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Architecture of TAO ORB Core
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Patterns Used in TAO
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Connector/Acceptor decouple
transport type from GIOP
operations
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Sources of Priority Inversion in Existing ORBs

Half-Sync/Half-Async
pattern is ubiquitous

Used to bridge
asynchronous event sources
and synchronous threads

TASK LAYER

Most existing ORBs add a
queueing layer in OA

Queueing layer causes
priority inversion,
synchronization overhead,
extra data copying and
context switching

ASYNCHRONOUS QUEUEING SYNCHRONOUS
TASK LAYER

Washington University, St. Louis




Nanbor Wang TAO ORB Core

Configuring TAO’s ORB Core for Real-time Systems

SERVANTS e Integrate endpoint
0

demultiplexing and
dispatching

Minimize priority
inversion and
non-determinism
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Reduce context switching
and synchronization
overhead

o Works with other TAO
resource management
schemes
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Minimizing Locking Overhead in TAO

e Locking overhead
significantly affects latency
and jitter

@ client — Memory mgnagement
W server commonly involves
locking

RT ORBs should minimize
or eliminate all locking
operations

User Level Lock Operations per Request

TAO is carefully designed to
miniCOOL CORBAplus MT ORBIX mlnlmlze IOCkIng and
ORBs Tested memory allocation
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Other Configurable Components in TAO

e Configurable
resource
Medical management
TAO | Priority-based Imaging 9
PROCESS Dispatching Concrete tradesoff
Factory resource sharing
Perfect

Thread-per Hashing and contention
Rate Active FIFO

Concurrency Demuxing Dispatching|

Adaptive locking

. Avionics Thread mechanisms
Service Concrete reac-per

Repository Factory CConnection enhances
oneurrency flexibility

svc.conf | dynamic ORB Service Object * i
FILE avionics_orb:make_orb() "-ORBport 2001" ORB Str‘ate_gles »
can be “scripted
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Implementing Collocation in TAO's ORB Core

CLIENT OBJECT e Motivation

(SERVANT)

— Eliminate overhead if an
Y COLLOCATED

. oBaECT STUB object resides in the
@4/ corocaion T | 2T same address space as
g0 250 client

tango.cs:54321| Py

e Solution

— Use collocation tables to
check if we are
requesting the same
object using its IOP
profile, i.e.,
hostname/port number
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Collocation Optimizations in TAO's ORB Core

e POA — must
I provide “local
servants”

IDL compiler

— must

get_collocated_poa (): generate both
ﬁ remote stubs
and collocated

stubs
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Future Work

Support for Thread Pool Reactor
Support for native C++ exceptions
Support for IOP 1.2 spec
Support for GIOP 1.1 spec

Support for CORBA_ORB: : per f or mwor k AND
CORBA_CRB: : wor k_pendi ng methods
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