Overview of TAO's ORB Core

Nanbor Wang
Research Assistant
nanbor@cs.wustl.edu
http://www.cs.wustl.edu/~nanbor/

October 13, 1999

Nanbor Wang TAO ORB Core

Architecture of TAO ORB Core

IDL
CLIENT I m gf,fv‘;ﬁg e Responsibilities of TAO

ORB

) &) mm ..(- Connection
ITEREACE &‘K’ffa'n] management

1:loperation() ORB CORE — Request receipt/

forwarding
5: REQUES Hﬂll d\ gang) Handler .
ESPONSE N — Request demuxing/

\\4: CREATE &

U ACTIVATE scheduling/dispatching
— Concurrency control

CLIENT

Washington University, St. Louis

Nanbor Wang TAO ORB Core

Patterns Used in TAO

CLIENT > SERVICE SERVANT . .
Came) Commvr) Factories produce strategies

CONFIGURATOR
d ABSTRACT D
FACTORY

STRATEGY

Strategies implement
interchangable policies

ACTIVE
OBJECT

THREAD-SPECIFIC Service Configurator permits
CONNECTOR STORACE ACCEPTOR dynamic configuration

REACTOR

Concurrency strategies
| wrapPER Facapes | implemented using Reactor,
OS KERNEL OS KERNEL . .
a— "1 Active Object, etc.
——— —

Connector/Acceptor decouple
transport type from GIOP
operations

http://www.cs.wustl.edu/
~schmidt/ORB-patterns.ps.gz

Washington University, St. Louis

Nanbor Wang TAO ORB Core
Sources of Priority Inversion in Existing ORBs

Half-Sync/Half-Async
pattern is ubiquitous

Used to bridge
asynchronous event sources
and synchronous threads

TASK LAYER

Most existing ORBs add a
queueing layer in OA

Queueing layer causes
priority inversion,
synchronization overhead,
extra data copying and
context switching

ASYNCHRONOUS QUEUEING SYNCHRONOUS
TASK LAYER

Washington University, St. Louis

Nanbor Wang TAO ORB Core

Configuring TAO’s ORB Core for Real-time Systems

SERVANTS e Integrate endpoint
0

demultiplexing and
dispatching

Minimize priority
inversion and
non-determinism

~-=-A0mZ2200
N=SA®Z2Z200
XO=RTEHAOAO>

Reduce context switching
and synchronization
overhead

o Works with other TAO
resource management
schemes

I/0 SUBSYSTEM

Washington University, St. Louis

Nanbor Wang TAO ORB Core

Minimizing Locking Overhead in TAO

e Locking overhead
significantly affects latency
and jitter

@ client — Memory mgnagement
W server commonly involves
locking

RT ORBs should minimize
or eliminate all locking
operations

User Level Lock Operations per Request

TAO is carefully designed to
miniCOOL CORBAplus MT ORBIX mlnlmlze IOCkIng and
ORBs Tested memory allocation

Washington University, St. Louis

Nanbor Wang TAO ORB Core

Other Configurable Components in TAO

e Configurable
resource
Medical management
TAO | Priority-based Imaging 9
PROCESS Dispatching Concrete tradesoff
Factory resource sharing
Perfect

Thread-per Hashing and contention
Rate Active FIFO

Concurrency Demuxing Dispatching|

Adaptive locking

. Avionics Thread mechanisms
Service Concrete reac-per

Repository Factory CConnection enhances
oneurrency flexibility

svc.conf | dynamic ORB Service Object * i
FILE avionics_orb:make_orb() "-ORBport 2001" ORB Str‘ate_gles »
can be “scripted

Washington University, St. Louis

Nanbor Wang TAO ORB Core

Implementing Collocation in TAO's ORB Core

CLIENT OBJECT e Motivation

(SERVANT)

— Eliminate overhead if an
Y COLLOCATED

. oBaECT STUB object resides in the
@4/ corocaion T | 2T same address space as
g0 250 client

tango.cs:54321| Py

e Solution

— Use collocation tables to
check if we are
requesting the same
object using its IOP
profile, i.e.,
hostname/port number

Washington University, St. Louis

Nanbor Wang TAO ORB Core

Collocation Optimizations in TAO's ORB Core

e POA — must
I provide “local
servants”

IDL compiler

— must

get_collocated_poa (): generate both
ﬁ remote stubs
and collocated

stubs

Washington University, St. Louis

Nanbor Wang TAO ORB Core

Future Work

Support for Thread Pool Reactor
Support for native C++ exceptions
Support for IOP 1.2 spec
Support for GIOP 1.1 spec

Support for CORBA_ORB: : per f or mwor k AND
CORBA_CRB: : wor k_pendi ng methods

Washington University, St. Louis

