future versions of the CodeBridge Library, we recommend that these flags be
set whenever appropriate. That is, calls to the CodeBridge Library output
functions (FloatToCobol, GeneralStringToCobol, IntegerToCobol,
NumericStringToCobol, PointerBaseToCobol, PointerOffsetToCobol,
PointerSizeToCobol, and StringToCobol) should set the PF_OUT flag. When
associated with the C function return value, calls to these same output
functions should set the PF_RETURN_VALUE flag in addition to the PF_OUT
flag. The PF_OCCURS flag should be set whenever an array is specified.

CodeBridge User's Guide Appendix F: CodeBridge Library Functions • 135

Although the following masks are neither used nor required in any
CodeBridge Library call, they are provided for convenience and
completeness:

• PF_LEADING. This mask is a combination of the PF_LEADING_SPACES
flag and the PF_LEADING_VALUE flag.

• PF_TRAILING. This mask is a combination of the PF_TRAILING_SPACES
flag and the PF_TRAILING_VALUE flag.

• PF_NUMERIC_STRING_MASK. This mask may be used to isolate the
following flags: PF_LEADING_MINUS, PF_LEADING_SIGN,
PF_TRAILING_CREDIT, PF_TRAILING_DEBIT, PF_TRAILING_MINUS, and
PF_TRAILING_SIGN.

Table 8: CodeBridge Library Flag Definitions

Name Value Description

PF_ASSERT_SIGNED 0x00000008 COBOL argument must be
signed.

PF_ASSERT_UNSIGNED 0x00000010 COBOL argument must be
unsigned.

PF_C_DATA_IS_ANSI 0x04000000 C characters are from ANSI
codepage.

PF_C_DATA_IS_OEM 0x08000000 C characters are from OEM
codepage.

PF_IN 0x00000020 Input argument for C function.

PF_INTEGER_ONLY 0x00000040 COBOL argument must be an
integer.

PF_LEADING 0x00000180 Mask for leading strip/fill.

PF_LEADING_MINUS 0x00000001 Place “-” before negative value.

PF_LEADING_SIGN 0x00000000 Place “+” or “-” before value.

PF_LEADING_SPACES 0x00000080 Strip/fill leading spaces.

PF_LEADING_VALUE 0x00000100 Strip/fill leading value.

PF_NO_NULL_POINTER 0x00000200 Disallow NULL value for pointer.

PF_NO_SIZE_ERROR 0x00000400 Ignore numeric size errors.

PF_NUMERIC_STRING_MASK 0x00000007 numeric_string sign handling
mask.

PF_OCCURS 0x00000800 Parameter is an array.

PF_OPTIONAL 0x00001000 Parameter is optional.

Table 8: CodeBridge Library Flag Definitions (Cont.)

Name Value Description

PF_OUT 0x00002000 Output parameter from C
function.

136 • Appendix F: CodeBridge Library Functions CodeBridge User's Guide

PF_POINTER_MAX_SIZE 0x00004000 Maximize pointer size (all ones).

PF_POINTER_RESET_OFFSET 0x00008000 Clear pointer offset.

PF_REPEAT 0x00010000 Parameter repeated multiple
times.

PF_RETURN_VALUE 0x00020000 Return value of the C function.

PF_ROUNDED 0x00040000 Round last digit if lost precision.

PF_SCALED 0x00080000 On input, multiply by 10value;
on output, divide by 10value.

PF_SILENT 0x00100000 Suppress error message display.

PF_SIZE 0x00200000 Override default size of string.

PF_TRAILING 0x00C00000 Mask for trailing strip/fill.

PF_TRAILING_CREDIT 0x00000006 Place “CR” after negative value.

PF_TRAILING_DEBIT 0x00000007 Place “DB” after negative value.

PF_TRAILING_MINUS 0x00000005 Place “-”after negative value.

PF_TRAILING_SIGN 0x00000004 Place “+” or “-” after value

PF_TRAILING_SPACES 0x00400000 Strip/fill trailing spaces.

PF_TRAILING_VALUE 0x00800000 Strip/fill trailing value.

PF_UNSIGNED 0x01000000 C parameter is unsigned.

PF_VALUE_IF_OMITTED 0x02000000 Override value for omitted
argument.

AssertDigits

AssertDigits returns TRUE if the number of digits for the COBOL argument is
in the range specified by MinValue and MaxValue; otherwise, the function
returns FALSE. This function also returns FALSE if the argument is not
numeric.

If the COBOL CALL statement omits an argument, the value that is
substituted for the omitted argument is not checked by this function. See the
discussion on managing omitted arguments (on page 36).

The use of P-scaling in the COBOL program will increase the digit length by
the number of P symbols specified in the PICTURE character-string. For
example, all of the PICTURE character-strings 9(8), 9(5)P(3), and VP(3)9(5)
describe a data item with a digit length of eight for CodeBridge.

Calling Sequence

Error! Not a valid filename.

ArgCount is the argument count for the current COBOL CALL.

CodeBridge User's Guide Appendix F: CodeBridge Library Functions • 137

ArgNumber is -1 for the argument in the GIVING (RETURNING) phrase or the
zero-based number of an argument from the USING phrase.

Arguments is the address of the argument descriptor array.

Flags modify the behavior of data validation. Valid flag values for
AssertDigits are: PF_OPTIONAL, PF_SILENT, and PF_VALUE_IF_OMITTED.
See Table 8 on page 135.

The value of the PF_OPTIONAL and PF_VALUE_IF_OMITTED flags must be
the same
as the corresponding conversion call, such as CobolToFloat (on page 145) or
FloatToCobol (on page 156), for that argument.

MaxValue is the maximum allowed length, in digits.

MinValue is the minimum allowed length, in digits.

Note 1 The C construct, ~0, may be used to indicate a value of all ones.

Note 2 MaxValue and MinValue may be specified in either order. The
function will reverse their values if necessary.

AssertDigitsLeft

AssertDigitsLeft returns TRUE if the number of digits to the left of the
decimal point for the COBOL argument is in the range specified by MinValue
and MaxValue; otherwise, the function returns FALSE. This function also
returns FALSE if the argument is not numeric.

If the COBOL CALL statement omits an argument, the value that is
substituted for the omitted argument is not checked by this function. See the
discussion on managing omitted arguments (on page 36).

The use of P-scaling in the COBOL program will increase the number of digits
to the left of the decimal point by the number of P symbols specified in the
PICTURE character-string that occur to the left of the decimal point. For
example, both of the PICTURE character-strings 9(8) and 9(5)P(3) describe a
data item with eight digits to the left of the decimal point for CodeBridge.

Calling Sequence

Error! Not a valid filename.

ArgCount is the argument count for the current COBOL CALL.

ArgNumber is -1 for the argument in the GIVING (RETURNING) phrase or the
zero-based number of an argument from the USING phrase.

Arguments is the address of the argument descriptor array.

Flags modify the behavior of data validation. Valid flag values for
AssertDigitsLeft are: PF_OPTIONAL, PF_SILENT, and
PF_VALUE_IF_OMITTED. See Table 8 on page 135.

138 • Appendix F: CodeBridge Library Functions CodeBridge User's Guide

The value of the PF_OPTIONAL and PF_VALUE_IF_OMITTED flags must be
the same as the corresponding conversion call, such as CobolToFloat (on
page 145) or FloatToCobol (on page 156), for that argument.

MaxValue is the maximum allowed digits to the left of the decimal point.

MinValue is the minimum allowed digits to the left of the decimal point.

Note 1 The C construct, ~0, may be used to indicate a value of all ones.

Note 2 MaxValue and MinValue may be specified in either order. The
function will reverse their values if necessary.

AssertDigitsRight

AssertDigitsRight returns TRUE if the number of digits to the right of the
decimal point for the COBOL argument is in the range specified by MinValue
and MaxValue; otherwise, the function returns FALSE. This function also
returns FALSE if the argument is not numeric.

If the COBOL CALL statement omits an argument, the value that is
substituted for the omitted argument is not checked by this function. See the
discussion on managing omitted arguments (on page 36).

The use of P-scaling in the COBOL program will increase the number of digits
to the right of the decimal point by the number of P symbols specified in the
PICTURE character-string that occur to the right of the decimal point. For
example, both of the PICTURE character-strings V9(8) and VP(3)9(5) describe
a data item with eight digits to the right of the decimal point for CodeBridge.

Calling Sequence

Error! Not a valid filename.

ArgCount is the argument count for the current COBOL CALL.

ArgNumber is -1 for the argument in the GIVING (RETURNING) phrase or the
zero-based number of an argument from the USING phrase.

Arguments is the address of the argument descriptor array.

Flags modify the behavior of data validation. Valid flag values for
AssertDigitsRight are: PF_OPTIONAL, PF_SILENT, and
PF_VALUE_IF_OMITTED. See Table 8 on page 135.

The value of the PF_OPTIONAL and PF_VALUE_IF_OMITTED flags must be
the same as the corresponding conversion call, such as CobolToFloat (on
page 145) or FloatToCobol (on page 156), for that argument.

MaxValue is the maximum allowed digits to the right of the decimal point.

MinValue is the minimum allowed digits to the right of the decimal point.

Note 1 The C construct, ~0, may be used to indicate a value of all ones.

CodeBridge User's Guide Appendix F: CodeBridge Library Functions • 139

Note 2 MaxValue and MinValue may be specified in either order. The
function will reverse their values if necessary.

AssertLength

AssertLength returns TRUE if the length of the COBOL argument (in bytes) is
in the range specified by MinValue and MaxValue; otherwise, the function
returns FALSE.

If the COBOL CALL statement omits an argument, the value that is
substituted for the omitted argument is not checked by this function. See the
discussion on managing omitted arguments (on page 36).

Calling Sequence

Error! Not a valid filename.

ArgCount is the argument count for the current COBOL CALL.

ArgNumber is -1 for the argument in the GIVING (RETURNING) phrase or the
zero-based number of an argument from the USING phrase.

Arguments is the address of the argument descriptor array.

Flags modify the behavior of data validation. Valid flag values for
AssertLength are: PF_OPTIONAL, PF_SILENT, and PF_VALUE_IF_OMITTED.
See Table 8 on page 135.

The value of the PF_OPTIONAL and PF_VALUE_IF_OMITTED flags must be
the same as the corresponding conversion call, such as CobolToFloat (on
page 145) or FloatToCobol (on page 156), for that argument.

MaxValue is the maximum allowed length, in bytes.

MinValue is the minimum allowed length, in bytes.

Note 1 The C construct, ~0, may be used to indicate a value of all ones.

Note 2 MaxValue and MinValue may be specified in either order. The
function will reverse their values if necessary.

AssertSigned

AssertSigned returns TRUE if the COBOL argument is signed; otherwise, the
function returns FALSE.

If the COBOL CALL statement omits an argument, the value that is
substituted for the omitted argument is not checked by this function. See the
discussion on managing omitted arguments (on page 36).

140 • Appendix F: CodeBridge Library Functions CodeBridge User's Guide

Calling Sequence

Error! Not a valid filename.

ArgCount is the argument count for the current COBOL CALL.

ArgNumber is -1 for the argument in the GIVING (RETURNING) phrase or the
zero-based number of an argument from the USING phrase.

Arguments is the address of the argument descriptor array.

Flags modify the behavior of data validation. Valid flag values for
AssertSigned are: PF_OPTIONAL, PF_SILENT, and PF_VALUE_IF_OMITTED.
See Table 8 on page 135.

The value of the PF_OPTIONAL and PF_VALUE_IF_OMITTED flags must be
the same as the corresponding conversion call, such as CobolToFloat (on
page 145) or FloatToCobol (on page 156), for that argument.

AssertUnsigned

AssertUnsigned returns TRUE if the COBOL argument is unsigned; otherwise,
the function returns FALSE.

If the COBOL CALL statement omits an argument, the value that is
substituted for the omitted argument is not checked by this function. See the
discussion on managing omitted arguments (on page 36).

Calling Sequence

Error! Not a valid filename.

ArgCount is the argument count for the current COBOL CALL.

ArgNumber is -1 for the argument in the GIVING (RETURNING) phrase or the
zero-based number of an argument from the USING phrase.

Arguments is the address of the argument descriptor array.

Flags modify the behavior of data validation. Valid flag values for
AssertUnsigned are: PF_OPTIONAL, PF_SILENT, and
PF_VALUE_IF_OMITTED. See Table 8 on page 135.

The value of the PF_OPTIONAL and PF_VALUE_IF_OMITTED flags must be
the same as the corresponding conversion call, such as CobolToFloat (on
page 145) or FloatToCobol (on page 156), for that argument.

BufferLength

BufferLength obtains the length (in bytes) of the data buffer that has been
allocated for conversion to and from the COBOL argument. For COBOL non-
numeric arguments, this normally would be one more than the length of the

CodeBridge User's Guide Appendix F: CodeBridge Library Functions • 141

argument. For COBOL numeric arguments, this normally would be four more
than the digit length of the argument. This function returns TRUE if it is
successful and FALSE if there is an error.

Note The BufferLength function may be used only in combination with one of
the input string functions: CobolToGeneralString (on page 146),
CobolToNumericString (on page 148), or CobolToString (on page 152).
ArgNumber must have the same value in the BufferLength function call and
the corresponding input string function call. The call to BufferLength may
precede or follow the call to the corresponding input string function.

Calling Sequence

Error! Not a valid filename.

ArgCount is the argument count for the current COBOL CALL.

ArgNumber is -1 for the argument in the GIVING (RETURNING) phrase or the
zero-based number of an argument from the USING phrase.

Arguments is the address of the argument descriptor array.

ConvTable is the internal conversion table allocated by the ConversionStartup
(on page 154) function.

Flags modify the behavior of the conversion. Valid flag values for
BufferLength are: PF_OCCURS and PF_SILENT. See Table 8 on page 135.

Occurs is the array size if the C parameter is an array. A value of zero may be
specified if the C parameter is a scalar; negative values for the Occurs
parameter are allowed, but are treated as equivalent to zero. If the value is
greater than 1, we recommend the PF_OCCURS flag be set, although it is for
documentation purposes only.

Note For any given argument, the buffer length is a constant regardless of
whether the argument is a scalar or an array. Thus, if you are writing you own
C routine, there is no reason to have a buffer length parameter that is an
array, even when the related C string parameter is an array.

Parameter is the address of the C parameter where the buffer length will be
stored.

Size is the size of the C parameter.

CobolArgCount

CobolArgCount obtains that actual number of arguments passed from the
calling COBOL program. This function returns TRUE if it is successful and
FALSE if there is an error.

Note The CobolArgCount function is one of the trivial conversion functions.
See the discussion on trivial conversions (on page 210).

142 • Appendix F: CodeBridge Library Functions CodeBridge User's Guide

Calling Sequence

Error! Not a valid filename.

ArgCount is the argument count for the current COBOL CALL.

Flags modify the behavior of the conversion. The only valid flag value for
CobolArgCount is PF_SILENT. See Table 8 on page 135.

Parameter is the address of the C parameter where the argument count will
be stored.

Size is the size of the C parameter.

CobolDescriptorAddress

CobolDescriptorAddress obtains the address of the COBOL argument. This
function returns TRUE if it is successful and FALSE if there is an error.

Calling Sequence

Error! Not a valid filename.

ArgCount is the argument count for the current COBOL CALL.

ArgNumber is -1 for the argument in the GIVING (RETURNING) phrase or the
zero-based number of an argument from the USING phrase.

Arguments is the address of the argument descriptor array.

Flags modify the behavior of the conversion. The only valid flag value for
CobolDescriptorAddress is PF_SILENT. See Table 8 on page 135.

Parameter is the address of the C pointer where the address of the COBOL
argument will
be stored.

CobolDescriptorDigits

CobolDescriptorDigits obtains the digit count for the COBOL argument. This
function returns TRUE if it is successful and FALSE if there is an error.

Calling Sequence

Error! Not a valid filename.

ArgCount is the argument count for the current COBOL CALL.

ArgNumber is -1 for the argument in the GIVING (RETURNING) phrase or the
zero-based number of an argument from the USING phrase.

Arguments is the address of the argument descriptor array.

CodeBridge User's Guide Appendix F: CodeBridge Library Functions • 143

Flags modify the behavior of the conversion. The only valid flag value
CobolDescriptorDigits is PF_SILENT. See Table 8 on page 135.

Parameter is the address of the C parameter where the digit count will be
stored.

Size is the size of the C parameter.

CobolDescriptorLength

CobolDescriptorLength obtains the length (in bytes) of the COBOL argument.
This function returns TRUE if it is successful and FALSE if there is an error.

Calling Sequence

Error! Not a valid filename.

ArgCount is the argument count for the current COBOL CALL.

ArgNumber is -1 for the argument in the GIVING (RETURNING) phrase or the
zero-based number of an argument from the USING phrase.

Arguments is the address of the argument descriptor array.

Flags modify the behavior of the conversion. The only valid flag value for
CobolDescriptorLength is PF_SILENT. See Table 8 on page 135.

Parameter is the address of the C parameter where the length will be stored.

Size is the size of the C parameter.

CobolDescriptorScale

CobolDescriptorScale obtains the scale (the number of digits to the right of
the decimal point) of the COBOL argument. This function returns TRUE if it is
successful and FALSE if there is an error.

Calling Sequence

Error! Not a valid filename.

ArgCount is the argument count for the current COBOL CALL.

ArgNumber is -1 for the argument in the GIVING (RETURNING) phrase or the
zero-based number of an argument from the USING phrase.

Arguments is the address of the argument descriptor array.

Flags modify the behavior of the conversion. The only valid flag value
CobolDescriptorScale is PF_SILENT. See Table 8 on page 135.

144 • Appendix F: CodeBridge Library Functions CodeBridge User's Guide

Parameter is the address of the C parameter where the scale will be stored.
The scale value returned is the arithmetic complement of the value in the
COBOL descriptor.

Size is the size of the C parameter.

CobolDescriptorType

CobolDescriptorType obtains the type of the COBOL argument. This function
returns TRUE if it is successful and FALSE if there is an error.

Calling Sequence

Error! Not a valid filename.

ArgCount is the argument count for the current COBOL CALL.

ArgNumber is -1 for the argument in the GIVING (RETURNING) phrase or the
zero-based number of an argument from the USING phrase.

Arguments is the address of the argument descriptor array.

Flags modify the behavior of the conversion. The only valid flag value for
CobolDescriptorType is PF_SILENT. See Table 8 on page 135.

Parameter is the address of the C parameter where the COBOL argument
type value will be stored. See the discussion of String Arrays (on page 52).

Size is the size of the C parameter.

CobolInitialState

CobolInitialState obtains the value of the initial state flag from the current
COBOL CALL. This function returns TRUE if it is successful and FALSE if
there is an error.

Note The CobolInitialState function is one of the trivial conversion functions.
See the discussion on trivial conversions (on page 210).

When State is zero, the C function may choose to (re)initialize any “state”
variables it contains. When State is non-zero, the C function may choose to
use the current values of any “state” variables.

Note A “state” variable is one whose contents are normally preserved
between
function calls.

Calling Sequence

Error! Not a valid filename.

CodeBridge User's Guide Appendix F: CodeBridge Library Functions • 145

Flags modify the behavior of the conversion. The only valid flag value for
CobolInitialState is PF_SILENT. See Table 8 on page 135.

Parameter is the address of the C parameter where the initial state flag will
be stored. It may also be the address of an array of floating-point values if
the PF_OCCURS flag is set.

Size is the size of the C parameter.

State is the initial state flag for the current COBOL CALL.

CobolToFloat

CobolToFloat converts the COBOL numeric argument to a C floating-point
value. This function returns TRUE if it is successful and FALSE if there is an
error.

By convention, this function should be called prior to the FloatToCobol (on
page 156) function for the same argument number. Do not set the PF_IN flag
for output-only conversions. Because the call to this function may perform
memory management operations that are not needed for output-only
conversions, this call may be omitted.

Calling Sequence

Error! Not a valid filename.

ArgCount is the argument count for the current COBOL CALL.

ArgNumber is -1 for the argument in the GIVING (RETURNING) phrase or the
zero-based number of an argument from the USING phrase.

Arguments is the address of the argument descriptor array.

Flags modify the behavior of the conversion. Valid flag values (see Table 8
on page 135) for CobolToFloat are:

• PF_ASSERT_SIGNED • PF_OPTIONAL

• PF_ASSERT_UNSIGNED • PF_REPEAT

• PF_IN • PF_ROUNDED

• PF_NO_NULL_POINTER • PF_SILENT

• PF_NO_SIZE_ERROR • PF_VALUE_IF_OMITTED

• PF_OCCURS

Occurs is the array size if the C parameter is an array. A value of zero may be
specified if the C parameter is a scalar; negative values for the Occurs
parameter are allowed, but are treated as equivalent to zero. If the value is
greater than 1, we recommend the PF_OCCURS flag be set, although it is for
documentation purposes only.

146 • Appendix F: CodeBridge Library Functions CodeBridge User's Guide

Omitted is the default value for omitted arguments if either of the
PF_OPTIONAL or PF_VALUE_IF_OMITTED flags is set.

Parameter is a pointer to the address of the C parameter where the floating-
point value will be stored.

Repeat is the repeat count if PF_REPEAT is set.

Size is the size of the C parameter.

CobolToGeneralString

CobolToGeneralString converts the COBOL argument to a null-terminated C
string. For COBOL numeric arguments, this function has the same behavior
as CobolToNumericString (on page 148). For COBOL non-numeric
arguments, this function has the same behavior as CobolToString (on page
152). This function returns TRUE if it is successful and FALSE if there is an
error.

By convention, this function should be called prior to the
GeneralStringToCobol (on page 157) function for the same argument
number. Do not set the PF_IN flag for output-only conversions. Because the
call to this function may perform memory management operations that are
not needed for output-only conversions, this call may be omitted.

Calling Sequence

Error! Not a valid filename.

ArgCount is the argument count for the current COBOL CALL.

ArgNumber is -1 for the argument in the GIVING (RETURNING) phrase or the
zero-based number of an argument from the USING phrase.

Arguments is the address of the argument descriptor array.

ConvTable is the internal conversion table allocated by ConversionStartup
(on page 154).

Flags modify the behavior of the conversion. The flags available for
CobolToGeneralString are the union of the flags for CobolToNumericString
and CobolToString. Some flags, such as PF_LEADING_MINUS, are ignored
for non-numeric strings. Other flags, such as PF_LEADING_SPACES are
ignored for numeric strings. Valid flag values (see Table 8 on page 135) for
CobolToGeneralString are:

• PF_ASSERT_SIGNED • PF_OPTIONAL

• PF_ASSERT_UNSIGNED • PF_REPEAT

• PF_C_DATA_IS_ANSI • PF_ROUNDED

• PF_C_DATA_IS_OEM • PF_SILENT

CodeBridge User's Guide Appendix F: CodeBridge Library Functions • 147

• PF_IN • PF_SIZE

• PF_LEADING_MINUS • PF_TRAILING_CREDIT

• PF_LEADING_SIGN • PF_TRAILING_DEBIT

• PF_LEADING_SPACES • PF_TRAILING_MINUS

• PF_LEADING_VALUE • PF_TRAILING_SIGN

• PF_NO_NULL_POINTER • PF_TRAILING_SPACES

• PF_NO_SIZE_ERROR • PF_TRAILING_VALUE

• PF_OCCURS • PF_VALUE_IF_OMITTED

Occurs is the array size if the C parameter is an array. A value of zero may be
specified if the C parameter is a scalar; negative values for the Occurs
parameter are allowed, but are treated as equivalent to zero. If the value is
greater than 1, we recommend the PF_OCCURS flag be set, although it is for
documentation purposes only.

Omitted is the default value for omitted arguments if either of the
PF_OPTIONAL or PF_VALUE_IF_OMITTED flags is set.

Parameter is the address of the C pointer where the address of the string will
be stored. It may also be the address of an array of string values if the
PF_OCCURS flag is set.

Repeat is the repeat count if the PF_REPEAT flag is set.

Size is the conversion buffer length override when the PF_SIZE flag is set. If
the PF_SIZE flag is not set, the default conversion buffer length is the greater
of one more than the length of the COBOL argument and four more than the
digit length of the COBOL argument. The digit length of a COBOL argument is
the sum of the number of 9 and P symbols used in its PICTURE character-
string.

Value1 is the strip/fill character value if the PF_LEADING_VALUE flag is set.

Value2 is the strip/fill character value if the PF_TRAILING_VALUE flag is set.

CobolToInteger

CobolToInteger converts the COBOL numeric argument to a C integer value.
This function returns TRUE if it is successful and FALSE if there is an error.

By convention, this function should be called prior to the IntegerToCobol (on
page 161) function for the same argument number. Do not set the PF_IN flag
for output-only conversions. Because the call to this function may perform
memory management operations that are not needed for output-only
conversions, this call may be omitted.

148 • Appendix F: CodeBridge Library Functions CodeBridge User's Guide

Calling Sequence

Error! Not a valid filename.

ArgCount is the argument count for the current COBOL CALL.

ArgNumber is -1 for the argument in the GIVING (RETURNING) phrase or the
zero-based number of an argument from the USING phrase.

Arguments is the address of the argument descriptor array.

Flags modify the behavior of the conversion. Valid flag values (see Table 8
on page 135) for CobolToInteger are:

• PF_ASSERT_SIGNED • PF_OPTIONAL

• PF_ASSERT_UNSIGNED • PF_REPEAT

• PF_IN • PF_ROUNDED

• PF_INTEGER_ONLY • PF_SCALED

• PF_NO_NULL_POINTER • PF_SILENT

• PF_NO_SIZE_ERROR • PF_UNSIGNED

• PF_OCCURS • PF_VALUE_IF_OMITTED

Occurs is the array size if the C parameter is an array. A value of zero may be
specified if the C parameter is a scalar; negative values for the Occurs
parameter are allowed, but are treated as equivalent to zero. If the value is
greater than 1, we recommend the PF_OCCURS flag be set, although it is for
documentation purposes only.

Omitted is the default value for omitted arguments if either of the
PF_OPTIONAL or PF_VALUE_IF_OMITTED flags is set.

Parameter is a pointer to the address of the C parameter where the integer
value will be stored. It may also be the address of an array of integer values
if the PF_OCCURS flag is set.

Repeat is the repeat count if the PF_REPEAT flag is set.

Scale is the scale value if the PF_SCALED flag is set. It represents the power
of ten by which to multiply the COBOL argument.

Size is the size of the C parameter.

CobolToNumericString

CobolToNumericString converts the COBOL numeric argument to a null-
terminated C string. This function returns TRUE if it is successful and FALSE
if there is an error.

By convention, this function should be called prior to the
NumericStringToCobol (on page 162) function for the same argument
number. Do not set the PF_IN flag for output-only conversions. Because the

CodeBridge User's Guide Appendix F: CodeBridge Library Functions • 149

call to this function may perform memory management operations that are
not needed for output-only conversions, this call may be omitted.

Calling Sequence

Error! Not a valid filename.

ArgCount is the argument count for the current COBOL CALL.

ArgNumber is -1 for the argument in the GIVING (RETURNING) phrase or the
zero-based number of an argument from the USING phrase.

Arguments is the address of the argument descriptor array.

ConvTable is the internal conversion table allocated by ConversionStartup
(on page 154).

Flags modify the behavior of the conversion. Valid flag values (see Table 8
on page 135) for CobolToNumericString are:

• PF_ASSERT_SIGNED • PF_REPEAT

• PF_ASSERT_UNSIGNED • PF_ROUNDED

• PF_IN • PF_SILENT

• PF_LEADING_MINUS • PF_SIZE

• PF_LEADING_SIGN • PF_TRAILING_CREDIT

• PF_NO_NULL_POINTER • PF_TRAILING_DEBIT

• PF_NO_SIZE_ERROR • PF_TRAILING_MINUS

• PF_OCCURS • PF_TRAILING_SIGN

• PF_OPTIONAL • PF_VALUE_IF_OMITTED

Occurs is the array size if the C parameter is an array. A value of zero may be
specified if the C parameter is a scalar; negative values for the Occurs
parameter are allowed, but are treated as equivalent to zero. If the value is
greater than 1, we recommend the PF_OCCURS flag be set, although it is for
documentation purposes only.

Omitted is the default value for omitted arguments if either of the
PF_OPTIONAL or PF_VALUE_IF_OMITTED flags is set.

Parameter is the address of the C pointer where the address of the string will
be stored. It may also be the address of an array of string values if the
PF_OCCURS flag is set.

Repeat is the repeat count if the PF_REPEAT flag is set.

Size is the conversion buffer length override when the PF_SIZE flag is set. If
the PF_SIZE flag is not set, the default conversion buffer length is the greater
of one more than the length of the COBOL argument and four more than the
digit length of the COBOL argument. The digit length of a COBOL argument is

150 • Appendix F: CodeBridge Library Functions CodeBridge User's Guide

the sum of the number of 9 and P symbols used in its PICTURE character-
string.

CobolToPointerAddress

CobolToPointerAddress obtains the effective address of the COBOL pointer
argument by adding its offset and base address components. This function
returns TRUE if it is successful and FALSE if there is an error.

Calling Sequence

Error! Not a valid filename.

ArgCount is the argument count for the current COBOL CALL.

ArgNumber is -1 for the argument in the GIVING (RETURNING) phrase or the
zero-based number of an argument from the USING phrase.

Arguments is the address of the argument descriptor array.

Flags modify the behavior of the conversion. The only valid flag value for
CobolToPointerAddress is PF_SILENT. See Table 8 on page 135.

Parameter is the address of the C pointer where the effective address of the
COBOL pointer argument will be stored.

CobolToPointerBase

CobolToPointerBase obtains the base address component of the COBOL
pointer argument. This function returns TRUE if it is successful and FALSE if
there is an error.

Calling Sequence

Error! Not a valid filename.

ArgCount is the argument count for the current COBOL CALL.

ArgNumber is -1 for the argument in the GIVING (RETURNING) phrase or the
zero-based number of an argument from the USING phrase.

Arguments is the address of the argument descriptor array.

Flags modify the behavior of the conversion. Valid flag values for
CobolToPointerBase are: PF_IN and PF_SILENT. See Table 8 on page 135.

Parameter is the address of the C pointer where the base address
component of the COBOL pointer argument will be stored.

CodeBridge User's Guide Appendix F: CodeBridge Library Functions • 151

CobolToPointerLength

CobolToPointerLength obtains the effective length of the COBOL pointer
argument by subtracting its offset component from its size component. This
function returns TRUE if it is successful and FALSE if there is an error.

Calling Sequence

Error! Not a valid filename.

ArgCount is the argument count for the current COBOL CALL.

ArgNumber is -1 for the argument in the GIVING (RETURNING) phrase or the
zero-based number of an argument from the USING phrase.

Arguments is the address of the argument descriptor array.

Flags modify the behavior of the conversion. The only valid flag value for
CobolToPointerLength is PF_SILENT. See Table 8 on page 135.

Parameter is the address of the C parameter where the effective length of the
COBOL pointer argument will be stored.

Size is the size of the C parameter.

CobolToPointerOffset

CobolToPointerOffset obtains the offset component of the COBOL pointer
argument. This function returns TRUE if it is successful and FALSE if there is
an error.

Calling Sequence

Error! Not a valid filename.

ArgCount is the argument count for the current COBOL CALL.

ArgNumber is -1 for the argument in the GIVING (RETURNING) phrase or the
zero-based number of an argument from the USING phrase.

Arguments is the address of the argument descriptor array.

Flags modify the behavior of the conversion. Valid flag values for
CobolToPointerOffset are: PF_IN and PF_SILENT. See Table 8 on page 135.

Parameter is a pointer to the address of the C parameter where the offset
component of the COBOL pointer argument will be stored.

Size is the size of the C parameter.

152 • Appendix F: CodeBridge Library Functions CodeBridge User's Guide

CobolToPointerSize

CobolToPointerSize obtains the size component of the COBOL pointer
argument. This function returns TRUE if it is successful and FALSE if there is
an error.

Calling Sequence

Error! Not a valid filename.

ArgCount is the argument count for the current COBOL CALL.

ArgNumber is -1 for the argument in the GIVING (RETURNING) phrase or the
zero-based number of an argument from the USING phrase.

Arguments is the address of the argument descriptor array.

Flags modify the behavior of the conversion. Valid flag values for
CobolToPointerSize are: PF_IN and PF_SILENT. See Table 8 on page 135.

Parameter is a pointer to the address of the C parameter where the size
component of the COBOL pointer argument will be stored.

Size is the size of the C parameter.

CobolToString

CobolToString converts the COBOL non-numeric argument to a null-
terminated C string. This function returns TRUE if it is successful and FALSE
if there is an error.

By convention, this function should be called prior to the StringToCobol (on
page 165) function for the same argument number. Do not set the PF_IN flag
for output-only conversions. Because the call to this function may perform
memory management operations that are not needed for output-only
conversions, this call may be omitted.

Calling Sequence

Error! Not a valid filename.

ArgCount is the argument count for the current COBOL CALL.

ArgNumber is -1 for the argument in the GIVING (RETURNING) phrase or the
zero-based number of an argument from the USING phrase.

Arguments is the address of the argument descriptor array.

ConvTable is the internal conversion table allocated by ConversionStartup
(on page 154).

Flags modify the behavior of the conversion. Valid flag values (see Table 8
on page 135) for CobolToString are:

CodeBridge User's Guide Appendix F: CodeBridge Library Functions • 153

• PF_C_DATA_IS_ANSI • PF_OPTIONAL

• PF_C_DATA_IS_OEM • PF_REPEAT

• PF_IN • PF_SILENT

• PF_LEADING_SPACES • PF_SIZE

• PF_LEADING_VALUE • PF_TRAILING_SPACES

• PF_NO_NULL_POINTER • PF_TRAILING_VALUE

• PF_OCCURS • PF_VALUE_IF_OMITTED.

Occurs is the array size if the C parameter is an array. A value of zero may be
specified if the C parameter is a scalar; negative values for the Occurs
parameter are allowed, but are treated as equivalent to zero. If the value is
greater than 1, we recommend the PF_OCCURS flag be set, although it is for
documentation purposes only.

Omitted is the default value for omitted arguments if either of the
PF_OPTIONAL or PF_VALUE_IF_OMITTED flags is set.

Parameter is the address of the C pointer where the address of the string will
be stored. It may also be the address of an array of string values if the
PF_OCCURS flag is set.

Repeat is the repeat count if the PF_REPEAT flag is set.

Size is the conversion buffer length override when the PF_SIZE flag is set. If
the PF_SIZE flag is not set, the default conversion buffer length is one more
than the length of the COBOL argument.

Value1 is the strip/fill character value if the PF_LEADING_VALUE flag is set.

Value2 is the strip/fill character value if the PF_TRAILING_VALUE flag is set.

CobolWindowsHandle

CobolWindowsHandle obtains the Windows handle of the current COBOL
CALL. This function returns TRUE if it is successful and FALSE if there is an
error.

Note The CobolWindowsHandle function is one of the trivial conversion
functions. See the discussion on trivial conversions (on page 210).

Calling Sequence

Error! Not a valid filename.

Flags modify the behavior of the conversion. The only valid flag value for
CobolWindowsHandle is PF_SILENT. see Table 8 on page 135.

154 • Appendix F: CodeBridge Library Functions CodeBridge User's Guide

Parameter is the address of the C parameter where the Windows handle will
be stored.

Size is the size of the C parameter.

WindowsHandle is the Windows handle for the current COBOL CALL. This
attribute is not available on UNIX platforms as it can cause compilation
errors.

ConversionCleanup

ConversionCleanup must be called just prior to returning to the calling
COBOL program. It releases all memory that has been allocated by other
conversion functions.

Note ConversionCleanup must be called for every exit back to the calling
COBOL program when the C function has multiple return paths.

Calling Sequence

Error! Not a valid filename.

ArgCount is the argument count for the current COBOL CALL.

ConvTable is the internal conversion table allocated by ConversionStartup
(on page 154).

ConversionStartup

ConversionStartup must be called once at the beginning of the C function
called from COBOL and should precede all calls to other conversion
functions. It allocates a block of memory for each COBOL argument (based
on the value of ArgCount). This block contains information that must be
preserved between calls to other conversion functions. This function returns
TRUE if it is successful and FALSE if there is an error.

Calling Sequence

Error! Not a valid filename.

ArgCount is the argument count for the current COBOL CALL.

ConvTable is the address of a C pointer where the address of the internal
conversion table will be stored.

Name is name of the C function that was called by the COBOL program.

Version is the minimum version of the CodeBridge Library that can provide all
the conversion and validation features required by the C function. For

CodeBridge User's Guide Appendix F: CodeBridge Library Functions • 155

example, to specify that the CodeBridge Library for RM/COBOL version 9 is
required, the value for Version should be 0x900.

DiagnosticMode

DiagnosticMode controls the display of error messages during execution. If
Flag contains the value, DF_SILENT, no error messages will be displayed. If
Flag contains the value, DF_VERBOSE, error messages will always be
displayed. If Flag contains the value, DF_NORMAL, the display of error
messages is governed by the PF_SILENT flag in each call to the CodeBridge
Library.

Note DiagnosticMode has global scope. It affects all conversion and
validation calls until another DiagnosticMode call is made. Before the first
call to DiagnosticMode, the display of error messages is governed by the
PF_SILENT flag in each call to the CodeBridge Library as if DiagnosticMode
had been called with the DF_NORMAL flag value.

Calling Sequence

Error! Not a valid filename.

Flag modifies the display of the error message. Valid flag values for
DiagnosticMode are the following:

Name Value Description

DF_SILENT -1 Diagnostic messages are never
displayed.

DF_NORMAL 0 Diagnostic messages are displayed
unless the PF_SILENT flag is set in the
CodeBridge Library function call.

DF_VERBOSE 1 Diagnostic messages are always
displayed.

EffectiveLength

EffectiveLength obtains the length of the C string after conversion from the
COBOL argument. This includes removal of leading and/or trailing
characters. The value is the same as the value that would be returned by the
C library function, strlen. This function returns TRUE if it is successful and
FALSE if there is an error.

Note The EffectiveLength function may be used only in combination with one
of the input string functions: CobolToGeneralString (on page 146),
CobolToNumericString (on page 148), or CobolToString (on page 152).
ArgNumber must have the same value in the EffectiveLength function call

156 • Appendix F: CodeBridge Library Functions CodeBridge User's Guide

and the corresponding input string function call. The call to EffectiveLength
may precede or follow the call to the corresponding input string function.

Calling Sequence

Error! Not a valid filename.

ArgCount is the argument count for the current COBOL CALL.

ArgNumber is -1 for the argument in the GIVING (RETURNING) phrase or the
zero-based number of an argument from the USING phrase.

ConvTable is the internal conversion table allocated by ConversionStartup
(on page 154).

Flags modify the behavior of the conversion. Valid flag values for
EffectiveLength are: PF_OCCURS and PF_SILENT. See Table 8 on page 135.

Occurs is the array size if the C parameter is an array. A value of zero may be
specified if the C parameter is a scalar; negative values for the Occurs
parameter are allowed, but are treated as equivalent to zero. If the value is
greater than 1, we recommend the PF_OCCURS flag be set, although it is for
documentation purposes only.

Parameter is the address of the C parameter where the effective length will
be stored.

Size is the size of the C parameter.

FloatToCobol

FloatToCobol converts from a C floating-point value to the COBOL numeric
argument. This function returns TRUE if it is successful and FALSE if there is
an error.

By convention, the CobolToFloat (on page 145) function should be called
prior to this function for the same argument number. Do not set the PF_IN
flag for output-only conversions. Because the call to the CobolToFloat
function may perform memory management operations that are not needed
for output-only conversions, this call may be omitted.

Calling Sequence

Error! Not a valid filename.

ArgCount is the argument count for the current COBOL CALL.

ArgNumber is -1 for the argument in the GIVING (RETURNING) phrase or the
zero-based number of an argument from the USING phrase.

Arguments is the address of the argument descriptor array.

CodeBridge User's Guide Appendix F: CodeBridge Library Functions • 157

Flags modify the behavior of the conversion. Valid flag values (see Table 8
on page 135) for FloatToCobol are:

• PF_ASSERT_SIGNED • PF_REPEAT

• PF_ASSERT_UNSIGNED • PF_RETURN_VALUE

• PF_NO_SIZE_ERROR • PF_ROUNDED

• PF_OCCURS • PF_SILENT

• PF_OUT

Occurs is the array size if the C parameter is an array. A value of zero may be
specified if the C parameter is a scalar; negative values for the Occurs
parameter are allowed, but are treated as equivalent to zero. If the value is
greater than 1, we recommend the PF_OCCURS flag be set, although it is for
documentation purposes only.

Parameter is the address of the C parameter. It may also be the address of
an array of floating-point values if the PF_OCCURS flag is set.

Repeat is the repeat count if the PF_REPEAT flag is set.

Size is the size of the C parameter.

GeneralStringToCobol

GeneralStringToCobol converts a null-terminated C string to the COBOL
argument. For COBOL numeric arguments, this function has the same
behavior as NumericStringToCobol (on page 162). For COBOL non-numeric
arguments, this function has the same behavior as StringToCobol (on page
165). This function returns TRUE if it is successful and FALSE if there is an
error.

By convention, the CobolToGeneralString (on page 146) function should be
called prior to this function for the same argument number. Do not set the
PF_IN flag for output-only conversions. Because the call to the
CobolToGeneralString function may perform memory management
operations that are not needed for output-only conversions, this call may be
omitted.

Calling Sequence

Error! Not a valid filename.

ArgCount is the argument count for the current COBOL CALL.

ArgNumber is -1 for the argument in the GIVING (RETURNING) phrase or the
zero-based number of an argument from the USING phrase.

Arguments is the address of the argument descriptor array.

158 • Appendix F: CodeBridge Library Functions CodeBridge User's Guide

Flags modify the behavior of the conversion. The flags available for
GeneralStringToCobol are the union of the flags for NumericStringToCobol
and StringToCobol. Some flags, such as PF_LEADING_MINUS, are ignored
for non-numeric strings. Other flags, such as PF_LEADING_SPACES are
ignored for numeric strings. Valid flag values (see Table 8 on page 135) for
GeneralStringToCobol are:

• PF_ASSERT_SIGNED • PF_OUT

• PF_ASSERT_UNSIGNED • PF_REPEAT

• PF_C_DATA_IS_ANSI • PF_RETURN_VALUE

• PF_C_DATA_IS_OEM • PF_ROUNDED

• PF_IN • PF_SILENT

• PF_LEADING_SPACES • PF_SIZE

• PF_LEADING_VALUE • PF_TRAILING_SPACES

• PF_NO_SIZE_ERROR • PF_TRAILING_VALUE

• PF_OCCURS

Occurs is the array size if the C parameter is an array. A value of zero may be
specified if the C parameter is a scalar; negative values for the Occurs
parameter are allowed, but are treated as equivalent to zero. If the value is
greater than 1, we recommend the PF_OCCURS flag be set, although it is for
documentation purposes only.

Parameter is the address of the C parameter. It may also be the address of
an array of string values if the PF_OCCURS flag is set.

Repeat is the repeat count if the PF_REPEAT flag is set.

Size is the conversion buffer length override when the PF_SIZE flag is set. If
the PF_SIZE flag is not set, the default conversion buffer length is the greater
of one more than the length of the COBOL argument and four more than the
digit length of the COBOL argument. The digit length of a COBOL argument is
the sum of the number of 9 and P symbols used in its PICTURE character-
string. The setting of the PF_SIZE flag and the value of the Size parameter
must be the same as specified in the call to CobolToGeneralString (on page
146) for the same argument.

Value1 is the strip/fill character value if the PF_LEADING_VALUE flag is set.

Value2 is the strip/fill character value if the PF_TRAILING_VALUE flag is set.

GetCallerInfo

GetCallerInfo obtains information about the calling COBOL program. Such
information is particularly useful in error messages because it helps identify
the offending CALL statement. This function returns a pointer to a structure
that contains the information about the calling program.

CodeBridge User's Guide Appendix F: CodeBridge Library Functions • 159

Calling Sequence

Error! Not a valid filename.

The function has no arguments.

The structure pointed to by the return value is described by a type definition
in the supplied header file rtcallbk.h, which is included by the supplied header
file cbridge.h. For reference, the structure is as follows:

typedef struct tagCallerInfo

{

 /* version 1 and later */

 BIT16 Version; /* structure version; 1 is first version,

 2 is second version, ... */

 BIT16 Flags; /* flags; see #define CIF_... below */

 const char *ProgramLocation; /* line number of CALL or segment/offset of

 statement after CALL */

 const char *ProgramName; /* calling program-name (called name, may not

 match PROGRAM-ID program-name) */

 const char *ProgramFileName; /* calling program object file name (including

 full path) */

 const char *ProgramDateTime; /* calling program date and time compiled */

 /* version 2 and later */

 const char *ProgramID; /* calling program PROGRAM-ID program-name */

} CALLER_INFO;

Note A version 2 of the CALLER_INFO structure has been defined. Version
10 RM/COBOL produces version 2 of the CALLER_INFO structure and places
a 2 in the Version field of the structure. The version 2 CALLER_INFO
structure is the same as the version 1 structure except for the addition of a
new field at the end named ProgramID (this is illustrated above in the
complete layout of the CALLER_INFO structure in the rtcallbk.h header
provided with RM/COBOL version 10). The ProgramID field is a pointer to a
constant character string that contains the program-name specified in the
PROGRAM-ID paragraph of the calling program (truncated to thirty characters
in length if necessary). The ProgramName field from version 1 of the
structure points to the program-name of the calling program, but that
program-name is the name by which the calling program was called and
might not match the program-name specified in the PROGRAM-ID paragraph
when RM/COBOL’s “call by filename” calling method is used.

The flags in the Flags field of the CALLER_INFO structure have the following
meanings (as defined in rtcallbk.h):

#define CIF_LOCATION_ADDRESS 0x8000 /* indicates ProgramLocation

 is segment/offset */

#define CIF_NESTED_PROGRAM 0x4000 /* indicates calling program

 is a nested program */

The CIF_LOCATION_ADDRESS flag is set when the calling program was
compiled with the Q Compile Command Option, thus making line numbers
unavailable at runtime. In this case, the ProgramLocation entry points to a

160 • Appendix F: CodeBridge Library Functions CodeBridge User's Guide

string giving the segment/offset of the return location for the CALL
statement as shown in the DEBUG column of a compilation listing. When the
flag is not set, the ProgramLocation entry points to a string giving the source
line number of the CALL statement.

If GetCallerInfo is called when there is no calling COBOL program, pointers to
empty strings are returned in the CALLER_INFO structure.

Note There is no global or parameter attribute that can be placed in a
template file to cause the CodeBridge Builder to produce a call to
GetCallerInfo. The CodeBridge Library will automatically call GetCallerInfo
when displaying any error messages caused by conversion errors. A user-
written function, whether or not it uses other CodeBridge Library calls, may
call GetCallerInfo to add this information to its own error messages.

GetTerminationInfo

GetTerminationInfo obtains information about RM/COBOL runtime
termination. It is intended to be called from the COBOL-callable entry point,
RM_AddOnTerminate. This function returns a pointer to a structure that
contains the information about runtime termination.

Calling Sequence

Error! Not a valid filename.

The function has no arguments.

The structure pointed to by the return value is described by a type definition
in the supplied header file rtcallbk.h, which is included by the supplied header
file cbridge.h. For reference, the structure is as follows:

typedef struct tagTerminationInfo

 { /* version 1 and later */

 BIT16 Version; /* structure version;

 1 is first version,

 2 is second version, ... */

 BIT16 State; /* runtime state when error

 occurred; see #define TIS_...

 below */

 BIT16 ReturnCode; /* runtime return code */

 const char *ErrorCode; /* error code string pointer */

 const char *TermMsgs; /* termination messages string

 pointer */

} TERMINATION_INFO;

The values in the State field of the TERMINATION_INFO structure have the
following meanings (as defined in rtcallbk.h):

#define TIS_UNKNOWN 0

#define TIS_INITIALIZING 1

#define TIS_RUNNING 2

#define TIS_TERMINATING 3

CodeBridge User's Guide Appendix F: CodeBridge Library Functions • 161

The ErrorCode and TermMsgs string pointers should never be NULL, but they
may point to empty strings (first character is zero). If the runtime is
terminating normally due to executing a STOP RUN statement in the COBOL
program, the ReturnCode will be zero,
the ErrorCode string will be empty, and the normal "COBOL STOP RUN … "
message will be in TermMsgs. If the runtime is terminating due to an error,
the ReturnCode will be
non-zero, the ErrorCode string will contain an error code, and the TermMsgs
string will contain as much of the runtime error and traceback messages as
will fit in about 1000 bytes. Multiple messages in the TermMsgs string are
separated with a newline character.

If the GetTerminationInfo callback function is called from other than
RM_AddOnTerminate (not recommended because it is not useful), the State
and ReturnCode will be zero and the ErrorCode and TermMsgs strings will be
empty.

IntegerToCobol

IntegerToCobol converts from a C integer value to the COBOL numeric
argument. This function returns TRUE if it is successful and FALSE if there is
an error.

By convention, the CobolToInteger (on page 147) function should be called
prior to this function for the same argument number. Do not set the PF_IN
flag for output-only conversions. Because the call to the CobolToInteger
function may perform memory management operations that are not needed
for output-only conversions, this call may be omitted.

Calling Sequence

Error! Not a valid filename.

ArgCount is the argument count for the current COBOL CALL.

ArgNumber is -1 for the argument in the GIVING (RETURNING) phrase or the
zero-based number of an argument from the USING phrase.

Arguments is the address of the argument descriptor array.

Flags modify the behavior of the conversion. Valid flag values (see Table 8
on page 135) for IntegerToCobol are:

• PF_ASSERT_SIGNED • PF_RETURN_VALUE

• PF_ASSERT_UNSIGNED • PF_ROUNDED

• PF_NO_SIZE_ERROR • PF_SCALED

• PF_OCCURS • PF_SILENT

• PF_OUT • PF_UNSIGNED

162 • Appendix F: CodeBridge Library Functions CodeBridge User's Guide

• PF_REPEAT

Occurs is the array size if the C parameter is an array. A value of zero may be
specified if the C parameter is a scalar; negative values for the Occurs
parameter are allowed, but are treated as equivalent to zero. If the value is
greater than 1, we recommend the PF_OCCURS flag be set, although it is for
documentation purposes only.

Parameter is the address of the C parameter. It may also be the address of
an array of integer values if the PF_OCCURS flag is set.

Repeat is the repeat count if the PF_REPEAT flag is set.

Scale is the scale value if the PF_SCALED flag is set. It represents the power
of ten by which to divide the C parameter.

Size is the size of the C parameter.

NumericStringToCobol

NumericStringToCobol converts a null-terminated C string to the COBOL
numeric argument. This function returns TRUE if it is successful and FALSE
if there is an error.

By convention, the CobolToNumericString (on page 148) function should be
called prior to this function for the same argument number. Do not set the
PF_IN flag for output-only conversions. Because the call to the
CobolToNumericString function may perform memory management
operations that are not needed for output-only conversions, this call may be
omitted.

Calling Sequence

Error! Not a valid filename.

ArgCount is the argument count for the current COBOL CALL.

ArgNumber is -1 for the argument in the GIVING (RETURNING) phrase or the
zero-based number of an argument from the USING phrase.

Arguments is the address of the argument descriptor array.

Flags modify the behavior of the conversion. Valid flag values (see Table 8
on page 135) for NumericStringToCobol are:

• PF_ASSERT_SIGNED • PF_REPEAT

• PF_ASSERT_UNSIGNED • PF_RETURN_VALUE

• PF_NO_SIZE_ERROR • PF_ROUNDED

• PF_OCCURS • PF_SILENT

CodeBridge User's Guide Appendix F: CodeBridge Library Functions • 163

• PF_OPTIONAL • PF_SIZE

• PF_OUT

Occurs is the array size if the C parameter is an array. A value of zero may be
specified if the C parameter is a scalar; negative values for the Occurs
parameter are allowed, but are treated as equivalent to zero. If the value is
greater than 1, we recommend the PF_OCCURS flag be set, although it is for
documentation purposes only.

Parameter is the address of the C parameter. It may also be the address of
an array of string values if the PF_OCCURS flag is set.

Size is the conversion buffer length override when the PF_SIZE flag is set. If
the PF_SIZE flag is not set, the default conversion buffer length is the greater
of one more than the length of the COBOL argument and four more than the
digit length of the COBOL argument. The digit length of a COBOL argument is
the sum of the number of 9 and P symbols used in its PICTURE character-
string. The setting of the PF_SIZE flag and the value of the Size parameter
must be the same as specified in the call to CobolToNumericString (on page
148) for the same argument.

PointerBaseToCobol

PointerBaseToCobol modifies the COBOL pointer argument. The contents of
the C pointer are moved to the base address component. If the
PF_POINTER_MAX_SIZE flag is set, binary ones are moved to the size
component. If the PF_POINTER_RESET_OFFSET flag
is set, a value of 0 is moved to the offset component. This function returns
TRUE if it is successful and FALSE if there is an error.

Calling Sequence

Error! Not a valid filename.

ArgCount is the argument count for the current COBOL CALL.

ArgNumber is -1 for the argument in the GIVING (RETURNING) phrase or the
zero-based number of an argument from the USING phrase.

Arguments is the address of the argument descriptor array.

Flags modify the behavior of the conversion. Valid flag values (see Table 8
on page 135) for PointerBaseToCobol are:

• PF_OUT • PF_RETURN_VALUE

• PF_POINTER_MAX_SIZE • PF_SILENT

• PF_POINTER_RESET_OFFSET

164 • Appendix F: CodeBridge Library Functions CodeBridge User's Guide

Parameter is the address of the C pointer.

PointerOffsetToCobol

PointerOffsetToCobol modifies the COBOL pointer argument. The contents
of the C parameter are moved to the offset component. If the
PF_POINTER_MAX_SIZE flag is set, binary ones are moved to the size
component. This function returns TRUE if it is successful and FALSE if there
is an error.

Calling Sequence

Error! Not a valid filename.

ArgCount is the argument count for the current COBOL CALL.

ArgNumber is -1 for the argument in the GIVING (RETURNING) phrase or the
zero-based number of an argument from the USING phrase.

Arguments is the address of the argument descriptor array.

Flags modify the behavior of the conversion. Valid flag values (see Table 8
on page 135) for PointerOffsetToCobol are:

• PF_OUT • PF_RETURN_VALUE

• PF_POINTER_MAX_SIZE • PF_SILENT

Parameter is the address of the C parameter.

Size is the size of the C parameter.

PointerSizeToCobol

PointerSizeToCobol modifies the COBOL pointer argument. The contents of
the C parameter are moved to the size component. If the
PF_POINTER_RESET_OFFSET flag
is set, a value of zero is moved to the offset component. This function
returns TRUE if it is successful and FALSE if there is an error.

Calling Sequence

Error! Not a valid filename.

ArgCount is the argument count for the current COBOL CALL.

ArgNumber is -1 for the argument in the GIVING (RETURNING) phrase or the
zero-based number of an argument from the USING phrase.

Arguments is the address of the argument descriptor array.

CodeBridge User's Guide Appendix F: CodeBridge Library Functions • 165

Flags modify the behavior of the conversion. Valid flag values (see Table 8
on page 135) for PointerSizeToCobol are:

• PF_OUT • PF_RETURN_VALUE

• PF_POINTER_RESET_OFFSET • PF_SILENT

Parameter is the address of the C parameter.

Size is the size of the C parameter.

StringToCobol

StringToCobol converts a C null-terminated string to the COBOL non-numeric
argument. This function returns TRUE if it is successful and FALSE if there is
an error.

By convention, the CobolToString (on page 152) function should be called
prior to this function for the same argument number. Do not set the PF_IN
flag for output-only conversions. Because the call to the CobolToString
function may perform memory management operations that are not needed
for output-only conversions, this call may be omitted.

Calling Sequence

Error! Not a valid filename.

ArgCount is the argument count for the current COBOL CALL.

ArgNumber is -1 for the argument in the GIVING (RETURNING) phrase or the
zero-based number of an argument from the USING phrase.

Arguments is the address of the argument descriptor array.

Flags modify the behavior of the conversion. Valid flag values (see Table 8
on page 135) for StringToCobol are:

• PF_C_DATA_IS_ANSI • PF_REPEAT

• PF_C_DATA_IS_OEM • PF_RETURN_VALUE

• PF_LEADING_SPACES • PF_SILENT

• PF_LEADING_VALUE • PF_SIZE

• PF_OCCURS • PF_TRAILING_SPACES

• PF_OUT • PF_TRAILING_VALUE

Occurs is the array size if the C parameter is an array. A value of zero may be
specified if the C parameter is a scalar; negative values for the Occurs
parameter are allowed, but are treated as equivalent to zero. If the value is
greater than 1, we recommend the PF_OCCURS flag be set, although it is for
documentation purposes only.

166 • Appendix F: CodeBridge Library Functions CodeBridge User's Guide

Parameter is the address of the C parameter. It may also be the address of
an array of string values if the PF_OCCURS flag is set.

Repeat is the repeat count if the PF_REPEAT flag is set.

Size is the conversion buffer length override when the PF_SIZE flag is set. If
the PF_SIZE flag is not set, the default conversion buffer length is one more
than the length of the COBOL argument. The setting of the PF_SIZE flag and
the value of the Size parameter must be the same as specified in the call to
CobolToString (on page 152) for the same argument.

Value1 is the strip/fill character value if the PF_LEADING_VALUE flag is set.

Value2 is the strip/fill character value if the PF_TRAILING_VALUE flag is set.

CodeBridge User's Guide Appendix G: Non-COBOL Subprogram Internals for Windows • 167

Appendix G: Non-COBOL
Subprogram Internals for
Windows

This appendix describes the internal details of how a non-COBOL
subprogram is called from an RM/COBOL program running under Windows.
While it is possible to write non-COBOL subprograms that directly use this
information to handle COBOL argument conversions, it is highly
recommended that CodeBridge be used for this purpose instead. This
appendix also provides information on preparing a non-COBOL subprogram
for use by an RM/COBOL program on Windows. (For additional information,
see the “CALL Statement” section of Chapter 6: Procedure Division
Statements in the RM/COBOL Language Reference Manual.)

Note The information presented here assumes a working knowledge of the C
programming language. The material in Appendix C: Useful C Information
(on page 87) is not comprehensive enough to provide this necessary
background.

C Subprograms for Windows

To modify or write a C subprogram that can be called from the RM/COBOL
runtime
system requires an understanding of the fundamental tasks involved. First, in
order to
access C language subprograms from the RM/COBOL runtime system, you
must build a dynamic-link library (DLL), normally referred to as an “optional
support module.” (For more information on DLLs and optional support
modules, see Appendix D: Support Modules (Non-COBOL Add-Ons) of the
RM/COBOL User’s Guide.)

168 • Appendix G: Non-COBOL Subprogram Internals for Windows CodeBridge User's Guide

Methods of Using Non-COBOL Subprograms

Two methods of using non-COBOL subprograms are supported:

1. A single subprogram can be dynamically loaded by the Runtime
Command (runcobol) when that subprogram is called from the
RM/COBOL program. The subprogram remains resident until canceled by
the RM/COBOL program or until the end of the run unit. This method is
sometimes referred to as the “call-by-filename” method since the
program is loaded because its file name matches the called program
name.

2. One or more subprograms can be linked into a non-COBOL subprogram
library (DLL) and loaded by the Runtime Command upon run unit
initialization. The library is loaded either because it is referenced in an L
Runtime Command Option or because it is present in the rmautold
subdirectory of the execution directory. The library remains resident until
the end of the run unit.

Calling C Subprograms from COBOL for Windows

This section describes the COBOL CALL syntax and explains how a C
programmer can write a subprogram that can be called from RM/COBOL.
The COBOL CALL statement explains the use of the non-COBOL subprogram
from the COBOL programmer’s
perspective while the other topics describe the structures and the function
prototype that
the C programmer needs to understand.

COBOL CALL Statement

The syntax for the Format 2 CALL statement in the RM/COBOL program is as
follows:

CodeBridge User's Guide Appendix G: Non-COBOL Subprogram Internals for Windows • 169

 CALL-END

EXCEPTIONONNOT

EXCEPTIONON

RETURNING

GIVING

OMITTED

OMITTED

CONTENTBY

OMITTED
REFERENCEBY

USING

CALL

-2-statementimperative

-1-statementimperative

-3identifier

literal-2

-2identifier

literal-2

-2identifier

-2identifier

literal-1

-1identifier

The value of the contents of the data item specified by identifier-1 or the
value of literal-1 is the program-name of the subprogram to be called.

identifier-2 or literal-2 are one or more actual arguments to be passed to the
called program. If the BY CONTENT phrase applies to an argument, a
temporary copy of the item is passed, thus preventing the subprogram from
modifying the original item.

identifier-3 is an actual argument to be passed to the called program for the
purposes of returning a result to the calling program.

The RM/COBOL runtime system locates the subprogram with the program-
name specified by literal-1 or the value of the data item referenced by
identifier-1. See the discussion of “Subprogram Loading” in Chapter 8:
RM/COBOL Features of the RM/COBOL User’s Guide, for additional
information on locating subprograms.

The subprogram also must be a dynamic-link library file (.dll) and is loaded
with the Windows LoadLibrary function.

C Subprogram Name Table Structure on Windows

The RM/COBOL runtime system can locate the C subprograms only if their
names are exported and their names appear in the subprogram name table.
The subprogram name table is an array of name table entries. Each name
table entry is a C structure that is defined as follows:

typedef struct EntryTable

{

 char *EntryPointCobolName; /* name of subroutine as in call */

 int (*EntryPointAddress)(); /* entry point address */

 char *EntryPointName; /* name of entry point in object */

} ENTRYTABLE;

170 • Appendix G: Non-COBOL Subprogram Internals for Windows CodeBridge User's Guide

Character-strings must be null terminated. The last array entry must consist
of NULLs. The name of the subprogram name table must be RM_EntryPoints
and this name must be exported. (An .EDATA section is not required in the
DLL when the subprogram name table exists. When the subprogram name
table exists, any .EDATA section in the DLL, if present, is ignored. Older DLLs
that have been written and built with previous versions of RM/COBOL, and
which contain an .EDATA section, are still supported for backward
compatibility.)

The RM/COBOL runtime system does not use the EntryPointAddress entry in
this structure. Instead, the EntryPointName entry is used to find the
procedure address for the procedure that has the given name. Thus, each
value supplied in an EntryPointName entry must match that of an exported
symbol in the DLL. When the DLL is loaded, the runtime system looks up the
procedure address for each entry using the supplied name; if the name is not
found, an error occurs and the runtime system is terminated with an
appropriate message. The exported symbol may be different than the
function name in the C source when a .def file is used during linking since
.def files can contain an exports list that specifies different names to be
exported for the C functions.

RM_EntryPoints is one of the predefined symbols in an optional support
module. For complete information about all of the predefined symbols, see
Special Entry Points for Support Modules on Windows (on page 180).

Note The ENTRYTABLE typedef is defined in rmc85cal.h, which is provided
with RM/COBOL systems. This header file should be included (with a
preprocessor #include statement) in the C source that defines COBOL-
callable subprograms. Inclusion of this header file will also cause
RM_EntryPoints symbol to be exported. Other header files (rtarg.h,
standdef.h, and rmport.h) are referenced by rmc85cal.h. These files are also
provided with RM/COBOL systems. When using CodeBridge Library
functions, it is generally sufficient to include cbridge.h, which includes these
other header files.

Example RM_EntryPoints for Windows

ENTRYTABLE RM_EntryPoints[] =

{

 {"SUB1NAME", sub1, "sub1"},

 {"SUB2NAME", sub2, "sub2"},

 {NULL, NULL, NULL }

};

In this example, “SUB1NAME” and “SUB2NAME” are the COBOL-callable program-
names, sub1 and sub2 are the addresses of the C subprograms (functions),
and “sub1” and “sub2” are the exported names of the C subprograms
(functions). In this example, it is assumed that a .def file, if used, does not
rename the C functions in the exports list.

CodeBridge User's Guide Appendix G: Non-COBOL Subprogram Internals for Windows • 171

Parameters Passed to the C Subprogram on Windows

The RM/COBOL runtime system passes six parameters on the stack to the
called
C subprogram. The following is a sample COBOL-callable C subprogram
function prototype:

RM_DLLEXPORT int RM_CDECL sub1

 (

 char *name, /* param1 */

 unsigned short arg_count, /* param2 */

 ARGUMENT_ENTRY arg_vector[], /* param3 */

 unsigned short initial_state /* param4 */

 RM_HWND window_handle, /* param5 */

 RUNTIME_CALLS_TABLE callbacktable /* param6 */

);

The six parameters are described as follows:

1. Pointer to the called program-name, which is a null-terminated ASCII
string containing the name used by the run unit to identify the called
subprogram. The called program-name is always uppercase-only,
regardless of the case of the name in the calling COBOL program.

2. Argument count, which is the number of arguments, including arguments
explicitly specified with the OMITTED keyword, specified in the USING
phrase of the CALL statement. The argument in the GIVING
(RETURNING) phrase, if specified, is not included in the count.

3. Pointer to the argument array, which is an array of structures describing
each of the actual arguments passed in the GIVING (RETURNING) and
USING phrases of the CALL statement. The structure of an argument
description entry is described in COBOL Argument Entry Structure for C
on Windows (on page 172) and is defined in the rmc85cal.h header file,
which is provided with RM/COBOL systems.

4. Initial state flag, which contains a zero to indicate that the subprogram is
being called for the first time in the run unit or the first time since a
CANCEL statement has been executed for the subprogram name. A
nonzero value indicates that the subprogram should remain in its last
used state. It is the responsibility of the called subprogram (rather than
the runtime system) to examine the initial state flag and decide which
variables need to be reinitialized. In any case, on each call, all C
automatic variables
are reallocated on the stack without being initialized to any particular
value (that is,
C automatic variables have arbitrary values).

5. Windows handle of the calling program window (runtime window), which
is needed for some calls to the Windows Application Programming
Interface (API).

6. Pointer to the runtime call-back table, which is a structure that contains
the size of the table, the version number of the table, and a list of

172 • Appendix G: Non-COBOL Subprogram Internals for Windows CodeBridge User's Guide

subprogram addresses in the runtime. The CodeBridge Builder uses the
call-back table to obtain access to some utility subprograms in the
runtime system. The description of this table is available in cbridge.h, a
header file provided with CodeBridge. The table is named
RUNTIME_CALLS_TABLE.

Note The fifth and sixth parameters are optional. Although the runtime
system will always pass these values, the called subprogram does not have
to declare them. The prototype for the called function may omit the sixth or
both the fifth and sixth parameters. The runtime call-back table is required if
the subprogram uses any of the CodeBridge Library functions.

The called subprogram must set an integer return value before returning
control to the runtime system. A value of RM_FND (defined as 0 in
rmc85cal.h) indicates that the subprogram was found and that the runtime
should continue executing the COBOL program. A value of RM_STOP
(defined as 1 in rmc85cal.h) indicates that the subprogram terminated
because of a fatal error, such as incorrect parameters, and that the runtime
should terminate the run unit. An explicit return statement should be used to
set the return value since otherwise the run unit might be unintentionally
terminated. The subprogram must not terminate with the system function
exit(), since the runtime could not do an orderly shutdown of the run unit in
this case.

The argument entry table (arg_vector) contains descriptions of the actual
arguments specified in the CALL statement. The arg_vector[0] entry
describes the first actual argument in the USING phrase of the CALL
statement. The arg_vector[arg_count - 1] entry describes the last actual
argument in the USING phrase of the CALL statement. The arg_vector[-1]
entry describes the argument specified in the GIVING (RETURNING) phrase of
the CALL statement. If the GIVING (RETURNING) phrase is omitted from the
CALL statement, or
if any actual argument is specified as OMITTED in the USING phrase of the
CALL statement, the corresponding arg_vector entry contains a type value 32
(OMITTED, as shown in Table 9 on page 173) and the remaining fields are
zero.

C subprograms that access the GIVING argument in arg_vector[-1] will
function correctly only for RM/COBOL version 7 (or later) runtimes because
prior runtimes did not make a GIVING argument entry available in arg_vector[-
1]. A subprogram that uses the GIVING argument should verify that it is
available by use of the version number in the runtime call-back table, the
address of which is provided by the sixth parameter to the subprogram. The
version number must be 0x0700 or greater for a GIVING argument to be
available.

COBOL Argument Entry Structure for C on Windows

To a subprogram written in C, an argument entry is defined by the following
structure, which is included in the rmc85cal.h header file:

CodeBridge User's Guide Appendix G: Non-COBOL Subprogram Internals for Windows • 173

typedef struct ArgumentEntry

{

 char *a_address; /* pointer to start of argument */

 unsigned long a_length; /* length of argument */

 short a_type; /* type of argument (RM/COBOL data type) */

 char a_digits; /* digit count (0-30) */

 char a_scale; /* implied decimal location (signed) */

 char *a_picture; /* pointer to encoded edit picture */

} ARGUMENT_ENTRY;

a_address specifies the lowest addressed byte of the argument.

a_length specifies the number of bytes allocated to the argument.

a_type specifies the RM/COBOL data type as a number from Table 9 (see
page 173). Names for these type numbers are defined in rmc85cal.h. (For
an explanation of the data type abbreviations and a description of the
RM/COBOL data types listed in Table 9, see “Data Types” in Chapter 9:
Debugging and Appendix C: Internal Data Formats of the RM/COBOL User’s
Guide.)

a_digits specifies the actual number of digits in a numeric data item (where
the type of argument is in the range 0 through 12). It is set to zero for
nonnumeric data items.

a_scale specifies the power of 10 by which the digits in a numeric data item
(where the type of argument is in the range 0 through 12) must be multiplied
to obtain the numeric value of the data item. The power of 10 is represented
as a signed, 2’s complement number. It is set to zero for nonnumeric data
items.

a_picture specifies the lowest addressed byte of the encoded picture for
edited items (type of argument equals 0, 20 or 21). It is set to zero for all
other types.

Table 9: RM/COBOL Data Types as Numbers

Type Number RM/COBOL Data Type Type Number RM/COBOL Data Type

0 NSE 16 ANS

1 NSU 17 ANS (justified right)

2 NTS 18 ABS

3 NTC 19 ABS (justified right)

4 NLS 20 ANSE

5 NLC 21 ABSE

6 NCS 22 GRP (fixed length)

7 NCU 23 GRPV (variable length)

8 NPP 25 PTR

9 NPS 26 NBSN

10 NPU 27 NBUN

174 • Appendix G: Non-COBOL Subprogram Internals for Windows CodeBridge User's Guide

11 NBS 32 OMITTED

12 NBU

Note The data type GRPV (23) does not occur when C$CARG is called with
the formal argument name or when C$DARG is called with an actual
argument number that corresponds to an argument that is a variable-length
group. In all other cases, RM/COBOL passes variable-length group actual
arguments as if they were a fixed-length group of the maximum length. (See
Appendix F: Subprogram Library of the RM/COBOL User's Guide.)

Preparing C Subprograms for Windows

One or more dynamic-link libraries (DLLs) may be loaded and called by the
RM/COBOL runtime system. The DLL may be specified on the command line
by using the L Runtime Command Option, described in the section “Runtime
Command Options” in Chapter 7: Running of the RM/COBOL User's Guide.
DLL files may also be placed in the rmautold subdirectory of the execution
directory for automatic loading when the runtime system is started. The
runtime system reads the DLL, locates the entry points, and makes each entry
point available to be called as a subprogram.

If a program-name used in a CALL statement cannot be resolved as a COBOL
routine and is not found in any already loaded non-COBOL library, a search is
made for a file with that name and an extension of .dll. If such a file is found,
it is loaded and one of the following occurs:

• If the DLL exports either of the symbols RM_EnumEntryPoints or
RM_EntryPoints, then the first specified entry point is called. For a
definition of these symbols, see Special Entry Points for Support Modules
on Windows (on page 180). Any additional entry points that these
symbols may define are ignored when the DLL is loaded by this method.

Note If the DLL contains an .EDATA section that specifies an entry point
exported as nonresident ordinal one, then that entry point is called. Any
other exported entry points are ignored when the DLL is loaded by this
method.

• Otherwise, a procedure error 204 occurs.

This method of loading a DLL is sometimes referred to as “call-by-filename”
to contrast it with the method of calling a program-name defined in a library
loaded because an L Runtime Command Option refers to it or the presence of
the library in the rmautold subdirectory of the execution directory.

The following steps may be used to prepare a non-COBOL subprogram for
calls from a COBOL program (compiler-specific comments are included):

CodeBridge User's Guide Appendix G: Non-COBOL Subprogram Internals for Windows • 175

1. Generate a non-COBOL source file(s) containing one or more
subprograms that will serve as entry points for the COBOL program.
Entry points that are normally associated with a DLL, such as LibMain (or
DllMain or DllEntryPoint), should be defined and may contain minimal
code. These entry points and the additional entry points that you define
must be exported in the manner described for your compiler.

Use C calling conventions (instead of PASCAL conventions). Stack-based
parameter passing also should be used.

2. Translate the source file into a valid object file (.obj) with your compiler.

3. Create the dynamic-link library using the linker in your C development
system.
Use linker options to assign an ordinal value of one to an entry point. The
RM/COBOL runtime system will associate the DLL filename with entry
point one. The procedures in the DLL are now ready to be called as a
subprogram from RM/COBOL.

Note While some C compilers produce case-insensitive entry point
names, others produce case-sensitive entry point names. In addition,
some C compilers may pre-pend or append an underscore character to
the entry point name.

Parameters are passed to the DLL, as described in Parameters Passed to the
C Subprogram on Windows (on page 171).

The following code sequences illustrate how a COBOL-callable DLL may be
written in C. Include the standdef.h header file (provided by OpenText
RM/COBOL) to access RM/COBOL standard definitions. On Windows
systems, inclusion of standdef.h will cause inclusion of the Microsoft
windows.h file, which provides access to Windows operating system
functions such as MessageBox(). Define RMLittleEndian with a value of 1 for
the Intel 80x86 architecture. Include the rmc85cal.h header file to obtain
ARGUMENT_ENTRY structure definition, various type definitions, and
LDLONG, LDSHORT, STLONG, STSHORT macros. Include the cbridge.h
header file if the CodeBridge Library is used by the subprogram. Since
cbridge.h includes standdef.h and rmc85cal.h, it is not necessary to include
these header files when cbridge.h is included.

The following is a sample RM/COBOL-callable DLL file written in C, named
msgbox.c.

/****************************** BEGIN MSGBOX.C *********************************

 *

 * Title: msgbox.c

 * RM/COBOL Message Box Sample DLL

 *

 * This source program demonstrates the old (non-CodeBridge)

 * method of preparing C subprograms under Windows

 * described in Appendix G, "Non-COBOL Subprogram Internals

 * for Windows" of the CodeBridge Manual.

176 • Appendix G: Non-COBOL Subprogram Internals for Windows CodeBridge User's Guide

 *

 * The COBOL statement

 *

 * CALL "MsgBox" USING Message-V, Button-V

 *

 * may be used to call the C subprogram "MsgBox"

 * defined by this source.

 *

 * The MsgBox source program also demonstrates use of the v7.50

 * and later runtime call back GetCallerInfo(), which may

 * be used to obtain information about the calling program.

 *

 * The MsgBox source program also demonstrates the various

 * RM_AddOn... entry points that may be specified in a non-COBOL

 * subprogram.

 *

 * Copyright (c) 2017 Micro Focus.

 *

 * You have a royalty-free right to use, modify, reproduce, and

 * distribute this C source file (and/or any modified version)

 * in any way you find useful, provided that you retain this notice

 * and agree that Micro Focus has no warranty, obligations, or liability

 * for any such use of the source file.

 *

 * Version = @(#) $Revision: 6380 $ $Date: 2008-02-18 13:32:29 -0600 (Mon, 18 Feb 2008) $

 *

 ***/

#include "standdef.h" /* must be first */

#define _MSGBOX_C_ "@(#) msgbox.c $Rev: 6380 $ $Date: 2008-02-18 13:32:29 -0600 (Mon, 18 Feb

2008) $"

#pragma PRAGMA_WHAT_C(_MSGBOX_C_)

WHAT_C(_MSGBOX_C_)

/* set C implementation for RM/COBOL subprogram */

#define _SUB_C_

/* include RM/COBOL standard definitions (and Windows definitions) */

#include "cbridge.h"

/* include C standard library definitions */

#include <stdio.h>

#include <string.h>

/* set argument numbers for COBOL statement: */

/* CALL "MsgBox" USING MESSAGE-VALUE, BUTTON-VALUE. */

#define AN_MSG_V 0 /* argument number of message value (input) */

#define AN_BTN_V 1 /* argument number of button value (output) */

#define NUM_ARGS 2 /* number of arguments */

/* define maximum input message length (longer messages will be truncated) */

#define MAX_MESSAGE_LENGTH 100

/* save the Runtime Callback Table pointer */

static RUNTIME_CALLS_TABLE *RtCallPtr = NULL;

CodeBridge User's Guide Appendix G: Non-COBOL Subprogram Internals for Windows • 177

/* Primary entry point function implementation */

RM_DLLEXPORT int RM_CDECL

MsgBox(char *pName, /* called program name */

 unsigned short ArgCount, /* number of COBOL arguments */

 ARGUMENT_ENTRY ArgEntry[], /* COBOL argument descriptions array */

 unsigned short InitialState, /* initial state flag */

 RM_HWND hCobolWindow, /* COBOL runtime Window handle */

 RUNTIME_CALLS_TABLE *pRtCall /* COBOL runtime call back pointer */

)

{

 short sButton;

 long lButton;

 char MyMsg[(MAX_MESSAGE_LENGTH + 201)];

 char *p;

 int l;

 /* -- if not correct number of arguments, return to caller with failure */

 if (ArgCount != NUM_ARGS)

 return RM_STOP;

 /* -- check COBOL message value argument */

 switch (ArgEntry[AN_MSG_V].a_type)

 {

 /* -- allow various displayable types */

 case RM_ANS: case RM_ANSR: case RM_ANSE:

 case RM_ABS: case RM_ABSR: case RM_ABSE:

 case RM_NSE:

 case RM_NSU: case RM_NTS: case RM_NLS:

 case RM_GRPF:

 break;

 /* -- otherwise return to caller with failure */

 default:

 return RM_STOP;

 }

 /* -- check COBOL button value argument */

 switch (ArgEntry[AN_BTN_V].a_type)

 {

 /* -- allow binary types size 2 or 4 */

 case RM_NBS: case RM_NBU:

 l = ArgEntry[AN_BTN_V].a_length;

 if ((l == 2) || (l == 4))

 break;

 /* -- else fall through to default */

 /* -- otherwise return to caller with failure */

 default:

 return RM_STOP;

 }

 p = ArgEntry[AN_MSG_V].a_address;

 l = ArgEntry[AN_MSG_V].a_length;

 /* -- truncate message if it exceeds maximum length */

 if (l > MAX_MESSAGE_LENGTH)

 l = MAX_MESSAGE_LENGTH;

178 • Appendix G: Non-COBOL Subprogram Internals for Windows CodeBridge User's Guide

 if (pRtCall->table_version < 0x0750) /* runtime predates GetCallerInfo? */

 {

 /* -- format message without caller information */

 sprintf(MyMsg, "%.*s", l, p);

 }

 else

 {

 /* -- get caller information */

 CALLER_INFO *pMyCallerInfo = pRtCall->pGetCallerInfo();

 /* -- format message with caller information */

 sprintf(MyMsg, "%.*s\n\nMsgBox called at %s %s in %s (%s) compiled %s.",

 l,

 p,

 ((pMyCallerInfo->Flags & CIF_LOCATION_ADDRESS) ?

 "return location" : "line"

),

 pMyCallerInfo->ProgramLocation,

 pMyCallerInfo->ProgramName,

 pMyCallerInfo->ProgramFileName,

 pMyCallerInfo->ProgramDateTime

);

 }

 /* -- display message box and save button value */

 lButton = MessageBox(hCobolWindow,

 MyMsg,

 "RM/MsgBox", /* caption */

 (MB_YESNO | MB_ICONQUESTION | MB_SETFOREGROUND | MB_TOPMOST)

);

 /* -- return button value in COBOL button value argument */

 /* button value = 6 (IDYES) for Yes button; or */

 /* 7 (IDNO) for No button */

 p = ArgEntry[AN_BTN_V].a_address;

 if (ArgEntry[AN_BTN_V].a_length == 4)

 ST_BIT32(lButton, p); /* macro defined in standdef.h */

 else

 {

 sButton = (short) lButton;

 ST_BIT16(sButton, p); /* macro defined in standdef.h */

 }

 /* -- return to caller with success */

 return RM_FND;

}

/* Define a banner message */

char *

RM_AddOnBanner()

{

 return "MSGBOX. RM/COBOL Message Box Sample DLL.";

}

/* Define logic for COBOL CANCEL verb */

void

CodeBridge User's Guide Appendix G: Non-COBOL Subprogram Internals for Windows • 179

RM_AddOnCancelNonCOBOLProgram(char *pProgramName)

{

}

/* Define initialization (runtime startup) logic */

int

RM_AddOnInit(int Argc, char** Argv, RUNTIME_CALLS_TABLE *pRtCall)

{

 RtCallPtr = pRtCall; /* save the pointer for later */

 return 0; /* success */

}

/* Define a load message */

char *

RM_AddOnLoadMessage()

{

 static char Msg[] = "MsgBox (v12.0d.XX)";

 return Msg;

}

/* Define termination (runtime shutdown) logic */

void

RM_AddOnTerminate(void)

{

 if ((RtCallPtr != NULL) && (RtCallPtr->table_version >= 0x1000))

 { /* The GetTerminationInfo callback is available */

 TERMINATION_INFO *pTerminationInfo = RtCallPtr->pGetTerminationInfo();

 /* Do something with the values returned in the TERMINATION_INFO structure */

 }

}

/* Verify runtime interface version for RM_AddOn... interface */

BOOLEAN

RM_AddOnVersionCheck(char *Version,

 int MinRuntimeInterfaceVersion,

 int MaxRuntimeInterfaceVersion,

 int *pDesiredInterfaceVersion)

{

 *pDesiredInterfaceVersion = CURRENT_SUPPORT_MODULE_INTERFACE_VERSION;

 if ((*pDesiredInterfaceVersion >= MinRuntimeInterfaceVersion)

 &&

 (*pDesiredInterfaceVersion <= MaxRuntimeInterfaceVersion)

)

 return TRUE;

 else

 return FALSE;

}

/* Define MSGBOX entry point */

ENTRYTABLE

RM_EntryPoints[]=

{

 {"MSGBOX", (int (RM_CDECL *)(void))MsgBox, "MsgBox" },

 {NULL, NULL, NULL }

};

180 • Appendix G: Non-COBOL Subprogram Internals for Windows CodeBridge User's Guide

The MSGBOX.DLL sample can be built in the samples subdirectory using the
Microsoft Visual C++ compiler with the following command line:

cl /I.. /LD /MD msgbox.c user32.lib

It also can be built using the Watcom C compiler, version 10.6 or later, with
the following command:

wclX86 -l=nt_dll -bd msgbox.c -"export MSGBOX.1=_MsgBox"

The following source fragments from a COBOL program could be used to call
the DLL:

DATA DIVISION.

WORKING-STORAGE SECTION.

01 RETURN-BINARY PIC 9(4) Binary(2) Value Zero.

01 DISPLAY-TEXT PIC X(24) Value "Do you wish to continue?".

PROCEDURE DIVISION.

 CALL "MSGBOX" USING DISPLAY-TEXT RETURN-BINARY.

Special Entry Points for Support Modules on Windows

When the runtime system (or other RM/COBOL component) loads an optional
support module, it looks for certain predefined symbols (entry points and
variable names), and varies its actions based on the presence or absence of
these symbols. One such variable name is RM_EntryPoints. This is
discussed in C Subprogram Name Table Structure on Windows (on page
169). The example subprogram, msgbox.c, which is distributed with the
RM/COBOL system, contains examples of all of these entry points and
symbols, except for RM_EnumEntryPoints. This example can be used as a
starting point when developing optional support modules for Windows.

Note On Windows, the preferred method to create and build COBOL-callable
subprograms is to use either the RM_EntryPoints symbol or the
RM_EnumEntryPoints symbol. All of the other entry points, listed below, are
optional if the DLL is linked such that an .EDATA section is produced. If the
DLL is linked without producing an .EDATA section, the RM_EntryPoints or
RM_EnumEntryPoints symbols must be defined for there to be any COBOL
callable routines in the DLL.

The complete list of these special names is as follows:

• RM_AddOnBanner (on page 181)

• RM_AddOnCancelNonCOBOLProgram (on page 181)

• RM_AddOnInit (on page 181)

• RM_AddOnLoadMessage (on page 182)

CodeBridge User's Guide Appendix G: Non-COBOL Subprogram Internals for Windows • 181

• RM_AddOnTerminate (on page 183)

• RM_AddOnVersionCheck (on page 183)

• RM_EntryPoints and RM_EnumEntryPoints (on page 184)

The following sections describe these entry points and special variables.

RM_AddOnBanner

This entry point, if present, should return a pointer to a character string. This
character string will be displayed along with the runtime system banner
message. The support module banner may be used to display any required
copyright notice. The support module banner is displayed only if the K Option
of the Runtime Command is not present.

Note The Windows runtime supports the “call-by-filename” loading of DLLs,
as described in Methods of Using Non-COBOL Subprograms (on page 168).
For DLLs loaded in this manner, the RM_AddOnBanner entry point is not
called and no banner is produced. The entry point is called and a banner is
produced if the DLL is loaded because of the L Runtime Command Option or
because the DLL is present in the rmautold subdirectory of the execution
directory.

Function declaration for RM_AddOnBanner:

char* RM_AddOnBanner(void);

RM_AddOnCancelNonCOBOLProgram

This entry point, if present, is called by the runtime system when a CANCEL
verb is executed for a program-name that is defined in the optional support
module. It allows the support module to do any cleanup actions that may be
necessary. For example, this entry point might be specified to allow the
support module to close any open files when the COBOL program cancels the
associated non-COBOL subprogram. The program-name of the non-COBOL
subprogram for which a CANCEL has been performed is passed as a
parameter to the entry point.

Function declaration for RM_AddOnCancelNonCOBOLProgram:

void RM_AddOnCancelNonCOBOLProgram(char* ProgramName);

RM_AddOnInit

This entry point, if present, is called to initialize the optional support module.
All support modules will be initialized (if initialization is requested) before the
runtime system begins executing the first COBOL program, except that DLLs
loaded by the “call-by-filename” method will be initialized when they are

182 • Appendix G: Non-COBOL Subprogram Internals for Windows CodeBridge User's Guide

loaded at the time they are referenced by a CALL statement. For more
information, see Methods of Using Non-COBOL Subprograms (on page 168).

The entry point should return zero to indicate successful initialization or a
non-zero value to indicate that the support module initialization failed. If the
initialization fails, the runtime system will display an appropriate message
and then terminate.

Note If the support module determines that successful initialization is not
possible, the support module should produce appropriate messages to allow
the user to correct the problem.

The support module is passed the Runtime Command line arguments in the
arguments Argc (the argument count) and Argv (the argument vector). The
support module is also passed a pointer to the runtime call back table.

Function declaration for RM_AddOnInit:

int RM_AddOnInit(int Argc,

 char** Argv,

 RUNTIME_CALLS_TABLE *pRtCall);

RM_AddOnLoadMessage

This entry point, if present, should return a pointer to a character string that is
displayed along with the load messages of other optional support modules.
These load messages allow the user to verify which support modules the
runtime system has loaded. The message may contain text to identify the
support module and, if desired, the version number or the build date. Load
messages are displayed only if the V Runtime Command Option is present,
the V=DISPLAY keyword-value pair is specified in the RUN-OPTION
configuration record, or the RM_DYNAMIC_LIBRARY_TRACE environment
variable is defined.

If load messages are being displayed, the runtime system generates a load
message consisting of the complete pathname for the support module
regardless of whether the RM_AddOnLoadMessage entry point is defined or
not defined in the support module. If the RM_AddOnLoadMessage entry
point is defined, the returned string is appended to the pathname in this load
message.

Note The Windows runtime supports the “call-by-filename” loading of DLLs,
as described in Methods of Using Non-COBOL Subprograms (on page 168).
For DLLs loaded in this manner, the RM_AddOnLoadMessage entry point is
not called and no load message is produced. The entry point is called and a
load message is produced if the DLL is loaded because of the L Runtime
Command Option or because the DLL is present in the rmautold subdirectory
of the execution directory.

Function declaration for RM_AddOnLoadMessage:

char* RM_AddOnLoadMessage(void);

CodeBridge User's Guide Appendix G: Non-COBOL Subprogram Internals for Windows • 183

RM_AddOnTerminate

This entry point, if present, is called by the runtime system during
termination. Execution of all COBOL programs is complete when the runtime
system calls this entry point. It allows the optional support module to
perform any cleanup actions that may be necessary.

Note The Windows runtime supports the “call-by-filename” loading of DLLs,
as described in Methods of Using Non-COBOL Subprograms (on page 168).
DLLs loaded with this method will be unloaded when a CANCEL statement
references them. In this case, the RM_AddOnTerminate entry point is called
just prior to unloading the DLL, after having called
RM_AddOnCancelNonCOBOLProgram, and the runtime system is not
necessarily about to terminate.

The RM_AddOnTerminate function is called when the module is unloaded,
even if the RM_AddOnInit function (on page 181) for the module did not
succeed. Thus, the code for this function must not depend on the success of
the RM_AddOnInit function.

Function declaration for RM_AddOnTerminate:

void RM_AddOnTerminate(void);

RM_AddOnVersionCheck

This entry point, if present, provides a method of verifying that the runtime
system and the optional support module are compatible.

If RM_AddOnVersionCheck is not present, the support module is assumed to
support the current interface version of the runtime system that calls the
support module.

If RM_AddOnVersionCheck is present, it will be passed a version string, two
support module interface versions, and a pointer for the support module to
store a desired interface version. The version string (for example, 9.0n.nn) is
defined by the VERSION macro in the header file version.h (provided with the
RM/COBOL system). The runtime support module interface versions indicate
the minimum and maximum versions that the runtime system can support.
The RM/COBOL runtime system (version 7.50 or later) supports support
module interface versions 1 and 2. For Windows, these two interface
versions are identical. In the future, the runtime system may support other,
partially or completely incompatible, interface versions.

It is the responsibility of the support module to verify that it supports one of
the interface versions supported by the runtime system and to return the
interface version it supports. If the support module does not support any of
the interfaces supported by the runtime system, the support module should
return FALSE (0). In this case, or if the support module returns an invalid
interface version, the runtime system will display an appropriate message
and then terminate. Returning TRUE (1) and an interface version in the range
supported by the runtime system allows the runtime system to continue. The

184 • Appendix G: Non-COBOL Subprogram Internals for Windows CodeBridge User's Guide

support module may use the current interface version by returning the value
CURRENT_SUPPORT_MODULE_INTERFACE_VERSION (defined in the
supplied header file, rmc85cal.h).

The support module may also use the value of the version string to verify
compatibility with the runtime system. If the support module determines that
it is not compatible with the runtime system, it should return FALSE. In this
case, the support module might display a meaningful message before the
runtime system displays its message and terminates.

Function declaration for RM_AddOnVersionCheck:

BOOLEAN RM_AddOnVersionCheck(char* Version,

 int MinRuntimeInterfaceVersion,

 int MaxRuntimeInterfaceVersion,

 int* DesiredInterfaceVersion);

RM_EntryPoints and RM_EnumEntryPoints

When the runtime system loads an optional support module, it looks for the
exported symbols RM_EntryPoints and RM_EnumEntryPoints to determine
whether the support module contains any COBOL-callable functions. Each
optional support module defines only those COBOL-callable functions
defined in that support module using either the RM_EntryPoints symbol
declaration or the RM_EnumEntryPoints entry point. For backward
compatibility, if neither of these symbols is exported, then the runtime system
looks for an .EDATA section in the DLL. If the .EDATA section is found, the
exported names listed in the .EDATA section are considered to be COBOL-
callable functions; otherwise, the DLL is considered not to contain any
COBOL-callable functions.

The use of the subprogram name table RM_EntryPoints is described in the
section
C Subprogram Name Table Structure on Windows (on page 169).

If the entry point RM_EnumEntryPoints is found, it is called repeatedly to
obtain the COBOL-callable names, function addresses, and function names of
the COBOL-callable functions in the support module. This function should
return a pointer to a structure that is equivalent to one entry in the
RM_EntryPoints table. The end of the entry points is indicated by returning a
null pointer or a structure whose first pointer is NULL. The index parameter
starts at zero for the first call and is incremented for each subsequent call.

If both symbols are present, RM_EnumEntryPoints takes precedence.

See the example RM_EntryPoints for Windows (on page 170) for the symbol
declaration for RM_EntryPoints.

Function declaration for RM_EnumEntryPoints:

ENTRYTABLE* RM_EnumEntryPoints(int index);

CodeBridge User's Guide Appendix G: Non-COBOL Subprogram Internals for Windows • 185

Debugging C Subprograms on Windows

Non-COBOL subprograms can be debugged using the debugger supplied with
the
C compiler used to build the DLL.

In order to include debugging information in the DLL, the MSGBOX.DLL
sample can be built in the samples subdirectory using the Microsoft Visual
C++ compiler with the following command line:

cl /I.. /Zi /LD /MD msgbox.c user32.lib

Alternatively, use the following command for the Watcom C compiler, version
10.6
or later:

wclX86 -l=nt_dll -bd -d2 msgbox.c -"export MSGBOX.1=_MsgBox"

After creating a version of the DLL containing debugging information, start
the debugger on runcobol.exe. The Microsoft debugger allows you to add
both runcobol.exe and the DLL file to a project and then set a breakpoint in
the DLL before beginning execution.

The Watcom debugger allows you to set a breakpoint that is triggered when
the module containing the DLL is loaded. Once it has been loaded, the
source for the module can be viewed and additional breakpoints can be set.
For more information, see the documentation supplied with the debugger you
are using.

Calling a CodeBridge Subprogram Library on
Windows

It is possible to use non-COBOL subprogram libraries built using CodeBridge
and call them in the manner described in this appendix.

The CodeBridge Builder generates functions that are to be called by
RM/COBOL. These generated functions then call the C functions that are
described in the template file. The name of the generated function is the
same as the C function name with a prefix of “RMDLL” added to it. For
example, if the name of the C function is MessageBox, the name of the
generated function is RMDLLMessageBox.

It is possible for a C function that calls the CodeBridge Library functions
directly also to call functions that were built by the CodeBridge Builder. A C
function could call RMDLLMessageBox directly either by using the
ARGUMENT_ENTRY structure that was passed from RM/COBOL or by
constructing one that suited the needs of the C function.

One use of this capability would be to hide conversions of C data items to
COBOL data items. Example 6: Converting Buffered C Data (on page 76)

186 • Appendix G: Non-COBOL Subprogram Internals for Windows CodeBridge User's Guide

describes a case in which such conversions are necessary even though
CodeBridge is being used. In that example, the function cstring2text is called
from COBOL to convert data stored in a buffer by a C function call. This
conversion could be hidden from the RM/COBOL program by embedding the
conversion in a C function that first calls the C function to store the data in
the buffer and then also calls the generated C function, RMDLLcstring2text.

CodeBridge User's Guide Appendix H: Non-COBOL Subprogram Internals for UNIX • 187

Appendix H: Non-COBOL
Subprogram Internals for UNIX

This appendix describes the internal details of how a non-COBOL
subprogram is called
from an RM/COBOL program running under UNIX. While it is possible to
write non-COBOL subprograms that directly use this information to handle
COBOL argument conversions, it is highly recommended that CodeBridge be
used for this purpose instead. This appendix also provides information on
preparing a non-COBOL subprogram for use by an RM/COBOL program on
UNIX. (For additional information, see the “CALL Statement” section of
Chapter 6: Procedure Division Statements in the RM/COBOL Language
Reference Manual.)

Note The information presented here assumes a working knowledge of the C
programming language. The material in Appendix C: Useful C Information
(on page 87) is not comprehensive enough to provide this necessary
background.

C Subprograms for UNIX

To modify or write a C subprogram that can be called from the RM/COBOL
runtime system requires an understanding of the fundamental tasks involved.
First, in order to access C language subprograms from the RM/COBOL
runtime system, you must build a shared object, normally referred to as an
“optional support module.” (For more information on shared objects and
optional support modules, see Appendix D: Support Modules (Non-COBOL
Add-Ons) of the RM/COBOL User’s Guide.) The shared object must then be
placed so that the RM/COBOL runtime system can locate it, either by looking
in a special subdirectory (rmcobolso) of the runtime execution directory
(normally /usr/bin) or by using the L Option on the Runtime Command.
Finally, you must provide information about what entry points you wish the
runtime system to use.

188 • Appendix H: Non-COBOL Subprogram Internals for UNIX CodeBridge User's Guide

Calling C Subprograms from COBOL for UNIX

This section describes the COBOL CALL syntax and explains how a C
programmer can write a subprogram that can be called from RM/COBOL.
The COBOL CALL statement explains the use of the non-COBOL subprogram
from the COBOL programmer’s perspective while the other topics describe
the structures and the function prototype that the C programmer needs to
understand.

COBOL CALL Statement

The syntax for the Format 2 CALL statement in the RM/COBOL program is as
follows:

Error! Not a valid filename.

The value of the contents of the data item specified by identifier-1 or the
value of literal-1 is the program-name of the subprogram to be called.

identifier-2 or literal-2 are one or more actual arguments to be passed to the
called program. If the BY CONTENT phrase applies to an argument, a
temporary copy of the item is passed, thus preventing the subprogram from
modifying the original item.

identifier-3 is an actual argument to be passed to the called program for the
purposes of returning a result to the calling program.

The RM/COBOL runtime system locates the subprogram with the program-
name specified by literal-1 or the value of the data item referenced by
identifier-1. See the discussion of “Subprogram Loading” in Chapter 8:
RM/COBOL Features of the RM/COBOL User's Guide, for additional
information on locating subprograms.

C Subprogram Name Table Structure on UNIX

The RM/COBOL runtime system can locate the C subprograms only if their
names appear in the subprogram name table. The subprogram name table is
an array of name table entries. Each name table entry is a C structure that is
defined as follows:

typedef struct EntryTable

{

 char *EntryPointCobolName; /* name of subroutine as in call */

 int (*EntryPointAddress)(); /* entry point address */

 char *EntryPointName; /* name of entry point in object */

} ENTRYTABLE;

Character strings must be null terminated. The last array entry must consist
of NULLs. The name of the subprogram name table must be
RM_EntryPoints.

CodeBridge User's Guide Appendix H: Non-COBOL Subprogram Internals for UNIX • 189

The RM/COBOL runtime system does not use the EntryPointAddress entry in
this structure. Instead, the EntryPointName entry is used to find the
procedure address for the procedure that has the given name. Thus, each
value supplied in an EntryPointName entry must match that of an external
symbol in the shared object. When the shared object is loaded, the runtime
system looks up the procedure address for each entry using the supplied
name; if
the name is not found, an error occurs and the runtime system is terminated
with an appropriate message.

RM_EntryPoints is one of the predefined symbols in an optional support
module. For complete information about all of the predefined symbols, see
Special Entry Points for Support Modules on UNIX (on page 197).

Note The ENTRYTABLE typedef is defined in rmc85cal.h, which is provided
with RM/COBOL systems. This header file should be included (with a
preprocessor #include statement) in C source that defines COBOL-callable
subprograms. Other header files (rtarg.h, standdef.h, and rmport.h) are
referenced by rmc85cal.h. These files are also provided with RM/COBOL
systems.

Example RM_EntryPoints for UNIX

ENTRYTABLE RM_EntryPoints[] =

{

 {"SUB1NAME", sub1, "sub1"},

 {"SUB2NAME", sub2, "sub2"},

 {NULL, NULL, NULL }

};

In this example, “SUB1NAME” and “SUB2NAME” are the COBOL-callable
program-names, sub1 and sub2 are the addresses of the C subprograms
(functions), and “sub1” and “sub2” are the names of the C subprograms
(functions).

Parameters Passed to the C Subprogram on UNIX

The RM/COBOL runtime system passes six parameters on the stack to the
called
C subprogram. The following is a sample COBOL-callable C subprogram
function prototype:

int sub1

 (

 char *name, /* param1 */

 unsigned short arg_count, /* param2 */

 ARGUMENT_ENTRY arg_vector[], /* param3 */

 unsigned short initial_state, /* param4 */

 void *reserved, /* param5 */

 RUNTIME_CALLS_TABLE callbacktable /* param6 */

);

190 • Appendix H: Non-COBOL Subprogram Internals for UNIX CodeBridge User's Guide

Note The above function prototype does not work on Windows. See
Declaring the C Function Return Value and Parameters (on page 206) for a
function that does work for either Windows
or UNIX.

The six parameters are described as follows:

1. Pointer to the called program-name, which is a null-terminated ASCII
string
containing the name used by the run unit to identify the called
subprogram. The called program-name is always uppercase-only,
regardless of the case of the name in the calling COBOL program.

2. Argument count, which is the number of arguments, including arguments
explicitly specified with the OMITTED keyword, specified in the USING
phrase of the CALL statement. The argument in the GIVING
(RETURNING) phrase, if specified, is not included in the count.

3. Pointer to the argument array, which is an array of structures describing
each of the actual arguments passed in the GIVING (RETURNING) and
USING phrases of the CALL statement. The structure of an argument
description entry is described in COBOL Argument Entry Structure for C
on UNIX (on page 191) and is defined in the rtarg.h header file, which is
provided with RM/COBOL systems.

4. Initial state flag, which contains a zero to indicate that the subprogram is
being called for the first time in the run unit or the first time since a
CANCEL statement has been executed for the subprogram name. A
nonzero value indicates that the subprogram should remain in its last
used state. It is the responsibility of the called subprogram (rather than
the runtime system) to examine the initial state flag and decide which
variables need to be reinitialized. In any case, on each call, all C
automatic variables
are reallocated on the stack without being initialized to any particular
value (that is,
C automatic variables have arbitrary values).

5. Pointer value NULL (for compatibility with Windows non-COBOL
subprograms).

6. Pointer to the runtime call-back table, which is a structure that contains
the size of the table, the version number of the table, and a list of
subprogram addresses in the runtime system. The CodeBridge Builder
uses the call-back table to obtain access to some utility subprograms in
the runtime system. The description of this table is available in rtcallbk.h,
a header file provided with RM/COBOL systems. The table is named
RUNTIME_CALLS_TABLE.

Note The fifth and sixth parameters are optional. Although the runtime
system will always pass these values, the called subprogram does not have
to declare them. The prototype for the called function may omit the sixth or

CodeBridge User's Guide Appendix H: Non-COBOL Subprogram Internals for UNIX • 191

both the fifth and sixth parameters. The runtime call-back table is required if
the subprogram uses any of the CodeBridge Library functions.

The called subprogram must set an integer return value before returning
control to the runtime system. A value of RM_FND (defined as 0 in rtarg.h)
indicates that the subprogram was found and that the runtime system should
continue executing the COBOL program. A value of RM_STOP (defined as 1
in rtarg.h) indicates that the subprogram terminated because of a fatal error,
such as incorrect parameters, and that the runtime system should terminate
the run unit. An explicit return statement should be used to set the return
value since otherwise the run unit might be unintentionally terminated. The
subprogram must not terminate with the system function exit(), since the
runtime system could not do an orderly shutdown of the run unit in this case.

Once an optional support module is loaded, it remains loaded until the
runtime system terminates. Use of the CANCEL statement to cancel a C
subprogram sets the initial flag to zero on the next entry into the subprogram,
but has no effect on the values of the external and static variables used in the
C subprogram.

The argument entry table (arg_vector) contains descriptions of the actual
arguments specified in the CALL statement. The arg_vector[0] entry
describes the first actual argument in the USING phrase of the CALL
statement. The arg_vector[arg_count - 1] entry describes the last actual
argument in the USING phrase of the CALL statement. The arg_vector[-1]
entry describes the argument specified in the GIVING (RETURNING) phrase of
the CALL statement. If the GIVING (RETURNING) phrase is omitted from the
CALL statement, or
if any actual argument is specified as OMITTED in the USING phrase of the
CALL statement, the corresponding arg_vector entry contains a type value 32
(OMITTED, as shown in Table 10 on page 192) and the remaining fields are
zero.

C subprograms that access the GIVING argument in arg_vector[-1] will
function correctly only for RM/COBOL version 7 (or later) runtimes because
prior runtimes did not make a GIVING argument entry available in arg_vector[-
1]. A subprogram that uses the GIVING argument should verify that it is
available by use of the version number in the runtime call-back table, the
address of which is provided by the sixth parameter to the subprogram. The
version number must be 0x0700 or greater for a GIVING argument to be
available.

COBOL Argument Entry Structure for C on UNIX

To a subprogram written in C, an argument entry is defined by the following
structure, which is included in the rtarg.h header file:

typedef struct ArgumentEntry

{

 char *a_address; /* pointer to start of argument */

 BIT32 a_length; /* length of argument */

192 • Appendix H: Non-COBOL Subprogram Internals for UNIX CodeBridge User's Guide

 BIT16 a_type; /* type of argument (RM/COBOL data type) */

 char a_digits; /* digit count (0-30) */

 char a_scale; /* implied decimal location (signed) */

 BYTE *a_picture; /* pointer to encoded edit picture */

} ARGUMENT_ENTRY;

a_address specifies the lowest address byte of the argument.

a_length specifies the number of bytes allocated to the argument.

a_type specifies the RM/COBOL data type as a number from Table 10 (see
page 192).
Names for these type numbers are defined in rtarg.h. (For an explanation of
the data type abbreviations and a description of the RM/COBOL data types
listed in Table 10, see “Data Types” in Chapter 9: Debugging and Appendix
C: Internal Data Formats of the RM/COBOL User's Guide.)

a_digits specifies the actual number of digits in a numeric data item (where
the type of argument is in the range 0 through 12). It is set to zero for
nonnumeric data items.

a_scale specifies the power of 10 by which the digits in a numeric data item
(where the type of argument is in the range 0 through 12) must be multiplied
to obtain the numeric value of the data item. The power of 10 is represented
as a signed, 2’s complement number. It is set to zero for nonnumeric data
items.

a_picture specifies the lowest addressed byte of the encoded picture for
edited items (type of argument equals 0, 20 or 21). It is set to zero for all
other types.

Table 10: RM/COBOL Data Types as Numbers

Type Number RM/COBOL Data Type Type Number RM/COBOL Data Type

0 NSE 16 ANS

1 NSU 17 ANS (justified right)

2 NTS 18 ABS

3 NTC 19 ABS (justified right)

4 NLS 20 ANSE

5 NLC 21 ABSE

6 NCS 22 GRP (fixed length)

7 NCU 23 GRPV (variable length)

8 NPP 25 PTR

9 NPS 26 NBSN

10 NPU 27 NBUN

11 NBS 32 OMITTED

12 NBU

CodeBridge User's Guide Appendix H: Non-COBOL Subprogram Internals for UNIX • 193

Note The data type GRPV (23) does not occur when C$CARG is called with
the formal argument name or when C$DARG is called with an actual
argument number that corresponds to an argument that is a variable-length
group. In all other cases, RM/COBOL passes variable-length group actual
arguments as if they were a fixed-length group of the maximum length. (See
Appendix F: Subprogram Library of the RM/COBOL User's Guide.)

For example, suppose a CALL statement specifies one argument in its USING
list and this argument refers to a three-byte numeric unsigned (NSU) data
item with a PICTURE character-string of 99V9. The following is a diagram of
the structure in C.

argument address

argument length

type

digit count

implied decimal

picture address

3

1

3

-1

NULL

pointer to char

argument [3]

Accessing C Subprograms from UNIX

You can access a C language subprogram from the RM/COBOL runtime
system by either of the following two methods:

• Give each C subprogram a unique name and entry point. Source module
usrsub.c (delivered with the RM/COBOL system) provides an example of
this method.

• Give each C subprogram a unique name and share the same entry point.

In the second case, it is necessary to determine which C subprogram has
been called. The following example illustrates one way this might be
accomplished.

#include "rmc85cal.h"

int library

 (

 char *name,

 unsigned short arg_count,

 ARGUMENT_ENTRY arg_vector[],

 unsigned short initial_state

);

ENTRYTABLE RM_EntryPoints[] =

{

 {"SUBA", (int (*)())library, "library" },

194 • Appendix H: Non-COBOL Subprogram Internals for UNIX CodeBridge User's Guide

 {"SUBB", (int (*)())library, "library" },

 {NULL, (int (*)())NULL, NULL }

};

int library

 (

 char *name,

 unsigned short arg_count,

 ARGUMENT_ENTRY arg_vector[],

 unsigned short initial_state

)

{

 int entry_no;

 const int MAX_ENTRIES =

 (sizeof(RM_EntryPoints)/sizeof(RM_EntryPoints[0])) - 1;

 for (entry_no = 0; entry_no < MAX_ENTRIES; entry_no++)

 {

 if (

 !strcmp

 (

 RM_EntryPoints[entry_no].EntryPointCobolName, name

)

)

 break; /* matching name found */

 }

 switch (entry_no)

 {

 case 0: /* "SUBA" called */

 /*

 * "SUBA" code goes here

 */

 return RM_FND;

 case 1: /* "SUBB" called */

 /*

 * "SUBB" code goes here

 */

 return RM_FND;

 default:

 return RM_STOP; /* logic error, stop run unit */

 }

}

Preparing C Subprograms for UNIX

This section explains how to create an optional support module using either a
new
C subprogram or an existing object for a C subprogram that was previously
being linked into the RM/COBOL runtime system using the customiz script.

CodeBridge User's Guide Appendix H: Non-COBOL Subprogram Internals for UNIX • 195

Creating a Support Module from a C Source

C subprograms must be compiled and linked to produce a shared object to
be used as a support module. In the discussion below, C source files are
assumed to have an extension of .c and C object files are assumed to have
an extension of .o. Optional support modules must have an extension of .so.

A makefile is provided with the RM/COBOL development and runtime
systems that can be used or modified to build a shared object. You may
modify the makefile by adding a new target for your support module or you
may modify module usrsub.c (delivered with the RM/COBOL system). The
makefile includes the C compiler options used by OpenText to build the
optional support modules shipped with the RM/COBOL release on your
particular platform.

Note: The C compiler options in the makefile may not be appropriate or
correct for your
C compiler. In order to build a shared object to be used as a support module
with the RM/COBOL runtime system, you must specify options to tell the
compiler and linker that you want to produce an ELF (Executable and Linking
Format) object file (this is usually the default), that you want to produce a
dynamically-linked executable (for example, -d y), and that you want the linker
to produce a shared object (for example, -shared).

Producing a support module for use on HP-UX and later requires that you
specify an additional C compiler option to generate position-independent
code. Other UNIX systems do not require position-independent code for
support modules. The makefile includes the appropriate compiler option to
generate position-independent code on HP-UX.

Linking a support module for IBM AIX requires both an “import” file,
runcobol.imp, to make RM/COBOL runtime system symbols available and an
“export” file to make support module symbols available. The runcobol.imp
file is supplied with the RM/COBOL development and runtime systems for
IBM AIX. The “export” file must be provided by the user. A sample export file,
libusr.exp, is also provided with the RM/COBOL release as an example of
what the user must provide. The makefile includes appropriate loader
options to use the import and export files when building support modules on
IBM AIX.

A separate “samples” makefile is provided with the RM/COBOL development
system in the cbsample subdirectory. This makefile has targets that are
called by the various script files used to demonstrate CodeBridge. Additional
information about the CodeBridge samples may be found in the README.txt
file in the CodeBridge samples directory. For the remainder of this section,
makefile refers to the makefile that is present in the main installation
directory (normally, /usr/rmcobol) rather than the special CodeBridge
“samples” makefile.

Assuming a C source file named usrsub.c, the following command generates
the subprogram object file and links a shared object to be used as an
optional support module with the runtime system:

196 • Appendix H: Non-COBOL Subprogram Internals for UNIX CodeBridge User's Guide

make libusr MODULES=usrsub.o

The makefile compiles and links the default subprogram module usrsub.c.
The resulting optional support module libusr.so is then copied into the
rmcobolso subdirectory of the current directory. The following describes
each of the files involved in the process:

• usrsub.c is your C subprogram source file that will be compiled to
produce usrsub.o.

• usrsub.o is the C subprogram object file that is linked to create libusr.so.

• libusr.so is the resulting shared object (optional support module).
Although it is unnecessary to name your support module libusr.so, the
name chosen must have an extension of .so.

Note Filenames of optional support modules must be unique even if the
modules are located in different directories. The runtime system assumes
that support modules with the same name are the same and, therefore,
ignores all subsequent support modules with the same name as one already
loaded.

If your optional support module uses functions from the C library that are not
also used by the runtime system, you will see a message similar to the
following when the runtime system tries to load the support module:

dynamic linker: runcobol: relocation error: symbol not found: symbol

You will need to add the C library name to the compile/link command (for
example, cc). Depending on your particular support module, other library
names may also need to be added.

You can test the newly built shared object by using the L (Library) Option on
the RM/COBOL Runtime Command (see Chapter 7: Running in the
RM/COBOL User’s Guide) to specify the location of the support module in the
test subdirectory. After testing is complete, you should copy the support
module into the rmcobolso subdirectory of the executable directory (normally
/usr/bin) so that the runtime system will automatically load your support
module. Once this has been done, your support module will be available for
use in production mode.

Creating a Support Module from a C Object (No Source)

If you have old C subprograms that you have been linking into the runtime
system, but no longer have the source (to be able to build a shared object), it
may still be possible to build a shared object from the old object (.o) file. You
will need to write a C wrapper module. You can use usrsub.c as a starting
point, which is the method used in the remainder of this topic. Modify the
entry points table to include the COBOL-callable name(s) of the C functions
you wish to access in the old object. Then modify the entry points table to
reference the proper
C function(s) name(s) (the UNIX command nm may help you determine the

CodeBridge User's Guide Appendix H: Non-COBOL Subprogram Internals for UNIX • 197

function names). Finally, include an extern declaration for the C function
names in the usrsub.c source as follows:

extern int oldcfunction();

Use the following command to build the shared object:

make libusr MODULES="usrsub.o oldcobject.o"

If you want to modify the makefile to change the name of the shared object,
simply duplicate the libusr section of the makefile and change the names as
appropriate or rename file libusr.so to the desired filename.

Special Entry Points for Support Modules on UNIX

When the runtime system (or other RM/COBOL component) loads an optional
support module, it looks for certain predefined symbols (entry points and
variable names), and varies its actions based on the presence or absence of
these symbols. One such variable name is RM_EntryPoints, as discussed in
C Subprogram Name Table Structure on UNIX (on page 188). The example
subprogram, usrsub.c, which is distributed with the RM/COBOL system,
contains examples of all of these entry points and symbols. It can be used
as a starting point when developing optional support modules.

The complete list of these special names is as follows:

• RM_AddOnBanner (on page 197)

• RM_AddOnCancelNonCOBOLProgram (on page 198)

• RM_AddOnInit (on page 198)

• RM_AddOnLoadMessage (on page 198)

• RM_AddOnTerminate (on page 199)

• RM_AddOnVersionCheck (on page 199)

• RM_EntryPoints and RM_EnumEntryPoints (on page 184)

Note On UNIX, only the RM_EntryPoints symbol declaration (or the
RM_EnumEntryPoints entry point) is required for an optional support module.
All other entry points are optional.

The following sections describe these entry points and special variables.

RM_AddOnBanner

This entry point, if present, should return a pointer to a character string that
will be displayed along with the runtime system banner message. The
support module banner may be used to display any required copyright notice.
The support module banner is displayed only if the K Option of the Runtime
Command is not present.

198 • Appendix H: Non-COBOL Subprogram Internals for UNIX CodeBridge User's Guide

Function declaration for RM_AddOnBanner:

char* RM_AddOnBanner ();

RM_AddOnCancelNonCOBOLProgram

This entry point, if present, is called by the runtime system when a CANCEL
verb is executed for a program-name that is defined in the optional support
module. It allows the support module to do any cleanup actions that may be
necessary. For example, this entry point might be specified to allow the
support module to close any open files when the COBOL program cancels the
associated non-COBOL subprogram. The program-name of the non-COBOL
subprogram for which a CANCEL has been performed is passed as a
parameter to the entry point.

Function declaration for RM_AddOnCancelNonCOBOLProgram:

void RM_AddOnCancelNonCOBOLProgram (char* ProgramName);

RM_AddOnInit

This entry point, if present, is called to initialize the optional support module.
All support modules will be initialized (if initialization is requested) before the
runtime system begins executing the first COBOL program. The entry point
should return zero to indicate successful initialization or a non-zero value to
indicate that the support module initialization failed. If the initialization fails,
the runtime system will display an appropriate message and then terminate.

Note If the support module determines that successful initialization is not
possible, the support module should produce appropriate messages to allow
the user to correct the problem.

The support module is passed the shell command line arguments in the
arguments Argc (the argument count) and Argv (the argument vector). The
support module is also passed a pointer to the runtime call back table if the
support module interface version is set to 2.

Function declaration for RM_AddOnInit for interface version 1:

int RM_AddOnInit (int Argc, char** Argv);

Function declaration for RM_AddOnInit for interface version 2:

int RM_AddOnInit(int Argc,

 char** Argv,

 RUNTIME_CALLS_TABLE *pRtCall);

RM_AddOnLoadMessage

This entry point, if present, should return a pointer to a character string that is
displayed along with the load messages of other optional support modules.

CodeBridge User's Guide Appendix H: Non-COBOL Subprogram Internals for UNIX • 199

These load messages allow the user to verify which support modules the
runtime system has loaded. The message may contain text to identify the
support module and, if desired, the version number or the build date. Load
messages are displayed only if the V Runtime Command Option is present,
the V=DISPLAY keyword-value pair is specified in the RUN-OPTION
configuration record, or the RM_DYNAMIC_LIBRARY_TRACE environment
variable is defined.

If load messages are being displayed, the runtime system generates a load
message consisting of the complete pathname for the support module
regardless of whether the RM_AddOnLoadMessage entry point is defined or
not defined in the support module. If the RM_AddOnLoadMessage entry
point is defined, the returned string is appended to the pathname in this load
message.

Function declaration for RM_AddOnLoadMessage:

char* RM_AddOnLoadMessage ();

RM_AddOnTerminate

This entry point, if present, is called by the runtime system during
termination. Execution of all COBOL programs is complete when the runtime
system calls this entry point. It allows the optional support module to
perform any cleanup actions that may be necessary.

The RM_AddOnTerminate function is called when the module is unloaded,
even if the RM_AddOnInit (on page 198) for the module did not succeed.
Thus, the code for this function must not depend on the success of
RM_AddOnInit function.

Function declaration for RM_AddOnTerminate:

void RM_AddOnTerminate ();

RM_AddOnVersionCheck

This entry point, if present, provides a method of verifying that the runtime
system and the optional support module are compatible.

If RM_AddOnVersionCheck is not present, the support module is assumed to
support the current interface version of the runtime system that calls the
support module.

If RM_AddOnVersionCheck is present, it will be passed a version string, two
support module interface versions, and a pointer for the support module to
store a desired interface version. The version string (for example, 8.0n.nn) is
defined by the VERSION macro in the header file version.h (provided with the
RM/COBOL system). The runtime support module interface versions indicate
the minimum and maximum versions that the runtime system can support.
The RM/COBOL runtime system (version 7.50 or later) supports support

200 • Appendix H: Non-COBOL Subprogram Internals for UNIX CodeBridge User's Guide

module interface versions 1 and 2. For UNIX, these two interface versions
differ only in the arguments passed to RM_AddOnInit, as documented in the
description of that special entry point (on page 198). Interface version 1 was
the support module interface version supported by the version 7.10 runtime
system. Interface version 2 is the new current support module interface
version supported by version 7.50 or later runtime systems. In the future, the
runtime system may support other, partially or completely incompatible,
interface versions.

It is the responsibility of the support module to verify that it supports one of
the interface versions supported by the runtime system and to return the
interface version it supports. If the support module does not support any of
the interfaces supported by the runtime system, the support module should
return FALSE (0). In this case, or if the support module returns an invalid
interface version, the runtime system will display an appropriate message
and then terminate. Returning TRUE (1) and an interface version in the range
supported by the runtime system allows the runtime system to continue. The
support module may use the current interface version by returning the value
CURRENT_SUPPORT_MODULE_INTERFACE_VERSION (defined in the
supplied header file, rmc85cal.h).

The support module may also use the value of the version string to verify
compatibility with the runtime system. If the support module determines that
it is not compatible with the runtime system, it should return FALSE. In this
case, the support module might display a meaningful message before the
runtime system displays its message and terminates.

Function declaration for RM_AddOnVersionCheck:

BOOLEAN RM_AddOnVersionCheck (char* Version,

 int MinRuntimeInterfaceVersion,

 int MaxRuntimeInterfaceVersion,

 int* DesiredInterfaceVersion);

RM_EntryPoints and RM_EnumEntryPoints

When the runtime system loads an optional support module, it looks for the
exported symbols RM_EntryPoints and RM_EnumEntryPoints to determine
whether the support module contains any COBOL-callable functions. Each
optional support module defines only those COBOL-callable functions
defined in that support module using either the RM_EntryPoints symbol
declaration or the RM_EnumEntryPoints entry point.

The use of the subprogram name table RM_EntryPoints is described in C
Subprogram Name Table Structure on UNIX (on page 188).

If the entry point RM_EnumEntryPoints is found, it is called repeatedly to
obtain the COBOL-callable names, function addresses, and function names of
the COBOL-callable functions in the support module. This function should
return a pointer to a structure that is equivalent to one entry in the
RM_EntryPoints table. The end of the entry points is indicated by returning a

CodeBridge User's Guide Appendix H: Non-COBOL Subprogram Internals for UNIX • 201

null pointer or a structure whose first pointer is NULL. The index parameter
starts at zero for the first call and is incremented for each subsequent call.

If both symbols are present, RM_EnumEntryPoints takes precedence.

See the example RM_EntryPoints for UNIX (on page 189) for the symbol
declaration for RM_EntryPoints.

Function declaration for RM_EnumEntryPoints:

ENTRYTABLE* RM_EnumEntryPoints (int index);

Calling a CodeBridge Subprogram Library on UNIX

It is possible to use non-COBOL subprogram libraries built using CodeBridge
and call them in the manner described in this appendix.

The CodeBridge Builder generates functions that are to be called by
RM/COBOL. These generated functions then call the C functions that are
described in the template file. The name of the generated function is the
same as the C function name with a prefix of “RMDLL” added to it. For
example, if the name of the C function is MessageBox, the name of the
generated function is RMDLLMessageBox.

It is possible for a C function that calls the CodeBridge Library functions
directly also to call functions that were built by the CodeBridge Builder. A C
function could call RMDLLMessageBox directly either by using the
ARGUMENT_ENTRY structure that was passed from RM/COBOL or by
constructing one that suited the needs of the C function.

One use of this capability would be to hide conversions of C data items to
COBOL data items. Example 6: Converting Buffered C Data (on page 76)
describes a case in which such conversions are necessary even though
CodeBridge is being used. In that example, the function cstring2text is called
from COBOL to convert data stored in a buffer by a C function call. This
conversion could be hidden from the RM/COBOL program by embedding the
conversion in a C function that first calls the C function to store the data in
the buffer and then also calls the generated C function, RMDLLcstring2text.

C Subprograms Performing Terminal I/O

The RM/COBOL runtime system changes terminal characteristics before
passing control to a C language subprogram. If any processing requiring
terminal I/O occurred (including operating system commands that use the
terminal), you must reset the terminal to its original state by making a call to
the routine resetunit(). If resetunit() was called, a call to setunit() must be
made before control is returned to the run unit. Both functions are part of the
runtime system and are described in Runtime Functions for Support Modules
(on page 202).

202 • Appendix H: Non-COBOL Subprogram Internals for UNIX CodeBridge User's Guide

Debugging C Subprograms on UNIX

It is recommended that subprograms initially be tested using a C main
program that sets up the RM/COBOL argument entries and calls the
subprogram. Once the subprograms are functioning properly, you can then
build the shared object and test with the COBOL program.

C Subprogram Example

The C subprogram usrsub.c has been provided with your distribution media
as an example of the predefined symbols and entry points used in creating
optional support modules (shared objects). As distributed, usrsub.c does
nothing of interest, but does serve as a template for developing an optional
support module of your own. Remember, only the RM_EntryPoints symbol
declaration (or the RM_EnumEntryPoints entry point) is required. All other
entry points are optional.

Note The special entry points, SYSTEM, DELETE, and RENAME, which were
included in the C source sub.c on previous releases of RM/COBOL, are not
present in usrsub.c. These COBOL-callable functions are now part of the
runtime system and are fully documented in Appendix F: Subprogram Library
of the RM/COBOL User’s Guide.

Runtime Functions for Support Modules

RM/COBOL provides user-supplied C subprograms with entry points to some
COBOL functions. The following routines use the standard C calling and
parameter passing conventions:

• RmForget (int y1, int x1, int y2, int x2). This function marks the indicated
area of screen memory as unknown. By doing so, the next COBOL display
to that area will not be optimized based on the screen contents. This
allows COBOL output to be correctly displayed over C subprogram output,
which is not stored in the in-memory screen image.

This routine requires four int parameters (two line and position pairs),
which specify the upper-left (y1,x1) and lower-right (y2,x2) coordinates of
the area of the screen to be marked as unknown. Valid values range from
0 to the line or position limit of the screen. Passing zero values mark the
entire screen as being unknown. See C$Forget in Appendix F of the
RM/COBOL User's Guide for more information. The function returns an
int value of 0 for success.

• RmRepaintScreen(). This function causes the RM/COBOL runtime
system to redraw the entire current screen from an in-memory image. C
routine output is erased. This function requires no parameters and does
not return a value. See the REPAINT-SCREEN keyword of the CONTROL

CodeBridge User's Guide Appendix H: Non-COBOL Subprogram Internals for UNIX • 203

phrase in Chapter 8: RM/COBOL Features of the RM/COBOL User's Guide
for more information.

• RmRefreshCwd(). This function causes the RM/COBOL runtime system
to refresh its internal copy of the current working directory. This internal
copy is used to construct complete filenames from any filename that is
not fully qualified. This function should be called before returning to the
COBOL program if a non-COBOL subprogram changes the current
working directory with the chdir() C library routine. The RmRefreshCwd()
routine has no parameters and does not return a value.

• setunit(). This function restores the terminal to the state the RM/COBOL
runtime system requires for terminal I/O. If the resetunit() function is
called, the setunit() function must be called before returning to the
runtime system. This function requires no parameters and does not
return a value.

• resetunit(). This function places the terminal in a “normal state” (that is,
the state before the RM/COBOL runtime system was executed). This
function should be used if any terminal I/O is going to be performed,
including operating system commands that use the terminal. This
function requires no parameters and does not return a value.

CodeBridge User's Guide Appendix I: Calling the CodeBridge Library Directly • 205

Appendix I: Calling the
CodeBridge Library Directly

This appendix provides guidelines for calling the CodeBridge Library directly
rather than having the CodeBridge Builder generate the interface code from a
template file. In order to call the CodeBridge Library directly, you must use an
alternate method for preparing non-COBOL subprograms, as described either
in Appendix G: Non-COBOL Subprogram Internals for Windows (on page 167)
or Appendix H: Non-COBOL Subprogram Internals for UNIX (on page 187).

Note The information presented here assumes a working knowledge of the C
programming language. The material in Appendix C: Useful C Information
(on page 87) is not comprehensive enough to provide this necessary
background.

Overview

In describing direct calls to the CodeBridge Library, the following topics are
covered:

• Including cbridge.h (on page 206)

• Declaring the C function return value and parameters (on page 206)

• Specifying the COBOL argument number (on page 207)

• Declaring C data items used in the conversion process (on page 208)

• Initializing and terminating the conversion process (on page 211)

• Converting COBOL arguments to C data items (on page 212)

• Converting C data items to COBOL arguments (on page 214)

• Validating properties of COBOL arguments (on page 216)

Following these discussions, see the example (on page 216) of calling the
CodeBridge Library directly.

206 • Appendix I: Calling the CodeBridge Library Directly CodeBridge User's Guide

Including cbridge.h

Instead of including rmc85cal.h, include cbridge.h (which includes
rmc85cal.h). cbridge.h defines the following:

• Values for the Flags parameter used for most CodeBridge Library
functions

• CodeBridge internal conversion table (CONV_TABLE)

• Runtime entry point table (RUNTIME_CALLS_TABLE)

• Function prototype of each CodeBridge Library function

• Initialization and termination logic for the generated interface DLL (for
Windows)

Declaring the C Function Return Value and
Parameters

The function is called with six parameters. The function should have the
form specified either in Parameters Passed to the C Subprogram on
Windows (on page 171) or in Parameters Passed to the C Subprogram on
UNIX (on page 189). The following form may be used if the function is to
work under either Windows or UNIX:

RM_DLLEXPORT int RM_CDECL

FunctionName(char *pCalledName,

 unsigned short ArgCount,

 ARGUMENT_ENTRY Arguments[],

 unsigned short InitialState,

 RM_HWND hRtWindow,

 RUNTIME_CALLS_TABLE *pRtCall)

{

 /* function implementation goes here */

 return RM_FND;

}

FunctionName is the name of the C function. The function return value must
be declared as an int. The value returned to the calling COBOL program must
be either RM_FND or RM_STOP, as described in the parameters passed to the
C subprogram on Windows (on page 172) and UNIX (on page 191).

pCalledName is the Name parameter used for the ConversionStartup (on
page 154) CodeBridge Library function.

ArgCount is the ArgCount parameter used for most CodeBridge Library
functions.

Arguments is the Arguments parameter used for most CodeBridge Library
functions.

CodeBridge User's Guide Appendix I: Calling the CodeBridge Library Directly • 207

InitialState could be used as the Flags parameter for the CobolInitialState (on
page 144) CodeBridge Library function, but normally would be used directly
by the code.

hRtWindow is the window handle for the runtime on Windows and could be
used as the WindowsHandle parameter for the CobolWindowsHandle (on
page 153) CodeBridge Library function, but normally would be used directly
by the code. On UNIX, hRtWindow is a placeholder that should not be used
since there is no window handle on UNIX.

pRtCall points to the runtime entry point table and is used to locate
CodeBridge Library functions. For example, you could call DiagnosticMode
(on page 155) as follows:

pRtCall->pDiagnosticMode(DF_SILENT);

The C subprogram table structure, which defines the COBOL-callable entry
points, references the function name as follows:

RM_DLLEXPORT ENTRYTABLE RM_EntryPoints[]=

{

 {"ProgramName", (int (RM_CDECL *)())FunctionName,

"FunctionName"},

 {NULL, (int (RM_CDECL *)()) NULL, NULL}

};

ProgramName is the name used in the COBOL program to call the C function.
For more information on the C subprogram name table, see C Subprogram
Name Table Structure on Windows (on page 169) or C Subprogram Name
Table Structure on UNIX (on page 188).

Note The macros RM_DLLEXPORT, RM_CDECL, and RM_HWND, are defined
in rmc85cal.h (which is included by cbridge.h) to aid in writing code that will
compile on both Windows and UNIX.

Specifying the COBOL Argument Number

The value of the Arguments parameter used for most CodeBridge Library
functions is zero-relative. The first argument in the USING phrase of the
RM/COBOL CALL statement is argument zero. RM/COBOL allows up to 255
arguments in the USING phrase (numbered 0 through 254). The argument in
the GIVING (RETURNING) phrase of the RM/COBOL CALL statement is
argument -1 (minus one).

208 • Appendix I: Calling the CodeBridge Library Directly CodeBridge User's Guide

Declaring C Data Items Used in the Conversion
Process

This section describes requirements for declaring a C data item that will
receive a converted COBOL argument value or whose converted value will be
returned to a COBOL argument.

Numeric Conversions

C numeric data items can receive and supply values for Numeric
conversions. See the CobolToFloat (on page 145), CobolToInteger (on page
147), FloatToCobol (on page 156), and IntegerToCobol (on page 161)
CodeBridge Library functions. For C numeric data items, you must define
both the data item and a pointer to the data item. The pointer must be
initialized with the address of the data item as follows:

type Name; type *pName = &Name;

where,

type is a C numeric type (such as int, unsigned short, or double).

Name is the name of the C numeric data item.

pName is the name of the pointer to the C numeric data item.

The pointer is required so that null-valued COBOL pointers can be passed to
the C function and converted properly.

Note Because of the way numeric data items are declared (to handle null-
valued pointers), you must adjust the way you pass C numeric data items by
reference to other C functions. Normally you would pass &Name, but when
using CodeBridge you must pass pName instead.

If an array of numbers is to be passed, you must define a numeric array. To
pass an array of five long integers, use the following definition:

long MyLongArray[5]; long *pMyLongArray = MyLongArray;

String Conversions

C strings can receive and supply values for String conversions. See the
CobolToGeneralString (on page 146), CobolToNumericString (on page 148),
CobolToString (on page 152), GeneralStringToCobol (on page 157),
NumericStringToCobol (on page 162), and StringToCobol (on page 165)
CodeBridge Library functions. To use C strings in the conversion process,
define an uninitialized string pointer as follows:

type *pString;

where,

CodeBridge User's Guide Appendix I: Calling the CodeBridge Library Directly • 209

type is a C string type (such as char, signed char, or unsigned char).

pString is the name of the string pointer.

Because the actual storage for each C string is allocated dynamically by the
CodeBridge Library, it is not necessary to define storage for the string.

If an array of strings is to be passed, you must define an array of string
pointers. To pass an array of five strings, use the following definition:

char *pMyStringArray[5];

Address Conversions

C pointers can receive and supply values for Address conversions. See the
CobolDescriptorAddress (on page 142), CobolToPointerAddress (on page
150), CobolToPointerBase (on page 150), and PointerBaseToCobol (on page
163) CodeBridge Library functions. For Address conversions, define a
C pointer as follows:

type *pCobolData;

where,

type is the C data type used for references to the COBOL data.

pCobolData is the name of the pointer to the COBOL data.

Note Be careful when using Address conversions. The address returned in
pCobolData may be used to directly manipulate COBOL data. It is better to
use Numeric and String conversions, which require less knowledge of COBOL
data formats to accomplish the same purpose.

Pointer Numeric Component Conversions

Pointer Numeric Component conversions, which include the
CobolToPointerOffset (on page 151), CobolToPointerSize (on page 152),
PointerOffsetToCobol (on page 164), and PointerSizeToCobol (on page 164)
CodeBridge Library functions, do not convert to and from COBOL arguments.
Instead, they obtain (or set) auxiliary information about the components of
RM/COBOL pointer arguments. They are handled in the same manner as
Numeric conversions (on page 208). For Pointer Numeric Component
conversions, define both a C data item and a pointer to the data item as
follows:

type Name; type *pName = &Name;

where,

type is a C numeric type (such as int, unsigned short, or double).

Name is the name of the C numeric data item.

210 • Appendix I: Calling the CodeBridge Library Directly CodeBridge User's Guide

pName is the name of the pointer to the C numeric data item.

Other Conversions

Other conversions, such as the BufferLength (on page 140),
CobolDescriptorDigits (on page 142), CobolDescriptorLength (on page 143),
CobolDescriptorScale (on page 143), CobolDescriptorType (on page 144),
CobolToPointerLength (on page 151), and EffectiveLength (on page 155)
CodeBridge Library functions, do not convert to and from COBOL arguments.
Instead, they obtain (or set) auxiliary information about COBOL arguments or
components of RM/COBOL pointer arguments. They are handled in the same
manner as Numeric conversions without requiring the additional pointer
definition.

To use these other conversions, define a C numeric data item as follows:

type Name;

where,

type is a C numeric type (such as int, unsigned short, or double).

Name is the name of the C numeric data item.

BufferLength and EffectiveLength conversions allow arrays to be passed.

Trivial Conversions

You can call the CodeBridge Library conversion functions, CobolArgCount (on
page 141), CobolInitialState (on page 144), or CobolWindowsHandle (on page
153), to convert ArgCount, InitialState, or hRtWindow to a C data item.
However, this is a trivial conversion because you must pass the value to the
corresponding CodeBridge Library function so that the function can store it in
the C data item you provide. For example:

short WindowsHandle2;

if (!RtCall->pCobolWindowsHandle (0,

 (void *)WindowsHandle2,

 sizeof (WindowsHandle2),

 WindowsHandle))

{ RtCall->pConversionCleanup(ArgCount, pConvTable);

 return(RM_STOP);

}

is equivalent to (though slower and more difficult to understand than):

short WindowsHandle2 = hRtWindow;

The only benefit to using the conversion routines in this situation is that size
error checking may be performed. In the example above, a short data type is
used instead of HWND. If the actual value of the handle does not fit into a
short data item, then an error would be returned.

CodeBridge User's Guide Appendix I: Calling the CodeBridge Library Directly • 211

Initializing and Terminating the Conversion Process

CodeBridge uses a dynamically allocated table to hold information about the
conversion process. The size of this table depends on the actual number of
arguments (ArgCount) passed from COBOL to C. The table is allocated by
the ConversionStartup (on page 154) and deallocated by the
ConversionCleanup (on page 154) CodeBridge Library functions. Several
other CodeBridge Library functions use this table. The C function must
declare a local variable to hold a pointer to this table as follows:

CONV_TABLE *pConvTable;

Initialization

Before calling any other CodeBridge Library functions, the C function must
initialize the conversion process by calling ConversionStartup as follows:

if(!RtCall->pConversionStartup(ArgCount, &pConvTable,

 pCalledName, Version))

 return(RM_STOP);

Note Version is the CodeBridge Library version (for example, for version 9,
use 0x900).

The ConversionStartup call illustrates two general properties of calling
CodeBridge Library functions. First, CodeBridge Library functions are called
indirectly through pointers in the RUNTIME_CALLS_TABLE, RtCall. Adding the
prefix “p” to the CodeBridge Library function name forms the name of the
pointer. In the code above, the full reference is:

RtCall->pConversionStartup(…)

Second, most CodeBridge Library functions return TRUE to indicate success
or FALSE to indicate failure. A failure condition indicates that processing
should not continue. Hence, the previously listed sequence:

if(!RtCall->pConversionStartup(…))

 return(RM_STOP);

Termination

Just before returning to the calling COBOL program, the C function must
terminate the conversion process by calling ConversionCleanup as follows:

RtCall->pConversionCleanup(ArgCount, pConvTable);

Note Because a program may have many exits, be sure that
ConversionCleanup is called prior to each exit.

For example, the code will typically contain sequences such as:

212 • Appendix I: Calling the CodeBridge Library Directly CodeBridge User's Guide

if(!RtCall->pCodeBridgeLibraryFunction(…))

{ RtCall->pConversionCleanup(ArgCount, pConvTable);

 return(RM_STOP);

}

Converting COBOL Arguments to C Data Items

The CodeBridge Library input conversion functions are used to initialize C
data items with information from the calling COBOL program. For more
information, see Declaring C Data Items Used in the Conversion Process (on
page 208). For input conversions, the input conversion function must be
called before the C function uses the target C data item.

For Numeric conversions (on page 208) and String conversions (on page
208), the input conversion function must be called if the corresponding
output conversion function will be called. This allows CodeBridge to handle
null-valued COBOL pointer arguments and to supply default values for
omitted COBOL arguments. Note that for String conversions, a buffer is
allocated to hold the string. If only output conversion is needed, do not set
the PF_IN flag for the input conversion call.

Specifying the ArgCount, ArgNumber, and Arguments
Parameters

The ArgCount and Arguments parameters are presented and described in
Declaring the C Function Return Value and Parameters (on page 206). The
ArgNumber parameter is explained in Specifying the COBOL Argument
Number (on page 207).

Specifying the Parameter Parameter

For CobolToFloat, CobolToInteger, CobolToPointerOffset, and
CobolToPointerSize conversions, the Parameter parameter must be:

(void **) &pName /* address of pointer to C data item */

where, pName is defined, as described in Numeric Conversions (on page
208) and Pointer Numeric Component Conversions (on page 209).

For CobolToGeneralString, CobolToNumericString, and CobolToString
conversions, the Parameter parameter must be:

(void **) &pString /* address of C string pointer */

where, pString is defined, as described in String Conversions (on page 208).

For CobolDescriptorAddress, CobolToPointerAddress, and
CobolToPointerBase conversions, the Parameter parameter must be:

CodeBridge User's Guide Appendix I: Calling the CodeBridge Library Directly • 213

(void **) &pCobolData /* address of C pointer to COBOL data*/

where, pCobolData is defined, as described in Address Conversions (on page
209).

For all other input conversions, the Parameter parameter must be:

(void *) &Name /* address of C numeric data item */

where, Name is defined, as described in Other Conversions (on page 210).

Specifying the Size Parameter

When the target C data item is numeric, CodeBridge supports multiple C
numeric data types with each input conversion function. For instance,
CobolToInteger can store a converted COBOL numeric argument value in any
C integer data type supported by the C compiler. The CodeBridge Library
conversion routines determine the size of the C data item using the value of
the Size parameter, typically sizeof(Name). For example, to store a COBOL
numeric argument in the C data item, short MyShort, call CobolToInteger
specifying the Size parameter as sizeof(MyShort).

If the target C data item is a string, the Size parameter overrides the default
string size when the PF_SIZE flag is set. The default size for numeric strings
is four more than the digit length of the COBOL argument; for non-numeric
strings, it is one more than the length of the COBOL argument.

Specifying Other Parameters

Input String conversion functions, as well as BufferLength and
EffectiveLength, require that pConvTable, the pointer to the CodeBridge
conversion table be passed in the ConvTable parameter. For more
information, see Initializing and Terminating the Conversion Process (on
page 211).

For a discussion of the Flags parameter, see Specifying the Flags Parameter
(on page 134).

For conversion functions that support passing arrays, the Occurs parameter
is the array size. The PF_OCCURS flag should be set if the value of this
parameter is greater than one.

For Numeric and String conversions, the Omitted parameter is the default
value for omitted COBOL arguments when the PF_VALUE_IF_OMITTED flag is
set. Otherwise, if the PF_OPTIONAL flag is set, the default value for Numeric
conversions is zero and the default value for String conversions is the empty
string(""). If neither the PF_VALUE_IF_OMITTED flag nor the PF_OPTIONAL
flag is set, an error occurs for an omitted argument.

For Numeric and String conversions, the Repeat parameter specifies the
repeat count when the PF_REPEAT flag is set.

214 • Appendix I: Calling the CodeBridge Library Directly CodeBridge User's Guide

See the CobolToInteger (on page 147) CodeBridge Library function for a
discussion of the Scale parameter.

For non-numeric String conversions, the Value1 parameter specifies the
strip/fill character when the PF_LEADING_VALUE flag is set. Likewise, the
Value2 parameter specifies the strip/fill character when the
PF_TRAILING_VALUE flag is set.

Converting C Data Items to COBOL Arguments

The CodeBridge Library output conversion functions are used to pass
information from
C data items back to the calling COBOL program. For more information, see
Declaring C Data Items Used in the Conversion Process (on page 208). For
output conversions, the output conversion function must be called after the C
function last uses the source C data item and before returning to the calling
COBOL program.

Specifying the ArgCount, ArgNumber, and Arguments
Parameters

The ArgCount and Arguments parameters are presented and described in
Declaring the C Function Return Value and Parameters (on page 206). The
ArgNumber parameter is explained in Specifying the COBOL Argument
Number (on page 207).

Specifying the Parameter Parameter

For FloatToCobol and IntegerToCobol conversions, the Parameter parameter
must be:

(void *) pName /* value of pointer to C data item */

where, pName is defined, as described in Numeric Conversions (on page
208).

For GeneralStringToCobol, NumericStringToCobol, and StringToCobol
conversions, the Parameter parameter must be:

(void *) pString /* value of C string pointer */

where, pString is defined, as described in String Conversions (on page 208).

For PointerBaseToCobol conversions, the Parameter parameter must be:

(void *) pCobolData /* value of C pointer to COBOL data*/

where, pCobolData is defined, as described in Address Conversions (on page
209).

CodeBridge User's Guide Appendix I: Calling the CodeBridge Library Directly • 215

For PointerOffsetToCobol and PointerSizeToCobol conversions, the
Parameter parameter must be:

(void *) pName /* value of C numeric data item */

where, pName is defined, as described in Pointer Numeric Component
Conversions (on page 209).

Specifying the Size Parameter

When the source C data item is numeric, CodeBridge supports multiple C
numeric data
types with each output conversion function. For instance, IntegerToCobol
can convert any
C integer data type supported by the C compiler to a COBOL numeric
argument. The CodeBridge Library conversion routines determine the size of
the C data item using the value of the Size parameter, typically sizeof(Name).
For example, to convert the C data
item, short MyShort, to a COBOL numeric argument, call IntegerToCobol
specifying the Size parameter as sizeof(MyShort).

If the source C data item is a string, the Size parameter overrides the default
string size when the PF_SIZE flag is set. The default size for numeric strings
is four more than the digit length of the COBOL argument; for non-numeric
strings, it is one more than the length of the COBOL argument.

Specifying Other Parameters

For a discussion of the Flags parameter, see Specifying the Flags Parameter
(on page 134).

For conversion functions that support passing arrays, the Occurs parameter
is the array size. The PF_OCCURS flag should be set if the value of this
parameter is greater than one.

For Numeric and String conversions, the Repeat parameter specifies the
repeat count when the PF_REPEAT flag is set.

See the IntegerToCobol (on page 161) CodeBridge Library function for a
discussion of the Scale parameter.

For non-numeric String conversions, the Value1 parameter specifies the
strip/fill character when the PF_LEADING_VALUE flag is set. Likewise, the
Value2 parameter specifies the strip/fill character when the
PF_TRAILING_VALUE flag is set.

216 • Appendix I: Calling the CodeBridge Library Directly CodeBridge User's Guide

Validating Properties of COBOL Arguments

In addition to the input and output conversion functions, the CodeBridge
Library also contains functions to validate properties of COBOL arguments.
These include the following:

• AssertDigits (on page 136) validates the number of digits in a COBOL
numeric argument.

• AssertDigitsLeft (on page 137) validates the number of digits before the
decimal point.

• AssertDigitsRight (on page 138) validates the number of digits after the
decimal point.

• AssertLength (on page 139) validates the number of bytes in a COBOL
argument.

• AssertSigned (on page 139) verifies that a COBOL argument is signed.

• AssertUnsigned (on page 140) verifies that a COBOL argument is
unsigned.

These functions may be used with either input or output arguments. The
functions can be called anytime after the call to ConversionStartup (on page
154) and before ConversionCleanup (on page 154).

Follow the guidelines for conversion functions when specifying parameters
for validation functions, as described in Converting COBOL Arguments to C
Data Items (on page 212) and Converting C Data Items to COBOL Arguments
(on page 214).

Note Instead of calling AssertSigned or AssertUnsigned, the following
functions may set the PF_ASSERT_SIGNED or PF_ASSERT_UNSIGNED flags
to verify that the COBOL argument is signed or unsigned: CobolToFloat,
CobolToGeneralString, CobolToInteger, CobolToNumericString,
FloatToCobol, GeneralStringToCobol, IntegerToCobol, and
NumericStringToCobol.

Example

The following example illustrates calling the CodeBridge Library directly.

#include "cbridge.h"

#define CLEANUP pRtCall->pConversionCleanup(ArgCount, pConvTable)

extern void DoTest01(int *OutInteger, char *InOutString);

RM_DLLEXPORT int RM_CDECL Test01(char *pCalledName,

 unsigned short ArgCount,

 ARGUMENT_ENTRY Arguments[],

 unsigned short InitialState,

 RM_HWND hRtWindow,

 RUNTIME_CALLS_TABLE *pRtCall)

CodeBridge User's Guide Appendix I: Calling the CodeBridge Library Directly • 217

{ int OutInteger; int *pOutInteger = &OutInteger;

 char *InOutString;

 CONV_TABLE *pConvTable;

 if (pRtCall->table_version < 700)

 return RM_STOP;

 if(!pRtCall->pConversionStartup(ArgCount, &pConvTable,

 pCalledName, 0x900))

 return RM_STOP;

 if(!pRtCall->pCobolToInteger(ArgCount, 0, Arguments, PF_IN, 0, 0,

 (void **) &pOutInteger, 0, 0,

 sizeof(OutInteger)))

 { CLEANUP; return RM_STOP; }

 if(!pRtCall->pCobolToString(ArgCount, 1, Arguments, pConvTable,

 (PF_IN | PF_TRAILING_SPACES), 0, (""),

 (void **) &InOutString, 0,

 0, '\0', '\0'))

 { CLEANUP; return RM_STOP; }

 DoTest01(pOutInteger, InOutString);

 if(!pRtCall->pIntegerToCobol(ArgCount, 0, Arguments, PF_OUT, 0,

 (void *) pOutInteger, 0, 0,

 sizeof(OutInteger)))

 { CLEANUP; return RM_STOP; }

 if(!pRtCall->pStringToCobol(ArgCount, 1, Arguments,

 (PF_OUT | PF_TRAILING_SPACES), 0,

 InOutString, 0, 0, '\0', '\0'))

 { CLEANUP; return RM_STOP; }

 CLEANUP; return RM_FND;

}

CodeBridge User's Guide Appendix J: Summary of Enhancements • 219

Appendix J: Summary of
Enhancements

This appendix provides a summary of the new features and changes in the
various releases of CodeBridge. The enhancements and changes for the
most recent release described by this document are listed first.

Note The information in this appendix is historical. It was accurate at the
time written for the specific version being described. Various features may
have changed in later releases, and, possibly, some features may have been
removed.

Version 12 Enhancements

Version 12 of CodeBridge provides the CodeBridge User’s Guide, Second
Edition as the base document for the CodeBridge component in RM/COBOL
version 12, and it covers the CodeBridge cross-language calling features at
the time of the version 12 release.

This release also includes several defect corrections, and the product
complies with the RM/COBOL 12 release level.

Version 11 Enhancements

Version 11 of CodeBridge includes several defect corrections, and the
product complies with the RM/COBOL 11 release level. It also includes
support for Microsoft Windows Vista.

Version 10 Enhancements

In version 10, the CodeBridge Library was enhanced to eliminate some 16-bit
limits inherent in its coding. The CodeBridge Library is built into the version

220 • Appendix J: Summary of Enhancements CodeBridge User's Guide

10 RM/COBOL runtime system and these limits are relaxed in the version 10
runtime. The limits were not discussed in the CodeBridge User’s Guide, First
Edition. The limits were, for the most part, closely correlated with existing
limits for the OCCURS clause in versions 9 and earlier of RM/COBOL. The
CodeBridge Library needed to conform to the removal of such limits in the
version 10 runtime system.

The rtcallbk.h file, used with CodeBridge during support module compilation,
was enhanced in version 10 to properly export the entry points of a module
built with CodeBridge Builder for Windows. This eliminates a need for using
definitions (.def) files on Windows. Definitions files are not discussed in the
CodeBridge User's Guide, First Edition, because it was believed they were not
needed. However, there was an error in the rtcallback.h file that prevented
the automatic export of a CodeBridge module’s entry points
(RM_EntryPoints, RM_EnumEntryPoints, RM_AddOnBanner,
RM_AddOnCancelNonCOBOLProgram, RM_AddOnInit,
RM_AddOnLoadMessage, RM_AddOnTerminate, and
RM_AddOnVersionCheck), which, in some cases, necessitated an
understanding of definitions files on Windows.

The structure returned by the GetCallerInfo library function was extended to
include the actual program-id name of the caller for those cases where this
name might differ from the name used to call the caller, as when call-by-
filename calling has been used.

A GetTerminationInfo library function has been added so that non-COBOL
programs can obtain information about why a program is terminating. For
more information, see Appendix F: CodeBridge Library Functions (on page
131).

Version 9 Enhancements

Version 9 of CodeBridge includes several defect corrections, and the product
complies with the RM/COBOL 9 release level.

In addition, two new parameter attributes, the base modifier attributes
c_data_is_ansi and c_data_is_oem, have been added to CodeBridge to
support conversion of C string data to/from the COBOL native character set
on Windows. In RM/COBOL version 9, the COBOL native character set for a
run unit on Windows can be based on the OEM or ANSI system codepage.
(Prior to version 9, the native character set for a run unit on Windows was
assumed to be based on the OEM system codepage.) Frequently, C strings
are based on the ANSI codepage for Windows, particularly when used with
Windows system functions. Thus COBOL character data passed as an
argument to a C routine parameter may need conversion from OEM to ANSI
and C string data returned to the COBOL program argument may need
conversion from ANSI to OEM.

Prior to the addition of the new base modifier attributes, these conversions, if
necessary, were the responsibility of the COBOL program. If the new base

CodeBridge User's Guide Appendix J: Summary of Enhancements • 221

modifier attributes are specified in the template, CodeBridge will now
perform the conversions automatically when transferring argument and
parameter values. CodeBridge uses the native character set of the COBOL
run unit to decide if a conversion is necessary when one of these base
modifier attributes is specified. If neither of the new base modifier attributes
is specified, no conversion is done, regardless of the character set for the
COBOL run unit, thus matching the prior behavior of CodeBridge. The new
attributes are ignored on UNIX so that a common template can be shared
between Windows and UNIX development environments. For a more detailed
discussion of these attributes, refer to Appendix E: Parameter Attributes (on
page 99).

Version 8 Enhancements

Version 8 of CodeBridge included several defect corrections, and the product
complies with the RM/COBOL version 8 release level.

Version 7.5 Enhancements

Version 7.5 of CodeBridge, RM/COBOL’s cross-language call system, has
been enhanced to handle 64-bit integers on most UNIX platforms, providing
the C compiler on the platform supports 64-bit integers.

A new runtime callback, GetCallerInfo, has been added to the CodeBridge
Library. This function allows CodeBridge non-COBOL subprograms to obtain
information about the calling COBOL program. Such information is
particularly useful in error messages because it helps identify the offending
CALL statement. See Appendix F: CodeBridge Library Functions (on page
131), for more information.

Two new parameter attributes, called error base attributes, have been added
to CodeBridge for retrieving error information set by C library and Windows
API functions. The [[errno]] attribute supports obtaining the value of the
external variable errno that was set by a call to a C library function. The
[[get_last_error]] attribute supports obtaining the value returned by the
Windows API function GetLastError called immediately after another
Windows API function has been called. Prior to version 7.5, such error
information was not available to the COBOL program because the runtime
system uses C library and Windows API functions during the process of
returning from the CodeBridge-called C function to the COBOL program.
Editing of generated code is undesirable and requires advanced knowledge
of the C language. The new error base attributes in version 7.5 allow return
of the error information by editing the CodeBridge template instead of the
generated code. For additional information on error attributes, see Returning
C Error Values (on page 37) in Chapter 2: Concepts, and Error Base
Attributes (on page 117) in Appendix E: Parameter Attributes, of this manual.

222 • Appendix J: Summary of Enhancements CodeBridge User's Guide

Version 7.1 Enhancements

New to CodeBridge version 7.1 is support for UNIX. CodeBridge,
RM/COBOL’s cross-language call system, is in the RM/COBOL version 7.1
system. The CodeBridge Builder uses a template file to produce a C source
file. The C source file provides the COBOL/C interface that may be used in an
optional support module callable from COBOL programs.

The CodeBridge Builder generates C source modules that are platform-
independent. Thus, you can use the CodeBridge Builder on a Windows
platform to generate C source files that may be used on either a Windows or
UNIX system.

Version 7.0 of the CodeBridge Builder produced C source code if the template
file contained errors. Version 7.1 will not unless the -f (force) option is
specified.

Version 7.0 Enhancements

The initial release of CodeBridge, version 7.0 for Windows, allows RM/COBOL
programs to call non-COBOL subprograms built from external Application
Programming Interfaces (APIs) or custom-developed C libraries without
introducing “foreign” language data dependencies into either the COBOL
program or the called C functions. This means that developers can write
COBOL-callable C functions using C data types as usual, without worrying
about the complexities of COBOL calling conventions or data types.

CodeBridge User's Guide Glossary of Terms • 223

Glossary of Terms

The glossary explains the terminology used in CodeBridge.

Terms and Definitions

API

Application programming interface.

Argument

In CodeBridge documentation, the term “argument” refers to the COBOL data
item specified in the USING or GIVING phrase of a CALL statement. Contrast
with parameter (on page 225).

Argument number attribute

An attribute that specifies how the lexically-associated C parameter in a
template prototype attribute list relates to a specific COBOL argument by
referring to the position of the argument in the USING phrase of the CALL
statement (arg_num) or to an argument in the GIVING phrase of the CALL
statement (ret_val). Argument number attributes can frequently be omitted
since there is a CodeBridge default method of associating COBOL arguments
with C parameters, which generally associates them in a left-to-right lexical
order.

Attribute

The individual descriptors used to construct an attribute list in a template file
for the CodeBridge Builder.

Attribute list

A block of information in a template file that provides information to the
CodeBridge builder regarding the relationship between a COBOL CALL

224 • Glossary of Terms CodeBridge User's Guide

statement and a C function prototype. There are two kinds of attribute list,
global and parameter.

Base attribute

The main attribute to be used in a C parameter attribute list, which generally
specifies the
data type of the associated COBOL argument. A few base attributes access
properties of a COBOL argument instead of the argument value.

Base modifier attribute

An attribute that specifies additional information to modify a base attribute.

Call convention

A specification of how a C function is called. Call conventions for C
functions called from RM/COBOL require the use of the convention global
attribute in a template file.

CodeBridge Builder

The component of CodeBridge that takes a template file as input and
produces the C code that can be compiled and linked to produce a support
module for the RM/COBOL runtime.

CodeBridge Library

The set of functions in the RM/COBOL runtime that implement data
conversion for a support module. Calls to these functions can be generated
using a template file as input to the CodeBridge Builder or can be written
manually by the user.

Data type

The declaration of the form a particular data item takes in computer storage
and how the value is to be interpreted. CodeBridge supports basic COBOL
data types such as numeric, non-numeric, and pointer data items and C data
types such as integer (int, char, short, long), floating-point (float, double), and
null-terminated strings (char *). Because of information available to the
CodeBridge Library at execution time, the specific data type modifiers of a
numeric COBOL argument, such as its usage (BINARY, PACKED-DECIMAL,
DISPLAY, and so forth), and any accompanying precision and scale are not
needed by the CodeBridge Builder.

CodeBridge User's Guide Glossary of Terms • 225

Direction attribute

An attribute that specifies the conversion direction for a parameter attribute
list: in or out. Both can be specified in the case of an input-output
parameter. The in attribute means the COBOL argument is an input to the C
parameter. The out attribute means the COBOL argument receives an output
from the C parameter. In some cases, such as certain base attributes, a
direction attribute is implied and cannot be specified.

DLL

Dynamic-Link Library, the Microsoft Windows form of a dynamically-loadable
support module.

Global attribute

An attribute used in a global attribute list, such as the convention attribute
used to specify a call convention.

Global attribute list

An attribute list that is specified independent of a C function prototype in
order to specify global information to the CodeBridge Builder rather than
information specific to a given C parameter. Global attribute lists are
delimited by “[#” and “#]”. Contrast with parameter attribute list (on page
225).

Omitted argument

A COBOL argument that is not supplied in the CALL statement, either
because it is specified as OMITTED or is omitted from the end of the list of
possible arguments that could be specified in the USING phrase of the CALL
statement.

Parameter

In CodeBridge documentation, the term “parameter” refers to the C data item
specified in the C function header and prototype. The return value is also
considered a parameter. Contrast with argument (on page 223).

Parameter attribute

An attribute used in a parameter attribute list. There are four categories of
parameter attribute: argument number, base, base modifier, and direction,

Parameter attribute list

An attribute list associated with a parameter or return value of a C function
prototype and specific to that parameter or return value. A parameter

226 • Glossary of Terms CodeBridge User's Guide

attribute list is delimited by “[[“ and “]]”. Contrast with global attribute list (on
page 225).

P-scaling

The effect of using the P symbol in the PICTURE character-string of a COBOL
data item.

Prototype

The C definition of the manner in which a function is called, including the
return data type, name, and parameter data types for the function. A calling
convention may also be included.

Shared object

The UNIX form of a dynamically-loadable support module (on page 226).
Shared object files usually have the extension .so.

Support module

A dynamically-loadable extension to the runtime. Support modules may be
provided by OpenText or an independent software vendor. They are provided
on Windows as a DLL file (.dll) and on UNIX as a shared object file (.so).
CodeBridge is a tool for aiding the development of support modules.

Template file

The source file created by a developer to specify to the CodeBridge Builder
how to call a C function from COBOL. Attribute lists are specified within
modified C function prototypes in the template file.

CodeBridge User's Guide Index • 227

Index

- (hyphen), use of
in C compiler options 92
optional, in RM/COBOL compilation and

runtime options 6

(pound sign), use of, in global attribute
lists 22

#include C preprocessor directives 14, 55,
57, 88

/

/ (forward slash), use of, in C compiler
options 92

[

[] (brackets), use of
in COBOL syntax 6
in global attribute lists 22
in parameter attribute lists 22

…

… (ellipsis), use of, in variable number of C
parameters 46, 106, 110

A

ACCEPT statement (Terminal I-O),
CONTROL phrase, REPAINT-SCREEN
keyword 202

address base attribute
allowed combinations (table) 127
defined 114

managing omitted arguments 37
passing COBOL descriptor data 35
passing the address of the COBOL data 49

Address component, COBOL pointer
argument 26, 31, 50, 113

alias(name) base modifier
defined 102
for error base attributes 118
for numeric base attributes 104
for pointer base attributes 114
for the string base attribute 108

All caps, as a document convention 5
arg_count base attribute

allowed combinations (table) 127
associating an implied argument 42
defined 114
passing information to a C function 36

arg_num(value) argument number attribute
allowed combinations (table) 127
associating C parameters with COBOL

arguments 24, 41
defined 100

Argument number attributes 23, 127
arg_num(value) 100
associating C parameters with COBOL

arguments 23, 41
ret_val 100

Arguments, COBOL
argument number attributes 23, 100, 127
argument properties, passing to a C

function
COBOL descriptor data 34
string length information 35, 115

C parameters, associating with 23, 100
automatic 41
examples of 42
explicit 40

defined 13
digit length 35, 47, 53
group

fixed-length 31
variable-length 31

miscellaneous information, passing to a C
function 36

omitted arguments, managing 37
passing to a C function

non-numeric arguments 30
null-valued pointer arguments 33
numeric arguments 26

228 • Index CodeBridge User's Guide

pointer arguments 31, 112
Arrays

converting C
floating-point parameters 28
integer parameters 27
numeric string parameters 29
string parameters 31

working with
COBOL array references 53
numeric 51, 103
string 52, 108

assert_digits(min,max) base modifier
defined 104

assert_digits_left(min,max) base modifier
defined 105

assert_digits_right base modifier
defined 105, 119

assert_length(min,max) base modifier,
defined

for error 119
for numeric 105
for string 108

assert_signed base modifier
defined 105

assert_unsigned base modifier
defined 106

AssertDigits library function 136
AssertDigitsLeft library function 137
AssertDigitsRight library function 138
AssertLength library function 139
AssertSigned library function 139
AssertUnsigned library function 140
Associating C parameters with COBOL

arguments 40, 100, See also Argument
number attributes

automatic 41
examples of 42
explicit 40

Attribute lists See also Global attributes;
Parameter attributes

associating C parameters with COBOL
arguments 40

association of arguments and parameters
missing lists 45
multiple lists 44

attributes
defined 22
use of, in attribute lists 22

modifying COBOL data areas 48

passing information to a C function 26
types

global 22, 25, 95
parameter 22, 99

use of, in template files 22, See also
Template files

using P-scaling 50
working with a variable number of C

parameters 46
working with arrays 51

Attributes See also Attribute lists; Global
Attributes; Parameter attributes

defined 22
use of, in attribute lists 22

B

banner global attribute 96
Banner messages 96, 181, 197
Base attributes 23, 100, See also Base

modifiers; Parameter attributes
descriptor 34, 36, 101, 114
error 38, 101
error base attributes 117
general_string 27, 28, 30, 33, 47, 111
numeric 27, 28, 46, 101, 102
numeric_string 27, 28, 30, 33, 47
pointer 32, 101, 112
string 27, 30, 47, 101, 108
string length 29, 101, 111

Base modifiers 23, 100, 132, See also Base
attributes; Parameter attributes

common, for several base attributes 101
converting C

floating-point parameters 28
integer parameters 27
numeric string parameters 29

for descriptor base attributes 117
for error base attributes 118
for numeric base attributes 27, 28, 29, 104
for pointer base attributes 32, 114
for string length base attributes 112
for the string base attribute 108

bat filename extension 12
Bold type, use of

as a document convention 6
in CodeBridge examples 63

Brackets ([]), use of
in COBOL syntax 6

CodeBridge User's Guide Index • 229

in global attribute lists 22
in parameter attribute lists 22

Buffer addresses
converting buffered C data, example of 76
passing 50

buffer_length base attribute
allowed combinations (table) 127
converting

C numeric string parameters 29
C string parameters 30

defined 111
passing string length information 35

BufferLength library function 140

C

C compiler 15, 87–93, 174
C data types See Data types, C
C entry points for COBOL functions

resetunit() 203
RmForget(int y1, int x1, int y2, int x2) 202
RmRefreshCwd() 203
RmRepaintScreen() 202
setunit() 203

c filename extension 14, 55
C functions 13, 26, 88, 91, See also Function

prototypes
C parameters See Parameters, C
C$CARG subprogram 174, 193
C$Forget subprogram 202
C$MemoryAllocate subprogram 70
C$MemoryDeallocate subprogram 70
c_data_is_ansi base modifier

defined 109
c_data_is_oem base modifier

defined 109
CALL statement

GetCallerInfo library function 158
GIVING (RETURNING) phrase 15, 37, 100,

171, 190
linking C language subprograms into the

runtime system 196
non-COBOL subprograms 168, 188
USING phrase 15

OMITTED keyword 37, 171, 190
Calling conventions 9, 90, See also

convention global attribute
Calling non-COBOL programs from

RM/COBOL programs 168, 188

Case sensitivity 22, 88, 95, 99
cbl filename extension 12
cbridge subdirectory 16, 23, 63
cbridge.h header file 134, 175, 206
cbsample subdirectory 16, 63
Character sets 108, 221
COBOL array references, working with 53
CobolArgCount library function 141
CobolDescriptorAddress library function

142
CobolDescriptorDigits library function 142
CobolDescriptorLength library function 143
CobolDescriptorScale library function 143
CobolDescriptorType library function 144
CobolInitialState library function 144
CobolToFloat library function 145
CobolToGeneralString library function 146
CobolToInteger library function 147
CobolToNumericString library function 148
CobolToPointerAddress library function 150
CobolToPointerBase library function 150
CobolToPointerLength library function 151
CobolToPointerOffset library function 151
CobolToPointerSize library function 152
CobolToString library function 152
CobolWindowsHandle library function 153
CodeBridge

benefits 10
components

CodeBridge Builder 10, 14, 54, 57–62
CodeBridge Library 10, 59, 131, 205

concepts
associating C parameters with COBOL

arguments 40, 100
automatic 41
examples of 42
explicit 40

managing omitted arguments 37
modifying COBOL data areas

passing the address 49
using the out direction attribute 48

passing information to a C function 26
miscellaneous information 36
null-valued pointer arguments 33

returning C error values 38
using P-scaling 50, 103, 115
using template file components 21

attribute lists 22, 95, 99
attributes 22

230 • Index CodeBridge User's Guide

using the CodeBridge Builder 10, 14, 54,
57–62

working with a variable number of C
parameters 46

numeric 46
string 47

working with arrays See also Arrays
COBOL array references 53
numeric 51, 103
string 52, 108

development process, overview
building (compiling and linking) the non-

COBOL subprogram library 15
compiling the COBOL program 15
creating a template file 14, 21, 54, See

also Template files
example 16, See also Examples
invoking CodeBridge Builder program 14,

54, See also CodeBridge Builder
modifying or creating a COBOL program

15
running the application 15
selecting the C functions 13

dynamic-link libraries (DLLs) 10, 19, 54, 73,
76, 81, 83, 91, 169, 174, 180

enhancements 219
error messages 57, 59
examples 63
non-COBOL subprogram internals

UNIX 187
Windows 167

overview 9
preparing non-COBOL subprograms,

alternate method 167, 187
requirements 11
support modules 10, 19, 167, 170, 174,

180, 187, 189, 193, 195, 197
using this manual 11

CodeBridge Builder 10, 14, 54
error messages 57
exit codes 59
using template files 21

CodeBridge Library 10, 131, See also Library
functions

calling directly 205
error messages 59
Flags parameter, specifying 134, 213, 215
functions

list of 132

overview 131
RtCall table, reference to 155

Codepages 220
Comments 14, 22
Compile Command option, RM/COBOL

create smaller COBOL object files (Q) 159
Configuration records, RUN-OPTION 182,

199
convention global attribute 25, 96
Conventions and symbols 5, See also

Special Characters
Conversion 26

input 29, 30, 32, 35, 41, 51
output 29, 30, 32, 35, 41, 48, 51, 54

ConversionCleanup library function 154
ConversionStartup library function 154
Converting

C floating-point parameters 28
C integer parameters 27
C numeric string parameters 28
C string parameters 30
structures and unions 74

COUNT special register 54
COUNT-MAX special register 54
COUNT-MIN special register 54
Customer Care 7
customiz script 194

D

Data areas, COBOL, modifying 48
Data declarations 89
Data descriptors, COBOL 34
Data types, C 88

floating-point 28, 51
integer 27, 51
string 28, 30, 52

Data types, COBOL
non-numeric 30
numeric 26
numeric edited 26

Debugging an application 131
def filename extension 15
Descriptor base attributes 36, 101, 114, See

also Descriptor base modifier;
Parameter attributes

address 114
arg_count 114

CodeBridge User's Guide Index • 231

associating C parameters with COBOL
arguments 42

initial_state 115
length 115
managing omitted arguments 37
passing

COBOL descriptor data 34
string length information 35
the address of the COBOL data 49

scale 115
using P-scaling 51
windows_handle 116

Descriptor base modifier
silent 101

diagnostic global attribute 96, 101, 133
DiagnosticMode library function 155
Digit length 47, 51, 53, 103, 104, 112

for error base attributes 118
for general_string base attribute 36
for numeric_string base attribute 36

digits base attribute
allowed combinations (table) 128
managing omitted arguments 37
passing COBOL descriptor data 35

Direct (by value) 27, 28, 48
Direction attributes 23, 100, See also in

direction attribute; out direction
attribute; Parameter attributes

DISPLAY statement, CONTROL phrase,
REPAINT-SCREEN keyword 202

dll filename extension 19, 73, 76, 81, 83
DLLs See Dynamicllink libraries (DLLs)
Dynamic-link libraries (DLLs) 10, 19, 54, 73,

76, 81, 83, 91, 167, 169, 174, 180

E

EDATA section, backward compatiblity 170,
174

effective_length base attribute
allowed combinations (table) 128
converting

C numeric string parameters 29
C string parameters 30

defined 112
passing string length information 36

EffectiveLength library function 155
ELF See Executable and Linking Format

(ELF) object file

Ellipsis (...), use of, in variable number of C
parameters 46, 106, 110

Embedded spaces 104
Enhancements to CodeBridge 219
Entry point table 205–7
Entry points

for UNIX 202
special for support modules 189, 193,

197
for Windows 174–75

special for support modules 170, 180
Environment variable,

RM_DYNAMIC_LIBRARY_TRACE 182,
199

err filename extension 55
errno base attribute

allowed combinations (table) 128
defined 117
returning C error values 38

Error base attributes 38, 101, 117, See also
Error base modifiers; Parameter
attributes

errno 117
get_last_error 117

Error base modifiers See also Error base
attributes

alias 118
alias(name) 102
assert_digits(min,max) 118
assert_digits_left(min,max) 119
assert_digits_right 119
assert_length(min,max) 119
assert_signed 119
assert_unsigned 120
no_size_error 120
rounded 120
scaled(value) 120
silent 101, 120

Error message reporting
DiagnosticMode library function 155
GetCallerInfo library function 158
GetTerminationInfo library function 160

Error messages 57–62
control reporting of, diagnostic global

attribute 96
Examples

accessing COBOL pointer arguments 70
accommodating a variable number of

parameters 66

232 • Index CodeBridge User's Guide

associating C parameters with COBOL
arguments 42

calling a standard C library function 16
calling a Windows API function 64
calling C++ libraries from CodeBridge 78
converting buffered C data 76
packing and unpacking structures 74
using errno error base attribute 81
using get_last_error error base attribute 83

Executable and Linking Format (ELF) object
file 195

Exit codes, CodeBridge Builder 59
extern declaration 197

F

Figurative constant, NULL (NULLS) 33, 106,
109

Filenames, conventions for 6
Flags parameter, specifying 134, 206
float base attribute

allowed combinations (table) 128
and direction attributes 23
associating the C function return value 41
converting C floating-point parameters 28
defined 103
passing null-valued pointer arguments 33
working with a variable number of C

parameters 46
working with arrays 51

Floating-point parameters 28
FloatToCobol library function 156
Forward slash (/), use of, in C compiler

options 92
Function prototypes 21, 87, 90, See also C

functions

G

general_string base attribute
allowed combinations (table) 128
and direction attributes 23
and numeric edited data items 27, 30
associating the C function return value 41
converting

C numeric string parameters 28
C string parameters 30

defined 101, 111
passing null-valued pointer arguments 33

working with a variable number of C
parameters 47

working with arrays, string 53
GeneralStringToCobol library function 157
get_last_error base attribute

allowed combinations (table) 128
defined 117
returning C error values 38

GetCallerInfo library function 158
GetTerminationInfo library function 160
GIVING (RETURNING) phrase, CALL

statement 15, 37, 100, 171, 190
Global attributes See also Parameter

attributes
banner 96
convention 25, 96
diagnostic 96, 101, 133
load_message 97
overview 95
replace_type 25, 98
use of, in global attribute lists 22

H

h filename extension 88
Header files 13

cbridge.h 134, 175, 206
defined 88
rmc85cal.h 55, 115, 170, 172, 175, 189,

191, 206
rmport.h 55, 170, 189
rtarg.h 55, 170, 189
rtcallbk.h 55, 190
standdef.h 55, 170, 189
version.h 183, 199

Hyphen (-), use of
in C compiler options 92
optional, RM/COBOL compilation and

runtime options 6

I

in direction attribute 23
allowed combinations (table) 127
converting to C

floating-point parameters 28
integer parameters 27
numeric string parameters 29
string parameters 30

CodeBridge User's Guide Index • 233

defined 100
Include files See Header files
Indirect (by reference) 27, 28, 30, 49
Initial entry flag 144
Initial state flag 171, 190
initial_state base attribute

allowed combinations (table) 129
associating an implied argument 42
defined 115
passing information to a C function 36

integer base attribute 107
allowed combinations (table) 129
and direction attributes 23
associating the C function return value 41
converting C integer parameters 27
defined 103
passing null-valued pointer arguments 33
working with a variable number of C

parameters 46
working with arrays 51

Integer parameters 27
integer_only base modifier, defined, for

integer numeric only 107
IntegerToCobol library function 161
Italic, as a document convention 6

K

K Runtime Command Option, RM/COBOL
96, 181, 197

Key combinations, document convention for
6

L

L Runtime Command Option, RM/COBOL
15, 174, 187

leading signs base modifiers
converting C, numeric string parameters

29
defined, for numeric_string only 107

leading(value) base modifier
defined 109

leading_spaces base modifier
defined 109

Length
assert_length(min,max) base modifier 105,

108, 119
BufferLength library function 140

EffectiveLength library function 155
length base attribute 115
numeric_string base attribute 103
passing

COBOL descriptor data 34
pointer length 32
string length information 35

size(value) base modifier 107, 110
string base attribute 108
string length base attributes 101

buffer_length 111
effective_length 112

length base attribute
allowed combinations (table) 129
converting

C numeric string parameters 29
C string parameters 30

defined 115
managing omitted arguments 37
passing string length information 35

Library functions 131, See also CodeBridge
Library

AssertDigits 136
AssertDigitsLeft 137
AssertDigitsRight 138
AssertLength 139
AssertSigned 139
AssertUnsigned 140
BufferLength 140
CobolArgCount 141
CobolDescriptorAddress 142
CobolDescriptorDigits 142
CobolDescriptorLength 143
CobolDescriptorScale 143
CobolDescriptorType 144
CobolInitialState 144
CobolToFloat 145
CobolToGeneralString 146
CobolToInteger 147
CobolToNumericString 148
CobolToPointerAddress 150
CobolToPointerBase 150
CobolToPointerLength 151
CobolToPointerOffset 151
CobolToPointerSize 152
CobolToString 152
CobolWindowsHandle 153
ConversionCleanup 154
ConversionStartup 154

234 • Index CodeBridge User's Guide

DiagnosticMode 155
EffectiveLength 155
FloatToCobol 156
GeneralStringToCobol 157
GetCallerInfo 158
GetTerminationInfo 160
IntegerToCobol 161
list of 132
NumericStringToCobol 162
PointerBaseToCobol 163
PointerOffsetToCobol 164
PointerSizeToCobol 164
RtCall table, reference to 155
StringToCobol 165

Linking 15, 92
load_message global attribute 97

M

Macros 90
Makefile 11
Messages

error 57, 59
exit codes, CodeBridge Builder 59

Modifying COBOL data areas 48

N

Native character sets 221
no_null_pointer base modifier

defined
for numeric 106
for string 109

passing null-valued pointer arguments 33
no_size_error base modifier

defined
for numeric 106

Non-COBOL subprograms
under UNIX

accessing 193
calling a CodeBridge non-COBOL

subprogram library 201
calling sequence 188
debugging 202
preparing C programs 194
restrictions to C subprograms

performing terminal I/O 201
runtime functions for support modules

202

special entry points 197
under Windows

calling a CodeBridge non-COBOL
subprogram library 185

calling sequence 168
debugging 185
methods of use 168
preparing 174
special entry points 180

NULL (NULLS) figurative constant 33, 106,
109

Null-valued pointers 27–31, 33
Numeric base attributes 101, See also

Numeric base modifiers; Parameter
attributes

float 103
integer 103, 107
numeric_string 103, 107
working with arrays 51

Numeric base modifiers 104, See also
Numeric base attributes; Parameter
attributes

alias(name) 102
assert_digits(min,max) 104
assert_digits_left(min,max) 105
assert_digits_right 105
assert_length(min,max) 105
assert_signed 105
assert_unsigned 106
integer_only 107
leading signs 107
no_null_pointer 106
no_size_error 106
occurs(value) 106
optional 106
repeat(value) 106
rounded 106
scaled(value) 107
silent 101
size(value) 103, 107
trailing signs 107
unsigned 107
value_if_omitted(value) 107

Numeric edited data items 27, 30
Numeric string parameters 28

passing COBOL numeric arguments 26
numeric_string base attribute

allowed combinations (table) 129
and direction attributes 23

CodeBridge User's Guide Index • 235

and numeric edited data items 27, 30
associating the C function return value 41
base modifiers, specific to 107
converting C numeric string parameters 28
defined 101, 103
passing null-valued pointer arguments 33
working with a variable number of C

parameters 47
working with arrays 53

NumericStringToCobol library function 162

O

occurs(value) base modifier
defined

for numeric 106
for string 110
for string length 112

working with arrays
numeric 52
string 53

Offset component, COBOL pointer argument
26, 31, 50, 113

Omitted arguments 37, 106, 107, 110, 171,
190

OMITTED keyword, USING phrase, CALL
statement 37, 171, 190

optional base modifier
defined

for numeric 106
for string 110

managing omitted arguments 37
Organization of this manual 4, 11
out direction attribute 23

allowed combinations (table) 128
associating the C function return value 41
converting from C

floating-point parameters 28
integer parameters 27
numeric string parameters 29
string parameters 30

defined 100
modifying COBOL data areas 48

P

Packing and unpacking structures or
unions, example of 74

Parameter attributes See also Global
attributes

allowed combinations (table) 127
categories

argument number 23
arg_num(value) 100
ret_val 100

base 23, 100
descriptor 34, 36, 101, 114

address 114
arg_count 114
initial_state 115
length 115
scale 115
windows_handle 116

error 38, 101
errno 117
get_last_error 117

general_string 101, 111
numeric 101

float 103
integer 103
numeric_string 101, 103

pointer 101
pointer_address 113
pointer_base 113
pointer_length 113
pointer_offset 113
pointer_size 113

string 101
string 108

string length 101
buffer_length 111
effective_length 112

base modifiers 23
common, for several base attributes 101

alias(name) 102
silent 101

for descriptor base attributes 117
silent 101

for error base attributes
alias 118
alias(name) 102
assert_digits(min,max) 118
assert_digits_left(min,max) 119
assert_digits_right(min,max) 119
assert_length(min,max) 119
assert_signed 119
assert_unsigned 120
no_size_error 120
rounded 120
scaled(value) 120
silent 101, 120

for numeric base attributes
alias(name) 102
assert_digits(min,max) 104
assert_digits_left(min,max) 105
assert_digits_right(min,max) 105

236 • Index CodeBridge User's Guide

assert_length(min,max) 105
assert_signed 105
assert_unsigned 106
integer_only 107
leading signs 107
no_null_pointer 106
no_size_error 106
occurs(value) 106
optional 106
repeat(value) 106
rounded 106
scaled(value) 107
silent 101
size(value) 107
trailing signs 107
unsigned 107
value_if_omitted(value) 107

for pointer base attributes
pointer_max_size 114
pointer_reset_offset 114

for string length base attributes
occurs(value) 112
silent 101

for the string base attribute
alias(name) 102
assert_length(min,max) 108
c_data_is_ansi 109
c_data_is_oem 109
leading(value) 109
leading_spaces 109
no_null_pointer 109
occurs(value) 110
optional 110
repeat(value) 110
silent 101
size(value) 110
trailing(value) 110
trailing_spaces 110
value_if_omitted(value) 110

direction 23
in 100
out 100

list of, alphabetical (table) 120
use of, in parameter attribute lists 22

Parameters, C
associating with COBOL arguments 100

automatic 41
examples of 42
explicit 40

defined 13
working with a variable number of 46, 66

Pointer arguments, accessing
example 70

Pointer base attributes 32, 101, See also
Parameter attributes; Pointer base
modifiers

passing
and modifying pointer components 32
null-valued pointer arguments 34
pointer address and pointer length 32
the address of COBOL data 50

pointer_address 32, 34, 50, 113
pointer_base 32, 34, 50, 113
pointer_length 32, 50, 113
pointer_offset 32, 34, 50, 113
pointer_size 33, 34, 50, 113

Pointer base modifiers
alias(name) 102
passing and modifying pointer

components 32
pointer_max_size 32, 114
pointer_reset_offset 32, 114
silent 101

Pointer data types
passing COBOL pointer arguments 31
pointer base attributes 101, 112

pointer_address base attribute
allowed combinations (table) 129
defined 113
passing

null-valued pointer arguments 34
pointer address and pointer length 32
the address of the COBOL data 50

pointer_base base attribute
allowed combinations (table) 129
and direction attributes 23
associating the C function return value 41
defined 113
passing

and modifying pointer components 32
null-valued pointer arguments 34
the address of the COBOL data 50

pointer_length base attribute
allowed combinations (table) 130
defined 113
passing pointer address and pointer length

32
passing the address of the COBOL data 50

pointer_max_size base modifier
defined 114
passing and modifying pointer

components 32
pointer_offset base attribute

allowed combinations (table) 130
and direction attributes 23

CodeBridge User's Guide Index • 237

associating the C function return value 41
defined 113
passing

and modifying pointer components 32
null-valued pointer arguments 34
the address of the COBOL data 50

pointer_reset_offset base modifier
defined 114
passing and modifying pointer

components 32
pointer_size base attribute

allowed combinations (table) 130
and direction attributes 23
associating the C function return value 41
defined 113
passing

and modifying pointer components 33
null-valued pointer arguments 34
the address of the COBOL data 50

PointerBaseToCobol library function 163
PointerOffsetToCobol library function 164
Pointers

COBOL 31
null-valued 27–31, 33
pointer base attributes 32, 101, 112

PointerSizeToCobol library function 164
Pound sign (#), use of, in global attribute

lists 22
P-scaling 50, 103, 115

Q

Q Compile Command Option, RM/COBOL
159

R

Related publications 5
REPAINT-SCREEN keyword, CONTROL

phrase, ACCEPT and DISPLAY
statements 202

repeat(value) base modifier
defined

for numeric 106
for string 110

working with a variable number of C
parameters 46

replace_type global attribute 25, 98
ret_val argument number attribute

allowed combinations (table) 128
associating C parameters with COBOL

arguments 24, 41
defined 100

RETURNING phrase (CALL statement) See
GIVING (RETURNING) phrase, CALL
statement

RM/COBOL
development system 10, 54
runtime, CodeBridge Library functions 10,

131
RM_AddOnBanner entry point 181, 197
RM_AddOnCancelNonCOBOLProgram entry

point 181, 198
RM_AddOnInit entry point 181, 198
RM_AddOnLoadMessage entry point 182,

198
RM_AddOnTerminate entry point 183, 199
RM_AddOnVersionCheck entry point 183,

199
RM_DYNAMIC_LIBRARY_TRACE

environment variable 182, 199
RM_EntryPoints entry point 170, 180, 184,

189, 197, 200
RM_EnumEntryPoints entry point 184, 200
rmc85cal.h header file 55, 115, 170, 172,

175, 191, 206
rmport.h header file 55, 170, 189
rounded base modifier

defined, for numeric 106
used with integer base attribute 103
using P-scaling 51

Rounding 50, 103, 106
rtarg.h header file 55, 170, 189
RtCall table, reference to 155
rtcallbk.h header file 55, 190, 220
runcobol (Runtime Command), RM/COBOL

15, 96, 97, 174, 181, 182, 187, 197, 199
RUN-OPTION configuration record

V keyword 182, 199
Runtime Command, RM/COBOL

options
banner and STOP RUN message

suppression (K) 96, 181, 197
list support modules loaded by the

runtime (V) 97, 182, 199
object or non-COBOL program libraries

(L) 15, 174, 187

238 • Index CodeBridge User's Guide

S

scale base attribute
allowed combinations (table) 130
defined 115
managing omitted arguments 37
passing COBOL descriptor data 35
using P-scaling 51

scaled(value) base modifier, defined, for
integer numeric only 27, 103, 107, 120

Shared objects 10, 11, 19, 187, 195, 196,
See also Support modules

Signs, in numeric strings See leading signs
base modifiers; trailing signs base
modifiers

silent base modifier
defined 101
for descriptor base attributes 117
for numeric base attributes 106, 120
for pointer base attributes 114
for string length base attributes 112
for the string base attribute 110
using with diagnostic global attribute 97

Size component, COBOL pointer argument
26, 31, 50, 113

size(value) base modifier
defined

for numeric_string only 103, 107
for string 108, 110

passing string length information 36
working with a variable number of C

parameters 47
so filename extension 16, 19, 73, 76, 83, 195
Source modules

creating from a C object (no source) 196
creating from a C source 195

Special registers
COUNT 54
COUNT-MAX 54
COUNT-MIN 54

standdef.h header file 55, 170, 189
string base attribute See also Parameter

attributes; String base modifiers
allowed combinations (table) 130
and direction attributes 23
and numeric edited data items 27, 30
associating the C function return value 41
converting C string parameters 30
defined 108

passing null-valued pointer arguments 33
working with a variable number of C

parameters 47
working with arrays 52

String base attribute 101
String base modifiers See also string base

attribute
alias(name) 102
assert_length(min,max) 108
c_data_is_ansi 109
c_data_is_oem 109
leading spaces 109
leading(value) 109
no_null_pointer 109
occurs(value) 110
optional 110
repeat(value) 110
silent 101
size(value) 108, 110
trailing spaces 110
trailing(value) 110
value_if_omitted(value) 110

String length base attributes 35, 101, See
also Parameter attributes; String length
base modifiers

buffer_length 111
effective_length 112
passing string length information 35

String length base modifiers See also String
length base attributes

occurs(value) 112
silent 101

String parameters 30
and COBOL groups 31

StringToCobol library function 165
Structures or unions, as parameters 26

example of packing and unpacking 74
Subprogram loading 169, 188
Support modules 10, 11, 19, 167, 187

special entry points 180, 197
Support services, technical 7
Symbols and conventions 5, See also

Special Characters

T

Template files
associating C parameters with COBOL

arguments 40

CodeBridge User's Guide Index • 239

attribute lists See also Global attributes;
Parameter attributes

global 22, 25, 95
parameter 22, 99, 120, 127
samples of 24, 25

attributes, defined 22
comments 14, 22
creating 14, 21, 54
examples of 16

accessing COBOL pointer arguments 70
accommodating a variable number of

parameters 66
calling a Windows API function 64
converting buffered C data 76
packing and unpacking structures or

unions 74
resolving external differences between C

and C++ external names 78
using errno error base attribute 81
using get_last_error error base attribute

83
function prototypes 21
generating multiple 93

tpl filename extension 14
trailing signs base modifiers

converting C, numeric string parameters
29

defined, for numeric_string only 107
trailing spaces base modifier, defined, for

string 110
trailing(value) base modifier, defined, for

string 110
type base attribute

allowed combinations (table) 130
managing omitted arguments 37
passing COBOL descriptor data 35

Type definitions (typedef) 14, 64, 89, 95,
170, 172, 189

typedef statements 14, 64, 89, 95, 170, 172,
189

U

Unions or structures, as parameters 26
example of 74

unsigned base modifier, defined, for integer
numeric only 107

USING phrase, CALL statement 15, 100
OMITTED keyword 171, 190

Using this manual 11

V

V keyword
RUN-OPTION configuration record 182,

199
V Runtime Command Option, RM/COBOL

97, 182, 199
value_if_omitted(value) base modifier

defined
for numeric 107
for string 110

managing omitted arguments 37
version.h header file 183, 199

W

Windows 9x class 6
Windows NT class 6
windows_handle base attribute

allowed combinations (table) 130
associating an implied argument 42
defined 116
passing information to a C function 36

	Preface
	Welcome to CodeBridge
	Who Should Use CodeBridge
	Organization of Information
	Related Publications
	Symbols and Conventions
	Technical Support
	Support Guidelines
	Test Cases

	Chapter 1: Introduction
	What is CodeBridge?
	CodeBridge Components
	Benefits of Using CodeBridge
	Requirements for Developing Applications Using CodeBridge

	Using this Manual
	Developers Who are New to C Programming
	Developers Who are Evaluating CodeBridge
	Developers Who Wish to Use Existing C Libraries or Write New Non-COBOL Subprograms
	Developers Who Have Written Non-COBOL Subprograms for Previous Versions of RM/COBOL
	Developers Who Need Assistance in Testing and Debugging

	Typical Development Procedure
	Typical Development Example
	Example 1: Calling a Standard C Library Function

	Chapter 2: Concepts
	Using Template File Components
	Attributes
	Attribute Lists
	Parameter Attribute Lists
	Global Attribute Lists

	Passing Information to a C Function
	Passing COBOL Arguments
	Passing COBOL Numeric Arguments
	Passing COBOL Non-Numeric Arguments
	Passing COBOL Pointer Arguments
	Passing Null-Valued Pointer Arguments

	Passing COBOL Argument Properties
	Passing COBOL Descriptor Data
	Passing String Length Information

	Passing Miscellaneous Information
	Managing Omitted Arguments

	Returning C Error Values
	Consistent Return Values
	Specifying Both errno and get_last_error
	Function Return Value (Status) Versus Error Values

	Associating C Parameters with COBOL Arguments
	Explicit Association
	Automatic Association
	Automatic Association of the C Function Return Value with a COBOL Argument
	Automatic Association of C Parameters with COBOL Arguments

	Examples of Associating Parameters with Arguments
	Example 1: Automatic Versus Explicit Association
	Example 2: Multiple Attribute Lists for a C Parameter
	Example 3: No Attribute List for a C Parameter

	Working with a Variable Number of C Parameters
	Repeating C Numeric Parameters
	Repeating C String Parameters
	numeric_string
	general_string
	string

	Modifying COBOL Data Areas
	Using the out Direction Attribute
	Passing the Address of COBOL Data
	Passing Buffer Addresses

	Using P-Scaling
	Working with Arrays
	Numeric Arrays
	String Arrays
	COBOL Array References

	CodeBridge Builder
	Using the CodeBridge Builder

	Appendix A: CodeBridge Errors
	CodeBridge Builder Error Messages
	CodeBridge Builder Exit Codes
	CodeBridge Library Error Messages

	Appendix B: CodeBridge Examples
	Example 1: Calling a Standard C Library Function
	Example 2: Calling a Windows API Function
	Example 3: Accommodating a Variable Number of Parameters
	Example 4: Accessing COBOL Pointer Arguments
	Example 5: Packing and Unpacking Structures
	Example 6: Converting Buffered C Data
	Example 7: Calling C++ Libraries from CodeBridge
	Example 8: Using errno
	Example 9: Using get_last_error

	Appendix C: Useful C Information
	Understanding C Language Concepts
	Case Sensitivity
	Data Types
	Data Declarations
	Type Definitions and Macros
	Calling Conventions
	Function Prototypes

	Compiling and Linking C Functions
	Compiling on Windows
	Compiling on UNIX
	Linking on Windows
	Linking on UNIX
	Multiple Template Files

	Appendix D: Global Attributes
	Global Attributes Overview
	banner Attribute
	convention Attribute
	diagnostic Attribute
	load_message Attribute
	replace_type Attribute

	Appendix E: Parameter Attributes
	Parameter Attributes Overview
	Argument Number Attributes
	Direction Attributes
	Base and Base Modifier Attributes
	Base Modifiers Common to Base Attributes
	Numeric Base Attributes
	Numeric String Formatting and Conversion Rules
	Base Modifiers that Apply to Numeric Base Attributes

	string Base Attribute
	Base Modifiers that Apply to the String Base Attribute

	general_string Base Attribute
	String Length Base Attributes
	Base Modifiers that Apply to String Length Base Attributes

	Pointer Base Attributes
	Base Modifiers that Apply to Pointer Base Attributes

	Descriptor Base Attributes
	Base Modifier that Applies to Descriptor Base Attributes

	Error Base Attributes
	Base Modifiers that Apply to Error Base Attributes

	Parameter Attributes Summary
	Parameter Attribute Combinations

	Appendix F: CodeBridge Library Functions
	Library Functions Overview
	Specifying the Flags Parameter
	AssertDigits
	AssertDigitsLeft
	AssertDigitsRight
	AssertLength
	AssertSigned
	AssertUnsigned
	BufferLength
	CobolArgCount
	CobolDescriptorAddress
	CobolDescriptorDigits
	CobolDescriptorLength
	CobolDescriptorScale
	CobolDescriptorType
	CobolInitialState
	CobolToFloat
	CobolToGeneralString
	CobolToInteger
	CobolToNumericString
	CobolToPointerAddress
	CobolToPointerBase
	CobolToPointerLength
	CobolToPointerOffset
	CobolToPointerSize
	CobolToString
	CobolWindowsHandle
	ConversionCleanup
	ConversionStartup
	DiagnosticMode
	EffectiveLength
	FloatToCobol
	GeneralStringToCobol
	GetCallerInfo
	GetTerminationInfo
	IntegerToCobol
	NumericStringToCobol
	PointerBaseToCobol
	PointerOffsetToCobol
	PointerSizeToCobol
	StringToCobol

	Appendix G: Non-COBOL Subprogram Internals for Windows
	C Subprograms for Windows
	Methods of Using Non-COBOL Subprograms
	Calling C Subprograms from COBOL for Windows
	COBOL CALL Statement
	C Subprogram Name Table Structure on Windows
	Example RM_EntryPoints for Windows

	Parameters Passed to the C Subprogram on Windows
	COBOL Argument Entry Structure for C on Windows

	Preparing C Subprograms for Windows
	Special Entry Points for Support Modules on Windows
	RM_AddOnBanner
	RM_AddOnCancelNonCOBOLProgram
	RM_AddOnInit
	RM_AddOnLoadMessage
	RM_AddOnTerminate
	RM_AddOnVersionCheck
	RM_EntryPoints and RM_EnumEntryPoints

	Debugging C Subprograms on Windows
	Calling a CodeBridge Subprogram Library on Windows

	Appendix H: Non-COBOL Subprogram Internals for UNIX
	C Subprograms for UNIX
	Calling C Subprograms from COBOL for UNIX
	COBOL CALL Statement
	C Subprogram Name Table Structure on UNIX
	Example RM_EntryPoints for UNIX

	Parameters Passed to the C Subprogram on UNIX
	COBOL Argument Entry Structure for C on UNIX

	Accessing C Subprograms from UNIX
	Preparing C Subprograms for UNIX
	Creating a Support Module from a C Source
	Creating a Support Module from a C Object (No Source)

	Special Entry Points for Support Modules on UNIX
	RM_AddOnBanner
	RM_AddOnCancelNonCOBOLProgram
	RM_AddOnInit
	RM_AddOnLoadMessage
	RM_AddOnTerminate
	RM_AddOnVersionCheck
	RM_EntryPoints and RM_EnumEntryPoints

	Calling a CodeBridge Subprogram Library on UNIX
	C Subprograms Performing Terminal I/O
	Debugging C Subprograms on UNIX
	C Subprogram Example
	Runtime Functions for Support Modules

	Appendix I: Calling the CodeBridge Library Directly
	Overview
	Including cbridge.h
	Declaring the C Function Return Value and Parameters
	Specifying the COBOL Argument Number
	Declaring C Data Items Used in the Conversion Process
	Numeric Conversions
	String Conversions
	Address Conversions
	Pointer Numeric Component Conversions
	Other Conversions
	Trivial Conversions

	Initializing and Terminating the Conversion Process
	Initialization
	Termination

	Converting COBOL Arguments to C Data Items
	Specifying the ArgCount, ArgNumber, and Arguments Parameters
	Specifying the Parameter Parameter
	Specifying the Size Parameter
	Specifying Other Parameters

	Converting C Data Items to COBOL Arguments
	Specifying the ArgCount, ArgNumber, and Arguments Parameters
	Specifying the Parameter Parameter
	Specifying the Size Parameter
	Specifying Other Parameters

	Validating Properties of COBOL Arguments
	Example

	Appendix J: Summary of Enhancements
	Version 12 Enhancements
	Version 11 Enhancements
	Version 10 Enhancements
	Version 9 Enhancements
	Version 8 Enhancements
	Version 7.5 Enhancements
	Version 7.1 Enhancements
	Version 7.0 Enhancements

	Glossary of Terms
	Terms and Definitions
	API
	Argument
	Argument number attribute
	Attribute
	Attribute list
	Base attribute
	Base modifier attribute
	Call convention
	CodeBridge Builder
	CodeBridge Library
	Data type
	Direction attribute
	DLL
	Global attribute
	Global attribute list
	Omitted argument
	Parameter
	Parameter attribute
	Parameter attribute list
	P-scaling
	Prototype
	Shared object
	Support module
	Template file

	Index

