Resource Scheduling for Real-time ORBs

David L. Levine

Research Associate levine@cs.wustl.edu http://www.cs.wustl.edu/~levine/

06 October 1998

Supported by The Boeing Company, Motorola, and DARPA

David L. Levine Resource Scheduling

Research on Resource Scheduling in Real-Time ORBs

- 1) CLIENT MARSHALING 2) CLIENT PROTOCOL QUEUEING
- 3) NETWORK DELAY 4) SERVER PROTOCOL QUEUEING 8) METHOD EXECUTION
- 6) REOUEST DISPATCHING 7) SERVER DEMARSHALING

- What makes an ORB real-time?
 - QoS specification
 - * current focus: CPU resource requirements
 - * future focus: communication channels, memory, etc.
 - Resource scheduling
 - * initial focus: static and dynamic, single-CPU
 - * current focus: dynamic, distributed

Washington University, St. Louis

1/4

David L. Levine Resource Scheduling

TAO's CPU Scheduling Service

www.cs.wustl.edu/~schmidt/TAO.ps.gz

David L. Levine

Resource Scheduling

TAO Performance on LynxOS 3.0.0

Server and Client on Same CPU

Server and Client on Different CPUs

Washington University, St. Louis

2/4

subsumes RMS.

MLF, and EDF

Washington University, St. Louis

3/4

David L. Levine Resource Scheduling

Future Work

- Investigate performance on other real-time operation systems, notably VxWorks 5.3.1.
- Investigate performance on general purpose operation systems with real-time support, including Solaris 2.6, NT 4.0, and Linux 2.0.x w/KURT.
- Measure TAO overhead.
- Evaluate performance tradeoffs of dynamic scheduling.

Washington University, St. Louis