Concurrency Models in (RT) Middleware

Nanbor Wang
nanbor@cs.wustl.edu
http://www.cs.wustl.edu/~nanbor/

October 13, 1999

Nanbor Wang Concurrency Models in (RT) Middleware

Overview

e Basic concurrency strategies
e Various concurrency architectures

e TAO ORB Core

Washington University, St. Louis

Nanbor Wang Concurrency Models in (RT) Middleware

Cooperative/Asynchronous

Multiple event handlers sharing a thread of control

An event demultiplexing mechanism distributes events among
handlers (e.g. sel ect ())

Event handlers must carry their own states, hard to program
Events should be handled “quickly”
No overhead of context switching

Reactor pattern

Washington University, St. Louis

Nanbor Wang Concurrency Models in (RT) Middleware

Concurrent/Synchronous

A single thread of control handles a task synchronously

Easy to program — procedural

States are kept in threads’ stack

OS is responsible for scheduling

Creation and context switching are not free

Synchronized access to shared resources could be expensive
Performance improvement on multiprocessor platforms

Active object pattern

Washington University, St. Louis

Nanbor Wang Concurrency Models in (RT) Middleware Nanbor Wang Concurrency Models in (RT) Middleware

The Half-Sync/Half-Asynch Pattern Half-Sync/Half-Async (Cont.)

e Penalty incured at cross boundary

Bridge the asynchronous event

— Synchronization
sources and synchronous processes

— Data copying
Synchronous task layer performs — Context switching
higher level jobs

TASK LAYER

e External events are serviced serially

Queueing layer provides
synchronization and buffering

3: enqueue(data)

Asynchronous task services external
“\2: interrupt events

TASK LAYER

EVENT SOURCES

ASYNCHRONOUS QUEUEING SYNCHRONOUS

Washington University, St. Louis Washington University, St. Louis

Nanbor Wang Concurrency Models in (RT) Middleware Nanbor Wang Concurrency Models in (RT) Middleware

Object Request Broker Active Connection — Client Side

APPLICATION A thread dedicates to handle 1/O

o 1: invoke_twoway() .
cmr operationd | G > Extra context switch between layers
out args + return value __7: dequeue()

& return Use GIOP sequence number to
demultiplex replies

Priority inversion — solution: prioritize
3: dequeue() queues

& write) 5: read()

08 1/0 SUBSYSTEM 08 1/0 SUBSYSTEM
NETWORK INTERFACES, NETWORK INTERFACES,

5) THREAD DISPATCHING
2) CLIENT PROTOCOL 6) REQUEST DEMUXING

3) NETWORK LATENCY 7) OPERATION DEMUXING I/ O SUBSYSTEM

4) SERVER PROTOCOL 8) SERVANT DEMARSHALING

Washington University, St. Louis Washington University, St. Louis

Nanbor Wang Concurrency Models in (RT) Middleware

Leader/Follwer Connection — Client Side

APPLICATION Reduced context switch (limited)
*2 1: invoke_twoway()

More complex to implement

Locking overhead may outweigh
performance gain from saved context
switching

SAVAYHL dIMOoyy0od

(YO () P-rlorlty mversmn_po_ss!ble if Iea_lder
disrespect the priority information

I/O SUBSYSTEM

Washington University, St. Louis

Nanbor Wang Concurrency Models in (RT) Middleware

Non-multiplexed Connection — Client Side

APPLICATION | , pre-established connections for various
—| 1: invoke_twoway() priorities

: e No resource contention — no priority
ORB CORE inversion, locking overhead

e Non-scalable

3: select()

/\

¥ BORROWED THREAD

A

I/0 SUBSYSTEM

Washington University, St. Louis

Nanbor Wang Concurrency Models in (RT) Middleware

Worker Thread Pool — Server Side

(SERVANTS A dedicate /O thread

3: dispatch upcallQ Straightforward producer/consumer
design

Excessive context switching and
—— synchronization
——1 (3: enqueue() L. . .
/0 Priority inversion caused by queueing and
(012: read()

connection multiplexing

I/0 SUBSYSTEM

Washington University, St. Louis

Nanbor Wang Concurrency Models in (RT) Middleware

Leader/Follwer Thread Pool — Server Side

[SERVANTS e Each thread handles a complete request
4: dispatch upcall()

ORB CORE
LEADER FOLLOWERS

e Minimize context switching

e Priority inversion by connection
multiplexing

() sEMAPHORE

3: release()

I/0 SUBSYSTEM

Washington University, St. Louis

Nanbor Wang Concurrency Models in (RT) Middleware

Threading Framework — Server Side

e Application installable filters allow
SERVANT | intercepting, modifying, examining

SKELETONS

E 4: dispatch requests, and altering ORB behavior

upcall()

OBJECT i G . . .
2 ADAPTER | ® Priority inversion may occur in the filter

E M chain

T CRTTEENTN o Over generality leads to excessive context
CONNECTION THREADS
switching and synchronization overhead

1: recvi

I/O SUBSYSTEM

Washington University, St. Louis

Nanbor Wang Concurrency Models in (RT) Middleware

Reactor-per-Thread-Priority — Server Side

SERVANTS Integrate endpoint demultiplexing and
dispatching

Minimize priority inversion and
non-determinism

NHAmZZOA
wHAmZZ0A
~HAmZzzon
NHAmZZOA
wHaABmZZOA
~HAamzzoa
NHAmZZON
wHAmZZ00
mOHmEOA>

Reduce context switching and
synchronization overhead

Non-scalable

/O SUBSYSTEM Can associate each reactor with a thread
pool remove serialized service in a
priority group

Washington University, St. Louis

Nanbor Wang Concurrency Models in (RT) Middleware

Architecture of TAO ORB Core

in args

CLIENT 0| sevanT Thread-per-connection

" out args + return value

,/d‘ Reactive
P mj

AoAriz Thread pool (future)

ADAPTER

6: DISPATCH(

Resource management
H.muﬂ- Hnndler
Connection management

4 CREATE &
ACTIVATE
S

Strategy
Connecto:

Washington University, St. Louis

Nanbor Wang Concurrency Models in (RT) Middleware

Class Collaboration in TAO

CLIENT)@ SERVICE (" servant) Patterns used in TAO

CONFIGURATOR!
d ABSTRACT D
FACTORY

STRATEGY

e Factories produce strategies

~omve 1| @ Strategies implement
OBJECT interchangable policies

THREAD-SPECIFIC

CONNECTOR STorace ACCEPTOR Service Configurator permits
REACTOR dynamic configuration

| WRAPPER FACADES |
OS KERNEL OS KERNEL

PrERES PR implemented using Reactor,
—) Active Object, etc

Concurrency strategies

Connector/Acceptor decouple
transport type from operations

Washington University, St. Louis 15/??

