
OpenFusion®

CORBA Services
Version 4.2

System Guide
�������	

OpenFusion
CORBA Services
SYSTEM GUIDE
Part Number: OFCOR-SYSG-42 Doc Issue 33, 17 June 2009
PRISMTECH

Copyright Notice
© 2009 PrismTech Limited. All rights reserved.

This document may be reproduced in whole but not in part.

The information contained in this document is subject to change without notice and
is made available in good faith without liability on the part of PrismTech Limited or
PrismTech Corporation.

All trademarks acknowledged.
ii
System Guide

�������	

iii
System Guide

�������	

iv
System Guide

�������	

CONTENTS

Table of Contents
List of Figures xiii

Preface
About the System Guide . xv
Organisation. xv
Contacts .xvii

Common System Operations
Chapter 1 Running Servers 3

1.1 Starting Servers from the Administration Manager 3
1.2 Starting Servers from the Command Line. 4

Chapter 2 OpenFusion Graphical Tools 7
2.1 The Browser Framework . 7
2.1.1 Starting the Administration Manager . 8
2.1.1.1 Command Line Switches . 8
2.1.1.2 Domain Configuration Parameters . 9
2.2 Administration Manager . 9
2.2.1 Object Hierarchy . 10
2.2.1.1 Tool Tips. 11
2.2.1.2 Object Hierarchy Icons . 11
2.2.1.3 Status. 12
2.2.1.4 Starting the Services . 14
2.2.1.5 Extending the Object Hierarchy . 15
2.2.2 Locking . 18
2.2.2.1 Locking Nodes . 19
2.2.2.2 Locking Properties . 19
2.2.3 Restoring Services and Singletons. 20
2.2.4 Properties . 21
2.2.4.1 Type . 21
2.2.4.2 Mandatory. 22
2.2.4.3 Accessibility . 22
2.2.4.4 Conditional Properties . 23
2.2.4.5 Assigning Values to Properties. 23
2.2.4.6 Actions that Can be Performed on Properties. 24
2.2.4.7 Signals. 25
2.2.5 User Identity . 25
2.2.6 Service Log . 25
vii
System Guide

�������	

Table of Contents
2.2.7 Memory Profiler . 26
2.2.8 Tool Bar Options . 27
2.3 The CORBA Object Browser . 29
2.4 Distributed Installation Configuration. 31
2.4.1 The Central Configuration Host . 31
2.4.2 Using a Shared File System. 33
2.4.2.1 Set up the Central Host. 33
2.4.2.2 Implementation Repository . 33
2.4.2.3 Environment Properties . 33
2.4.3 Using a Web Server. 34
2.4.3.1 Set up the Central Host. 34
2.4.3.2 Configure Remote Singletons. 34
2.4.3.3 Set the Central Host Properties. 34
2.4.3.4 Set up the Remote Machine . 35
2.4.3.5 Working with Central Configuration . 36
2.5 Tomcat Web Server Integration . 36
2.5.1 Deployment of Web Archives . 37
2.5.2 Security . 37
2.5.3 Deploying Java Server Pages . 37
2.5.4 Configuration. 37
2.5.5 Testing the Tomcat Installation . 41

Chapter 3 Common Configuration Properties 43
3.1 Persistence Properties . 43
3.2 Logging Properties . 49
3.3 CORBA Properties . 54
3.4 Security Properties . 59
3.5 Java Properties . 59
3.6 System Properties . 61
3.7 Common Singleton Properties. 62
3.8 Administration Manager Properties. 65
3.8.1 CORBA Properties . 65
3.8.2 Configure Properties . 66
3.8.3 General Properties . 67

Chapter 4 Instrumentation 69
4.1 Overview . 69
4.1.1 Manageable Resources . 69
4.1.2 Object Counters . 70
4.2 SNMP Agent . 70
4.2.1 Configuring the SNMP Agent . 70
4.2.2 Notifications . 73
viii
System Guide �������	

Table of Contents
4.2.3 Trap Hosts File . 74
4.2.4 Starting the SNMP Agent . 74
4.2.5 Stopping the SNMP Agent . 75
4.2.6 OpenFusion MIBs . 75
4.3 CORBA Process Interface . 75
4.3.1 Using the Process Interface . 76
4.3.1.1 Example Program . 77

Chapter 5 Service Portability 81
5.1 Portability Classes . 81
5.1.1 The ORBAdapter Class . 82
5.1.1.1 ORB Initialization. 82
5.1.1.2 ORB Shutdown. 83
5.1.1.3 Object Information . 83
5.1.1.4 Object Stringification . 83
5.1.1.5 Service Resolution . 83
5.1.2 The ObjectAdapter Class . 84
5.1.2.1 Initialization . 84
5.1.2.2 Object Creation. 84
5.1.2.3 Object Identity . 86
5.1.2.4 Multiple Object Identity . 87
5.1.2.5 Object Deactivation . 87
5.1.2.6 Object Destruction . 87
5.1.2.7 Object Reactivation . 88
5.1.2.8 Object Existence . 88
5.1.2.9 Object References . 88
5.1.2.10 Object Implementations . 88
5.1.2.11 Persistent Object State . 89
5.1.2.12 Running a Server . 90
5.1.2.13 Restrictions . 90
5.1.2.14 Recommendations. 90
5.1.3 The DynAnyFactory Class . 91
5.1.3.1 Creation Operations . 91
5.1.4 Implementing an Interface . 92
5.1.5 Persistent Servers. 93
5.2 Running User Defined Clients and Servers . 94
5.2.1 Resolving Services. 94
5.2.2 Jar Files . 95
5.2.3 Using OpenFusion Run Scripts . 96
5.2.4 Command Line Format . 96
5.3 OpenFusion Java IDL Compilation . 97
5.4 C++ Support . 98
ix
System Guide

�������	

Table of Contents
Chapter 6 Configuring Persistent Storage 101
6.1 Configuring a JDBC Data Source. 101
6.2 Oracle. 103
6.2.1 Oracle Thin Drivers . 103
6.2.2 Oracle OCI Drivers . 103
6.3 Sybase . 104
6.4 Informix. 105
6.5 SQL Server . 105
6.6 MySQL . 106
6.7 hsqldb. 107
6.7.1 Create an hsqldb Instance . 107
6.7.2 Configure OpenFusion Services to Run with hsqldb Persistence 107
6.7.3 hsqldb in Client/Server Mode . 108
6.7.3.1 Name. 108
6.7.3.2 Timeout. 109
6.7.3.3 Trace . 109
6.7.3.4 No System Exit . 109
6.7.3.5 Silent. 110
6.7.3.6 Port . 110
6.7.4 Restoring Data . 110

Chapter 7 Command Line Tools 111
7.1 IOR Decoder . 111
7.2 Administration Manager Tool. 111
7.3 Configuration Generator . 114

Security Service
Chapter 8 Description 117

8.1 Concepts and Architecture . 117
8.1.1 Securable Objects . 117
8.1.2 Authentication . 118
8.1.3 ACLs . 118
8.1.4 Groups . 119
8.1.5 Mapping Principals . 120
8.1.6 LoginModule . 120

Chapter 9 Using Specific Features 121
9.1 Securing an Interface or Method . 121
9.1.1 Excluding Methods from the Security Manager . 122
9.2 Creating ACL Groups . 123
9.3 Creating Principal Mappings . 124
x
System Guide �������	

Table of Contents
9.4 Supplying Authorised Credentials . 125

Chapter 10 Security Configuration 127
10.1 Configuring a Secure OpenFusion Service. 127
10.1.1 Security Administration Manager Properties . 127
10.2 Configuring a Secure Client . 130
10.2.1 Security Configuration File Properties . 130

Chapter 11 Security Administration Manager 133
11.1 Starting the Security Administration Manager . 133
11.2 Using the Security Administration Manager . 134
11.2.1 Object Hierarchy . 135
11.2.1.1 Security Hierarchy Options . 136
11.2.1.2 Excluding Methods from the Object Hierarchy 137
11.2.2 Tool Bar Buttons . 137
11.2.3 Principals Panel . 137
11.2.3.1 Operations. 138
11.2.3.2 Implementing Security Configuration Changes 141
11.2.3.3 Interfaces. 141

Appendix A XML Configuration Files 145
The Object Hierarchy . 145
XML Files . 147
XML Templates. 150
XML Schema. 151
Command Line Configuration. 152

Appendix B Log Messages 155
Using a Pattern Layout . 155
Conversion Characters. 156

Appendix C Managing Java Objects 159
Creating the Java Object . 159
Describing the Java Object in XML . 159
Defining Properties for the Java Object. 160
The Object Hierarchy . 161

Glossary 165

Index 177
xi
System Guide

�������	

Table of Contents
xii
System Guide �������	

List of Figures
Figure 1 OpenFusion Browser Framework . 7
Figure 2 The Object Hierarchy . 10
Figure 3 Viewing Tool Tips . 11
Figure 4 Adding a Node . 16
Figure 5 Adding a Java Object . 17
Figure 6 Deleting a Singleton . 18
Figure 7 Administration Browser Properties Pane . 21
Figure 8 A Signal Button . 25
Figure 9 Memory Profiler . 27
Figure 10 Starting the CORBA Object Browser . 29
Figure 11 CORBA Object Browser . 30
Figure 12 Remote Nodes . 32
Figure 13 ACL UML Model . 119
Figure 14 The Security Administration Manager . 134
Figure 15 The Security Object Hierarchy . 135
Figure 16 The Principals Panel . 138
Figure 17: Object Hierarchy and Directory Structure 146
Figure 18: Domains Directory Tree . 147
Figure 19: Templates Directory Tree . 150
xiii
System Guide�������	

List of Figures
xiv
System Guide

�������	

Preface
About the System Guide

The System Guide is included with the OpenFusion CORBA Services’
Documentation Set. The System Guide provides:
• general information necessary to develop, use, configure and manage the

OpenFusion Services and its related framework

• information about the OpenFusion Graphical Tools

• information about common service configuration, properties, and instrumentation

Configuration and property information specific to an individual service or interface
is provided in that service’s or interface’s service guide.
The System Guide is intended to be used with the individual service and interface
guides, and with other OpenFusion documents included with the product
distribution: A complete list of documents, comprising the OpenFusion CORBA
Services Documentation Set, is included in the Product Guide.

Intended Audience
The System Guide is intended to be used by users, developers, and administrators
who wish to integrate or manage the OpenFusion CORBA Services into or with
their applications and products. Readers who use this guide should have a good
understanding of the relevant programming languages (e.g. Java, IDL) and the
relevant underlying technologies (e.g. J2EE, CORBA).

Organisation
The System Guide covers the following topics:
• how to run the OpenFusion Services
• a description of the Administration Manager, which is used to configure the

OpenFusion Services and launch the Service Managers
• details of common properties
• how to configure and use remote JMX Instrumentation
• service portability issues (portability classes, user-defined clients and servers,

OpenFusion IDL compilation, and C++ Support)
• how to configure a JDBC data source to provide a persistent storage mechanism

for OpenFusion Services
• details of various command-line tools provided with OpenFusion
• how to configure and use the OpenFusion Security Service to apply access control

to CORBA Services and Java Objects
xv
System Guide

�������	

Preface
Appendix A, XML Configuration Files, describes how the Service configuration
files are stored in the OpenFusion installation. This appendix is only relevant to
developers who want to edit the configuration files programmatically; configuration
should normally be performed through the Administration Manager, where the
configuration files are hidden from the user.
Appendix B, Log Messages describes how to use pattern layouts to configure log
messages for any Service.
Appendix C, Managing Java Objects, describes how to configure user-defined Java
Objects to make them available for management through the Administration
Manager.
The full text of this guide is also available as on-line help, accessible from the
Administration Manager.

Conventions
The conventions listed below are used to guide and assist the reader in
understanding the System Guide.
Item of special significance or where caution needs to be taken.
Item contains helpful hint or special information.
Information applies to Windows (e.g. NT, 2000, XP) only.
Information applies to Unix based systems (e.g. Solaris) only.
C language specific
C++ language specific
Java language specific
Hypertext links are shown as blue italic underlined.
On-Line (PDF) versions of this document: Items shown as cross references, e.g.
Contacts on page xvii, are as hypertext links: click on the reference to go to the
item.

Courier fonts indicate programming code and file names.
Extended code fragments are shown in shaded boxes:

i

% Commands or input which the user enters on the
command line of their computer terminal

 NameComponent newName[] = new NameComponent[1];

 // set id field to “example” and kind field to an empty string
 newName[0] = new NameComponent (“example”, ““);

i
WIN

UNIX

C
C++
Java
xvi
System Guide

�������	

Preface
Italics and Italic Bold indicate new terms or emphasise an item.
Arial Bold indicates user related actions, e.g. File | Save from a menu.

Step 1: One of several steps required to complete a task.

Contacts
PrismTech can be reached at the following contact points for information and
technical support.

Web: http://www.prismtech.com
General Enquiries: info@prismtech.com

Corporate Headquarters European Head Office
PrismTech Corporation
6 Lincoln Knoll Lane
Suite 100
Burlington, MA
01803
USA

Tel: +1 781 270 1177
Fax: +1 781 238 1700

PrismTech Limited
PrismTech House
5th Avenue Business Park
Gateshead
NE11 0NG
UK

Tel: +44 (0)191 497 9900
Fax: +44 (0)191 497 9901
xvii
System Guide

�������	

http://www.prismtech.com
mailto: info@prismtech.com

Preface
xviii
System Guide

�������	

COMMON SYSTEM

OPERATIONS

CHAPTER

1 Running Servers
This section describes the ways in which the OpenFusion CORBA Services can be
started, either from the Administration Manager or from command-line scripts.

Explanatory Note
The terms server and service are often used interchangeably. However, there is a
subtle and important distinction:

 - a service is a set or collection of features, functions, etc. (e.g. the OMG
Notification Service or OMG Naming Service)

 - a server is an entity which provides services and makes their features, etc.
available for use

A server must be running before a service can be provided. A single server can
provide one or more services.

1.1 Starting Servers from the Administration Manager
Step 1: Ensure that the environment is correctly configured and as described in the

OpenFusion Product Guide.
Step 2: Running the ORB Daemons

Start or check that the appropriate ORB daemon is running, if required: please refer
to the OpenFusion Product Guide and your ORB’s documentation.
When servers are run on fixed ports, an ORB daemon may not be necessary.

Step 3: Configure the System
OpenFusion can be configured using the Administration Manager.

Step 4: Starting the Administration Manager
The Administration Manager can be started by selecting Start | Programs |
OpenFusion | Administration Manager from the taskbar or by running the
following batch file:

where <install_dir> is the OpenFusion installation directory.

i

i

> <install_dir>\bin\manager

WIN
3
 Common System Operations�������	

 1.2 Starting Servers from the Command Line

Use the following script to start the Administration Manager:

where <install_dir> is the OpenFusion installation directory.
When the OpenFusion Naming Service is used with Orbix 2000 on Unix, the
Administration Manager should be started with a -x parameter as follows:

This ensures that the JDK CosNaming classes are not in the CLASSPATH and
prevents problems with the Naming Services Manager.

Step 5: Starting and Stopping Servers
The Administration Manager can be used to manage servers.
To start a server, right-click on the service name and select Start from the pop-up
menu.

If the Name Service Entry field is filled in at the time of system configuration, the
NameService server must be started first.

1.2 Starting Servers from the Command Line
Individual servers can also be controlled from the command line using a server
script.

No servers can be started from the command line until the XML configuration files
have been fully populated using either the Administration Manager or the command
line Administration tool. See Section 7.2, Administration Manager Tool, on page
111 for details.

The server command and its options are:
server [-x] (-start | -exec | -run | -restart | -stop |
-halt | -status | -statusloop x) service [configURL]

where
-start Start server
-exec Start server and wait for startup
-run Start server and wait for termination
-restart Start server and restart on termination
-halt Stop server and wait for stopped
-stop Stop server
-status Print server status

% <install_dir>/bin/manager

% <install_dir>/bin/manager -x

UNIX
4
Common System Operations

�������	

 1.2 Starting Servers from the Command Line

-statusloop xPrint server status every x seconds.
service Service name
configURLOptional URL for the service configuration XML

The server script takes a command-line option followed by one or more server
names. For example, the XYZServer (where XYZServer is the server you want to
start) can be started from the command line with:

where <install_dir> is the OpenFusion installation directory.
Alternatively, the server can be run in the foreground, rather than the background,
with:

It is also possible to start a server so that it is automatically restarted on any
abnormal exit. To do this, use the -restart option:

This is a blocking operation, so to stop the server either the Administration Manager
or another shell should be used.
In order to stop a running server, use:

To stop a server and wait for the server to be stopped, use:

To check whether a server is already running, use:

To output the status of a server every x seconds, use:

Use the -status command without specifying a server name to show the status of
all supported servers.

% <install_dir>/bin/server -start XYZServer

% <install_dir>/bin/server -run XYZServer

% <install_dir>/bin/server -restart XYZServer

% <install_dir>/bin/server -stop XYZServer

% <install_dir>/bin/server -halt XYZServer

% <install_dir>/bin/server -status XYZServer

% <install_dir>/bin/server -statusloop x XYZServer
5
Common System Operations�������	

 1.2 Starting Servers from the Command Line

To start a server and wait for startup (that is, use a blocking call to the server), use:

The -x option runs the JVM using the -Xbootclasspath flag. (See Use
Xbootclasspath in Section 3.5, Java Properties for further details on the
Xbootclasspath flag.) For example, use:

A service can be specified by supplying a complete URL to the service
configuration xml file after the name of the service.

All the servers configured to run on the local node can be controlled via the node
script. This node script has -start, -stop, -status, and -x options.
To start every server on the local node, use:

To stop every server on the local node, use:

To check whether servers on the local node are running, use:

Status and other information about servers residing on nodes other than the default
node (localhost) can be obtained by altering the OF_Node_URL property.
For example, to set OF_Node_URL to a valid, existing node called mynode under
OpenFusion, change the default value from:

<install_dir>/domains/OpenFusion/localhost
to:

<install_dir>/domains/OpenFusion/mynode

OF_NODE_URL is located in:
bin/.javaenv or
bin\server.bat

% <install_dir>/bin/server -exec XYZServer

% <install_dir>/bin/server -start -x XYZServer

% <install_dir>/bin/server -start XYZServer
file:/<path>/XYZService.xml

% <install_dir>/bin/node -start

% <install_dir>/bin/node -stop

% <install_dir>/bin/node -status

UNIX
WIN
6
Common System Operations

�������	

CHAPTER

2 OpenFusion Graphical Tools
The OpenFusion Graphical Tools can be used to configure, test, and manage the
OpenFusion CORBA Services (OpenFusion).

2.1 The Browser Framework
All service managers and browsers use the same browser framework, which
provides common menus and tool bars. Common functions are standardised
between individual browsers so each new browser presents a gentle learning curve.
New browsers can be opened to manage individual service elements. Each new
browser opens in the browser framework as a new panel identified by a named tab.
Switch between different browsers by clicking on the browsers’ name tabs.

Figure 1 OpenFusion Browser Framework
The hub of the browser framework is the Administration Manager. This is where
OpenFusion can be configured and controlled.
7
 Common System Operations�������	

 2.1 The Browser Framework

2.1.1 Starting the Administration Manager
The Administration Manager can be started by selecting Start | Programs |
OpenFusion | Administration Manager from the taskbar or by running the
following batch file:

where <install_dir> is the OpenFusion installation directory.

Use the following script to start the Administration Manager:

where <install_dir> is the OpenFusion installation directory.
When the OpenFusion Naming Service is used with Orbix 2000 on Unix, the
Administration Manager should be started with a -x parameter as follows:

2.1.1.1 Command Line Switches
The following command line switches can be used when starting the Administration
Manager:

-noorb

Start the Administration Manager without a connection to an ORB. This does not
allow Services to be started or stopped, and does not report any status information
from Services. The Manager can be used purely as an XML configuration tool.

-port

The Administration Manager attempts to start on the port specified in the Server
Port property on the Administration Manager properties panel.

-remote

The Administration Manager will only show configurations which can be managed
from the node the manager is started from.

-x

Use the Xbootclasspath when starting the Manager.

-help

Gives usage information on the command line switches. The switches --help and
-? can also be used.

> <install_dir>\bin\manager

% <install_dir>/bin/manager

<install_dir>/bin/manager -x

WIN

UNIX
8
Common System Operations

�������	

 2.2 Administration Manager

2.1.1.2 Domain Configuration Parameters
By default, configuration information for an OpenFusion CORBA Services
installation is located under the OpenFusion installation directory. If this directory is
changed (to allow configuration from a remote host, for example), environment
variables must be set to specify the locations of the correct directories.
The three environment variables listed below point to the configuration directories
at different levels of the OpenFusion hierarchy. (The hierarchy is explained in
Object Hierarchy on page 10.) These variables must be expressed as valid URL
strings.

Example:
set OF_DOMAINS_URL=file://C:\Program
Files\PrismTech\OpenFusionV4\domains

export
OF_DOMAINS_URL=file:///usr/users/PrismTech/OpenFusionV4/domains

OF_DOMAINS_URL

The location of the top-level domains directory, expressed as a file-based URL.
This defaults to:

file://<INSTALL>/domains

Where <INSTALL> is the OpenFusion installation directory.

OF_DOMAIN_URL

The location of the OpenFusion domain directory, expressed as a file-based URL.
This defaults to:

file://<INSTALL>/domains/OpenFusion

OF_NODE_URL

The location of the node directory, expressed as a file-based URL. This defaults to:
file://<INSTALL>/domains/OpenFusion/localhost

2.2 Administration Manager
The Administration Manager is used to configure the OpenFusion Services and to
manage (stop and start) the Services. The Administration Manager is extensible and
can be used to configure user-created Java Objects.
The Administration Manager has two panes:
• The left-hand pane shows the Object Hierarchy of the OpenFusion installation.
• The right-hand pane shows the configurable properties for the object selected in

the hierarchy.

WIN

UNIX
9
Common System Operations�������	

 2.2 Administration Manager

2.2.1 Object Hierarchy
The left-hand pane of the Administration Manager shows all services, Singletons,
and Java Objects, and the domains that contain them, in a tree structure, as shown in
Figure 2.

Figure 2 The Object Hierarchy
Domains are high-level organisational units. The default hierarchy shows all
installed OpenFusion Services under a single domain. This hierarchy can be
restructured and extended as required, as described in Extending the Object
Hierarchy on page 15.
Nodes represent actual hardware devices within the domain and are given the name
of the machine they represent. The default hierarchy shows the local machine as a
node called localhost. This node can be deleted and replaced with a node which
uses the computer name, if required. There is no difference, functionally, between
using the machine name and the name localhost.
A Service is a logical group of Singletons and Java Objects that are controlled
together. Groups of Services can be started together at the node or domain level.
Each of the OpenFusion Services is represented by a Service node in the Object
Hierarchy. New Services can be created, which can contain different permutations
of Singletons and Java Objects.
Every Service should contain a ProcessSingleton. The ProcessSingleton is the
object which allows the Service to be controlled from the Administration Manager.
10
Common System Operations

�������	

 2.2 Administration Manager

Every OpenFusion CORBA object is represented by a Singleton in the Object
Hierarchy. Additional Singletons and Java Objects can be added to the hierarchy,
either to existing OpenFusion Services or to user-created Services.
Java Objects should be co-located with CORBA Singletons in a Service. A Service
which contains Java Objects and no Singletons cannot be monitored correctly for its
status and cannot be controlled from the Administration Manager.
See Extending the Object Hierarchy on page 15 for details of adding nodes,
Services, and Singletons. See Section 2.4, Distributed Installation Configuration,
on page 31 for details of how multiple nodes can be managed from a central host.

2.2.1.1 Tool Tips
Every node in the Object Hierarchy has an associated tool tip which provides
information about that node. To see the tool tip, hover the mouse pointer over the
node, as shown in Figure 3.

Figure 3 Viewing Tool Tips
The tool tip gives the type of node (Domain, Service, Singleton, etc.), the name of
the node, and the status of the node (see Status on page 12).

2.2.1.2 Object Hierarchy Icons
Different nodes in the Object Hierarchy are identified by different icons. These
icons are shown in Table 1.
11
Common System Operations�������	

 2.2 Administration Manager

2.2.1.3 Status
A coloured icon in the Status column of the tree view shows the current status of
each service.

Table 1 Object Hierarchy Icons

Icon Object
Root node
No actions can be performed at this level of the
hierarchy, other than adding new domains and
saving. Administration Manager properties can be
amended at this level.
Domain
An organisational grouping.

Node
A hardware device which runs OpenFusion
Services. localhost is the default node. Other
devices can be added as nodes.
Service
Singletons and Java Objects are grouped under
Services and are started and stopped together at the
Service level. Service-level properties can be set in
the right-hand pane.
Singleton
Represents an underlying CORBA object.
Properties can be set in the right-hand pane.

Java Object
Represents an underlying Java object. Properties
can be set in the right-hand pane.

Unlicenced Singleton
Singletons cannot be started if a valid license file is
not present.

Unlicenced Java Object
Java Objects cannot be started if a valid license file
is not present.
12
Common System Operations

�������	

 2.2 Administration Manager

Parent nodes can show an indeterminate status. This is used when the node’s child
nodes have mixed status (for example, some are stopped and some are started).
Status icons are shown in Table 2.

Table 2 Service Status Icons

Icon Status
Running
The service is running normally.

Stopped
The service is stopped.

Starting (yellow)
The service is in the process of starting. This icon
will be displayed while the browser is polling the
server to determine if the service has started. The
icon will eventually change to show Running (if
the service starts normally) or the state of the
service prior to the start command being issued (if
the request times out without starting the service).
Unknown (blue)
The status of the object hierarchy node is unknown
(has never been started). This icon is displayed
when the browser is first loaded or a node is
restored.
Indeterminate (mixed red/green/blue)
This icon is used for an object hierarchy node when
its child nodes have a mix of different statuses, or
when one of the child nodes has an indeterminate
status.
13
Common System Operations�������	

 2.2 Administration Manager

The status is also shown in the tool tip for each Service.

2.2.1.4 Starting the Services
Services can be started or stopped individually.
To start a service, right-click on the service name in the Object Hierarchy and select
Start from the pop-up menu.
To stop a running service, right-click on the service name in the Object Hierarchy
and select Stop from the pop-up menu.

Some properties cannot be modified after a service is started, so the service must be
properly configured beforehand.

To start (or stop) a collection of services, right-click on the services’ parent node
and select Start (or Stop) from the pop-up menu. Services are started and stopped in
the order they appear in the Object Hierarchy.

If an object hierarchy node cannot be started (that is, the option is disabled), then it
is likely that it has an unlicenced child node or that the Node object hierarchy node
is not valid for the hardware device that the Administration Manager is being
invoked from, noting that localhost is always valid.

Before a service is started, the system automatically saves the service configuration.
If there are mandatory properties for the service which have not been completed, the
service will not start, a warning will be displayed, and the missing property will be
noted in the browser log.

Indeterminate (mixed red/green)
This icon is used for an object hierarchy node when
its child nodes are a mix of running and stopped
status.
Indeterminate (mixed green/blue)
This icon is used for an object hierarchy node when
its child nodes are a mix of running and unknown
status.
Indeterminate (mixed red/blue)
This icon is used for an object hierarchy node when
its child nodes are a mix of stopped and unknown
status.

Table 2 Service Status Icons (Continued)

Icon Status

i

14
Common System Operations

�������	

 2.2 Administration Manager

2.2.1.5 Extending the Object Hierarchy
The Object Hierarchy can be extended with new Domains, Nodes, Services,
Singletons, and Java Objects.
The default Object Hierarchy shows all installed OpenFusion Services grouped
under a single node under a single domain. Extending the Object Hierarchy provides
a more flexible approach to managing the OpenFusion installation.
For example it may be necessary to run a particular Service in different
configurations at different times. Instead of re-setting all the properties for the
Service when it is run in another configuration, copies of the Service could be
created under different domains. Each could be configured with the required
properties. Then, to switch between configurations, simply stop one domain and
start the other.
Another use for multiple domains would be to set up different combinations of
Services that should be started together.
Nodes can be used to represent different servers within the domain.
New Services can be created to manage user-created Java Objects.
Other ways of grouping domains, nodes, and services will suggest themselves based
on the way OpenFusion is used in a particular installation.

2.2.1.5.1 Adding Nodes
Domains and Services are simply organisational groupings and can be added
without restriction.
Nodes represent hardware devices running CORBA Services. A node can only be
managed through the Administration Manager if it is given a valid device name
(localhost is always valid).
To add a node, right-click on the parent node and select Add Domain, Add Node, or
Add Service (the command depends on the level you are adding to) from the
pop-up menu, as shown in Figure 4.
15
Common System Operations�������	

 2.2 Administration Manager

Figure 4 Adding a Node
Enter a name for the node. Node names must be unique within the scope of their
parent nodes. You can re-use a name if it is under a different parent. Names can only
contain alphanumeric characters.

When a new Service is added, a ProcessSingleton is automatically created
beneath it. This allows the service to be managed by the Administration Manager: it
is not recommended that users have a service without a ProcessSingleton.

2.2.1.5.2 Adding Singletons and Java Objects
Singletons and Java Objects can only be added under Service nodes of the Object
Hierarchy.
Singletons and Java Objects in the Object Hierarchy are representations of
underlying objects and so only objects which already exist are available for adding
to a Service.

The Resolve Name of the Naming Service Singleton must be unique within the
whole Domain, not just within the scope of the parent node (localhost by
default). The Resolve Name must be unique to avoid the possibility of two objects
attempting to register themselves in the NameService with the same name.
16
Common System Operations

�������	

 2.2 Administration Manager

To add a Singleton or Java Object, right-click on a Service node and select Add
from the pop-up menu. Select either Singleton or Java Object to see a menu of
available objects. Objects that cannot be added to the Service are greyed-out. Select
the required object from the list, as shown in Figure 5.

Figure 5 Adding a Java Object
It is not possible to have two instances of the same Singleton or Java Object under
one Service.
If the same Singleton or Java Object is added under two different Services, they are
two separate instances and properties changed in one instance will not affect the
other instance.

2.2.1.5.3 Deleting Nodes
To delete a node from the Object Hierarchy, right-click the node and select Delete
from the pop-up menu, as shown in Figure 6.
17
Common System Operations�������	

 2.2 Administration Manager

Figure 6 Deleting a Singleton
When a node is deleted, all children and all properties and settings of that node are
also deleted.
A deleted node cannot be recovered, but a new node with the same name as the
deleted node can be added later.

2.2.1.5.4 Changing the Ordering of Services and Singletons
The order of Services beneath nodes and Singletons/Java Objects beneath Services
can be altered. The order is important as it determines the sequence in which
Singletons and Java Objects will start when a node is started.
To move a Service, Singleton, or Java Object higher up the list, right-click on the
node and select Start Earlier from the pop-up menu.
To move a Service, Singleton, or Java Object down the list, right-click on the node
and select Start Later from the pop-up menu.
The ProcessSingleton is always the last Singleton in a Service and cannot be
moved up.

2.2.2 Locking
Locking a property prevents that property from being updated. Single properties can
be locked selectively, or an entire node in the Object Hierarchy can be locked.
18
Common System Operations

�������	

 2.2 Administration Manager

This is not intended as a security measure. It is a simple matter to unlock a locked
node or property. The purpose of the lock is to prevent accidental changes, and to
prevent global changes from cascading through to a locked property.
Locking a property in the Administration Manager browser does not lock the
property in the underlying CORBA object and does not prevent the property being
changed programmatically.
The locked state of nodes and properties is saved when the browser is closed, so
locks are restored when the browser is reloaded.

2.2.2.1 Locking Nodes
To lock a node in the Object Hierarchy, check the box in the Lock column for that
node. To unlock the node, clear the checkbox.
Locks cascade to nodes lower in the hierarchy. If a Service is locked, the Singletons
under that Service are also locked. If a domain is locked, the entire hierarchy under
that domain is locked.
Nodes which have been locked by a cascade from a node higher in the hierarchy
display a padlock icon in the Lock column. These nodes cannot be unlocked
individually; the parent node much be unlocked first.
When a node is locked, all properties for the node are locked and cannot be
individually unlocked. You can, however, selectively lock properties without
locking an entire node. If a property is selectively locked and then a lock is applied
to a higher node, the individual lock is retained if the higher lock is removed.
Starting a Service node can also cause some of the properties for that Service to be
locked. Whether a property is locked or not when the Service starts is determined by
the Type of the property (see Type on page 21).

2.2.2.2 Locking Properties
Properties can be locked for a number of reasons. Locked properties display a
padlock icon in the Lock column and are coloured grey.
When a node is locked, all properties for that node automatically become locked.
The only way to unlock these properties is to unlock the node.
Some properties are locked based on Type (see Type on page 21):
• Fixed properties are locked as soon as the Service is first activated (and cannot be

unlocked, even if the Service is subsequently stopped).
• Static properties are locked while the Service is running and unlocked when the

Service is stopped.
19
Common System Operations�������	

 2.2 Administration Manager

Some properties are locked based on the value of another property. For example, if
the Security Enabled property for a service is checked, the other properties on the
Security tab are unlocked and available. If the Security Enabled property is
unchecked, then the other security properties are not needed and are all locked.
Any property can be locked individually, at the user’s discretion. To lock a single
property, check the box in the Lock column for that property. To unlock the
property, clear the checkbox.

2.2.3 Restoring Services and Singletons
It is possible to restore all, or selected, Services and Singletons to their default (as
supplied) states.
When a Singleton is restored, the IOR for the Singleton is deleted from the
domains directory structure. (See XML Configuration Files on page 145 for details
of how the domains directory structure maps the Object Hierarchy.)
When a Service is restored, the Service’s data directory contents and log file are
deleted and the IORs for each of that Service’s Singletons are deleted.
The Restore command can be used at higher levels of the Object Hierarchy to
restore all Services below the selected node.

Use this command with caution.

To restore a Service or a Singleton, right-click it in the Object Hierarchy.
1. Click Restore from the pop-up menu.
2. Set or clear the Restore default properties check-box:

a) If is not checked, then the data directory contents and log file for the service
node are deleted and the IOR files for each singleton is deleted for each
service.

b) If is checked, then all property values are returned to their default values.
20
Common System Operations

�������	

 2.2 Administration Manager

2.2.4 Properties
The right-hand panel of the Administration Manager (Figure 7) shows the
properties for the node selected in the Object Hierarchy.

Figure 7 Administration Browser Properties Pane
Each service has properties arranged on tabbed panels. Utilities for service
management are in the Service Log and Memory Profiler panels.
The following sections give basic instructions for working with properties. Details
of how specific properties can be used for configuring individual Services are
described in the sections dealing with each Service.

2.2.4.1 Type
Every property has a type, which defines how and when the property value can be
changed. These types are identified by icons in the Type column, shown in Table 3.

Table 3 Property Types

Icon Property Type
Fixed
The property can only be changed before the
Service is started for the first time.
Dynamic
The property can be changed at any time, including
while the Service is running.
Static
The property can only be changed when the Service
is stopped.
21
Common System Operations�������	

 2.2 Administration Manager

2.2.4.1.1 Setting Properties Dynamically
If the value of a dynamic property is changed in the Administration Manager while
the Service is running, the Set menu option must be used to update the property in
the underlying CORBA object (see Set on page 24).

2.2.4.2 Mandatory
Some properties are defined as mandatory. A mandatory property is one which must
be given a value before the Service is started and cannot be left blank. Zero (0) is a
valid entry for a mandatory integer property.
The icons used in the Mandatory column to indicate mandatory properties are
shown in Table 4.

A node can be saved with mandatory properties left incomplete but a warning
message will be displayed.

2.2.4.3 Accessibility
Properties can be read only or read/write. Read-only properties display information
which can never be amended in the Administration Manager. Read/write properties
can be amended (unless locked).
Read-only properties are indicated by grey shading. This is the same look as a
locked property, but there is no icon in the Lock column for a read-only property.

Table 4 Mandatory Properties

Icon Mandatory Status
Optional
The Service will start successfully with this
property left blank.
Mandatory property (blue tick)
The Service will not start if this property is blank.

Incomplete mandatory property (red tick)
This icon is used for a mandatory property which
has been left blank. A Service will not start if any of
its properties show red ticks.
22
Common System Operations

�������	

 2.2 Administration Manager

2.2.4.4 Conditional Properties
Some properties will not appear on the Administration Manager property panel
because they are conditional properties. These are properties which apply only to
specific system configurations. For example, some properties relate to a specific
ORB and will not appear on the screen if a different ORB is in use.

2.2.4.5 Assigning Values to Properties
A property with a boolean data type has a checkbox in the Value field. If the
checkbox is ticked, the property is set to true. If the box is cleared, the property is
set to false. To change the state of the checkbox, click it once.
A property with an enumerated data type has a drop-down list of valid values. To set
the property, click the arrow at the right of the Value field and select a value from
the list.
All other property values accept keyboard input. To set or edit the property, click in
the Value field and type the required value.

2.2.4.5.1 Property Validation
Some property types are validated and will produce an error message if an invalid
value is entered:
• INTEGER properties will only accept numeric input.
• UUID properties will only accept a string which is a valid UUID.
• URL properties will only accept a string which is a valid URL format. Only file,

gopher, and http URL formats are accepted.
• COUNTER properties will only accept numeric input.

2.2.4.5.2 Entering Directory Paths
If the special characters $$are entered into a property field, the directory path of the
current node is substituted. For example, if $$ is entered for a property of the
NotificationSingleton, the following string is substituted:

<install_dir>/domains/OpenFusion/localhost/NotificationSer
vice/NotificationSingleton

Where <install_dir> is the OpenFusion installation directory and the directory
path is entered as a continuous string (no carriage returns).
F o r e x a m p l e , e n t e r t h e f o l l o w i n g t o s p e c i f y t h e l o c a t i o n o f t h e
NotificationSingleton.ior file:

$$NotificationSingleton.ior

Note that the $$substitution includes the trailing slash of the directory path, so
entering the following text would be incorrect (resulting in a double-slash):
23
Common System Operations�������	

 2.2 Administration Manager

$$/NotificationSingleton.ior

2.2.4.6 Actions that Can be Performed on Properties
Each type of property has a set of actions which can be performed on it. Right-click
the property row to access a pop-up menu of actions.
The following actions are available.

2.2.4.6.1 Reset Counter
This action resets the counter to zero.
The action is only available for counter properties.

2.2.4.6.2 Refresh
This action retrieves the current value of the property from the underlying CORBA
object and updates the Value field of the property.
If the value of an object’s property is changed programmatically while the Service is
running, the property displayed in the Administration Manager will not be updated
unless this action is performed, and therefore can show a false value for dynamic
properties.
This action can only be performed while the Service is running (and therefore is
only available for dynamic properties).

2.2.4.6.3 Set
This action transfers the value of the property in the Administration Manager to the
underlying CORBA object.
This action can only be performed while the Service is running (and therefore is
only available for dynamic properties).
If the value of a dynamic property is changed in the Administration Manager while
the service is running, the property in the underlying CORBA object is not
automatically updated. The Set action must be used to update the CORBA object
property.

2.2.4.6.4 Assign Value to Peers
This action copies the value of the selected property to all peers (all objects under
the same parent node) which have a property with the same name.
If this action is performed on a Singleton property, the same property for all other
Singletons and Java Objects under the same Service will be updated. If the action is
performed on a Service property, the same property for all other Services under the
same node will be updated.
If it is a dynamic property, the updated value is also set in the underlying CORBA
object.
24
Common System Operations

�������	

 2.2 Administration Manager

For example, the Storage Type property could be changed to File for the
NotificationService and this command could be used to transfer that change to all
other Services under the same node.
Properties which are locked (see Locking on page 18) are protected from being
updated by this action.

2.2.4.6.5 Assign Value Globally
This action copies the value of the selected property to all properties in the Object
Hierarchy which have the same name. This action is similar to Assign Value to
Peers but the change is made over the entire Object Hierarchy.
If it is a dynamic property, the updated value is also set in the underlying CORBA
object.
Properties which are locked (see Locking on page 18) are protected from being
updated by this action.

2.2.4.6.6 New UUID
Assigns a valid UUID to the property.
This action is only available for UUID properties.

2.2.4.7 Signals
Signals are displayed as buttons in a Service’s property list, as shown in Figure 8.

Figure 8 A Signal Button
When clicked, a signal button will trigger some action in the underlying Service.
The action each signal button performs will depend on how the signal has been
defined and will be described in the documentation for each Service.
A signal will only trigger an action when the underlying Service is running.

2.2.5 User Identity
To access secured services, a valid user identity must be provided.
The current user identity is displayed in the Administration Manager’s status bar. To
change the identity, use the Enter user identity tool bar button and enter a user
name and password in the User Identity Details dialog box.

2.2.6 Service Log
Every Service has a log file that can be viewed on the SERVICE LOG tab for the
Service. Only the last (most recent) 250Kb of the log file will be displayed.
25
Common System Operations�������	

 2.2 Administration Manager

The log file for each Service can be configured to specify log file location,
maximum log file size, the level of information to be logged, and other factors. See
Logging Properties on page 49 for details.
Use the Refresh Log button to refresh the display with the current contents of the
log file (the display is not automatically updated when the file contents change).
Use the Delete Log File button to clear the Service Log. This clears the display and
deletes the contents of the underlying log file. The Service Log can only be deleted
if the Service is not running.

2.2.7 Memory Profiler
The Memory Profiler for each service shows the total available, used, and free
memory in the Java Virtual Machine (JVM) that the service is running in. The total
and used memory are also shown as a graph which shows changes over time. The
graph is illustrated in Figure 9.
To start the Memory Profiler, select the reporting interval from the Interval
drop-down list and click Start. The service must be running or the Memory Profiler
will not start. To halt the Profiler, click Stop. Stopping the Profiler freezes the
display but does not clear it. Re-starting a stopped graph, however, clears the
display.
The scale of the Memory axis (y-axis) changes dynamically in order to effectively
display changing amounts of memory.
The Clean button forces immediate garbage collection on the current process. The
results of this will be seen as a drop in the Used JVM Memory and an increase in the
Free JVM Memory on the Memory Profiler. This operation can be performed even
when the Memory Profiler is stopped.
26
Common System Operations

�������	

 2.2 Administration Manager

Figure 9 Memory Profiler

2.2.8 Tool Bar Options
The browser tool bar buttons provide access to a number of common features. These
buttons are described in Table 5.
Many of these functions can be performed by using a key combination (control key
plus a letter). These keyboard short cuts are also shown in Table 5.
27
Common System Operations�������	

 2.2 Administration Manager

Table 5 Tool Bar Buttons

Button Function
Delete selected browser (Ctrl+D)
Removes the currently active browser from the
browser framework. The browser configuration is
not automatically saved when the browser is
removed.
Refresh selected browser (Ctrl+R)
Refreshes the currently active browser. This does
not refresh property values unless they are dynamic
and the service is running.
Refresh the current node
Refreshes the view of the node currently selected in
the Object Hierarchy. This does not refresh
property values unless they are dynamic and the
service is running. This button is only valid for the
Administration Manager.
Stop current action
Aborts any action which has been initiated but has
not yet completed.

Launch the file browser
Opens the file browser.

Save configuration
Save the current values of all the properties in the
Object Hierarchy. This button is only valid for the
Administration Manager.
View the browser log
Opens the browser’s message log file.

Enter user identity
Opens the User Identity Details dialog box to allow
user authentication.
28
Common System Operations

�������	

 2.3 The CORBA Object Browser

If a function is not available in a particular browser, the corresponding button will
be greyed-out while that browser is active.
When functions specific to a particular browser are added to the tool bar, the buttons
will be described in the section of this Guide which deals with the relevant browser.

2.3 The CORBA Object Browser
Any Singleton of a running Service can be queried from the Administration
Manager to reveal key information about the Singleton.
To query the Singleton, right-click the Singleton and select CORBA Object
Browser from the pop-up menu, as shown in Figure 10.

Figure 10 Starting the CORBA Object Browser
This action opens the CORBA Object Browser, as shown in Figure 11. The CORBA
Object Browser can also be started from the command on the Tools menu.
29
Common System Operations�������	

 2.3 The CORBA Object Browser

Figure 11 CORBA Object Browser
The CORBA Object Browser displays the following information about the
Singleton object:
• Host IP address.
• Host port number.
• Object type.
• Status (active or inactive and persistent or non-persistent).
• IOR.
The displayed IOR can be selected and copied to the clipboard as a string.
When the CORBA Object Browser is active, two buttons are added to the tool bar.
These buttons are shown in Table 6.
30
Common System Operations

�������	

 2.4 Distributed Installation Configuration

2.4 Distributed Installation Configuration
Multiple OpenFusion installations can be configured from a central host. This
allows OpenFusion Services on different machines to share common configuration
files and, if required, a common implementation repository.
The machines can be connected via a shared file system or by using a Web server
running on the central host.
Note that the central configuration host and each remote machine must have a
licensed OpenFusion installation.

2.4.1 The Central Configuration Host
The XML files used to configure the properties of each remote OpenFusion
installation are all stored on the central configuration host under the domains
directory (see The Object Hierarchy on page 145 for details). The central host must
therefore be configured to store details of each remote installation.
Each remote installation should be set up as a separate node in the Administration
Manager Object Hierarchy on the central host. (See Adding Nodes on page 15.)
Figure 12 shows the Object Hierarchy of a central configuration host managing four
remote machines.

Table 6 CORBA Object Browser Tool Bar Buttons

Button Function
Load IOR
Loads a previously-saved IOR from a text file. The
file must contain a valid IOR as a string.

Save IOR
Writes the object’s IOR as a string to a text file.
31
Common System Operations�������	

 2.4 Distributed Installation Configuration

Figure 12 Remote Nodes
Each node should have the unique machine name of the remotely-managed
computer.
Each remote machine displays the full Object Hierarchy from the central host,
including all remote machine nodes and the localhost node, unless the
Administration Manager is started with the -remote command-line option, for
example:

The appearance of the localhost node could potentially cause confusion for remote
users. It might be assumed that localhost refers to the remote machine, but it
actually refers to the central host. To avoid the confusion, delete the localhost node
from the central configuration host’s Object Hierarchy and add a new node with the
name of the host machine.

Add Services to each node and add Singletons and Java Objects to the Services, as
described in Adding Singletons and Java Objects on page 16. Figure 12 shows one
Service with two Singletons added to a remote node. The Singletons and Java
Objects must exist as valid, licensed objects on the remote machine.

% bin/manager -remote
32
Common System Operations

�������	

 2.4 Distributed Installation Configuration

2.4.2 Using a Shared File System
All hosts must have identical mappings to a common file system.
On Windows systems, network drives must be mapped so that all machines
(including the central host) can refer to the central OpenFusion installation directory
with the same drive letter. This ensures that a directory path (for example,
O:\OpenFusion\domains) will always point to the same location on the central
host regardless of which remote machine it is invoked from.
On Unix, use a soft link to achieve the same effect.
Note that it is not possible to use a common file system to link OpenFusion
installations running on a mixture of Unix and Windows hosts. In a mixed operating
system environment, central configuration can only be performed via a Web server
(see Using a Web Server on page 34).

2.4.2.1 Set up the Central Host
On the central host, set up nodes in the Object Hierarchy with each node
representing a remote machine. This is described in The Central Configuration Host
on page 31.

2.4.2.2 Implementation Repository
It may be necessary to configure remote installations to share a common
implementation repository. This is not necessary if the central host is only used for
configuration purposes, but it is required if the clients need to communicate with
Services running on other hosts (an example is when load balancing is being used,
as described in the Load Balancing Service Guide).
The Servers running on each host must be configured to use the common
i m p l e me n t a t i o n r e p o s i t o r y. Wi t h J a c O R B , f o r e x a m p l e , t h e
ORBInitRef.ImplementationRepository p rop e r ty i n t h e
jacorb.properties file on each host must be set to point to the location of the
common implementation repository’s IMR file.
The common implementation repository can be running on any host.
In order to prevent conflicts when starting the Administration Manager with a
common implementation repository, the POA Name property (found on the CORBA
tab of the Domains node in the Administration Manager) must be unique for each
host. To change this property, the Administration Manager must be started for each
host with the -noorb option.

2.4.2.3 Environment Properties
Each remote host requires an OF_DOMAINS_URL environment property set to the
domains directory on the remote host. If the shared file system has been mapped
correctly, this property should be identical on every host. For example:
33
Common System Operations�������	

 2.4 Distributed Installation Configuration

set OF_DOMAINS_URL=file://O:\Openfusion\domains

export OF_DOMAINS_URL=file:///usr/users/central/OpenFusion/domains

Each remote host requires an OF_Admin_URL environment property set to the local
domains directory. For example:
set OF_Admin_URL=file://C:\Openfusion\domains

export OF_Admin_URL=file:///usr/users/node1/OpenFusion/domains

2.4.3 Using a Web Server
The central configuration host must be running Web server software. (Any
third-party Web server will be suitable.)

The OpenFusion distribution includes the Tomcat Web server, but this should not be
used to enable remote configuration.

2.4.3.1 Set up the Central Host
On the central host, set up nodes in the Object Hierarchy with each node
representing a remote machine. This is described in The Central Configuration Host
on page 31.

2.4.3.2 Configure Remote Singletons
When you add a Singleton to a remote node in the Object Hierarchy, it will have
default data locations that apply to the central host. These locations must be changed
to point to valid locations on the remote machine. As many of these properties are
hidden from the Administration Manager GUI, the underlying XML files must be
edited directly (Note: this is normally not recommended, and care should be taken
that no errors are introduced into the XML files).
Appendix A, XML Configuration Files, on page 145, gives details of the structure
and locations of the files which must be edited.
Every Singleton property value which is a directory path should be changed to point
to a location on the remote machine. If the central host and the remote machine have
exactly the same installation path and directory structure for their OpenFusion
installations, these properties will be correct and do not need to be changed.
If hsqldb is used for persistence (see hsqldb on page 107), ensure that the
DB.WAL.DIR property for each Service is set to point to an existing directory on the
remote machine, otherwise the Service will not start.

2.4.3.3 Set the Central Host Properties
Set the properties of the domains node in the Object Hierarchy as described here.
(These properties are described fully in Configure Properties on page 66.)

WIN
UNIX

WIN
UNIX
34
Common System Operations

�������	

 2.4 Distributed Installation Configuration

2.4.3.3.1 Central Configuration Host
This check box should be checked to indicate that the machine is the central
configuration host.

2.4.3.3.2 OpenFusion Install URL
The URL that remote machines must use to access the central configuration host.
This is a http URL which gives the host’s machine name. This URL will be
determined by the root document directory of the Web server.
For example, if the central configuration host is an NT Server named central with
the Web server document directory set to C:\, and the OpenFusion installation on
that machine is C:\PrismTech\OpenFusion, then the correct URL will be:

http://central/PrismTech/OpenFusion

If the Web server document directory is set to C:\PrismTech\OpenFusion,
however, the correct URL will be:

http://central

Caution: entering an invalid URL will cause fatal problems! Take backups of the
OpenFusion installation and be very careful when changing this property.

2.4.3.3.3 Configure from Remote Host
This check box should remain clear on the central host. The setting is only needed
on remote machines.

2.4.3.3.4 Remote OpenFusion Install URL
This setting is not needed on the central host. The property should be locked, as
Configure from Remote Host should not have been selected on the central host.

2.4.3.4 Set up the Remote Machine
To set up a remote machine to use central configuration, the central host must have
been configured and the remote machine must have been set up as a node in the
central host’s Object Hierarchy.
The following properties must be configured for the domains node in the remote
machine’s Object Hierarchy. These properties are described fully in Configure
Properties on page 66.
These properties are stored on the remote machine, not the central configuration
host, which is why they must be set on each remote machine.

2.4.3.4.1 Central Configuration Host
This check box should remain clear on the remote machine. The setting is only
needed on the central host.
35
Common System Operations�������	

 2.5 Tomcat Web Server Integration

2.4.3.4.2 OpenFusion Install URL
This setting is not needed on the remote machine. The property should be locked, as
Central Configuration Host should not have been selected on the remote machine.

2.4.3.4.3 Configure from Remote Host
If this machine is to be configured from a central host, this check box must be
checked.

2.4.3.4.4 Remote OpenFusion Domains URL
A URL which points to the location on the central host that stores the XML
configuration files. This will be the OpenFusion installation directory.
This URL will be determined by the root document directory of the Web server.
For example, if the central configuration host is an NT Server named central with
the Web server document directory set to C:\, and the OpenFusion installation on
that machine is C:\PrismTech\OpenFusion, then the correct URL will be:

http://central/PrismTech/OpenFusion/domains

If the Web server document directory is set to C:\PrismTech\OpenFusion,
however, the correct URL will be:

http://central/domains

2.4.3.5 Working with Central Configuration
When a remote machine is configured from a central host, all of the XML files
which hold properties for Services and Singletons are stored on the central host. The
remote machine can read from the configuration files but cannot write to them.
Because the remote machine cannot write to its own configuration files, it can never
over-ride the configuration set by the remote configuration host. On the remote
machine, most properties will be locked.
The only properties which remain unlocked are Dynamic properties (see Type on
page 21). Changes to these properties will not be stored permanently when the
Administration Manager is shut down.
Many main menu options, tool bar buttons, and right-click menu options are
disabled on the remote machine. All actions which apply to changing the Object
Hierarchy or modifying locked property values are disabled.

2.5 Tomcat Web Server Integration
It is possible to deploy the Java Tomcat Web server within an OpenFusion
installation.
36
Common System Operations

�������	

 2.5 Tomcat Web Server Integration

Tomcat is deployed as an embedded server and can be configured as a Java Object.
As such, it can be deployed as a separate service or co-located with another
OpenFusion service. See Adding Singletons and Java Objects on page 16 for details
of deploying Java Objects in an OpenFusion installation.
See http://jakarta.apache.org/ for further details of the Tomcat Web server.

2.5.1 Deployment of Web Archives
Each configured Tomcat object has its own webapps directory created within the
configuration directory hierarchy. In addition, a global webapps directory is
maintained at the root level of the OpenFusion installation.
By default, the ROOT Web archive file (ROOT.war) is deployed into every
configured Tomcat instance. Additional Web archive files can be deployed by one of
the following methods:
• Put the file into the specific webapps directory.
• Put the file into the global webapps directory and configure the Tomcat WAR

Files property to include the file name.

2.5.2 Security
The Tomcat Web server has a security manager enabled by default. This uses the
following security policy file:

<INSTALL>/etc/tomcat.policy

where <INSTALL> is the OpenFusion installation directory.
If more fine-grain security control is required, the file can be copied into the Tomcat
home directory and edited as appropriate. The Tomcat Security Policy File
property is used to locate this file.

2.5.3 Deploying Java Server Pages
In order to deploy your own Java Server Pages (JSPs) in the Tomcat Web server, a
.jar file containing a Java compiler must be included in the CLASSPATH.
JSPs supplied with the OpenFusion CORBA Services distribution are pre-compiled
and deployed within a .war file and therefore do not need access to a Java compiler.

2.5.4 Configuration
The following properties can be configured through the GUI manager for each
embedded Tomcat object.

2.5.4.0.1 Tomcat Home Directory
The home directory of the Tomcat server. This defaults to the configuration
directory for the Tomcat Java Object:
37
Common System Operations�������	

http://jakarta.apache.org/

 2.5 Tomcat Web Server Integration

<INSTALL>/domains/<domain>/<node>/<service>/TomcatObject/

where <INSTALL> is the OpenFusion CORBA Services installation directory. See
The Object Hierarchy on page 145 for details of the domains directory structure.

2.5.4.0.2 Tomcat Work Directory
The Tomcat work directory. This defaults to the work directory under the default
Tomcat home directory:
<INSTALL>/domains/<domain>/<node>/<service>/TomcatObject/work

where <INSTALL> is the OpenFusion CORBA Services installation directory. See
The Object Hierarchy on page 145 for details of the domains directory structure.
This property is independent of the Tomcat Home Directory property and does not
change if Tomcat Home Directory is changed.

2.5.4.0.3 Tomcat WAR directory
The directory into which Tomcat deploys Web archive files. This defaults to the
webapps directory under the default Tomcat home directory:
<INSTALL>/domains/<domain>/<node>/<service>/TomcatObject/webapps

where <INSTALL> is the OpenFusion CORBA Services installation directory. See
The Object Hierarchy on page 145 for details of the domains directory structure.
This property is independent of the Tomcat Home Directory property and does not
change if Tomcat Home Directory is changed.

Property Name Tomcat.Home

Property Type STATIC

Data Type DIRECTORY

Accessibility READ/WRITE

Mandatory YES

Property Name Tomcat.WorkDir

Property Type STATIC

Data Type DIRECTORY

Accessibility READ/WRITE

Mandatory YES

Property Name Tomcat.Context

Property Type STATIC

Data Type DIRECTORY

Accessibility READ/WRITE

Mandatory YES
38
Common System Operations

�������	

 2.5 Tomcat Web Server Integration

2.5.4.0.4 Tomcat WAR Files
A colon-separated list of Web archive files to be deployed from the global webapps
directory into the Tomcat WAR directory.
The ROOT.war file is always deployed and does not have to be included in the list.

2.5.4.0.5 Tomcat Security Policy File
The full path and name of the file which defines the security policies used by the
Tomcat security manager. This defaults to:

<INSTALL>/etc/tomcat.policy

where <INSTALL> is the OpenFusion CORBA Services installation directory.

2.5.4.0.6 Tomcat Port
The port on which the Tomcat server listens for http requests. The default is 8080,
but if this port in use by any other Web server deployed on the same system, a
different port must be selected.

Property Name Tomcat.Archives

Property Type STATIC

Data Type STRING

Accessibility READ/WRITE

Mandatory NO

Property Name Tomcat.PolicyFile

Property Type STATIC

Data Type FILE

Accessibility READ/WRITE

Mandatory YES

Property Name Tomcat.Port

Property Type STATIC

Data Type INTEGER

Accessibility READ/WRITE

Mandatory YES
39
Common System Operations�������	

 2.5 Tomcat Web Server Integration

2.5.4.0.7 Serve Root URL
This property should be checked (TRUE) if the Tomcat Object will be used to serve
up the files used for remote system configuration. The default value for this property
is TRUE. See Section 2.4, Distributed Installation Configuration, on page 31, for
more details of remote system configuration.

2.5.4.0.8 Root URL
The directory that will be served up by the Tomcat Object. To allow remote system
configuration, this should be the OpenFusion installation directory (which is the
default value for the property). The directory should be specified as a URL of type
file://.
This directory will be served up when a Web browser is used to access the following
URL:

http://<server>:<port>/<context>

Where:
server is the machine which is running the Tomcat Object.
port is the port that Tomcat listens on, specified in the Tomcat Port property.
context is the path specified in the Context Path property.

If the directory contains a file called index.html, that file is returned to the
browser. If index.html does not exist, a directory listing is returned instead.
This property is only enabled if the Serve Root URL property is checked.

2.5.4.0.9 Context Path
The virtual directory that will be served up by the Tomcat Object. This defaults to
the name of the Service that the Tomcat Object is a part of. See the Root URL
property for details of how this property can be used.

Property Name Tomcat.ServeRoot

Property Type STATIC

Data Type BOOLEAN

Accessibility READ/WRITE

Mandatory YES

Property Name Tomcat.RootURL

Property Type STATIC

Data Type URL

Accessibility READ/WRITE

Mandatory YES
40
Common System Operations

�������	

 2.5 Tomcat Web Server Integration

This property is only enabled if the Serve Root URL property is checked.

2.5.5 Testing the Tomcat Installation
Once the service containing the Tomcat Java Object has been started, the Tomcat
deployment can be tested by attempting to connect to the default Web page. To
connect to the default page, type the following into the address bar of a Web
browser:

http://<server>:<port>

where <server> is the name of the machine running the Tomcat server and
<port> is the port number specified in the Tomcat Port property (8080 by
default).
If the server is working correctly, the Tomcat server default Web page will be
displayed.

Property Name Tomcat.ContextPath

Property Type STATIC

Data Type STRING

Accessibility READ/WRITE

Mandatory YES
41
Common System Operations�������	

 2.5 Tomcat Web Server Integration

42
Common System Operations

�������	

CHAPTER

3 Common Configuration Properties
The properties described in this section are found in all Services. The properties
must be set individually for each Service, although the commands Assign Value to
Peers on page 24 and Assign Value Globally on page 25 can be used to set the same
values for multiple Services.
The properties are grouped by function on different tabs of the properties pane.
The ENUM data type has special meaning in that it represents a drop-down list in the
GUI where a definitive list of values is allowed, rather than the usual meanings
associated with the other data types (e.g. the INTEGER data type represents an
integer).

3.1 Persistence Properties
The properties on the Persistence tab determine how and where the Service data is
stored persistently. See Section 6, Configuring Persistent Storage, on page 101 for
details of different persistent storage methods.

Storage Write Interval
This property specifies the delay (in seconds) between saving object state changes
within a server and writing this information to persistent storage. This option is a
performance optimization feature as it can be used to prevent the Service from
making a lot of small updates to the persistent store.
A value of zero indicates no delay (changes are written immediately to the persistent
store). Increasing the write interval may improve performance when the data held
by a service is changing rapidly.

Storage Write Batch Size
The Storage Write Batch Size option specifies the maximum number of updates
that will be buffered before the data is written to persistent storage. This option is a
performance optimization feature.

i

Property Name DB.WriteInterval

Property Type STATIC

Data Type INTEGER

Accessibility READ/WRITE

Mandatory NO
43
 Common System Operations�������	

 3.1 Persistence Properties

A value of zero indicates that the updates are not buffered but are written
immediately to the data store. Increasing the property value may improve
performance when the data held by a Service is changing rapidly.
The effect of setting both the Storage Write Interval and the Storage Write Batch
Size to values greater than zero is that of batched timed writes.

JDBC Auto-create tables
If this property is checked (true), the Service will check for the presence of the
JDBC tables required for persistent storage and automatically create the tables if
they are not present.
The default value for this property is true.

JDBC Handler
The class name of the custom plug-in which will implement the JDBC
ExceptionHandler interface.
The ExceptionHandler interface allows the customising of how an SQL
exception will be handled. The interface is specified as follows:

This operation should return a status indicating how an SQL exception should be
handled. Possible return values are:

Property Name DB.WriteBatch

Property Type STATIC

Data Type INTEGER

Accessibility READ/WRITE

Mandatory NO

Property Name DB.JDBC.AutoCreate

Property Type FIXED

Data Type BOOLEAN

Accessibility READ-WRITE

Mandatory NO

public interface ExceptionHandler
{
 public static final int OK = 0;
 public static final int REPEAT = -1;
 public static final int FATAL = -2;

 public int handleException (java.sql.SQLException ex);
}

OK The program should continue as normal.
44
Common System Operations

�������	

 3.1 Persistence Properties

A return value greater than 0 (zero) means that the database operation should be
re-tried after the returned interval (in milliseconds).

JDBC Database Type
The JDBC Database Type option specifies the available, underlying relational
database type. Select from one of the following supported databases:
• Oracle
• Sybase
• Informix
• SQL Server (Windows only)
• hsqldb
The default persistence option is hsqldb, which is installed with the OpenFusion
CORBA Services distribution and will run with no additional configuration.

JDBC URL
The JDBC URL option sets the location of the JDBC data source. The format of the
URL depends on the type of data source being used.

Oracle
jdbc:oracle:thin:<data_source_name>

Where <data_source_name> is the name of the JDBC data source.

REPEAT The database operation should be re-tried immediately.
FATAL The program should terminate.

Property Name DB.JDBC.Handler

Property Type FIXED

Data Type STRING

Accessibility READ/WRITE

Mandatory NO

Property Name DB.JDBC.Type

Property Type FIXED

Data Type ENUM

Accessibility READ/WRITE

Mandatory YES
45
Common System Operations�������	

 3.1 Persistence Properties

Sybase
jdbc:sybase:Tds:<data_source_name>

Where <data_source_name> is the name of the JDBC data source.

Informix
jdbc:informix-sqli:<data_source_name>

Where <data_source_name> is the name of the JDBC data source.

SQL Server
jdbc:odbc:<data_source_name>

Where <data_source_name> is the name of the JDBC data source.

hsqldb
There are three ways in which hsqldb can be run, each requiring a different URL
format.
• Running on the local machine:

jbbc:hsqldb:<database>

Where <database> is the path to the hsqldb database. The default database
location is a subdirectory of the Service directory, as follows:
jdbc:hsqldb:<install_path>/domains/<domain>/<node>/
<service>/data/hsqldb

Where:
<install_path> is the OpenFusion installation directory.
<domain> is the name of the domain.
<node> is the name of the node.
<service> is the name of the OpenFusion Service.
This default location can be changed if required.

• Running in local memory (in the same JVM as the Service being started):
jdbc:hsqldb:.

• Running on a remote machine:
jdbc:hsqldb:hsql://<host>:<port>

Where:
<host> is the name of the remote machine.
46
Common System Operations

�������	

 3.1 Persistence Properties

<port> is the port used to connect to hsqldb on the host machine. This is
optional but will be required if the host machine runs more than one hsqldb
server.

JDBC Driver
This is the class name of the JDBC driver used. A default driver based upon the type
of database chosen will be used when this field is left blank, so it is not normally
necessary to set this field.

JDBC Logging
Whether JDBC calls will be logged or not.

JDBC User
Your Database Administrator will provide the user name for use in the JDBC User
option.The default user is sa (the hsqldb system administrator user).
This user must have create rights on the database.

Property Name DB.JDBC.URL

Property Type FIXED

Data Type STRING

Accessibility READ/WRITE

Mandatory YES

Property Name DB.JBDC.Driver

Property Type FIXED

Data Type STRING

Accessibility READ/WRITE

Mandatory NO

Property Name DB.JDBC.Logging

Property Type DYNAMIC

Data Type BOOLEAN

Accessibility READ/WRITE

Mandatory NO

Property Name DB.JDBC.User

Property Type FIXED
47
Common System Operations�������	

 3.1 Persistence Properties

JDBC Password
Your Database Administrator will provide the password for use in the JDBC
Password option. The default password is blank (none is required for the default
user, sa, in hsqldb).

Server Persistent ID
A unique identifier (UUID) associated with a specific server. Persistent storage
databases use this ID to indicate which server persistent data belongs to. This allows
different processes to share persistent data.

JDBC Connection Attempts
Defines the number of attempts that will be made to establish a connection to the
JDBC data source. A value of 0 (zero) indicates an unlimited number of attempts.
If an unlimited number of attempts is allowed and the process cannot establish a
connection (for example, due to to an incorrect username/password), the server
process will continue to attempt to establish a connection indefinitely. This cannot
be aborted from within the Administration Manager and will require the server
process to be killed via an interrupt signal. To avoid this problem, set this property
to a finite (non-zero) value.

Data Type STRING

Accessibility READ/WRITE

Mandatory YES

Property Name DB.JDBC.Password

Property Type FIXED

Data Type PASSWORD

Accessibility READ/WRITE

Mandatory NO

Property Name SID

Property Type FIXED

Data Type UUID

Accessibility READ/WRITE

Mandatory NO

Property Name DB.JDBC.ConnectionAttempts

Property Type STATIC
48
Common System Operations

�������	

 3.2 Logging Properties

JDBC Connection Retry Interval
The length of time, in milliseconds, between reconnection attempts.

3.2 Logging Properties
All OpenFusion Services can produce logging information. This can be used to both
track bugs and monitor server operation. OpenFusion uses four basic logging levels:
Error, Warning, Information and Debug. The OpenFusion logging system uses the
log4j logging package. (See http://jakarta.apache.org/log4j for more
information.)
If you are using the VisiBroker ORB and you wish to obtain debug information at
t he OR B l e ve l (ORB logg ing) t he n i t i s nece s sa ry t o add
-DOF.close.output.streams=true as a JVM flag. See Section 3.5, Java
Properties, on page 59 of this document.

Log Pattern
The format used for the logging output. This property is only required if Log
Layout is set to Pattern.
Details of setting log patterns can be found in Log Messages on page 155.

Log Layout
The layout used for the logging output. Choices are:

Data Type INTEGER

Accessibility READ/WRITE

Mandatory YES

Property Name DB.JDBC.ConnectionRetryInterval

Property Type STATIC

Data Type INTEGER

Accessibility READ/WRITE

Mandatory YES

Property Name log4j.appender.Default.layout.Conversi
onPattern

Property Type STATIC

Data Type STRING

Accessibility READ/WRITE

Mandatory YES
49
Common System Operations�������	

http://jakarta.apache.org/log4j

 3.2 Logging Properties

• Simple
• Pattern
If Pattern is selected, the Log Pattern property must be set.

Enabled LogFactor5 pattern layout
If true, log output is formatted for viewing with LogFactor5. The default is false.
The property is only used if the Log Layout property is set to Pattern.

Syslog Facility
This is the UNIX Syslog facility to which logging is directed. See your UNIX
documentation for more information on Syslog facility categories.

Syslog Host
This option determines the name of the host to which logging is directed when the
Syslog logging plug-in is selected. Syslog output is sent to the local host by default.

Property Name log4j.appender.Default.layout

Property Type STATIC

Data Type ENUM

Accessibility READ/WRITE

Mandatory YES

Property Name LogFactor5.enabled

Property Type STATIC

Data Type BOOLEAN

Accessibility READ/WRITE

Mandatory NO

Property Name log4j.appender.Default.Facility

Property Type STATIC

Data Type ENUM

Accessibility READ/WRITE

Mandatory YES

Property Name log4j.appender.Default.SyslogHost

Property Type STATIC

Data Type STRING

Accessibility READ/WRITE

Mandatory YES
50
Common System Operations

�������	

 3.2 Logging Properties

File Backup Number
This is the number of backup files that are retained after the value of File Maximum
Size is exceeded and RollingFile is selected as the logging plug-in. The default is 1.

File Append
This option controls whether the existing log file is replaced or new messages are
appended to the file.

File Maximum Size
This is the maximum size, in megabytes, of the log file created when RollingFile is
selected as the logging plug-in. A new logging file will be created when the value of
File Maximum Size is exceeded.

Log File
The File Name specifies the file where diagnostic output is saved. A default value is
used when this property is not set. This is:
<install_dir>/domains/<domain>/<node>/<service>/log/<service>.log

Property Name log4j.appender.Default.MaxBackupIndex

Property Type STATIC

Data Type INTEGER

Accessibility READ/WRITE

Mandatory NO

Property Name log4j.appender.Default.Append

Property Type STATIC

Data Type BOOLEAN

Accessibility READ/WRITE

Mandatory NO

Property Name log4j.appender.Default.MaxFileSize

Property Type STATIC

Data Type INTEGER

Accessibility READ/WRITE

Mandatory NO
51
Common System Operations�������	

 3.2 Logging Properties

where <install_dir> is the OpenFusion installation path. See The Object
Hierarchy on page 145 for details of the domains directory structure.

Log Plug-in
This property determines how diagnostic output will be logged. Options are:
• File
• Rolling File
• Syslog
• Event Log
• Log Service
• None

File
Selecting this option will direct all diagnostic output to a file specified by the Log
File property.

Rolling File
This option directs diagnostic output to a file. The output file is backed up
periodically when a specific size is reached. See also File Backup Number on page
51.

Syslog
This option directs diagnostic output to the UNIX syslog facility.

Event Log
This option directs diagnostic output to the NT Event Log.

Log Service
This option redirects all diagnostic output to the OpenFusion Log Service. A
notification-type log is used.

Property Name log4j.appender.Default.File

Property Type STATIC

Data Type FILE

Accessibility READ/WRITE

Mandatory YES

UNIX

WIN
52
Common System Operations

�������	

 3.2 Logging Properties

None
All diagnostic messages are disabled.

Notify Log ID
This is the identity of the Notify Log that is used when logging to the Log Service is
selected. A new log is created when a log with this identity does not already exist.

Log Level
This property determines the level of diagnostic output that is logged in the log file.
The logging level can be changed dynamically. Options are:
• Disable - No messages are logged; logging is disabled.
• Error - Only error messages are logged.
• Warning - Error and warning messages are logged.
• Information - Error, warning, and information messages are logged.
• Debug - Error, warning, information, and debugging messages are logged.
Caution: significant amounts of output may be generated when the Debug level of
logging is selected.

Property Name log4j.appender.Default

Property Type STATIC

Data Type ENUM

Accessibility READ/WRITE

Mandatory YES

Property Name log4j.appender.Default.LogID

Property Type STATIC

Data Type INTEGER

Accessibility READ/WRITE

Mandatory YES

Property Name log4j.rootLogger

Property Type DYNAMIC

Data Type ENUM

Accessibility READ/WRITE

Mandatory YES
53
Common System Operations�������	

 3.3 CORBA Properties

3.3 CORBA Properties
The properties on the CORBA tab provide a view of the CORBA-related state of the
services.

INITIALIZE Exception Count
The current total of CORBA INITIALIZE exceptions thrown since the Service was
started.

BAD_PARAM Exception Count
The current total of CORBA BAD_PARAM exceptions thrown since the Service was
started.

INTERNAL Exception Count
The current total of CORBA INTERNAL exceptions thrown since the Service was
started.

Property Name CORBA.InitializeExceptions

Property Type DYNAMIC

Data Type COUNTER

Accessibility READ ONLY

Mandatory NO

Property Name CORBA.BadParamExceptions

Property Type DYNAMIC

Data Type COUNTER

Accessibility READ ONLY

Mandatory NO

Property Name CORBA.InternalExceptions

Property Type DYNAMIC

Data Type COUNTER

Accessibility READ ONLY

Mandatory NO
54
Common System Operations

�������	

 3.3 CORBA Properties

Number of active CORBA objects
Number of active CORBA objects currently in service.

Number of purged CORBA objects
Number of CORBA objects purged from memory.

CORBA Object Activity Timeout
Timeout for CORBA object activity check, in seconds.

Incoming Call Count
The current total of CORBA operations invoked.

Property Name ObjectRegistry.Objects

Property Type DYNAMIC

Data Type INTEGER

Accessibility READ ONLY

Mandatory NO

Property Name ObjectRegistry.Purges

Property Type DYNAMIC

Data Type INTEGER

Accessibility READ ONLY

Mandatory NO

Property Name Timeout

Property Type DYNAMIC

Data Type INTEGER

Accessibility READ/WRITE

Mandatory NO

Property Name CORBA.Calls

Property Type DYNAMIC

Data Type COUNTER

Accessibility READ ONLY

Mandatory NO
55
Common System Operations�������	

 3.3 CORBA Properties

Load CORBA Singletons on Startup
Whether to load Singletons on server startup or on demand.

Enable Dynamic Portable Interceptors
If set to TRUE (checked), this property enables the use of OpenFusion Dynamic
Portable Interceptors for the Service.
Dynamic Portable Interceptors are required by an OpenFusion Service using
adaptive load balancing with load shedding. See the Load Balancing Service Guide
for details.

Object Purging
When set to TRUE this option enables the purging (deactivation) of objects from the
server, limiting the amount of object references that are stored by the ORB. Objects
may be purged at a given interval and/or when a maximum number of object
references has been exceeded. Objects are purged using a least-recently-used
algorithm.
The properties Object Cache Maximum Size and Object Cache Minimum Size
are used to control object purging behaviour. These properties set upper and lower
limits for the number of object references that the ObjectRegistry is expected to
manage. Object purging will be triggered when the number of object references
exceeds the Object Cache Maximum Size limit. The purging algorithm will
attempt to destroy sufficient object references to reduce the number held in the
ObjectRegistry to that specified by the Object Cache Minimum Size property.
For example, with the properties ObjectRegistry.MaxSize=1000 and
ObjectRegistry.MinSize=100, purging will be triggered when the 1001st
object reference is created. The purging algorithm will attempt to destroy 901 object
references to reduce the number of references held in the ObjectRegistry to 100.

Property Name LoadOnStart

Property Type STATIC

Data Type BOOLEAN

Accessibility READ/WRITE

Mandatory NO

Property Name EnableDynamicInterceptors

Property Type STATIC

Data Type BOOLEAN

Accessibility READ/WRITE

Mandatory NO
56
Common System Operations

�������	

 3.3 CORBA Properties

Note that memory usage does not correlate directly to the number of objects.

Naming Service: When the OpenFusion Naming Service is being used with object
purging enabled, clients must always perform operations from the root context.
Otherwise, problems will occur if the parents have been purged from memory.

Object Cache Maximum Size
This is the maximum number of objects that can be created in a server before
purging occurs. When the object references handled by the ObjectRegistry exceeds
the value of this property, objects are removed using a least-recently-used algorithm.
Objects will only be purged if Object Purging has be set TRUE. For full details of
using this property, see Object Purging on page 56.

Object Cache Minimum Size
The minimum cache size for persistent CORBA objects. When objects are purged
from the server, this number of objects will be left. For full details of using this
property, see Object Purging on page 56.

Object Cache Purge Interval
This is the interval, in minutes, between object purge operations.

Property Name ObjectRegistry.Purge

Property Type STATIC

Data Type BOOLEAN

Accessibility READ/WRITE

Mandatory NO

Property Name ObjectRegistry.MaxSize

Property Type STATIC

Data Type INTEGER

Accessibility READ/WRITE

Mandatory NO

Property Name ObjectRegistry.MinSize

Property Type STATIC

Data Type INTEGER

Accessibility READ/WRITE

Mandatory NO
57
Common System Operations�������	

 3.3 CORBA Properties

Objects will only be purged if Object Purging has be set TRUE.

ORB Initialization Arguments
This is a space separated list of arguments passed to the ORB at initialization.

POA Name
This is the name of the POA (Portable Object Adaptor) created for the server. This
property is only used by the VisiBroker and Orbix distributions (but see below for
information pertaining to JacORB). Every server should have a unique POA name.
The server UUID is used as the POA name when this field is left blank.

JacORB and the POA Name
On JacORB, the POA Name property is used to set Implementation Name property
used by the Naming Service.
To federate two separately-installed Naming Services running on JacORB, each
service must have different Implementation Name. The following parameter can be
passed to override the Implementation Name when the service is started:

-Djacorb.implname=<name>

where <name> is the required Implementation Name. This does not override the
POA Name.

Property Name ObjectRegistry.Interval

Property Type STATIC

Data Type INTEGER

Accessibility READ/WRITE

Mandatory NO

Property Name ORB.Arguments

Property Type STATIC

Data Type STRING

Accessibility READ/WRITE

Mandatory NO

Property Name POA.Name

Property Type FIXED

Data Type STRING

Accessibility READ/WRITE

Mandatory NO
58
Common System Operations

�������	

 3.4 Security Properties

Server Port
The server will run on a fixed port number when this option is set. The port number
is that which the server will use to listen for requests.
A fixed port number allows for inter-ORB interoperability and enables servers to
run without a daemon. Fixed ports also make it easier to implement security
measures such as firewalls.

Server Process ID
A unique identifier (UUID) associated with a specific server process. This ID is
used to identify every object belonging to the process.

3.4 Security Properties
The properties on the Security tab relate to securing OpenFusion Services.
For convenience, these properties have been placed in a separate section. See
Section 10, Security Configuration, on page 127.

3.5 Java Properties
These properties relate to the Java Virtual Machine (JVM) that runs the OpenFusion
Services.

JVM Information
This property displays information about the Java Virtual Machine that the Service
is running in, for example:
build JDK-1.2.2_006, native threads, symcjit

Property Name Port

Property Type STATIC

Data Type INTEGER

Accessibility READ/WRITE

Mandatory NO

Property Name PID

Property Type FIXED

Data Type UUID

Accessibility READ/WRITE

Mandatory NO
59
Common System Operations�������	

 3.5 Java Properties

This information is only displayed while the service is running.

JVM Flags
These flags are passed to the Java Virtual Machine used to run the Service.

JVM Free Memory
Displays the free memory available to the Java Virtual Machine that the Service is
running in.
This information can only be refreshed while the Service is running.

JVM Total Memory
Displays the total memory available to the Java Virtual Machine that the Service is
running in.
This information can only be refreshed while the Service is running.

Property Name JVM.Info

Property Type DYNAMIC

Data Type STRING

Accessibility READ ONLY

Mandatory NO

Property Name JVM.Flags

Property Type STATIC

Data Type STRING

Accessibility READ/WRITE

Mandatory NO

Property Name JVM.FreeMemory

Property Type DYNAMIC

Data Type INTEGER

Accessibility READ ONLY

Mandatory NO

Property Name JVM.TotalMemory

Property Type DYNAMIC

Data Type INTEGER

Accessibility READ ONLY

Mandatory NO
60
Common System Operations

�������	

 3.6 System Properties

Use Xbootclasspath
If this property is checked, the JVM is passed the -Xbootclasspath flag when the
service is started.
The -Xbootclasspath flag causes the service to use the OpenFusion classes and
not those supplied with the JRE. A side-effect of using -Xbootclasspath is the
inability of the JVM to find shared libraries. This option should not be neccessary
under JacORB and RTOrb since the OpenFusion CORBA Services support the
endorsed standards override mechanism which overcomes this problem. Detailed
i n f o rm a t i o n i s a v a i l a b le o n S un ' s w e b s i t e a t
http://java.sun.com/j2se/1.5.0/docs/guide/standards.
For a Singleton to register itself with a running Naming Service when it is started,
this property must be checked.

3.6 System Properties
These properties relate to the system that OpenFusion runs on.

User Name
Displays the name of the user running the process.
This information is only displayed while the Service is running.

System Type
Displays the operating system type.
This information is only displayed while the Service is running.

Property Name JVM.XBoot

Property Type STATIC

Data Type BOOLEAN

Accessibility READ/WRITE

Mandatory NO

Property Name User.Name

Property Type DYNAMIC

Data Type STRING

Accessibility READ ONLY

Mandatory NO

Property Name System.Type

Property Type DYNAMIC
61
Common System Operations�������	

http://java.sun.com/j2se/1.5.0/docs/guide/standards

 3.7 Common Singleton Properties

System Name
Displays the name of the system running the Service (the computer name). This
information is only displayed while the Service is running.

3.7 Common Singleton Properties
These properties are used to specify the location for reading and writing the
Singleton’s IOR.
The method used to read and write the IOR file will depend on which properties
have been completed.

Reading the IOR
The rules for reading the IOR are, in order of precedence:
1. The IOR will be read from the location specified in the IOR URL property.
2. If the IOR URL property is blank, the IOR will be read from the naming service

specified in IOR Name Service, under the name specified in IOR Name
Service Entry.

3. If IOR Name Service Entry is blank, the IOR will be read from the location
specified in the IOR File Name property.

Writing the IOR
The rules for writing the IOR are, in order of precedence:
1. The IOR will be written to the location specified in the IOR File Name property.
2. If IOR Name Service Entry is not blank the IOR will be written to the naming

service specified in IOR Name Service, under the name specified in IOR Name
Service Entry.

Data Type STRING

Accessibility READ ONLY

Mandatory NO

Property Name System.Name

Property Type DYNAMIC

Data Type STRING

Accessibility READ ONLY

Mandatory NO
62
Common System Operations

�������	

 3.7 Common Singleton Properties

IOR Name Service
The name of the Naming Service which will be used to resolve the Singleton object.
This defaults to NameService, which is the resolve name of the OpenFusion
Naming Service, and should only be changed if the name service is being resolved
using a different name.

IOR Name Service Entry
The naming service entry for the Singleton, in INS format (Interoperable Naming
Service stringified name). This name will be written to the naming service specified
in the IOR Name Service property.
Any intermediary naming context must already exist in the naming service. For
example, to write Singleton “b” to the naming service as follows:
R/a/b

the context “a” must already exist.
This property has no default value, and if it is left blank the Singleton will not be
written to the naming service.

IOR URL
The IOR URL property specifies the location of an Interoperable Object Reference
(IOR) for the Service, using the Universal Resource Locator (URL) format. This
information is used when a client attempts to resolve a reference to the Service.
Currently, only http and file URLs are supported.
This property defaults to:

Property Name IOR.Server

Property Type FIXED

Data Type STRING

Accessibility READ/WRITE

Mandatory NO

Property Name IOR.Name

Property Type FIXED

Data Type STRING

Accessibility READ/WRITE

Mandatory NO

file:/<install>/domains/<domain>/<node>/<service>/<singleton>/<singl
eton>.ior
63
Common System Operations�������	

 3.7 Common Singleton Properties

where <install> is the OpenFusion CORBA Services installation path. See The
Object Hierarchy on page 145 for details of the domains directory structure.
The IOR URL can only be used when reading the IOR. The IOR cannot be written to
a location specified in a URL; the IOR File Name property should be used instead.

IOR File Name
The IOR File Name option specifies the name and location of the IOR file for the
Singleton. This defaults to:
<install>/domains/<domain>/<node>/<service>/<singleton>/<singleton>.
ior

where <install> is the OpenFusion CORBA Services installation path. See The
Object Hierarchy on page 145 for details of the domains directory structure.

Resolve Name
The ORB Se rv i ce name u sed t o l o c a t e t h e S i n g l e t o n u s i n g
resolve_initial_references.
The Resolve Name of the Naming Service Singleton must be unique within the
whole Domain.
ProcessSingletons do not have this property.

Property Name IOR.URL

Property Type FIXED

Data Type URL

Accessibility READ/WRITE

Mandatory NO

Property Name IOR.File

Property Type FIXED

Data Type FILE

Accessibility READ/WRITE

Mandatory NO

Property Name ResolveName

Property Type FIXED

Data Type STRING

Accessibility READ/WRITE

Mandatory YES
64
Common System Operations

�������	

 3.8 Administration Manager Properties

3.8 Administration Manager Properties
Properties set at the root level of the Object Hierarchy govern the operation of the
Administration Manager.
Although administration properties are shown as dynamic in the Administration
Manager, in order for changes to those properties to take affect they must be saved,
and the Administration Manager must be shut down and re-started.
To set Administration Manager Properties, select the Domains node (root node) in
the Object Hierarchy. The properties, described below, are shown on the following
tabs:
• CORBA contains properties that relate to the CORBA ORB.
• LOGGING contains the logging properties (see Section 3.2, Logging Properties,

on page 49).
• GENERAL contains properties specific to the Administration Manager.
• CONFIGURE contains the properties for setting up OpenFusion to run remotely

from a central configuration server (see Section 2.4, Distributed Installation
Configuration, on page 31).

• SERVICE LOG tab displays the Browser Log as described in Service Log on page
25.

3.8.1 CORBA Properties

POA Name
This is the name of the POA (Portable Object Adaptor) created for the server. Every
server should have a unique POA name. The server UUID is used as the POA name
when this field is left blank.
The default value is OpenFusion.Manager.
Property Name POA.Name

Property Type DYNAMIC

Data Type STRING

Accessibility READ/WRITE

Mandatory YES
65
Common System Operations�������	

 3.8 Administration Manager Properties

Server Port
The Server port that the Administration Manager attempts to use when started with
the -port command line switch. See -port on page 8.

3.8.2 Configure Properties
These properties allow the configuration of OpenFusion installations from a central
host. This is described in Section 2.4, Distributed Installation Configuration, on
page 31.

Central Configuration Host
If this server is to act as the central configuration manager for remote hosts, then this
check box must be checked. The location of the configuration file on the local host
must be entered in the OpenFusion Install URL field.

OpenFusion Install URL
The URL of the OpenFusion installation on a central configuration host.
Caution: entering an invalid URL will cause fatal problems! Take backups of the
OpenFusion installation and be very careful when changing this property.

Property Name Port

Property Type DYNAMIC

Data Type INTEGER

Accessibility READ/WRITE

Mandatory NO

Property Name RunViaWebServer

Property Type DYNAMIC

Data Type BOOLEAN

Accessibility READ/WRITE

Mandatory YES

Property Name OpenFusionInstallURL

Property Type DYNAMIC

Data Type URL

Accessibility READ/WRITE

Mandatory YES
66
Common System Operations

�������	

 3.8 Administration Manager Properties

Remote OpenFusion Domains URL
The URL of the OpenFusion configuration file on a central configuration host.

Configure From Remote Host
If the OpenFusion configuration is to read from a central host, then this check box
must be checked. The location of the configuration file on the remote host must be
entered in the Remote OpenFusion Install URL field.

3.8.3 General Properties

Pre-load Properties
If this option is selected, the performance of the browser will improve. The
disadvantage is that the browser takes slightly longer to load when first started. For
best performance, we recommend that this option is always selected (which is the
default value).

Property Name RunOpenFusionDomainsURL

Property Type DYNAMIC

Data Type URL

Accessibility READ/WRITE

Mandatory YES

Property Name ConfigViaWebServer

Property Type DYNAMIC

Data Type BOOLEAN

Accessibility READ/WRITE

Mandatory YES

Property Name PreLoadProperties

Property Type DYNAMIC

Data Type BOOLEAN

Accessibility READ/WRITE

Mandatory NO
67
Common System Operations�������	

 3.8 Administration Manager Properties

Service Timeout
The timeout interval (in seconds) when starting Services, after which the
Administration Manager stops checking the Service node to see if it is started. If the
service has not started, then it is flagged as “failed to start”. The default value is 60
seconds.

Status Timeout
The timeout interval (in seconds) which is allowed for a response when checking
checking the status of servers. The default value is 2 seconds.

Property Name Service.Timeout

Property Type DYNAMIC

Data Type INTEGER

Accessibility READ/WRITE

Mandatory YES

Property Name StatusTimeout

Property Type DYNAMIC

Data Type INTEGER

Accessibility READ/WRITE

Mandatory YES
68
Common System Operations

�������	

CHAPTER

4 Instrumentation
OpenFusion provides both general and service-specific instrumentation features
which can be used for system monitoring, which in turn aids in problem
identification, performance tuning, and so on. OpenFusion instrumentation consists
of a set of properties that can be monitored at run time using the Administration
Manager, SNMP or CORBA Process interface.
In addition to properties that are read-only at runtime, OpenFusion provides some
properties that can be set at runtime as required, such as when a particular
threshold value is reached or a time period has elapsed. There is virtually no
performance overhead involved in using any of the OpenFusion instrumentation
features.

4.1 Overview
4.1.1 Manageable Resources

An OpenFusion manageable resource is a CORBA Singleton or Java Object that can
be managed at runtime via SNMP (see SNMP Agent on page 70) or using the
CORBA Process interface (CORBA Process Interface on page 75).
The CORBA Singletons listed below are manageable resources:
• ProcessSingleton (the default Singleton within each Service)
• NameSingleton
• LoadBalancingFactorySingleton
• TradingSingleton
• ServiceTypeRepositorySingleton
• NotificationSingleton
• TimeSingleton
The following Java Objects are manageable resources:
• SNMPAgentObject (the SNMP agent can be managed via SNMP)
69
 Common System Operations�������	

 4.2 SNMP Agent

4.1.2 Object Counters
The Object Counters provided for each managed Singleton or Java Object (for
example, the Number of Event Channels property of the NotificationSingleton)
give a count of the number of objects in existence. The counter is incremented when
an object is created and decremented when the object is destroyed.
The destruction of an object occurs during garbage collection, not when the object is
de-referenced. Therefore, there will be a delay between an object being
de-referenced and the counter registering that it has been destroyed.

4.2 SNMP Agent
The SNMP agent is a Java Object that enables SNMP management applications to
access the properties of manageable resources at runtime via SNMP. The
OpenFusion SNMP agent implements SNMPv1 and uses UDP as the underlying
transport protocol for sending and receiving SNMP messages.
To use the SNMP agent, the SNMPAgentObject must be added to a Service in the
Administration Manager. Adding Java Objects to a Service is described in Adding
Singletons and Java Objects on page 16. The SNMP agent enables all manageable
resources that are co-located with it to be managed via SNMP.

4.2.1 Configuring the SNMP Agent
The following properties of the SNMPAgentObject can be configured from the
Administration Manager.

Port
The port used by the agent to listen for SNMP requests. The standard port for
listening for SNMP requests is port 161.

Max Packet Size
The maximum packet size (in bytes) of an SNMP message.
Warning: If the packet size is configured to be too small then the SNMP agent may
fail with an exception when attempting to process an SNMP message whose size
exceeds the maximum packet size.

Property Name Port

Property Type STATIC

Data Type INTEGER

Accessibility READ/WRITE

Mandatory YES

Default Value 161
70
Common System Operations

�������	

 4.2 SNMP Agent

Max Active Clients
The maximum number of clients that can access the agent concurrently. A value less
than one is interpreted to mean that there is no limit to the number of clients that can
access the SNMP agent concurrently.

Enable Traps
A flag indicating if the agent will send SNMP traps. By default the SNMP agent
does not send traps.

Trap Hosts File
An XML file defining hosts to receive traps sent by the agent. See Trap Hosts File
on page 74 for a description of this file.

Property Name MaxPacketSize

Property Type STATIC

Data Type INTEGER

Accessibility READ/WRITE

Mandatory YES

Default Value 1300

Property Name MaxActiveClients

Property Type STATIC

Data Type INTEGER

Accessibility READ/WRITE

Mandatory YES

Default Value 10

Property Name EnableTraps

Property Type STATIC

Data Type BOOLEAN

Accessibility READ/WRITE

Mandatory YES

Default Value FALSE

Property Name TrapHostsFile

Property Type STATIC

Data Type FILE
71
Common System Operations�������	

 4.2 SNMP Agent

Default Trap Port
The port to send traps to when a port is not specified in the XML. The standard port
for listening for SNMP traps is port 162.

Default Trap Community
The community name used for sending traps when a community name is not
specified in the XML. For security reasons this property cannot be monitored via
SNMP.

Trap On Authentication Failure
A flag indicating if the agent sends a trap when an authentication failure occurs.
Regardless of the value of this property, the SNMP agent will only send traps if the
EnableTraps property is set to TRUE.

Accessibility READ/WRITE

Mandatory YES

Default Value none

Property Name DefaultTrapPort

Property Type STATIC

Data Type INTEGER

Accessibility READ/WRITE

Mandatory YES

Default Value 162

Property Name DefaultTrapCommunity

Property Type STATIC

Data Type STRING

Accessibility READ/WRITE

Mandatory YES

Default Value none

Property Name TrapOnAuthenticationFailure

Property Type STATIC

Data Type BOOLEAN

Accessibility READ/WRITE

Mandatory YES

Default Value TRUE
72
Common System Operations

�������	

 4.2 SNMP Agent

Read-only Community
The community name of the agent providing read-only access to the MIB view. For
security reasons this property cannot be monitored via SNMP.

Enable Write Access
A flag indicating if the agent will allow write access. By default the SNMP agent
does not allow write access.

Read-write Community
The community name of the agent providing read-write access to the MIB view. For
security reasons this property cannot be monitored via SNMP. Requests that use this
community when the EnableWriteAccess property is set to FALSE will result in an
authentication failure.

4.2.2 Notifications
The following notifications are sent by the SNMP agent:
• SnmpAgentStartup

Property Name ReadOnlyCommunity

Property Type STATIC

Data Type STRING

Accessibility READ/WRITE

Mandatory YES

Default Value none

Property Name EnableWriteAccess

Property Type STATIC

Data Type BOOLEAN

Accessibility READ/WRITE

Mandatory YES

Default Value FALSE

Property Name ReadWriteCommunity

Property Type STATIC

Data Type STRING

Accessibility READ/WRITE

Mandatory YES

Default Value none
73
Common System Operations�������	

 4.2 SNMP Agent

This notification signals that the SNMP agent has started and is listening for
SNMP requests.

• AuthenticationFailure

This notification signals that an authentication failure has occurred while
processing an SNMP message.

• SnmpAgentShutdown

This notification signals that the SNMP agent has stopped and is no longer
listening for SNMP requests.

Notifications are sent to SNMP management applications as SNMPv1 traps. These
traps are enterprise specific and do not belong to the snmp group in MIB-II. Consult
the SNMP agent MIB for details of all traps sent by the SNMP agent.

4.2.3 Trap Hosts File
The trap hosts file is an XML file that defines the hosts that are to receive SNMPv1
traps emitted by the SNMP agent. The full path to this file is specified by the
TrapHostsFile property (page 71). If the EnableTraps property (page 71) is set to
FALSE then the TrapHostsFile property is ignored by the SNMP agent.
Each host is defined in the XML by a host name and optionally a port and
community name. If the port is not specified then the value of the DefaultTrapPort
property (page 72) is used. Similarly, if the community name is not specified then
the value of the DefaultTrapCommunity property (page 72) is used. The host name
must be specified and can either be the name or the IP address of the host.
The DTD that specifies the format of the XML is defined in the following file:
<INSTALL>/xml/schema/TrapHosts.dtd

where <INSTALL> is the OpenFusion installation directory.
A DOCTYPE declaration referencing TrapHosts.dtd must be included in every
XML file so that the XML can be validated. If this declaration is not included then
the SNMP agent will fail to start.

4.2.4 Starting the SNMP Agent
Once an SNMPAgentObject has been added to a Service, starting the Service
automatically starts the SNMP agent. Immediately after the agent has started it will
send an SnmpAgentStartup trap (if traps are enabled) and it will begin listening
for incoming SNMP requests.
Manageable resources that are co-located with the SNMPAgentObject must be
started before the SNMPAgentObject in order to be managed via SNMP. This can
be accomplished from within the Administration Manager by positioning all
74
Common System Operations

�������	

 4.3 CORBA Process Interface

co-located resources above the SNMPAgentObject in the Service definition. The
exception to this starting rule is the ProcessSingleton, which is normally the last
resource in a Service definition.

4.2.5 Stopping the SNMP Agent
Stopping the Service containing the SNMPAgentObject automatically stops the
SNMP agent. Immediately before the agent has stopped it will send an
SnmpAgentShutdown trap (if traps are enabled) and it will stop listening for
incoming SNMP requests.

4.2.6 OpenFusion MIBs
The OpenFusion MIBs are contained in the <INSTALL>/mibs directory where
<INSTALL> is the OpenFusion installation directory.
There is one MIB for each OpenFusion manageable resource. The name of each
MIB is prefixed with the name of the resource it describes (minus the Singleton or
Object suffix). For example, the MIB representing the TradingSingleton is named
TRADING-MIB.txt, and the MIB representing the SNMPAgentObject is named
SNMPAGENT-MIB.txt. The exception to this naming rule is the ProcessSingleton
MIB, which is named SERVER-MIB.txt.
The OpenFusion MIBs fully conform to SMIv1. Management applications
connected to the SNMP agent will be able to access the objects defined in the MIBs
of co-located resources by their OIDs. The OID of the root node of the PrismTech
OpenFusion MIB tree is 1.3.6.1.4.1.5510.1.

4.3 CORBA Process Interface
The CORBA Process interface can be used to programmatically monitor the
system by accessing the instrumentation properties of individual service instances.
The services in this release which support the use of the Process interface are
listed below in Table 7. The table also lists the names used by Process’ methods to
access the services.

Table 7 Services’ Access Names

Service Singleton Access Name
ProcessSingleton
(default service singleton)

Server

NotificationSingleton Notification
75
Common System Operations�������	

 4.3 CORBA Process Interface

4.3.1 Using the Process Interface
An instance of the Process interface can be used to programmatically obtain
property values for any instrumentation-enabled singletons which are co-located
with the Process object.
The following steps describe how to use the Process interface in a program or
module for obtaining instrumentation property values for a service instance.

Step 1: Ensure the program module imports the following packages:
com.prismt.orb.ObjectAdapter
com.prismt.openfusion.Server.Process
com.prismt.openfusion.Server.ProcessHelper

Step 2: Perform the standard ORB initialisation, for example:

Step 3: Obtain a reference to the local Process interface instance by retrieving the instance’s
IOR from a file called ProcessSingleton.ior (located in the
<install_dir>/domains/OpenFusion/localhost/<service>/
ProcessSingleton directory). The ORB's string_to_object() method is
used to convert the stringified version of the IOR, which the file contains, to the
needed object reference.1

Example

The example code above assigns the needed Process object to processObject.

Step 4: Use the Process object’s getValue() method to retrieve the desired property
values for a service instance. Please note that each service instance is referenced as a
named singleton object (see Table 7 on page 75).
The getValue() method is given (as Strings) the access name of the service’s
singleton object as well as the name of the desired instrumentation property:
• the access name for each service’s singleton object is given in Table 7, Services’

Access Names, on page 75

static org.omg.CORBA.ORB orb = ObjectAdapter.init (new String[0]);

1. The code examples shown here use BufferedReader and FileReader for simplicity, although
other file reading approaches could be used; modules using these packages must import the standard
java.io.BufferedReader and java.io.FileReader packages.

String iorPathName = "ProcessSingleton.ior";
BufferedReader in = new BufferedReader (new FileReader
(iorPathName));
String iorString = in.readLine ();
in.close ();
org.omg.CORBA.Object obj = orb.string_to_object (iorString);
Process processObject = ProcessHelper.narrow (obj);
76
Common System Operations

�������	

 4.3 CORBA Process Interface

• the instrumentation property names are listed under Instrumentation Properties in
the Configuration section of the service’s user guide; for example, those for the
Notification Service are listed under Notification Service Configuration,
Instrumentation Properties of the Notification Service Guide

The getValue() method returns an any which contains the property value. The
contained value will be of the type (String, long, ulonglong, etc.) specified for
the property, as listed under the Instrumentation Properties for the service referred
to above: the value must be retrieved from the any using the appropriate Any
ext rac t ion method, for example extract_string() for Strings ,
extract_long() for longs, extract_longlong() for longlongs, etc.

Example

4.3.1.1 Example Program
The following example shows how instrumentation value can be displayed using a
stand-alone program.

String service = "Notification";
String propertyName = "Channels";

org.omg.CORBA.Any any = processObject.getValue(propertyName,
service);
long channelValue = any.extract_longlong();
System.out.println ("The value of the Channels property is: " +
channelValue);

import com.prismt.orb.ObjectAdapter;
import com.prismt.openfusion.Server.Process;
import com.prismt.openfusion.Server.ProcessHelper;

import java.io.BufferedReader;
import java.io.FileReader;

// display instrumentation values using the CORBA Process interface
public class InstrumentationAccessor
{
 private org.omg.CORBA.ORB orb = null;
 private Process localProcess = null;

 // Constructor, where
 // iorPathName is the location of the file (pathname) containing the Process IOR
 public InstrumentationAccessor (String iorPathName)
 {
 orb = ObjectAdapter.init (new String[0]);

 // Obtain reference to the Process object using the stringified
 // IOR stored in the file defined in iorPathName
 try
 {
 BufferedReader in = new BufferedReader (new FileReader (iorPathName));
 String iorString = in.readLine ();
 in.close ();
 org.omg.CORBA.Object object = orb.string_to_object (iorString);
77
Common System Operations�������	

 4.3 CORBA Process Interface

 localProcess = ProcessHelper.narrow (object);
 }
 catch (Exception e)
 {
 System.out.println ("Failed to obtain process.");
 }
 }

 // Obtain a property value using the Process.getValue() method, where
 // propertyName is the name of the property
 // service is the name of the service containing the property
 public org.omg.CORBA.Any getPropertyValue (String propertyName, String service)
 throws Exception
 {
 try
 {
 org.omg.CORBA.Any any = localProcess.getValue (propertyName, service);
 return any;
 }
 catch (Exception ex)
 {
 throw new Exception ("Failed to retrieve value of " + propertyName
 + " from " + service);
 }
 }

 // main //////////////////////////////
 public static void main (String[] args)
 {
 // check that pathname of Process IOR file provided by user
 if (args.length != 1)
 {
 System.out.println ("Please supply pathname of Process IOR file");
 System.exit (1);
 }

 // InstrumentationAccessor's constructor obtains a reference to the
 // local process using the stringified IOR stored in file provided by
 // the user as a command line parameter
 InstrumentationAccessor accessor = new InstrumentationAccessor (args [0]);

 // display instrumentation property values
 try
 {
 System.out.println ("\nDisplaying instrumentation property values.\n");

 // Server object properties values
 org.omg.CORBA.Any any = accessor.getPropertyValue ("JVM.FreeMemory",
"Server");
 long freeMem = any.extract_long ();
 System.out.println ("JVM Free mem: " + freeMem);

 any = accessor.getPropertyValue ("JVM.Info", "Server");
 String info = any.extract_string ();
 System.out.println ("JVM info: " + info);

 // Service object properties values for the Notification Service
 any = accessor.getPropertyValue ("Channels", "Notification");
 long chans = any.extract_longlong ();
 System.out.println ("Channels: " + chans);
78
Common System Operations

�������	

 4.3 CORBA Process Interface

 any = accessor.getPropertyValue ("ProxyPushConsumers", "Notification");
 long ppc = any.extract_longlong ();
 System.out.println ("ProxyPushConsumers: " + ppc);

 any = accessor.getPropertyValue ("EventsDelivered", "Notification");
 long evsd = any.extract_longlong ();
 System.out.println ("Events delivered: " + evsd);
 Thread.sleep (2000);
 }
 catch (Exception ex)
 {
 ex.printStackTrace ();
 }
 }
}

79
Common System Operations�������	

 4.3 CORBA Process Interface

80
Common System Operations

�������	

CHAPTER

5 Service Portability
The OpenFusion CORBA Services conform with the OMG defined Java bindings.
However, there are some ORB and platform differences that must be taken into
account when developing and running clients and servers. The following sections
cover these issues:
• Portability Classes

The OpenFusion framework supports a number of CORBA portability classes
that normalise access to the underlying ORB and related classes.

• Running User Defined Clients and Servers
This section covers both vendor and platform issues concerning the content of
CLASSPATH, PATH and different parameters required for the command line
when executing user defined clients and servers.

• OpenFusion IDL Compilation Issues
This section covers both vendor and platform issues concerning the compilation
of OpenFusion IDL when creating user defined servers, for example, creating
event suppliers for the Notification Service.

• C++ Support
This section gives some basic guidelines for the development of C++ clients for
the OpenFusion CORBA services.

5.1 Portability Classes
The OpenFusion framework supports a number of CORBA portability classes that
normalise access to the underlying ORB and related classes. There are a number of
reasons why this has been done:
• Prior to the CORBA 2.3 specification, server side object mappings were not

standardised and the generated server side support classes were different for each
ORB vendor.

• It hides some of the complexity in using the ORB native object adapters
(particularly with respect to the POA) and proprietary loaders.

• It supports the deployment of both transient and persistent objects and simplifies
the management of a persistent object’s state.
81
 Common System Operations�������	

 5.1 Portability Classes

• It normalises the creation of and access to dynamic Any classes. This is required
as these were repackaged in the CORBA 2.3 specification.

Three classes are used to support the development of ORB portable code:
• ORBAdapter: This provides a client side abstraction layer for initilializing and

accessing the ORB and running client applications.
• ObjectAdapter: This provides a server side abstraction layer for managing

server objects.
• DynAnyFactory: This provides a factory class for creating dynamic any objects.

This class returns implementations of the dynamic any classes which conform
with CORBA 2.3.

These three portability classes are in the com.prismt.orb package. The following
sections describe each of these three classes in detail.

5.1.1 The ORBAdapter Class
The ORBAdapter class contains operations for ORB initialization and a number of
utility operations to return information about object references.

5.1.1.1 ORB Initialization
Two static initialization operations are supported. The first takes an array of String
arguments and is intended to be called from the main operation so that any
arguments passed to an application may be passed onto the ORB when it is
initialized. The second form takes an ORB parameter and should be called to
initialize from a pre-existing full ORB implementation. These operations are
defined as follows:

These operations both return an instance of a full ORB. An operation is also
provided to return the initialized ORB instance:

A limited functionality singleton ORB will be returned when an init operation has
not been previously called. Most of the other operations defined on this class will
throw the INITIALIZE exception when the class has not been initialized via one of
the init operations.

public static synchronized org.omg.CORBA.ORB init (String[] args)
 throws org.omg.CORBA.INITIALIZE
public static synchronized void init (org.omg.CORBA.ORB existing)
 throws org.omg.CORBA.INITIALIZE

public static synchronized org.omg.CORBA.ORB getORB ()
82
Common System Operations

�������	

 5.1 Portability Classes

5.1.1.2 ORB Shutdown
A single operation is provided to shut down the ORB. The ORBAdapter class
should not be used after this has been called.

5.1.1.3 Object Information
A number of operations are provided to query the status of an object reference.
These operations are guaranteed to work only with objects created using the
ObjectAdapter class.

A CORBA object reference is defined to be valid when it is either active or non
transient.
When checking for whether an object is active, an ORB implementation may block
for some time. A timeout value for the isActive operation is supported via the
following two operations:

5.1.1.4 Object Stringification
Two operations are provided to convert object references to strings and vice versa.
These operations are similar to the ORB operations string_to_object and
object_to_string except that INS (Interoperable Name Service) format strings
are also supported.

5.1.1.5 Service Resolution
Two operations support the dynamic resolution of services from names:

public static synchronized void shutdown ()

public static boolean isProcessLocal (org.omg.CORBA.Object obj)
 throws org.omg.CORBA.INITIALIZE, org.omg.CORBA.BAD_PARAM
public static boolean isNodeLocal (org.omg.CORBA.Object obj)
 throws org.omg.CORBA.INITIALIZE, org.omg.CORBA.BAD_PARAM
public static boolean isActive (org.omg.CORBA.Object obj)
 throws org.omg.CORBA.INITIALIZE, org.omg.CORBA.BAD_PARAM
public static Boolean isActive (org.omg.CORBA.Object obj, int timeout)
 throws org.omg.CORBA.INITIALIZE, org.omg.CORBA.BAD_PARAM
public static boolean isPersistent (org.omg.CORBA.Object obj)
 throws org.omg.CORBA.INITIALIZE, org.omg.CORBA.BAD_PARAM
public static boolean isTransient (org.omg.CORBA.Object obj)
 throws org.omg.CORBA.INITIALIZE, org.omg.CORBA.BAD_PARAM
public static boolean isValid (org.omg.CORBA.Object obj)
 throws org.omg.CORBA.INITIALIZE, org.omg.CORBA.BAD_PARAM

public static int getActiveTimeout ()
public static void setActiveTimeout (int timeout)

public static org.omg.CORBA.Object stringToObject (String str) throws
 org.omg.CORBA.INITIALIZE,
 org.omg.CORBA.BAD_PARAM
public static String objectToString (org.omg.CORBA.Object obj)
 throws org.omg.CORBA.INITIALIZE

public static org.omg.CORBA.Object resolve (String name)
83
Common System Operations�������	

 5.1 Portability Classes

The resolve operation resolves a CORBA object or service by name in a similar
way to the ORB resolve_initial_references operation.

5.1.2 The ObjectAdapter Class
This class supports operations for the management of server objects. This adapter
logically layers over either a BOA or POA depending on the ORB implementation.

5.1.2.1 Initialization
Two static initialization operations are supported. The first takes an array of String
arguments and is intended to be called from the main operation so that any
arguments passed to an application may be passed onto the ORB when it is
initialized. The second form takes an ORB parameter and should be called to
initialize from a pre-existing full ORB implementation.
These initialization operations also initialize the ORB through the corresponding
operations defined in the ORBAdapter class. These operations are defined as
follows:

5.1.2.2 Object Creation
Object implementations should implement the Operations interface generated for
the IDL interface that is being implemented. An object implementation must also
implement the java.io.Serializable interface when it may be used as a
persistent object. A serializable implementation may be used to create either
transient or persistent objects. However, a non-serializable implementation may
only be used to create transient objects.
Objects are created using either the createPersistent or createTransient
operations on the ObjectAdapter class, as appropriate. Both operations return a
CORBA object reference (org.omg.CORBA.Object) that may be narrowed to the
appropriate type using the appropriate generated helper class.
A number of overloaded creation operations are supported but there are essentially
two forms. The first, createPersistent, is used to create persistent CORBA
objects and the second, createTransient, to create transient CORBA objects.
Both operations have the general form:

 throws org.omg.CORBA.BAD_PARAM, org.omg.CORBA.INITIALIZE

public static synchronized org.omg.CORBA.ORB init (String[] args)
 throws org.omg.CORBA.INITIALIZE
public static synchronized void init (org.omg.CORBA.ORB orb)
 throws org.omg.CORBA.INITIALIZE

public static org.omg.CORBA.Object createTransient
(
 java.lang.Object obj
 [,java.lang.Class opsClass]
 [,int flags]
84
Common System Operations

�������	

 5.1 Portability Classes

All the parameters, apart from the object implementation, are optional and are
defined as follows:
• obj: The object implementation. This must be serializable for persistent objects.
• opsClass: The Operations class being implemented. By default, the most

derived Operations class for an implementation will be discovered via reflection.
However, the type of the operations class being supported must be specified when
an implementation supports several, possibly unrelated, interfaces.

• flags: Creation option flags. A number of flags are supported that provide
additional semantic behaviour for the created object. Currently this includes
purging and activation policies and whether multiple CORBA objects can be
created for a single implementation. The flag values are supplied as final
static ints for the ObjectAdapter class and are intended to be combined
using the and operator. These flags are described in Table 8, ObjectAdapter
Object Creation Flags below.

• id: The identity of the created object. All OpenFusion CORBA objects use
UUIDs for identity. By default, a new UUID is assigned for created objects. This
parameter uses the provided UUID as the object identity for the created CORBA
object.

 [,UUID id]
)
 throws org.omg.CORBA.INITIALIZE, org.omg.CORBA.BAD_PARAM

public static org.omg.CORBA.Object createPersistent
(
 Serializable obj
 [,java.lang.Class opsClass]
 [,int flags]
 [,UUID id]
)
 throws org.omg.CORBA.INITIALIZE, org.omg.CORBA.BAD_PARAM
85
Common System Operations�������	

 5.1 Portability Classes

5.1.2.3 Object Identity
All object implementations registered with the OpenFusion object adapter have an
ident i ty based upon the DCE UUID and are encapsulated within the
com.prismt.util.UUID class. The getId operation returns an object identity
from an object reference. The getIds operation returns an array of these identities
when an implementation has multiple object identities. These operations are defined
as follows:

The ObjectAdapter class provides a number of overloaded operations that can
use either an object identity or an object reference to identify a particular
implementation (deactivate , destroy, reactivate , exists , and
getImplementation).

Table 8 ObjectAdapter Object Creation Flags

Flag Persistent Transient Description
DISABLE_AUTO_ACTI
VATION

X T h i s f l a g d i s a b l e s t h e
auto-ac t iva t ion of pers is tent
o b j e c t s , i . e . o n d e m a n d . A
persistent object must be explicitly
r e a c t i v a t e d v i a t h e
ObjectAdapter reactivate
operation when this flag is set.

DISABLE_PURGE D This flag disables the purging of
persistent objects. By default,
transient objects will not be purged
as they cannot be reactivated

ENABLE_PURGE D This flag enables the automatic
purging of objects based upon the
configurable purging options. A
transient object is effectively
destroyed when it is purged.

ENABLE_DUPLICATES This flag allows a transient object
implementation to have multiple
CORBA object identities.

D = Default behaviour, = Supported, X = Not supported.

public static UUID getId (java.lang.Object obj)
 throws org.omg.CORBA.INITIALIZE, org.omg.CORBA.BAD_PARAM
86
Common System Operations

�������	

 5.1 Portability Classes

5.1.2.4 Multiple Object Identity
A single Java object instance may implement any number of CORBA objects. This
is supported by means of the ENABLE_DUPLICATES flag. An object implementation
must implement the com.prismt.orb.Multiplexable interface when it is to be
used for multiple CORBA objects. This interface consists of two operations:

An implementation must maintain, as part of its state, a unique identifier for each of
the operations interfaces that it supports. These unique identifiers must be made
available through the getGroupId operation. The first such identifier issued must
be recorded and returned by subsequent calls to getPrimaryGroupId.
An implementation may need to determine the identity of the object being called
when the implementation has been used to create multiple CORBA objects. The
following operation supports this functionality:

This operation should only be called within the context of an invoked operation on
an implementation.

5.1.2.5 Object Deactivation
Transient object references are only valid while their implementations exist so
deactivating a transient object is equivalent to destroying it. Any references to a
deactivated transient object become invalid. Persistent objects store their state thus
allowing implementations to be activated and deactivated any number of times
(when deactivated, an object’s implementation has been deleted but its state
remains).

5.1.2.6 Object Destruction
All objects can be destroyed so that any references to them are no longer valid. For
persistent objects, the object’s state is also destroyed. The ObjectAdapter
operations that support this are defined as follows:

public UUID getGroupId (Class opsClass);
public UUID getPrimaryGroupId ();

public static UUID getCallerId ()

public static void deactivate (java.lang.Object obj)
 throws org.omg.CORBA.INITIALIZE, org.omg.CORBA.BAD_PARAM
public static void deactivate (UUID id)
 throws org.omg.CORBA.INITIALIZE, org.omg.CORBA.BAD_PARAM
public static void deactivate (org.omg.CORBA.Object obj)
 throws org.omg.CORBA.INITIALIZE, org.omg.CORBA.BAD_PARAM

public static void destroy (java.lang.Object obj)
 throws org.omg.CORBA.INITIALIZE, org.omg.CORBA.BAD_PARAM
public static void destroy (UUID id)
 throws org.omg.CORBA.INITIALIZE, org.omg.CORBA.BAD_PARAM
public static void destroy (org.omg.CORBA.Object obj)
 throws org.omg.CORBA.INITIALIZE, org.omg.CORBA.BAD_PARAM
87
Common System Operations�������	

 5.1 Portability Classes

5.1.2.7 Object Reactivation
All persistent objects can be deactivated and reactivated as required. Either an
object reference or an id can be used to reactivate an object implementation. The
ObjectAdapter operations that support this are defined as follows:

The OBJECT_NOT_EXIST exception is thrown when the object cannot be
reactivated, e.g. when the object is not persistent or has been destroyed.

5.1.2.8 Object Existence
Two operations are provided to determine whether or not an object implementation
exists for a given object reference or identity:

These operations will return true when a persistent object exists, whether or not it
is currently active.

5.1.2.9 Object References
Object implementations may be associated with one or more CORBA object
references. Two operations are supported to return the reference(s) associated with a
particular implementation:

5.1.2.10 Object Implementations
Two operations are provided to return an object implementation class given an
object identity or reference:

These operations are typically used where co-located persistent object
implementations may need to refer to each other.

public static Serializable reactivate (UUID id) throws
 org.omg.CORBA.INITIALIZE,
 org.omg.CORBA.OBJECT_NOT_EXIST,
 org.omg.CORBA.BAD_PARAM
public static Serializable reactivate (org.omg.CORBA.Object obj)
 throws org.omg.CORBA.INITIALIZE, org.omg.CORBA.OBJECT_NOT_EXIST

public static boolean exists (UUID id)
 throws org.omg.CORBA.INITIALIZE, org.omg.CORBA.BAD_PARAM
public static boolean exists (org.omg.CORBA.Object obj)
 throws org.omg.CORBA.INITIALIZE, org.omg.CORBA.BAD_PARAM

public static org.omg.CORBA.Object getObject (java.lang.Object obj)
 throws org.omg.CORBA.INITIALIZE, org.omg.CORBA.BAD_PARAM

public static java.lang.Object getImplementation (org.omg.CORBA.Object obj)
 throws org.omg.CORBA.INITIALIZE, org.omg.CORBA.BAD_PARAM
public static java.lang.Object getImplementation (UUID id)
 throws org.omg.CORBA.INITIALIZE, org.omg.CORBA.BAD_PARAM
88
Common System Operations

�������	

 5.1 Portability Classes

5.1.2.11 Persistent Object State
Persistent object implementations may have state and, by default, this is managed by
OpenFusion Object Adapter using serialization (persistent object implementations
must implement Serializable). The state of a persistent object is stored when it is
first created so the state can be restored whenever it is reactivated. A persistent
object must ensure that its state is saved whenever a persistent implementation’s
state changes (typically through a client invoking some operation). Two operations,
save and write, are supported on the ObjectAdapter class to support this.
These operations are defined as follows:

Both these operations write out the implementation objects state via serialization.
The save operation may be buffered due to configured caching policies, i.e. an
asynchronous operation, whereas the write operation ensures that the state has
been written out to persistent store, i.e. a synchronous operation.
All the non-transient attributes of a persistent implementation must be serializable.
However, the PrismTech object adapter can deal with a number of non-serializable
CORBA data types through the use of specialized input and output streams. The
following CORBA data types may be held as attributes of a persistent
implementation:
• org.omg.CORBA.Any, and
• org.omg.CORBA.TypeCode.
Two approaches are possible when a persistent object wishes to store persistent
references to other CORBA objects. The object identity (UUID) can be stored and
then used to remap back to the server object and narrowed to the correct type on
restoration. Alternatively, the object reference can be stringified when stored and
destringified and narrowed when restored.
Persistent object implementations may implement javax.ejb.EntityBean. This
interface specifies a number of callback operations that are invoked by the object
adapter on a persistent implementation when a state change has occurred or is about
to occur. Callbacks are invoked as follows:
• The ejbStore operation is called just before an implementation is saved.
• The ejbLoad operation is called just after an implementation has been restored.
• The ejbActivate operation is called just after an implementation has been

created or reactivated.
• The ejbPassivate operation is called just before an implementation is

deactivated.

public static void save (Serializable entity)
 throws org.omg.CORBA.INITIALIZE, org.omg.CORBA.BAD_PARAM
public static void write (Serializable entity)
 throws org.omg.CORBA.INITIALIZE, org.omg.CORBA.BAD_PARAM
89
Common System Operations�������	

 5.1 Portability Classes

• The ejbRemove operation is called just before an implementation is destroyed.
The com.prismt.ejb.EntityBeanAdapter abstract class provides default
implementations of all these operations. Persistent implementations can simply
extend this class and only re-implement any callbacks they wish to use.

5.1.2.12 Running a Server
Incoming requests from clients are not processed until the server is started when
object implementations have been registered with the ObjectAdapter. A server is
started with the ready operation and stopped with the shutdown operation,
defined as follows:

The first form of the ready operation blocks; the second takes a boolean parameter
that determines whether the operation should block or not.

5.1.2.13 Restrictions
Most operations on the ObjectAdapter class should not be called until after it has
been initialized with the init operation or an org.omg.CORBA.INITIALIZE
system exception will be thrown.
M o s t o p e r a t i o n s o n t h e ObjectAdapter c l a s s w i l l t h r o w
org.omg.CORBA.BAD_PARAM when invalid parameters or unexpected null
parameters are passed.
A persistent object should not use any of the object related operations on
ObjectAdapter from within the implementation of the readObject operation
used in object serialization. A persistent implementation that needs to use
ObjectAdapter operations on restoration, e.g. when mapping from persistent object
UUIDs to implementations, should implement javax.ejb.EntityBean and put
this functionality in the ejbLoad operation.

5.1.2.14 Recommendations
Use the factory design pattern to create all CORBA object implementations, i.e
locate the create operation in a factory rather than in an implementation
constructor. This allows:
• the object implementation to be deployed where appropriate as an EJB rather than

a CORBA object
• a factory to create an implementation as either a transient or persistent object (as

long as it implements Serializable)

public static void ready ()
 throws org.omg.CORBA.INITIALIZE
public static void ready (boolean block)
 throws org.omg.CORBA.INITIALIZE
public static void shutdown ()
90
Common System Operations

�������	

 5.1 Portability Classes

• one implementation to extend another
Try not to use any object-based ObjectAdapter operations in:
• constructors
• serialization operations (readObject and writeObject)
When persistent implementation classes need to reference each other, they should:
• store the object id for the related implementation when saved
• use the reactivate and getImplementation operations to retrieve a

reference to the related implementation class when restored
Persistent implementations should re-implement the ejbActivate operation,
which is called by the object adapter after a persistent implementation has been
reactivated and its state restored, when they need to do some further initialization
after reactivation.
Most of the ObjectAdapter class operations can throw CORBA system
exceptions. These are all derived from RuntimeException and so no try-catch
block is required in the calling code. However, users of the ObjectAdapter class
should be aware that these may be thrown in some circumstances. The causes and
types of exception thrown are described fully in the javadoc documentation for the
class.

5.1.3 The DynAnyFactory Class
This class supports creation operations for the CORBA 2.3 defined dynamic any
classes.

5.1.3.1 Creation Operations
Six operations are provided for the creation of dynamic any objects from a given
type code. The InconsistentTypeCode exception is thrown when the provided
type code does not correspond to the type of the requested dynamic object.

 1: public static org.omg.DynamicAny.DynAny createBasicDynAny (TypeCode tc)
 2: throws org.omg.DynamicAny.DynAnyFactoryPackage.InconsistentTypeCode
 3: public static org.omg.DynamicAny.DynStruct createDynStruct (TypeCode tc)
 4: throws org.omg.DynamicAny.DynAnyFactoryPackage.InconsistentTypeCode
 5: public static org.omg.DynamicAny.DynSequence createDynSequence (TypeCode tc)
 6: throws org.omg.DynamicAny.DynAnyFactoryPackage.InconsistentTypeCode
 7: public static org.omg.DynamicAny.DynArray createDynArray (TypeCode tc)
 8: throws org.omg.DynamicAny.DynAnyFactoryPackage.InconsistentTypeCode
 9: public static org.omg.DynamicAny.DynUnion createDynUnion (TypeCode tc)
 10: throws org.omg.DynamicAny.DynAnyFactoryPackage.InconsistentTypeCode
 11: public static org.omg.DynamicAny.DynEnum createDynEnum (TypeCode tc)
 12: throws org.omg.DynamicAny.DynAnyFactoryPackage.InconsistentTypeCode
91
Common System Operations�������	

 5.1 Portability Classes

5.1.4 Implementing an Interface
A simple example is presented to demonstrate the use of the OpenFusion object
adapter. This consists of two interfaces: a Counter interface that implements
simple counter functionality, and, a CounterFactory interface that is used to
create Counter objects with the ability to set their initial count. These interfaces are
defined as follows:

The OpenFusion object adapter supports both persistent and transient objects. To
demonstrate the usage of both, the Counter interface is implemented as a persistent
object whereas the CounterFactory interface is implemented as a transient. The
Counter interface is implemented by the CounterImpl class as follows:

 1: #pragma prefix "prismt.com/cos/CosLifeCycle/examples"
 2:
 3: module Counters
 4: {
 5: interface Counter
 6: {
 7: attribute long count;
 8: };
 9:
 10: interface CounterFactory
 11: {
 12: Counter createCounter (in long initial);
 13: };
 14: };

 1: package com.prismt.cos.CosLifeCycle.examples.Counters;
 2:
 3: import java.io.Serializable;
 4: import com.prismt.orb.ObjectAdapter;
 5:
 6: public class CounterImpl implements CounterOperations, Serializable
 7: {
 8: public CounterImpl ()
 9: {
 10: value = 0;
 11: }
 12:
 13: public CounterImpl (int val)
 14: {
 15: value = val;
 16: }
 17:
 18: public int count ()
 19: {
 20: return value;
 21: }
 22:
 23: public void count (int count)
 24: {
 25: value = count;
 26: ObjectAdapter.save (this);
 27: }
 28:
 29: private int value;
92
Common System Operations

�������	

 5.1 Portability Classes

This implementation simply implements the operations defined in the
CounterOperations class and uses the ObjectAdapter save operation to save
its state when the count changes. The save operation will have no effect when an
implementation is created as a non-persistent, i.e. transient, object.
The CounterFactory interface is implemented by the FactoryImpl class as
follows:

This implementation implements the createCounter operation defined in the
CounterFactoryOperations interface. This operation simply creates a new
Counter implementation as a persistent CORBA object. The factory object itself is
created as a transient CORBA object in main.

5.1.5 Persistent Servers
The OpenFusion ORB portability framework uses UUIDs to identify both persistent
objects and persistent servers that contain these objects. Persistent objects are
created within the context of a persistent server. When a server is running, persistent
objects may be deactivated and reactivated, on demand, any number of times until
they are explicitly destroyed. Persistent objects can also maintain their state across
the cycle of starting and stopping persistent servers. To do this, a persistent server
must be coded, or configured, so that it has the same identity each time it is started.
Servers must be registered with the ORB as OpenFusion.<uuid>, where <uuid>
is the server’s UUID.

 30: }

 1: package com.prismt.cos.CosLifeCycle.examples.Counters;
 2:
 3: import org.omg.CosLifeCycle.*;
 4: import com.prismt.orb.ObjectAdapter;
 5:
 6: public class FactoryImpl implements CounterFactoryOperations
 7: {
 8: public static final void main (String[] args)
 9: {
 10: ObjectAdapter.init (args);
 11:
 12: ObjectAdapter.createTransient (new FactoryImpl ());
 13:
 14: ObjectAdapter.ready ();
 15: }
 16:
 17: public Counter createCounter (int count)
 18: {
 19: org.omg.CORBA.Object ref;
 20:
 21: ref = ObjectAdapter.createPersistent (new CounterImpl (count));
 22:
 23: return (CounterHelper.narrow (ref));
 24: }
 25: }
93
Common System Operations�������	

 5.2 Running User Defined Clients and Servers

Server identity is encapsulated within the com.prismt.util.PID class. This has
a setPID operation that can be used to hard code the identity of a server. This must
be done before the ORB is initialised.

Alternatively, the Java system property Process.PID can be set as a JVM
command line parameter to determine the id of a server. This has the advantage over
the hard coded approach in that it is possible to run multiple instances of the same
server class with different identities.

Persistent state must also be configured in order to use persistent servers and
objects. (See Section 6, Configuring Persistent Storage, on page 101.)

5.2 Running User Defined Clients and Servers
5.2.1 Resolving Services

The OpenFusion Java examples use the resolve_initial_references method
to access the individual CORBA services. The examples and other clients must be
run in a manner that is specific to each ORB vendor in order for this mechanism to
be correctly initialised. The following sections assume JacORB.
Services can be resolved either via static configuration or dynamically via an ORB
initialisation class.

5.2.1.0.1 Configuration
IORs created for persistent services may be configured as initial references. The
following example shows how this can be done directly via a configuration file
entry.

package com.prismt.orb.examples;

public class Server
{
 public static void main (String args[])
 {
 com.prismt.util.PID.setPID ("43fe0080-9b6c-11d4-9727-af67c68e5b18");
 com.prismt.orb.ObjectAdapter.init (args);
 com.prismt.orb.ObjectAdapter.ready ();
 }
}

% run -DProcess.PID=43fe0080-9b6c-11d4-9727-af67c68e5b18
MyServer
94
Common System Operations

�������	

 5.2 Running User Defined Clients and Servers

Alternatively, a utility class has been provided to help in the generation of a
configuration file from the generated IOR files. This can be run as follows:

This reads in all the configured services within an OpenFusion domain identified by
the domain_xml file or URL, and writes out a JacORB configuration file,
out_file, for these services. This file can then be appended to the standard
JacORB properties configuration file.

5.2.1.0.2 Dynamic Registration
Services may be registered using a portable interceptor ORB initialisation class. The
following Java system property should be defined, noting that the jacorb14 shown
in the system property should be replaced with jacorb21 or jacorb23 for the
relevant JacORB version:

Visibroker and Orbix users should refer to their respective ORB documentation for
dynamic registration of their ORB.

5.2.2 Jar Files
The CLASSPATH must contain the following jar files when using OpenFusion
services or the examples. The required jar files are listed in Table 9. These files are
need to compile applications
The correct classpath for JacORB and OpenFusion RTOrb Java™ Edition can be
automatically set by scripts included with the OpenFusion distribution. If these
scripts are used (which is recommended), then developers do not need to manually
add the jar files to the classpath.

ORBInitRef.TimerEventService=IOR:000000000000003049444c3a6f6d672e6f
72672f436f7354696d65724576656e742f54696d65724576656e745365727669636
53a312e30000000000100000000000000a20001020000000007756c747261350000
62b80000000000463a3e02323106756c74726135174f70656e467573696f6e2e546
96d655365727669636500212105240520b3ef11d5b154d7b9de5c8185028f7790b3
ef11d5b154d7b9de5c818500000000000300000000000000080000000049545f410
0000001000000180000000000010001000000000001010400000001000101090000
000600000006000000000023

% java com.prismt.openfusion.orb.ConfigGen jacorb
domain_xml out_file

 -Dorg.omg.PortableInterceptor.ORBInitializerClass.com.
 prismt.orb.portable.jacorb14.Initializer

i

95
Common System Operations�������	

 5.2 Running User Defined Clients and Servers

Please refer to the ORB documentation for specific ORB configuration
requirements.:

5.2.3 Using OpenFusion Run Scripts
A script file named run has been provided on UNIX systems (named run.bat on
NT) to simplify the command line execution of classes used in conjunction with
OpenFusion. The script will add the required standard properties to the command
line; the user has only to consider properties and parameters required for the
execution of the target class.

5.2.4 Command Line Format
Example command line formats when using the scripts, where classname is
replaced by the required Java client class:

5.2.4.0.1 Classname only

5.2.4.0.2 Classname with parameters and/or properties

The -x option runs the JVM using the -Xbootclasspath flag. For further details on
the Xbootclasspath flag see Use Xbootclasspath in Section 3.5, Java Properties.
The -d option runs the class in debug mode. This mode displays debug information
on the console for any client class which implements debug.debug from the
log4j logging package.
The -s option enables security for the client. The run script sets the property
-DSecurityEnabled=true. The OpenFusion Security Service is described
in Section 8 on page 117.

Table 9 Jar Files

ORB Required Jar Files ORB Subdirectory
JacORB 1.4 jacorb.jar lib

JacORB 2.1, 2.3 jacorb.jar lib/endorsed

RTOrb ofj.jar lib/endorsed

% run classname

% run [-x] [-d] [-s] –DmyDef=adef classname myParam
96
Common System Operations

�������	

 5.3 OpenFusion Java IDL Compilation

5.3 OpenFusion Java IDL Compilation
There are a number of issues to consider when compiling interfaces using any of the
OpenFusion defined services. These are demonstrated in the following Notification
Service example, News.idl.

The elements to be considered when compiling News.idl and other similar IDL
files are:
• IDL Compilers and Definitions

Each ORB vendor has its own IDL to Java compiler and the code generated may
be ORB specific. All ORB vendor specific includes, definitions and fixups are
handled in a orbdefs.idl file. This is included where required by all other
IDL files supplied as part of the distribution. When using the IDL compiler to
compile any of these files, the appropriate ORB must be identified with a -D
parameter. The values currently supported are.

 1: #include <CosNotifyComm.idl>
 2:
 3: #pragma prefix "prismt.com/cos/CosNotification/examples"
 4:
 5: module News
 6: {
 7: interface Bureau : CosNotifyComm::StructuredPushSupplier
 8: {
 9: void broadcast ();
 10: void stop ();
 11: };
 12:
 13: interface Listener : CosNotifyComm::StructuredPushConsumer
 14: {
 15: void select (in string bureau);
 16: void print ();
 17: };
 18: };

Table 10 ORB Definitions

ORB Definition
-DJACORB14 JacORB 1.4
-DJACORB20 JacORB 2.1
-DJACORB23 JacORB 2.3
-DOFJ OpenFusion RTOrb

Java™ Edition
97
Common System Operations�������	

 5.4 C++ Support

• Package Specification
The compiler has to be provided with the specifications for the OpenFusion
packages that will be used in this module. The example below illustrates the
required format for an included package.

• The compiler needs to be informed of the location of the package being compiled
as well as provided with details of the location of external packages.

• Include Directories
An include path must be provided with the -I flag for any included IDL file. All
OpenFusion service IDL files are provided in the idl subdirectory of a
distribution. ORB vendor IDL files may also be required.

• Output Directory
An output directory, where the compiler can place the generated Java files, is
usually specified:

5.4 C++ Support
OpenFusion services may be used from C++ clients. The client side stubs must be
compiled from the provided IDL service definitions in order to do this. Please see
your ORB vendor’s documentation and examples for full details on how to do this.
Some general guidelines are provided below.

-i2jpackage CosNotifyComm:org.omg.CosNotifyComm

Table 11 IDL Includes

ORB Include Subdirectory
JacORB 1.4 idl

JacORB 2.1 idl

JacORB 2.3 idl

OpenFusion RTOrb
Java™ Edition

idl

-d outputDir

 #include <CosPropertyService.idl>

 module Example
 {
 interface MyServer : CosPropertyService::PropertySet
 {
 void printAllProperties();
 };
98
Common System Operations

�������	

 5.4 C++ Support

The elements to be considered when compiling IDL files using C++ are:
• IDL Compilers and Definitions

Each ORB vendor has its own IDL to C++ compiler and the code generated is
ORB specific. Any OpenFusion IDL specifying definitions must also be
compiled for the ORB and language used, i.e. with a -D parameter. A set of
orb/platform specific .mk files can be found in the <OPENFUSION>/etc
directory where the appropriate idl compiler and -D parameters are already set.
The Makefiles within the examples include the appropriate file from this
directory.

• Include Directories
An include path to the location of the standard OMG IDL files must be provided
as an OpenFusion interface is inherited. This will be the same for any vendor
but the format will vary depending upon the platform.
For Solaris:

Again, the .mk files found in the <OPENFUSION>/etc directory include the
standard OMG and OpenFusion IDL. Only user defined IDL needs to be
specifically included in Makefiles when the /etc/*.mk files are included.

Should you require further assistance with developing C++ clients or code
examples, see the OpenFusion support page at: http://www.prismtech.com

 };

INCS += -I<OPENFUSION>/idl
99
Common System Operations�������	

http://www.prismtech.com

 5.4 C++ Support

100
Common System Operations

�������	

CHAPTER

6 Configuring Persistent Storage
OpenFusion CORBA Services supports persistent storage via JDBC access to a
relational database. Oracle, Sybase, Informix, and hsqldb are supported on both
Unix and Windows platforms. Microsoft SQL Server is supported on Windows. See
the Product Guide for details of supported versions.
Persistent storage is configured for each Service using the following properties on
the Persistence tab of the Administration Manager:
• Storage Write Interval
• Storage Write Batch Size
• JDBC Handler
• JDBC Database Type
• JDBC URL
• JDBC Driver
• JDBC Logging
• JDBC User
• JDBC Password
See Persistence Properties on page 43 for details of these properties.
The default persistence database is hsqldb, which is installed with the OpenFusion
CORBA Services distribution and will run with no additional configuration.

6.1 Configuring a JDBC Data Source
JDBC stands for Java Database Connectivity and is a Java implementation of the
Open Database Connectivity standard (ODBC). JDBC specifies a standard interface
to allow Java applications to access a relational database. All JDBC drivers support
this interface, thus allowing applications to be written against the interface and
isolating the developer from the different database vendors’ APIs.
The JDBC data source must be pre-configured prior to running a Service. The
process of configuring a JDBC database source for the databases supported by the
OpenFusion CORBA Services is described below.
101
 Common System Operations�������	

 6.1 Configuring a JDBC Data Source

Your Database Administrator should configure the JDBC data source when using
Oracle, Sybase, Informix or SQL Server. The hsqldb database runs locally and is
installed with the OpenFusion CORBA Services distribution. No additional
configuration should be required.
A set of SQL scripts that will generate all the necessary tables and stored procedures
needed by the Services, within the database, have been provided. The scripts create
all the necessary indexes for the tables, thus making searching through the database
faster.
When an OpenFusion Service starts, it will check for the existence of the required
tables (the common tables and the tables specific to that Service) in the directory
indicated by the JDBC URL property. If the tables do not exist, OpenFusion will
attempt to create them.
The scripts involved in creating the required tables and indexes are:

These scripts can be found in the /admin/database/ sub-directory of the
OpenFusion installation. Scripts are provided for each supported database.
The common tables must always be created. If the tables for each Service are held in
Service-specific directories, a separate set of common tables must exist in each
directory. If all the tables are held in a single location, only one set of common
tables will be required in that location.
All the nameof created tables are prefixed with OF_ and all stored procedures with
of_.

Table 12 SQL Scripts

Script Description
CreateCommonTables.sql Creates common shared tables (required by all

services).
DropCommonTables.sql Drops the common shared tables.
CreateJNDITables.sql Creates tables for the Naming Service.
DropJNDITables.sql Drops the tables created for the Naming Service.
CreateTraderTables.sql Creates tables for the Trading Service.
DropTraderTables.sql Drops the tables created for the Trading Service.
CreateNotificationTables.sql Creates tables for the Notification Service.
DropNotificationTables.sql Drops the tables created for the Notification

Service.
CreateLogTables.sql Creates tables for the Log Service.
DropLogTables.sql Drops the tables created for the Log Service.
102
Common System Operations

�������	

 6.2 Oracle

6.2 Oracle
The various OpenFusion tables and stored procedures can be added to an Oracle
database using the sqlplus application, as follows:

Alternatively, the generic OpenFusion JDBC Loader class can be used, as follows:

Where:
<URL> is the database URL pointing to the directory created in Step 1.
<USER> is the database owner.
<PASSWORD> is the owner's database password.
<SCRIPT> is the SQL script from Table 12 on page 102.
-v is an optional switch which will cause Loader to produce verbose output
(listing each individual command from the script file before it executes it).

The Oracle user must have the rights to create tables and procedures in the database
in order to run the SQL scripts successfully using either of the above methods.

6.2.1 Oracle Thin Drivers
The type 4 thin (all Java) Oracle JDBC drivers are supplied as part of the
OpenFusion distribution. The Oracle JDBC drivers are from the Oracle 8.1.7
distribution and are backwardly compatible to Oracle version 7.3.4. The Oracle JDK
1.2 JDBC driver is supplied in the lib directory of the distribution in the zip file
classes12.zip.

6.2.2 Oracle OCI Drivers
To use OCI Drivers with OpenFusion Services, the oci7 or oci8 drivers must be
obtained from Oracle. These can be downloaded from http://technet.oracle.com
(these drivers are not included as part of the OpenFusion distribution). Complete the
following steps to configure the system to use these drivers.

Step 1: Install classes12.zip into the directory:
<INSTALL>/lib

where <INSTALL> is the OpenFusion installation directory.
Step 2: Install the appropriate driver file (liboci73jdbc.so or libocijdbc8.so,

depending on the version of Oracle being used) into the directory:
<INSTALL>/lib

% sqlplus <USER>/<PASSWORD> < <FILE.SQL>

> run com.prismt.jdbc.Loader -dt oracle -db <URL>
-dr oracle.jdbc.driver.OracleDriver -u <USER>
-p <PASSWORD> -s <SCRIPT> [-v]
103
Common System Operations�������	

 6.3 Sybase

where <INSTALL> is the OpenFusion installation directory.
Step 3: Edit the file <INSTALL>/bin/.javaenv (where <INSTALL> is the OpenFusion

installation directory) to remove this line:
unset LD_LIBRARY_PATH

and add the following two lines:
LD_LIBRARY_PATH=/lib
export LD_LIBRARY_PATH

Step 4: In the Administration Manager, set the JDBC URL property to:
• For Oracle 7:

jdbc:oracle:oci7:@

• For Oracle 8:
jdbc:oracle:oci8:@

6.3 Sybase
The various OpenFusion tables and stored procedures can be added to a Sybase
database using a generic OpenFusion loader class. This can be done using:

Where:
<URL> is the database URL
<USER> is the database owner.
<PASSWORD> is the owner's database password.
<SCRIPT> is the SQL script from Table 12 on page 102.
-v is an optional switch which will cause Loader to produce verbose output
(listing each individual command from the script file before it executes it).

The Sybase user must have the rights to create tables and procedures in the database
in order to run the SQL scripts successfully using the above method.
The SQL scripts assume that the tables and procedures are being added to the user's
default database. The use database command should be added to the start of the
scripts when this is not the case.

% run com.prismt.jdbc.Loader -dt sybase -db <URL>
-dr com.sybase.jdbc2.jdbc.SybDriver -u <USER>
-p <PASSWORD> -s <SCRIPT> [-v]
104
Common System Operations

�������	

 6.4 Informix

6.4 Informix
The various OpenFusion tables and stored procedures can be added to an Informix
database using the dbaccess application that is provided with Informix, as follows:

Where:
<DATABASE> is the name of the Informix database.
<SCRIPT> is the SQL script from Table 12 on page 102.

Alternatively, the generic OpenFusion JDBC Loader class can be used, as follows:

Where:
<URL> is the database URL
<USER> is the database owner.
<PASSWORD> is the owner's database password.
<SCRIPT> is the SQL script from Table 12 on page 102.
-v is an optional switch which will cause Loader to produce verbose output
(listing each individual command from the script file before it executes it).

The Informix user must have the rights to create tables and procedures in the
database in order to run the SQL scripts successfully using either of the above
methods.
The appropriate access rights must also be granted in order for the OpenFusion
services to access the database. See the Informix documentation for details of how
to do this.

6.5 SQL Server
The various OpenFusion tables and stored procedures can be added to an SQL
Server database using a generic OpenFusion JDBC Loader class. Use the following
command to run this using the JDBC/OBDC driver supplied as part of the Java
Runtime Environment on NT:

Where:
<URL> is the database URL

% dbaccess <DATABASE> <SCRIPT>

> run com.prismt.jdbc.Loader -dt informix -db <URL>
-dr com.informix.jdbc.IfxDriver -u <USER>
-p <PASSWORD> -s <SCRIPT> [-v]

> run com.prismt.jdbc.Loader -dt sqlserver -db <URL>
-dr com.microsoft.jdbc.sqlserver.SQLServerDriver
-u <USER> -p <PASSWORD> -s <SCRIPT> [-v]
105
Common System Operations�������	

 6.6 MySQL

<USER> is the database owner.
<PASSWORD> is the owner's database password.
<SCRIPT> is the SQL script from Table 12 on page 102.
-v is an optional switch which will cause Loader to produce verbose output
(listing each individual command from the script file before it executes it).

6.6 MySQL
The various OpenFusion tables can be added to a MySQL database using the mysql
application which is provided with MySQL, as follows:

Where
<USER> is the database owner
<PASSWORD> is the database owner's password
<DATABASE> is the name of the MySQL database
<SCRIPT> is the SQL script from Table 12, SQL Scripts, on page 102.

Alternatively, the generic OpenFusion JDBC Loader class can be used, as follows:

Where:
<URL> is the database URL
<USER> is the database owner.
<PASSWORD> is the database owner’s password.
<SCRIPT> is the SQL script from Table 12 on page 108.
-v is an optional switch which will cause Loader to produce verbose output
(listing each individual command from the script file before it executes it).

The MySQL user must have create rights (for the SQL Create scripts) and the drop
right (for the SQL Drop scripts) in the database in order to run the SQL scripts
successfully using either of the above methods.
The SQL scripts assume that the tables are being added to the user’s default
database. If this is not the case, and the database name is not specified either directly
or as part of the database URL, then the use <database> command should be
added to the start of the scripts.

% mysql -u <USER> -p<PASSWORD> -D <DATABASE> < <SCRIPT>

% run com.prismt.jdbc.Loader -dt mysql -db <URL> -dr \
com.mysql.jdbc.Driver -u <USER> -p <PASSWORD> -s \
<SCRIPT> [-v]
106
Common System Operations

�������	

 6.7 hsqldb

6.7 hsqldb
The hsqldb database is installed with the OpenFusion CORBA Services and
configured automatically to run in standalone mode. Additional configuration is
required to use hsqldb in client/server mode. To configure a new instance of hsqldb,
the following steps should be used.

6.7.1 Create an hsqldb Instance
Step 1: Create a directory to contain the database.
Step 2: Use the following command to add OpenFusion tables to the database:

Where:
<URL> is the database URL pointing to the directory created in Step 1.
<USER> is the database owner.
<PASSWORD> is the owner's database password.
<SCRIPT> is the SQL script from Table 12 on page 102.
-v is an optional switch which will cause Loader to produce verbose output
(listing each individual command from the script file before it executes it).

Note that OpenFusion’s default behaviour is to create the tables required by a
Service in the data sub-directory of the Service’s directory.

6.7.2 Configure OpenFusion Services to Run with hsqldb Persistence
Set the following properties in the Administration Manager. See Section 3.1,
Persistence Properties on page 43, for full details of these properties.
• In order to establish a connection to hsqldb, set the JDBC URL property to the

value supplied to the -db switch in Step 2, above.
• To use the default administrator account, set the JDBC User property to sa and

the JDBC Password property to blank.
Alternatively, a new hsqldb user can be created. This user must have admin
privileges in order to close down the database automatically and must be granted
appropriate access permissions for the database tables.

% run com.prismt.jdbc.Loader -dt hsqldb -db <URL>
-dr org.hsqldb.jdbcDriver -u <USER> -p <PASSWORD>
-s <SCRIPT> [-v]
107
Common System Operations�������	

 6.7 hsqldb

6.7.3 hsqldb in Client/Server Mode
The default version of hsqldb used when a Service started is in standalone mode.
This means that only one application can access the database at a time. To access the
same database simultaneously from multiple JVMs, the Client/Server version of
hsqldb must be used. This is highly recommended when using hsqldb in a
production environment.
A Java Object for the configuration and management of hsqldb instances,
HSQLDBObject, is included with the OpenFusion product distribution. To use the
Java Object, add a Service to the OpenFusion Object Hierarchy (calling it, for
example, HSQLDBService) and add the Java Object to it, as described in Extending
the Object Hierarchy on page 15. When the Service is started, the hsqldb database
will be started.
The database must have its tables loaded using the com.prismt.jdbc.Loader
class, as described in step 2 of Create an hsqldb Instance on page 107.
Use the Administration Manager to configure the properties of the HSQLDBObject.
The properties are described below.

6.7.3.1 Name
The name and full path of the database. This identifies where data files will be
stored. The default location is:
<INSTALL>/domains/<DOMAIN>/<NODE>/<SERVICE>/data/HSQLDBServer

Where:
<INSTALL> is the OpenFusion installation directory.
<DOMAIN> is the name of the domain in the Object Hierarchy.
<NODE> is the name of the Node in the Object Hierarchy.
<SERVICE> is the name of the Service that has been created to hold the
HSQLDBObject.

Property Name Name

Property Type FIXED

Data Type FILE

Accessibility READ/WRITE

Mandatory YES
108
Common System Operations

�������	

 6.7 hsqldb

6.7.3.2 Timeout
When the Service containing the HSQLDBObject is started, it polls hsqldb to
determine whether it can establish a connection. When the Service is stopped, it
polls hsqldb to see if the shutdown statement has completed execution. The
Timeout property is used by the Administration Manager to determine how long (in
seconds) the Service will spend polling the database.
The default value is 30 seconds.

6.7.3.3 Trace
This property toggles the JDBC Trace on and off. If the property is checked (true),
The JDBC Trace is switched on. The JDBC Trace is off by default.

6.7.3.4 No System Exit
If this property is checked (true), it directs hsqldb to avoid System.exit() calls
when the shutdown command is issued to the database. This is of particular
importance when running an hsqldb server inside another application. The property
is mainly used to ensure interoperability with application servers.

Property Name Timeout

Property Type STATIC

Data Type INTEGER

Accessibility READ/WRITE

Mandatory YES

Property Name Trace

Property Type STATIC

Data Type BOOLEAN

Accessibility READ/WRITE

Mandatory NO

Property Name NoSystemExit

Property Type STATIC

Data Type BOOLEAN

Accessibility READ/WRITE

Mandatory NO
109
Common System Operations�������	

 6.7 hsqldb

6.7.3.5 Silent
If this property is checked (true), it allows the database to display all queries.

6.7.3.6 Port
The port that the hsqldb database listens on. If more than one instance of hsqldb is
running on a machine, each must be set to use a different port.
For each OpenFusion Service that will use the hsqldb instance, set the JBDC URL
property to include the specified port (see JDBC URL on page 45).
The default port is 9001. If this default is used, it does not need to be added to the
JDBC URL.

6.7.4 Restoring Data
If the Restore command is used to restore a Service to its default state (see
Restoring Services and Singletons on page 20), all hsqldb tables and data for the
Service being restored will be deleted.
This will only happen if the default JDBC URL is used. If the tables are in an
alternative location (not a subdirectory of the Service being restored), the tables will
not be deleted. The procedures given above can be used to configure an instance of
hsqldb in a different location.

Property Name Silent

Property Type FIXED

Data Type BOOLEAN

Accessibility READ/WRITE

Mandatory NO

Property Name Port

Property Type STATIC

Data Type INTEGER

Accessibility READ/WRITE

Mandatory YES
110
Common System Operations

�������	

CHAPTER

7 Command Line Tools
All command line tools are found in the <install_dir>/bin directory, where
<install_dir> is the OpenFusion installation directory.

7.1 IOR Decoder
OpenFusion provides a tool that will decode an Interoperable Object Reference
(IOR) and display its component parts or, alternatively, will generate a
corbaloc:iiop URL that can be used in place of an IOR for obtaining a reference
to a CORBA object.
The IOR Decoder is started with the following command:

The parameters are defined as follows:

If the IOR Decoder is invoked with the -corbaloc option then a corbaloc:iiop
URL is generated for the IOR. Otherwise, the IOR is decoded and its type, port, host
and stringified object key are displayed.

7.2 Administration Manager Tool
The XML configuration files in an OpenFusion installation can be fully populated
from within the Administration Manager GUI (as described in Completing the XML
File Installation on page 146). As an alternative to running the Administration
Manager GUI, OpenFusion provides a command line Administration Manager tool,
adminMgrTool, that will fully populate the XML configuration files.

% iorDecoder [-corbaloc] (-ior <IOR> | -file <file>)
[-h | -? | -help]

-corbaloc This option specifies that the tool should generate a
corbaloc:iiop URL for the IOR.

-ior <IOR> <IOR> is the IOR to decode.
-file <file> <file> is a file containing the IOR to decode.
-h -? -help These options are equivalent and print usage information

for the tool.
111
 Common System Operations�������	

 7.2 Administration Manager Tool

The Administration Manager tool is started with the following command:

The following parameters can be used with the tool to provide different
functionality:
-p

Causes the tool to fully populate the XML configuration files.
-r <restore_name>

Restores a named object in the Object Hierarchy. <restore_name> is a
hierarchical name (using dots to separate the name components) which
ident i f ies the objec t to be res tored . For example , to res tore the
NotificationService from the localhost node of the OpenFusion domain:
adminMgrTool -r OpenFusion.localhost.NotificationService

-d <node_name>

Deletes a named object in the Object Hierarchy. <node_name> is a hierarchical
name (using dots to separate the name components) which identifies the object
to be deleted. For example, to delete the NotificationService from the
localhost node of the OpenFusion domain:
adminMgrTool -d OpenFusion.localhost.NotificationService

-aDom <domain_name>

Adds a Domain to the Object Hierarchy. For example:
adminMgrTool -aDom OpenFusion

-aNode <domain_name> <node_name>

Adds a node to a domain, where <domain_name> is the name of the domain
that the node will be added to. For example, to add the localhost node to the
Openfusion domain:
adminMgrTool -aNode Openfusion localhost

-aServ <node_name> <service_name>

Adds a Service to a node in the Object Hierarchy. <node_name> is a
hierarchical name (using dots to separate the name components) which
identifies the node that the Service will be added to. For example, to add
NamingService to the localhost node of the OpenFusion domain:
adminMgrTool -aServ OpenFusion.localhost NameService

-aSing <service_name> <singleton_name>

% adminMgrTool <parameter>
112
Common System Operations

�������	

 7.2 Administration Manager Tool

Adds a Singleton to a Service. <singleton_name> is a hierarchical name
(using dots to separate the name components) which identifies the Service that
the Singleton will be added to. For example, to add the NameSingleton to the
NameService:
adminMgrTool -aSing OpenFusion.localhost.NameService
NameSingleton

-aJO <service_name> <java_object_name>

Adds a Java Object to a Service. <service_name> is a hierarchical name
(using dots to separate the name components) which identifies the Service that
the object will be added to. For example, to add the SNMPAgentObject to the
NameService:
adminMgrTool -aJO OpenFusion,localhost.NameService
SNMPAgentObject

-ap <object_name> <property_name> <new_property_value>

Changes a proper ty value for an object in the Object Hierarchy.
<object_name> is a hierarchical name (using dots to separate the name
components) which identifies the object. For example, to change the value of
the Naming Service log4j.rootLogger property to “Debug”:
adminMgrTool -ap OpenFusion.localhost.NameService
log4j.rootLogger Debug

-dpv <object_name> <property_name>

Displays a proper ty value for an object in the Object Hierarchy.
<object_name> is a hierarchical name (using dots to separate the name
components) which identifies the object. <property_name> is the name of the
property to be displayed. For example, to display the value of the Naming
Service logging level property:
adminMgrTool -dpv OpenFusion.localhost.NameService
log4j.rootLogger

-h
-?
-help

These options are equivalent and print usage information for the tool.
A single command line can only include one parameter. So to add a domain, a node,
and two Services to the Object Hierarchy, for example, the Administration Manager
tool must be invoked four times with a different object added in each invocation.

The Administration Manager tool must be invoked with the -p option before any
Services can be started from the command line using the server -start script (as
described in Starting Servers from the Command Line on page 4).
113
Common System Operations�������	

 7.3 Configuration Generator

7.3 Configuration Generator
OpenFusion provides a tool that will parse an XML configuration hierarchy and
output references to configured objects in a form suitable either for inclusion in an
ORB configuration file or as arguments that can be passed to an ORB at
initialization.
The Configuration Generator is started with the following command:

The parameters are defined as follows:

If the Configuration Generator is invoked without the -out_file parameter then
the output is written to the console. If the portable type is specified with the -orb
o p t io n t h e n t h e o u tp u t i s i n t h e f o rm a t -ORBInitRef
<ObjectID>=<ObjectURL> described in the CORBA specification.

% configGen -orb (orbix2000 | orbacus | jacorb |
portable | visibroker) -domain_xml <XML>
[-out_file <file>] [-h | -? | -help]

-orb This option specifies the type of ORB for which
output is to be generated.

-domain_xml <XML> <XML> is the XML configuration file for the domain
to be parsed by the tool.

-out_file <file> <file> is the file to contain the generated output.
-h -? -help These options are equivalent and print usage

information for the tool.
114
Common System Operations

�������	

SECURITY SERVICE

CHAPTER

8 Description
The OpenFusion Security Service provides the ability to apply access control to
CORBA Services and Java Objects.
Access control is based upon clients’ identities being verified by plug-in
authentication modules. The OpenFusion Security Service is independent of the
authentication technology in use, allowing the flexibility of a range of
authentication systems from simple username/password entry to voice or fingerprint
verification.
The Security Service can be used to control access to individual Object instances or
even specific methods. This level of granularity provides an extremely flexible and
configurable security model. For example, individual Notification Service message
queues can be secured so that only clients which provide a valid username and
password combination can access a particular queue. This is of great value in
messaging applications where sensitive data is involved; in the banking sector, for
example.

8.1 Concepts and Architecture
The OpenFusion Security Service supports the use of Pluggable Authentication
Modules (PAM) which conform to Sun’s Java Authentication and Authorisation
Service (JAAS) API specification. Pluggable authentication modules allow the
Security Service to remain independent of the underlying authentication
technologies. Typical authentication modules may prompt for and verify a username
and password, for example.

8.1.1 Securable Objects
The Security Service allows security to be applied to CORBA Objects and Java
Objects. Any Java Object which implements the Identifiable interface, and any
CORBA Object, is a securable object.
For a CORBA Object, only operations interfaces and their methods are securable.
For a Java Object, only the interfaces from the class implementing the
Identifiable interface (its interfaces and the interfaces of its superclasses) are
securable.
Running the Security Service does not automatically secure all objects and Services.
Nothing is secured in a default OpenFusion installation. It is necessary to identify
which resources will be secured and to establish access lists for each resource.
117
 Security Service�������	

 8.1 Concepts and Architecture

8.1.2 Authentication
The purpose of the authentication process is to associate a Principal with a Subject.
A Subject is any client or user of a Service or resource. A Principal is a name that
represents an identity attribute. For example, a Principal could be the user ID of the
client user, the user’s role within an organisation, or the name of a group of users.
Authentication can be performed on either the client or the server side of any
transaction, or on both sides of the transaction. If successful, the Subject will be
associated with zero or more Principals. One Subject may have several Principals,
representing the names by which it is identified to different Services.
Once a Subject has been authenticated, the Security Service propagates the
Subject’s identity (Principal) to all subsequent actions attempted by that Subject.

8.1.3 ACLs
An ACL (Access Control List) is a list of Principals which will be allowed access to
a particular resource. When a subject attempts to access a resource, the Security
Service checks each of the Subject’s Principals against the resource’s ACLs to
determine whether access should be allowed.
Each given resource can have two different ACLs in effect:
• The ACL specific to this particular method on this particular type of object. If an

ACL is not defined at the method level, the ACL for the type of object is used, if
defined.

• The ACL specific to this particular method on this particular object instance. If an
ACL is not defined at the method level, the ACL for the object instance is used, if
defined.

If either or both ACLs are defined for a resource, Principals which are listed in
either or both ACLs will be allowed access the resource. Principals which do not
appear on either list will be denied access.
If no ACLs are defined, the resource will be considered unrestricted and access will
be permitted to any Subject.
If both ACLs are defined and both are empty lists, or if only one ACL is defined and
it is an empty list, all access to the resource is prohibited.
If one ACL grants a Principal access to a resource, that access cannot be revoked by
the resource’s other ACL. So if a Principal is granted access to a particular type of
object, those access rights extend to all instances of that object even where the
instance has a blank ACL (which would normally deny access to all Principals).
118
Security Service

�������	

 8.1 Concepts and Architecture

ACLs are created and maintained through the Security Administration Manager (see
Section 11, Security Administration Manager, on page 133) and are held as XML
files. It is possible, but not recommended, to edit the XML files using some method
other than the Security Administration Manager.
The UML model in Figure 13 shows the relationship between Principals and ACLs.

Figure 13 ACL UML Model

8.1.4 Groups
Groups represent collections of Principals. Groups cannot be assigned to a Subject,
but they can be used in ACLs in order to simplify the construction of the ACL.

It is possible to construct Groups of Groups, recursively, with the resulting potential
for cyclic references. Cyclic references will be rejected from the ACL with
unpredictable results, and so should be avoided when Groups are constructed.

When the Security Service evaluates an ACL to determine if a Principal should be
granted access to a resource, all Groups in the ACL will be examined to see if the
Principal is a member. If the Principal is a member of a Group in the ACL, it will be
granted access.
ACLs are examined to determine Group membership each time an attempt is made
to access a resource.

Group

Principal

ACL Entries

ACL

<<contains>>

1

1

*

*

*

*

119
Security Service�������	

 8.1 Concepts and Architecture

Group details are defined in an XML file, as described in Section 9.2, Creating ACL
Groups on page 123.

8.1.5 Mapping Principals
The OpenFusion Security Service LoginModule includes a mechanism for
mapping Principals to a Subject at the point of authentication. The LoginModule
examines the Principals which other login modules have associated with a Subject
and determines whether mappings exist between those Principals and any other
Principals. If mappings exist, the mapped Principals are also associated with the
Subject.
Principal mappings are defined in an XML file, as described in Section 9.3,
Creating Principal Mappings on page 124.

8.1.5.0.1 Example:
A user logs on to the system, providing his user name joe and password secret to
the login module. These are authenticated and found to be correct. The login module
assigns a Principal, joe, to represent his authenticated identity.
In the Principal Mappings file, a mapping exists between the Principal joe and the
two Principals administrator and boss. These Principals are added to the
Subject joe. Furthermore, the Principal administrator is also mapped to the
Principal guest. This mapping is resolved, and guest is also assigned to joe.
After login, joe will be able to access any resource whose ACL includes any of the
Principals joe, administrator, boss, or guest, or any Groups which had any of
these Principals as direct or indirect members.

8.1.6 LoginModule
The supplied LoginModule includes a simple Generic Security Service Username
and Password (GSSUP) authentication mechanism. It holds user names against
passwords in plain text in an XML file and will successfully authenticate any user
which supplies a correct username and password pair.
Other Pluggable Authentication Modules can be used, as long as they conform to
the JAAS specification. A discussion of Pluggable Authentication Modules is
outside the scope of this document.
When different authentication modules are used, the last stage of authentication is
always performed by the Security Service LoginModule, which performs Principal
mapping as described in Mapping Principals on page 120.
120
Security Service

�������	

CHAPTER

9 Using Specific Features
This section describes the main procedures for securing OpenFusion Services. The
procedures are the same for any OpenFusion Service.

9.1 Securing an Interface or Method
This procedure describes how an object can be secured using the Administration
Manager. Each object and method for which security access has been set is stored
persistently in an XML file. It is possible, but not recommended, to add entries
directly to the XML file without using the Security Administration Manager.
See Section 11, Security Administration Manager, on page 133, for a further details
of using the Security Administration Manager.

Step 1: Ensure that the Service is Stopped. Note that it is possible to configure a running
service, but see Step 10: on page 122.

Step 2: Select the Service in the Administration Manager’s Object Hierarchy and select the
SECURITY tab in the properties panel.

Step 3: Enable security for the Service by clicking the Security Enabled check box.
Step 4: Enter the location of the following security configuration files:

 - XML Group Persistence
 - XML Principal Persistence
 - JAAS Configuration File
 - XML ACL Persistence
 - Security Credentials File
 - Security Configuration File

If these properties are unavailable (grey), it means that the Security Enabled
property has not been set.
Default locations are supplied for all of these files, and can be accepted without
change if desired.

Step 5: Start the Service and then start the Service Manager.
Step 6: Right-click on an object in the Service Manager hierarchy and select Security

Administration Manager from the popup menu. This will start the Security
Administration Manager with the security object hierarchy populated with the
interfaces and methods of the selected object.
121
 Security Service�������	

 9.1 Securing an Interface or Method

The Security Administration Manager is fully described in Section 11, Security
Administration Manager, on page 133.

Step 7: Select an interface or method in the security object hierarchy. This is the operation
which we will secure so that only authorised clients can access it.
The security Principals that are associated with the operation will be shown in the
Access Entry Details list. At this point, the list should be blank.

Step 8: Type a Principal name in the Enter principal to be added box and click the Add
button. This will add the principal to the Access Entry Details list.
Only clients which supply valid credentials for the listed Principal will be able to
access the operation. Note that by default (before any security Principals are added),
any client could have accessed the operation. The act of adding a Principal
effectively denies access to everybody except that Principal.
Repeat the previous step with additional Principals, if required.

Step 9: Click the Save Changes to Security Access Entries tool bar button. This action
saves the security configuration to persistent storage.

Step 10:If the Service is running, go back to the SECURITY tab of the Administration
Manager and click the Reload Security Configuration signal button to force the
Service to reload the security configuration from persistent storage (XML files).
A Service reads its security configuration on start-up. Any changes made in the
Security Administration Manager while the service is running will not be
automatically implemented. This signal must be used to implement the changes in
the running Service.
This step is only required if the Service is running when the properties are changed.
If the Service is stopped first, there is no need to force a configuration reload.

The signal button reloads the configuration from the XML files, not from the current
state of the Security Administration Manager. Any changes made in the Security
Administration Manager must be explicitly saved (using the tool bar button) before
the signal button is used to reload the configuration. Otherwise, the changes will be
lost.

9.1.1 Excluding Methods from the Security Manager
In some circumstances, it is only possible to secure an object at the object level, not
at the method level. This is because the methods are never called on an instantiated
object and therefore can never be intercepted. (This only allies to instantiated
objects, never to interfaces.) In this situation, it is useful to exclude the object’s
methods from the object hierarchy of the Security Administration Manager. This
avoids the mistaken belief that an object has been made secure because its methods
appear secure, when in fact the security should have been set at the object level.
122
Security Service

�������	

 9.2 Creating ACL Groups

To exclude an object from the hierarchy, add an entry for the object to the
SecurityObjectLevel.xml file, using a suitable XML editor or plain text editor.
This file is located in the <install>/xml/security directory (where
<install> is the OpenFusion CORBA Services installation path).

A working knowledge of XML is required to edit the SecurityObjectLevel file.
An example of this file is given below.

Example 1 SecurityObjectLevel File

9.2 Creating ACL Groups
Groups represent collections of Principals. Groups can be placed into an ACL in
order to simplify the construction of ACLs. ACL Group details are defined in an
XML file.

A working knowledge of XML is required to create and maintain ACL Groups. An
example of the XML Group Persistence File is given below.

Step 1: Select the Service in the Administration Manager’s Object Hierarchy and select the
SECURITY tab in the properties panel.

Step 2: Enable security for the Service by clicking the Security Enabled check box.
Step 3: Enter the location of the XML Group Persistence file. The default location can be

used if required.
Services can share a single Group persistence file, or a different file can be specified
for each Service. The default is for all Services to store their Group persistence files
in a common location.

Step 4: Locate the XML Group Persistence File in the directory identified in Step 3.
Step 5: Use a suitable XML editor or plain text editor to create or modify the XML Group

Persistence file. The file must conform to the following schema:
<install>/xml/schema/of-security-groups.xsd

where <install> is the OpenFusion CORBA Services installation path.
Step 6: Click the Reload Security Configuration signal button on the SECURITY tab to

force the underlying Service to implement the changed security configuration.

i

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE Singleton SYSTEM
"file:///D:/openfusion/xml/schema/SecurityObjectLevel.dtd">
<SecurityObjectLevel>
 <ClassName>com.prismt.j2ee.jms.QueueImpl</ClassName>
 <ClassName>com.prismt.j2ee.jms.TopicImpl</ClassName>
</SecurityObjectLevel>

i

123
Security Service�������	

 9.3 Creating Principal Mappings

Example XML Group Persistence File:

9.3 Creating Principal Mappings
Mappings between Principals can be used to assign additional Principals to a subject
at the point of authentication. Principal mappings are defined in an XML file.

A working knowledge of XML is required to create and maintain Principal
mappings. An example of the XML Principal Persistence File is given below.

Step 1: Select the Service in the Administration Manager’s Object Hierarchy and select the
SECURITY tab in the properties panel.

Step 2: Enable security for the Service by clicking the Security Enabled check box.
Step 3: Enter the location of the XML Principal Persistence file. The default location can

be used if required.
Services can share a single Principal mapping file, or a different file can be specified
for each Service. The default is for all Services to store their Principal mapping files
in a common location.

Step 4: Locate the XML Principal mapping file in the directory identified in Step 3.
Step 5: Use a suitable XML editor or plain text editor to create or modify the XML

Principal mapping file. The file must conform to the following schema:
<install>/xml/schema/of-security-principal-map.xsd

where <install> is the OpenFusion CORBA Services installation path.
Step 6: Click the Reload Security Configuration signal button on the SECURITY tab to

force the underlying Service to implement the changed security configuration.

Example XML Principal Persistence File:

<?xml version="1.0" encoding="UTF-8"?>
<securityGroups xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="d:openfusion/xml/schema/of-security-groups.xsd">
 <group>
 <groupName>All Users</groupName>
 <memberPrincipal>Administrator</memberPrincipal>
 <memberPrincipal>Default User</memberPrincipal>
 <memberPrincipal>Guest</memberPrincipal>
 </group>
</securityGroups>

i

<?xml version="1.0" encoding="UTF-8"?>
<principalMappings xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="openfusion/xml/schema/of-security-principal-map.xs
d">
 <principal>
 <principalName>root</principalName>
124
Security Service

�������	

 9.4 Supplying Authorised Credentials

9.4 Supplying Authorised Credentials
Authorised credentials must be supplied by any client code which attempts to use a
secured operation. Authentication is carried out by a Pluggable Authentication
Module (PAM). The login module supplied with OpenFusion provides a Generic
Security Service Username and Password (GSSUP) authentication mechanism. The
supplied module is:
com.prismt.openfusion.security.login.LoginModule

The default LoginModule compares supplied credentials with the list of credentials
held in the Security Credentials file to determine validity. This is a plain-text XML
file stored in a location identified by the Security Credentials File property in the
Administration Manager. The location can also be set in the gssupUsers element
o f t h e S e c u r i t y C o n f i g u r a t i o n f i l e o r i n t h e s y s t e m p r o p e r t y
security.UserDataFile. See Security Configuration File Properties on page
130 for details.
The default location of the Security Credentials file is:
<install>/Security/etc/security/userdata.xml

where <install> is the OpenFusion CORBA Services installation path.

 <impliesPrincipal>admin</impliesPrincipal>
 </principal>
 <principal>
 <principalName>user</principalName>
 <impliesPrincipal>canRead</impliesPrincipal>
 <impliesPrincipal>canPrint</impliesPrincipal>
 <impliesPrincipal>canExecute</impliesPrincipal>
 </principal>
 <principal>
 <principalName>admin</principalName>
 <impliesPrincipal>user</impliesPrincipal>
 <impliesPrincipal>canWrite</impliesPrincipal>
 </principal>
 <principal>
 <principalName>canRead</principalName>
 </principal>
 <principal>
 <principalName>canPrint</principalName>
 </principal>
 <principal>
 <principalName>canExecute</principalName>
 </principal>
 <principal>
 <principalName>canWrite</principalName>
 </principal>
</principalMappings>
125
Security Service�������	

 9.4 Supplying Authorised Credentials

A working knowledge of XML or familiarity with an XML editor is required to
create and maintain the Security Credentials file. An example of this file is given
below.

Example Security Credentials File:

i

<Users>
 <User>
 <UserName>adminuser</UserName>
 <Password>adminPass</Password>
 </User>
 <User>
 <UserName>guest</UserName>
 <Password>guestPass</Password>
 </User>
</Users>
126
Security Service

�������	

CHAPTER

10 Security Configuration
Security must be configured separately for a Service and for the clients of that
Service. Service configuration is performed through the Administration Manager.
Client configuration comes from a combination of system properties and details
stored in an XML file.

10.1 Configuring a Secure OpenFusion Service
Security properties for a service are configured through the Administration
Manager, as follows.

Step 1: Select a Service in the Administration Manager’s Object Hierarchy.
Step 2: Select the SECURITY tab.
Step 3: Set the following properties:

 - Security Enabled
 - XML Group Persistence
 - XML Principal Persistence
 - JAAS Configuration File
 - XML ACL Persistence
 - Security Credentials File
 - Security Configuration File

These properties are fully described in Security Administration Manager Properties,
below.

These properties should be configured separately for each OpenFusion Service.

10.1.1 Security Administration Manager Properties
Services can share common persistence files, or different file locations can be
specified for each Service. The default is for all Services to store their persistence
files in a common location, which means that by default the above properties are
configured identically for each Service.

Security Enabled
If this property is checked, security is enabled for the Service. If security is not
enabled, the remaining properties on this tab are unavailable.

i

127
 Security Service�������	

 10.1 Configuring a Secure OpenFusion Service

XML Group Persistence
The name and location of the XML group persistence file, given as either a file
or http URL. This defaults to:
file:<install>/etc/security/grouppersistence.xml

where <install> is the OpenFusion CORBA Services installation path.
This file is described in 9.2, Creating ACL Groups, on page 123.

XML Principal Persistence
The name and location of the XML principal persistence file, given as either a file or
http URL. This defaults to:
file:<install>/etc/security/principalpersistence.xml

where <install> is the OpenFusion CORBA Services installation path.
This file is described in described in 9.3, Creating Principal Mappings, on page 124

JAAS Configuration File
The name and location of the Java Authentication and Authorisation Service
(JAAS) configuration file, given as either a file or http URL. This defaults to:
file:<install>/etc/security/jaas.config

Property Name security.Enabled

Property Type STATIC

Data Type BOOLEAN

Accessibility READ/WRITE

Mandatory YES

Property Name security.XMLGroupPersistenceFile

Property Type STATIC

Data Type URL

Accessibility READ/WRITE

Mandatory YES

Property Name security.XMLPrincipalPersistenceFile

Property Type STATIC

Data Type URL

Accessibility READ/WRITE

Mandatory YES
128
Security Service

�������	

 10.1 Configuring a Secure OpenFusion Service

where <install> is the OpenFusion CORBA Services installation path.

XML ACL Persistence
The name and location of the XML ACL persistence file, given as either a file or
http URL. This defaults to:
file:<install>/etc/security/accessentry.xml

where <install> is the OpenFusion CORBA Services installation path.

Security Credentials File
The name and location of the file holding user credentials, given as either a file or a
http URL. This defaults to:
file:<install>/Security/etc/security/userdata.xml

where <install> is the OpenFusion CORBA Services installation path.
This file is described in Supplying Authorised Credentials on page 125.

Security Configuration File
The name and location of the security configuration file, given as either a file or a
http URL. This defaults to:
file:<install>/etc/security/SecurityProperties.xml

Property Name java.security.auth.login.config

Property Type STATIC

Data Type URL

Accessibility READ/WRITE

Mandatory YES

Property Name security.XMLACLPersistenceFile

Property Type STATIC

Data Type URL

Accessibility READ/WRITE

Mandatory YES

Property Name security.UserDataFile

Property Type STATIC

Data Type URL

Accessibility READ/WRITE

Mandatory YES
129
Security Service�������	

 10.2 Configuring a Secure Client

where <install> is the OpenFusion CORBA Services installation path.
This file is described in Security Configuration File Properties on page 130.
T h i s p r o p e r t y w i l l b e o v e r- r i d d e n b y t h e s y s t e m p r o p e r t y
security.ConfigurationFile, if it is set.

10.2 Configuring a Secure Client
A secure client is configured from properties held as elements in an XML file. The
l o c a t i o n o f t h i s f i l e i s g i v e n b y t h e s y s t e m p r o p e r t y
security.ConfigurationFile. If this has not been set, the location will be
taken from the Security Configation File property set in the Administration
Manager.

A working knowledge of XML or familiarity with an XML editor is required to
create the Security Configuration file.

10.2.1 Security Configuration File Properties
The following properties can be set in the Security Configuration file. Some of these
properties can also be set (or overridden) in other ways, as noted.

securityEnabled
This property determines whether security will be enabled or disabled and can take
the values true (enabled) or false (disabled). It defaults to false if not explicitly
set.
To disable security, neither this property nor the Security Enabled property in the
Administration Manager must be set to true. Either one of the two properties set to
true is sufficient to enable security.

gssupCredential
This includes two properties: user and password, which are the GSSUP
credentials that will be used for the Subject.
There are three ways that these properties can be set. In order of precedence, these
are:
1. As the following system properties:

Property Name security.ConfigFile

Property Type STATIC

Data Type URL

Accessibility READ/WRITE

Mandatory YES

i

130
Security Service

�������	

 10.2 Configuring a Secure Client

OF.Security.UserName

OF.Security.Password

2. Programatically, by invoking the following methods:

3. In the Security Configuration file, as in the following example fragment:

fileLocations
This group of properties defines the locations of up to five different files used by the
Security Service:
• principalMappings

This property gives the location of the Principal Mappings file (described in 9.3,
Creating Principal Mappings, on page 124). If this property is set, it will
override the XML Principal Persistence File property set in the Administration
M a n a g e r. T h e s ys t e m p r o p e r t y
security.XMLPrincipalPersistenceFile can be used to override the
location set by this property.

• acls

This property gives the location of the ACL Persistence file. If this property is
set, it will override the XML ACL Persistence File property set in the
A d m i n i s t r a t i o n M a n a g e r. T h e s y s t e m p r o p e r t y
security.XMLACLPersistenceFile can be used to override the location
set by this property.

• groups

This property gives the location of the Group Persistence file (described in 9.2,
Creating ACL Groups, on page 123). If this property is set, it will override the
XML Group Persistence File property set in the Administration Manager. The
system property security.XMLGroupPersistenceFile can be used to
override the location set by this property.

• gssupUsers

com.prismt.openfusion.security.util.Configuration.getInstance().setGSSUPUserName(
name)
com.prismt.openfusion.security.util.Configuration.getInstance().setGSSUPPassword(
password)

 <gssupCredential>
 <user>administrator</user>
 <password>my_password</password>
 </gssupCredential>
131
Security Service�������	

 10.2 Configuring a Secure Client

This property gives the location of the file that holds user names and passwords
for the default LoginModule. If this property is set, it will override the Security
Credentials File property set in the Administration Manager. The system
property security.UserDataFile can be used to override the location set by
this property.

• jaasLoginConfig

I f t h i s p r o p e r t y i s p r e s e n t , i t s v a l u e w i l l b e u s e d t o s e t t h e
java.security.auth.login.config system property. It is used by the
com.sun.security.auth.login.ConfigFile object, which handles
runtime login configuration. For more details, consult the JAAS documentation.

jaasLoginConfigName
If this property is present, it will override the default key used to identify the
configured LoginModules. The default value of this key is OpenFusion. For more
details, consult the JAAS documentation.

clientSideLogin
If this property is set to true, LoginModules will be triggered on the client side of a
call. The property defaults to false if not explicitly set.

serverSideLogin
If this property is set to true, LoginModules will be triggered if this is the server
side of a call. The property defaults to true if not explicitly set.

Example Security Configuration File
<?xml version="1.0" encoding="UTF-8"?>
<securityConfig xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 NamespaceSchemaLocation="/openfusion/xml/schema/of-security-config.xsd">
 <gssupCredential>
 <user>administrator</user>
 <password>my_password</password>
 </gssupCredential>
 <fileLocations>

<principalMappings>http://configserver/openfusion/mapping.xml</principalMappings>
 <acls>http://configserver/openfusion/acls.xml</acls>
 <groups>http://configserver/openfusion/groups.xml</groups>
 <gssupUsers>http://configserver/openfusion/usersfile.xml</gssupUsers>

<jaasLoginConfig>http://configserver/openfusion/jaas.config</jaasLoginConfig>
 </fileLocations>
 <jaasLoginConfigName>LoginConfig_Name</jaasLoginConfigName>
 <clientSideLogin>false</clientSideLogin>
 <serverSideLogin>true</serverSideLogin>
</securityConfig>
132
Security Service

�������	

CHAPTER

11 Security Administration
Manager

Use the Security Administration Manager to create and maintain ACLs for the
OpenFusion Services. The Manager allows Principals to be added to individual
objects, interfaces, or methods.

11.1 Starting the Security Administration Manager
The Security Administration Manager cannot be started from the command line. It
must be started from within the Administration Manager, either from a Service node
or from an instantiated object.
• Starting from a Service node

To start the Security Administration Manager, right-click on a Service node in
the Administration Manager’s Object Hierarchy and select Security
Administration Manager from the pop-up menu.
When the Security Administration Manager is started from a Service node, the
browser will not be initially populated with entries in the security object
hierarchy.

• Starting from an instantiated object
The Security Administration Manager can be started from any node in a Service
Manager’s object hierarchy which represents a securable object.
To start the Security Administration Manager, right-click on the selected node
and select Security Administration Manager from the pop-up menu.
When the Security Administration Manager is started from an instantiated
object, the security object hierarchy will be populated automatically with the
object’s interfaces and the methods it implements (including methods inherited
from its interfaces).

Only one instance of the Security Administration Manager can be loaded in any one
session.
133
 Security Service�������	

 11.2 Using the Security Administration Manager

11.2 Using the Security Administration Manager
The left-hand panel of the Security Administration Manager (the security object
hierarchy) shows the securable objects that have been loaded into the Security
Administration Manager. The right-hand panel shows details of the object selected
in the hierarchy. See Figure 14, The Security Administration Manager, on page 134.

Figure 14 The Security Administration Manager
134
Security Service

�������	

 11.2 Using the Security Administration Manager

11.2.1 Object Hierarchy
The security object hierarchy shows the securable objects that have been loaded into
the Security Administration Manager.

Figure 15 The Security Object Hierarchy
If the Security Administration Manager is launched from an instantiated object, the
security object hierarchy will be automatically populated with objects, interfaces,
and methods. If these objects are then assigned security access entries, they will be
added to persistent storage.
When the Security Administration Manager is launched from a Service node, the
security object hierarchy is empty. To populate it with entries from persistent
storage, right-click on the root node and use one of the pop-up menu options,
described below.
Different objects in the Security Administration Manager are identified by different
icons in the security object hierarchy tree view. These icons are shown in Table 13.
135
Security Service�������	

 11.2 Using the Security Administration Manager

11.2.1.1 Security Hierarchy Options
The following options are used to populate the security object hierarchy. These
options are accessed by right-clicking on the root node of the security object
hierarchy.
• Get First 100 Security Access Entries

This option retrieves the first 100 entries in the XML file. For performance
reasons, the number of entries displayed at any one time is limited to 100.

• Get Next 100 Security Access Entries
This option is enabled after the Get First 100 Security Access Entries option
has been used. This option retrieves the next 100 security access entries from
the XML file. The previous 100 entries are removed from the hierarchy, so that
a maximum of 100 entries are displayed at one time.

Table 13 Security Object Icons

Icon Node
Root Node
The object hierarchy root node.

Object
Represents a CORBA object or Java object. When
this node is selected, security access information for
the object is shown in the right-hand panel.
When this node is expanded, all methods applicable
to the object are shown. Methods inherited from
any operations type class are also shown.
Type
Represents an object’s operations type class, to
allow security access controls to be set against
either the object or the type.
Method
Represents a method, which is the lowest level at
which security access controls can be set. When this
node is selected, security access information for the
method is shown in the right-hand panel.
136
Security Service

�������	

 11.2 Using the Security Administration Manager

• Search
This option allows a single interface to be loaded from persistent storage. Enter
an interface name in the dialog box displayed when this option is selected. If an
entry exists in persistent storage for the object, or a method or interface relating
to the object, the details are retrieved and added to the security object hierarchy.

• Add New Security Access Entry
This option allows a new security access entry to be added for an interface.
Enter an interface name in the dialog box displayed when this option is selected.
If an entry exists in persistent storage for the object, or a method or interface
relating to the object, the details are retrieved and added to the security object
hierarchy. If it does not exist, the details will be added to the security object
hierarchy and a persistent storage entry will be created if Principals are added
and saved.

11.2.1.2 Excluding Methods from the Object Hierarchy
In some circumstances, it is only possible to secure an object at the object level, not
at the method level. In this situation, it is useful to exclude the object’s methods
from the object hierarchy. See Excluding Methods from the Security Manager on
page 122 for details.

11.2.2 Tool Bar Buttons
The Security Administration Manager adds a new button to the tool bar. This button
is shown in Table 14.

11.2.3 Principals Panel
The Principals panel controls security access for the object, interface, or method
selected in the security hierarchy. It consists of two sections: Add new principals
and Access Entry Details.
The Access Entry Details list box lists all Principals who have been granted access
to the class or method. The Add new principals list box lists all Principals that are
available for adding to a class or method. This list is built dynamically as each node
is selected. It is not a definitive list of all known Principals.

Table 14 Security Administration Manager Tool Bar

Button Function
Save Changes to Security Access Entries
Saves security access entries to XML files for
persistent storage.
137
Security Service�������	

 11.2 Using the Security Administration Manager

Figure 16 The Principals Panel

11.2.3.1 Operations
The following operations can be performed from the Principals panel of the Security
Administration Manager:
• Add a new Principal
• Assign a Principal to a class or method
• Add and inherit
• Remove a Principal from a Class or Method
• Remove All Principals from a Class or Method
• Delete Access Entries Globally
• Assign Principals Globally
These operations are described in the following sections.

Add a New Principal
Step 1: In the security object hierarchy, select the class or method that the Principal will be

added to.
Step 2: Enter the Principal name in the text box under Add new principles.
Step 3: Click the Add button. The Principal will be added to the Access Entry Details list.
138
Security Service

�������	

 11.2 Using the Security Administration Manager

Step 4: Click the Save Changes to Security Access Entries tool bar button to commit the
changes.
A Principal must be added to a specific class or method. It is not possible to add a
Principal to the list of Principals without also assigning it to a class or method.
A new Principal will be added to persistent storage with the ACL entry for the
object, interface, or method it is added to.

Assign a Principal to a Class or Method
Once a Principal has been added to one class or method, it is available to add to
other classes and methods.

Step 1: Select the class or method from the security object hierarchy.
Step 2: Click the Principal name in the list of Principals. Use shift+click to select a range of

Principals, ctrl+click to select a non-contiguous range.
Step 3: Click the Add button. The Principal will be added to the selected class or method.
Step 4: Click the Save Changes to Security Access Entries tool bar button to commit the

changes.

Add and Inherit
Principals applied to an object or interface are not automatically applied to every
method of that object or interface. The following procedure should be used to cause
a method to inherit its parent’s security Principals.

Step 1: Select a method from the security object hierarchy.
Step 2: Click the Add and Inherit button. (This button is not enabled until a method is

selected in the security object hierarchy.)
Step 3: Click the Save Changes to Security Access Entries tool bar button to commit the

changes.

Remove a Principal from a Class or Method
Step 1: Select the class or method from the security object hierarchy.
Step 2: Click the Principal name in the Access Entry Details list. Use shift+click to select

a range of Principals, ctrl+click to select a non-contiguous range.
Step 3: Click the Remove Selected button.
Step 4: Click the Save Changes to Security Access Entries tool bar button to commit the

changes.
Note that when a Principal has been removed from all classes and methods and the
changes saved, it is no longer held in persistent storage. It remains in the Principals
list until the Security Administration Manager is shut down.
139
Security Service�������	

 11.2 Using the Security Administration Manager

Remove All Principals from a Class or Method
There are two ways in which all Principals can be removed from a class or method.
The results of the two procedures are significantly different because of how empty
ACLs are treated. See ACLs on page 118 for more details of this.

Remove Principals and deny all access
This will leave the class or method’s ACL with no Principals recorded against it.
This has the effect of denying all access to the class (if Principals are removed at the
class level) or method (if Principals are removed at the method level).

Step 1: Select the class or method from the security object hierarchy.
Step 2: Click the Remove All button.
Step 3: Click the Save Changes to Security Access Entries tool bar button to commit the

changes.

Remove Principals and allow free access
This will remove the class or method’s ACL. This has the effect of removing all
security from the class (if Principals are removed at the class level) or method (if
Principals are removed at the method level) and allowing anyone access to it.

Step 1: Right-click the class or method in the security object hierarchy.
Step 2: Select Delete Access Entry from the pop-up menu.
Step 3: Click the Save Changes to Security Access Entries tool bar button to commit the

changes.

Delete Access Entries Globally
This procedure will delete all security access entries for an object or interface, and
all security access entries for methods of that object or interface.

Step 1: Right-click the object or interface in the security object hierarchy.
Step 2: Select Global Delete from the pop-up menu.

Note that the deleted Principals remain in the Principals list until another node in the
security object hierarchy is selected.

Step 3: Click the Save Changes to Security Access Entries tool bar button to commit the
changes.

Assign Principals Globally
Step 1: Assign Principals to a class or method, using the steps in either Add a New Principal

on page 138 or Assign a Principal to a Class or Method on page 139.
Step 2: Click the Assign Globally button. Every Principal in the Access Entry Details list

is assigned to all methods of the parent object or interface.
140
Security Service

�������	

 11.2 Using the Security Administration Manager

Step 3: Click the Save Changes to Security Access Entries tool bar button to commit the
changes.

11.2.3.2 Implementing Security Configuration Changes
Changes to the security configuration for a Service can be performed while the
Service is running or halted, but changes made while the Service is running will not
be immediately implemented. There are two ways in which security changes can be
passed to a running Service:
• If the Service is stopped and re-started, it will read and implement the new

security configuration.
• If the Reload Security Configuration signal button is clicked, the Service

re-reads the security configuration and implements any changes.

11.2.3.3 Interfaces
This panel is only displayed when the Security Administration Manager has been
invoked from a Service node (see Starting from a Service node on page 133).
The Interfaces panel lists the interfaces for the class selected in the security object
hierarchy. These interfaces may have their own security access settings, and so can
be loaded into the security object hierarchy.
To load an interface class into the hierarchy:

Step 1: Select an object in the security hierarchy. The Interfaces panel will not be available
if a method is selected.

Step 2: Select the Interfaces tab in the right-hand panel of the Security Administration
Manager.

Step 3: Select the required interface from the list in the Interfaces panel.
Step 4: Click the Load Selected Class button.

The class (including all of its methods) is loaded as a separate node in the security
object hierarchy, and if it has access details in persistent storage they are retrieved
and loaded also.
141
Security Service�������	

 11.2 Using the Security Administration Manager

142
Security Service

�������	

APPENDICES

Appendix

A XML Configuration Files
All properties for the OpenFusion CORBA Services are stored in and controlled
from XML files, making the list of properties flexible and extensible.
It is possible to directly edit property values in the XML files, although it is
recommended that the Administration Manager interface be used. The
Administration Manager provides proper validation of input and reduces errors.
Manually editing the XML configuration files is not recommended, but it would be
possible to programmatically alter the properties. The XML files are described here
for developers who wish to do that. The OpenFusion graphical tools include an
XML editor which performs validation against XML DTDs. A command-line utility
for setting properties is also provided; this is described in Command Line
Configuration on page 152.
All configuration files are stored under the OpenFusion installation directory.

Take great care when manually editing XML files as errors can seriously interfere
with the functioning of the OpenFusion graphical tools and Services.

Directory paths given as examples in this section use Unix conventions. Users of
OpenFusion on Windows NT should make the appropriate substitutions.

The Object Hierarchy
The domains directory under the OpenFusion installation directory contains the
XML files that record the current configuration of the OpenFusion installation. The
domains directory structure maps directly to the Object Hierarchy in the
Administration Manager, so a directory exists for each domain, node, Service,
Singleton, and Java Object. The directory must have exactly the same name as the
domain, node, Service, Singleton, or Java Object it represents.
For example, the localhost node in the Administration Manager’s default Object
Hierarchy is represented by the following directory structure:
<INSTALL>/domains/OpenFusion/localhost

where <INSTALL> is the OpenFusion installation directory.
If the Object Hierarchy is altered or added to through the Administration Manager
(see Extending the Object Hierarchy on page 15), new directories and XML files are
created to reflect the new structure.

WIN
145
System Guide�������	

 Appendices
The following figure shows the correlation between the Object Hierarchy and the
domains directory structure (the illustration is from Windows NT, however the
same structure is used on UNIX).

Figure 17: Object Hierarchy and Directory Structure

Completing the XML File Installation
The normal installation of OpenFusion CORBA Services creates minimal XML
configuration files in the domains directory structure. These files only contain
configuration information for properties which differ from the default values. To
fully populate these XML files with property information, you must run the
Administration Manager and save the configuration.
As an alternative to running the Administration Manager GUI, the configuration can
be completed using the Administration Manager command line tool, described in
7.2, Administration Manager Tool, on page 111.

This must be performed before any Services can be started from the command line
using the server -start script (as described in Starting Servers from the
Command Line on page 4).
146
System Guide �������	

Appendices
Directory Tree
The structure of the domains directory is shown in Figure 18:.

Figure 18: Domains Directory Tree

Configuration information is stored in XML files at each level of the directory tree.

XML Files
Domains and Nodes

Each domain and node directory must contain a single file, <name>.xml, where
<name> is the name of the domain or node.
The domain and node files list all the children of that domain or node. They also
show whether the Object Hierarchy has been locked at that level (see Locking
Nodes on page 19).
These files are located and named as follows:
<INSTALL>/domains/<domain>/<domain>.xml
<INSTALL>/domains/<domain>/<node>/<node>.xml

<Installation
Directory>

log

service

domains

node

java objects

data

singletons
147
System Guide�������	

 Appendices
where <INSTALL> is the OpenFusion installation directory, <domain> is the name
of the domain, and <node> is the name of the node.
For example, the localhost node in the Administration Manager’s Object
Hierarchy is defined in the following XML file:
<INSTALL>/domains/OpenFusion/localhost/localhost.xml

The XML file also records whether or not the node is locked (see Locking Nodes on
page 19).
The format of the XML files for domains and nodes is defined in the following DTD
files:
<INSTALL>/xml/schema/Domain.dtd
<INSTALL>/xml/schema/Node.dtd

Services
Each Service directory must contain a single file, <service>.xml, where
<service> is the name of the Service.
The service file lists the Singletons and Java Objects under that Service. They also
show whether the Object Hierarchy has been locked at that level (see Locking
Nodes on page 19) and store any run time properties for the service.
These files are located as follows:
<INSTALL>/domains/<domain>/<node>/<service>/<service>.xml

where <INSTALL> is the OpenFusion installation directory, <domain> is the name
of the domain, <node> is the name of the node, and <service> is the name of the
Service.
For example, the NameService node in the Administration Manager’s Object
Hierarchy is defined in the following XML file:
<INSTALL>/domains/OpenFusion/localhost/NameService/NameService.xml

The XML file also records the current value and locking status of each property
belonging to the Service. See Common Configuration Properties on page 43 for
details of Service properties.
The format of the XML files for Services is defined in the following DTD file:
<INSTALL>/xml/schema/Service.dtd

Singletons
Each Singleton directory must contain a file, <singleton>.xml, where
<singleton> is the name of the Singleton. The directory also contains the
Singleton’s IOR file (after the Service has been started).
These files are located as follows:
148
System Guide �������	

Appendices
<INSTALL>/domains/<domain>/<node>/<service>/<singleton>/<singleton>.
xml
<INSTALL>/domains/<domain>/<node>/<service>/<singleton>/<singleton>.
ior

where <INSTALL> is the OpenFusion installation directory, <domain> is the name
of the domain, <node> is the name of the node, and <service> is the name of the
Service that contains the Singleton.
For example, the NameSingleton Singleton in the Administration Manager’s
Object Hierarchy is represented by the following XML file:
<INSTALL>/domains/OpenFusion/localhost/NameService/NameSingleton/
 NameSingleton.xml

The XML file records the current value and locking status of each property belonging
to the Singleton. See Common Configuration Properties on page 43 for details of
properties.
The format of the XML files for Singletons is defined in the following DTD file:
<INSTALL>/xml/schema/Singleton.dtd

Java Objects
Each Java Object directory must contain a file, <javaobject>.xml, where
<javaobject> is the name of the Java Object.
This file is located as follows:
<INSTALL>/domains/<domain>/<node>/<service>/<javaobject>/<javaobject
>.xml

where <INSTALL> is the OpenFusion installation directory, <domain> is the name
of the domain, <node> is the name of the node, and <service> is the name of the
Service that contains the Java Object.

For example, the ChannelConfiguratorObject Java Object in the Administration
Manager’s Object Hierarchy is represented by the following XML file:
<INSTALL>/domains/OpenFusion/localhost/NotificationService/
 ChannelConfiguratorObject/ChannelConfiguratorObject.xml

The XML file records the current value and locking status of each property belonging
to the Java Object. See Common Configuration Properties on page 43 for details of
properties.
The format of the XML files for Java Objects is defined in the following DTD file:
<INSTALL>/xml/schema/JavaObject.dtd

See Appendix C, Managing Java Objects, for details of how to create and configure
Java Objects.
149
System Guide�������	

 Appendices
XML Templates
The xml/templates directory under the OpenFusion installation directory
contains the XML files that define the properties for every object in the
Administration Manager’s Object Hierarchy.
To add a property to a Service, Singleton, or Java Object in the Object Hierarchy,
the property must be fully defined in the appropriate XML file, as described below.
See Properties on page 21 for details of how properties are displayed in the
Administration Manager.

Directory Tree
The structure of the templates directory is shown in Figure 19:

Figure 19: Templates Directory Tree

<Installation
Directory>

singletons

templates

xml

schema

properties

objects

properties

services

properties

browser

properties
150
System Guide �������	

Appendices
Defining a Property in the XML File
The XML DTDs in the schema directory (see XML Schema on page 151) define
how a new property must be created in the XML files. The following notes give
further explanations of the XML elements.

GroupName
In the Administration Manager, each group is assigned a different pane and
identified by a named tab. The GroupName element identifies which tab the
property will appear on.

CategoryName
This is an organisational element. Properties on the same tab which also have the
same CategoryName are grouped together on the tab.

Dependencies
Dependencies describe the relationship between different set of properties. If setting
a property to a specific value will disable (lock) or enable (unlock) other properties,
the Dependencies element should be used to show that relationship.

Conditional
Some properties apply only to specific system configurations. For example, some
properties relate to a specific ORB and will not appear on the Administration
Manager screens if a different ORB is in use. Conditional elements, if present,
show which configurations are required for the property to be valid. The conditions
currently supported are CORBA version, Java version, operating system, and ORB
version. Permitted values are shown in the DTD.

XML Schema
All XML files used to configure the managers and browsers must conform to the
DTDs in the directory:
<INSTALL>/xml/schema

where <INSTALL> is the OpenFusion installation directory.
The configuration DTD files are listed in Table 15.

Table 15 DTD Files

File Function
Domain.dtd Describes a domain object the Object Hierarchy.
JavaObject.dtd Describes a Java Object in the Object Hierarchy.
Node.dtd Describes a node object in the Object Hierarchy.
151
System Guide�������	

 Appendices
Warning: under no circumstances alter any DTD files in the schema directory.

Command Line Configuration
The OpenFusion CORBA Services distribution includes a command-line utility
com.prismt.openfusion.tools.ChangeSettings which can be used to set
properties in the XML configuration files. This provides an alternative to using the
Administration Manager and can be useful when performing a command-line or
script-driven install of OpenFusion.
This utility is run as follows:

Where:
<dir> is the directory that contains the XML files.
<property> is the name of the property which is to be set.
<value> is the value that the property is to be set to.

The utility will search all XML files in the specified directory, and recursively in all
directories below that directory, for incidences of the specified property. Wherever
an incidence of that property is located, it is set to the specified value.
Multiple property-value arguments can be specified, allowing several properties to
be set in a single operation.
Properties can only be set in XML files which conform to the DTD for OpenFusion
property files.

Properties.dtd Describes the properties of an object and controls
how they are displayed in the property pane of the
Administration Manager.

Service.dtd Describes a service process object in the Object
Hierarchy.

Singleton.dtd Describes a Singleton object in the Object
Hierarchy.

Table 15 DTD Files (Continued)

File Function

% java com.prismt.openfusion.tools.ChangeSettings <dir>
<property> <value> [<property> <value> ...]
152
System Guide �������	

Appendices
Because directories are searched recursively, care must be taken when specifying
the directory argument. If a property exists in multiple different services but should
be set to a different value in each service (IOR.URL, for example), it would be a bad
idea to set that property by running the utility at the domains directory level.

All Service properties are named and described in the Configuration and
Management section of each Service guide. Properties common to all Services are
documented in Section 3, Common Configuration Properties, on page 43 of this
guide.

i

153
System Guide�������	

 Appendices
154
System Guide �������	

Appendix

B Log Messages
OpenFusion uses the log4j package to support error diagnostics and logging. This is
a pub l i c domain logg ing package . Fur the r de ta i l s can be found a t
http://jakarta.apache.org/log4j.
Conceptually, the log4j package supports appenders and layout managers.
Appenders direct output to a particular destination such as file or system log. Layout
managers can be used to format the generated log message. Every appender has an
associated layout manager.
The layout of the log messages in OpenFusion is set to the default pattern layout of
the log4j package, which means only the message and severity appear. The format
of the output message can be customised by the use of a pattern layout manager and
an associated conversion pattern. See the on-line log4j documentation for details on
how this can be done.

Using a Pattern Layout
To use a pattern layout for a Service, the Log Layout property for that Service must
be set to Pattern. See Log Layout on page 49 for details of how to set this in the
Administration Manager.
The format of the output message is customised by entering a pattern string in the
Log Pattern property for the service. See Log Pattern on page 49.
For example, to prefix the date and time to the log messages generated by the
Notification Service use the following pattern:
%d{DATE} - %m%n

It is recommended that %n is always appended to the end of any log pattern. This
forces a line break at the end of each message and makes the log file easier to read.
155
System Guide�������	

http://jakarta.apache.org/log4j

 Appendices
Conversion Characters
The characters that can be used in a logging pattern are shown in Table 16,
Conversion Characters. The patterns are case-sensitive.

Table 16 Conversion Characters

Conversion
Character

Effect

%c The category of the logging event. The category conversion
specifier can be optionally followed by a precision specifier,
which is a decimal constant in brackets.

If a precision specifier is given, then only the corresponding
number of right-most components of the category name will be
printed. By default, the category name is printed in full.

For example, for the category name "a.b.c" the pattern %c{2}
will output "b.c".

%C The fully-qualified class name of the caller issuing the logging
request. This conversion specifier can be optionally followed by
a precision specifier, which is a decimal constant in brackets.

If a precision specifier is given, then only the corresponding
number of right-most components of the class name will be
printed. By default the class name is output in fully-qualified
form.

For example, for the class name "org.apache.xyz.SomeClass"
the pattern %C{1} will output "SomeClass".

WARNING: Generating the caller class information is slow. Its
use should be avoided unless execution speed is not an issue.

%F The file name where the logging request was issued.

WARNING: Generating caller location information is
extremely slow. Its use should be avoided unless execution
speed is not an issue.
156
System Guide �������	

Appendices
%d The date of the logging event. The date conversion specifier
may be followed by a date format specifier enclosed between
braces. For example, %d{HH:mm:ss,SSS} or %d{dd MMM
yyyy HH:mm:ss,SSS}. If no date format specifier is given
then ISO8601 format is assumed.

The date format specifier uses the same syntax as the time
pattern string of the SimpleDateFormat. Although part of the
standard JDK, the performance of SimpleDateFormat is quite
poor.

For better results it is recommended to use the log4j date
formatters. These can be specified using one of the strings
ABSOLUTE, DATE and ISO8601 for specifying
AbsoluteTimeDateFormat, DateTimeDateFormat, and
ISO8601DateFormat respectively. For example,
%d{ISO8601} or %d{ABSOLUTE}.

These dedicated date formatters perform significantly
better than SimpleDateFormat.

%l Location information of the caller which generated the logging
event.

The location information depends on the JVM implementation
but usually consists of the fully qualified name of the calling
method followed by the caller’s source file name and line
number between parentheses.

The location information can be very useful. However, its
generation is extremely slow. Its use should be avoided unless
execution speed is not an issue.

%L The line number from where the logging request was issued.

WARNING: Generating caller location information is
extremely slow. Its use should be avoided unless execution
speed is not an issue.

%m The application-supplied message associated with the event
being logged.

Table 16 Conversion Characters (Continued)

Conversion
Character

Effect
157
System Guide�������	

 Appendices
%M The name of the method where the logging request was issued.

WARNING: Generating caller location information is
extremely slow. Its use should be avoided unless execution
speed is not an issue.

%p The priority of the logging event.
%r The number of milliseconds elapsed since the start of the

application and the time of creation of the logging event.
%t The name of the thread that generated the logging event.
%x The NDC (nested diagnostic context) associated with the thread

that generated the logging event.
%n A platform-dependent new line character (usually included at

the end of each logging pattern, to force one message per line in
the log file).

This conversion character offers practically the same
performance as using non-portable line separator strings such as
“\n”, or "\r\n". Thus, it is the preferred way of specifying a line
separator.

%% A single percent sign (required to escape the percent sign).

Table 16 Conversion Characters (Continued)

Conversion
Character

Effect
158
System Guide �������	

Appendix

C Managing Java Objects
The OpenFusion Administration Manager can be used to manage and configure
user-defined Java Objects. Java Objects can be added to the Administration
Manager’s Object Hierarchy as described in Extending the Object Hierarchy on
page 15. To make a Java Object available for management in the Administration
Manager, the Java Object must be set up as described in this Appendix.
The Administration Manager can be used to configure the Java Object’s properties.
To provide further management facilities, a custom GUI browser (which must
extend com.prismt.browser.BaseBrowser) can be created for the Object. The
browser can be launched from the Administration Manager (effectively acting as an
Administration Manager plug-in) or started from a command line.

Creating the Java Object
If a Java Object is to use the ORB or any of the properties passed through from the
Ope nfus ion Se rv i c e , t hen i t m u s t i m p l e m e n t t h e
com.prismt.openfusion.plugin.JavaObject interface. This interface is
defined as follows:

ExtendedProperties is found in the com.prismt.util package, which would
have to be imported.
Management of the Java Object also requires a default constructor. When a Service
containing the Java Object is started, the Administration Manager calls the Object’s
default constructor followed by the init method (if the JavaObject interface is not
implemented then only the default constructor is called).

Describing the Java Object in XML
An XML fi le must be created for each Java Object and placed in the
<INSTALL>/xml/templates/objects directory (where <INSTALL> is the
OpenFusion installation directory). This file should be given the name of the Java
Object. For example:
<INSTALL>/xml/templates/objects/MyObject.xml

 public interface JavaObject
 {
 public void init (org.omg.CORBA.ORB orb, ExtendedProperties props) throws
Exception;
 }
159
System Guide�������	

 Appendices
The presence of this file makes the Java Object available for adding to the Object
Hierarchy.
See XML Configuration Files on page 145 for more of the XML files used by
OpenFusion.
The Java Object definition file must conform to the DTD specified in
<INSTALL>/xml/schema/JavaObject.dtd.
The following example illustrates the MyObject.xml file for the MyObject Java
Object:

Name - The name of the Java Object as it will appear in the menu of available
objects in the Administration Manager (this is illustrated in Figure 5, Adding a Java
Object, on page 17).
ClassName - The name of the class which is actually executed.
BrowserName - The name of the GUI browser which will be used to manage and
configure the Java Object. This is the name which will be displayed on screen in the
Administration Manager (optional).
BrowserClassName - The class name of the GUI browser used to manage and
configure the Java Object (optional).

Defining Properties for the Java Object
If the Java Object has properties which should be set through the Administration
Manage r, t he p r ope r t i e s mus t be desc r i bed in an XML f i l e i n t he
<INSTALL>/xml/templates/objects/properties directory (where
<INSTALL> is the OpenFusion installation directory). This file should be given a
name of the form <Java-Object>Properties.xml. For example:
<INSTALL>/xml/templates/objects/properties/MyObjectProperties.xml

 <?xml version="1.0" encoding="UTF-8">
 <!DOCTYPE JavaObject SYSTEM
"file://PrismTech/OpenFusion/xml/schema/JavaObject.dtd">
 <JavaObject>
 <Name>
 My Object
 </Name>
 <ClassName>
 user.path.MyObjectImpl
 </ClassName>
 <Browser>
 <BrowserName>
 My Object Manager
 </BrowserName>
 <BrowserClassName>
 user.path.browser.MyObjectBrowser
 </BrowserClassName>
 </Browser>
 </JavaObject>
160
System Guide �������	

Appendices
T h e p r o p e r t i e s X M L f i l e m u s t c o n fo r m t o t h e D T D s p e c i f i e d i n
<INSTALL>/xml/schema/Properties.dtd. See Defining a Property in the
XML File on page 151 for details.

The Object Hierarchy
When an instance of the Java Object is added to a Service in the Administration
Manager, an XML file is created for it. This file records the current value and
locking status of each property belonging to the Java Object instance. The file is
located as follows:
<INSTALL>/domains/<domain>/<node>/<service>/<javaobject>/<javaobject
>.xml

where <INSTALL> is the OpenFusion installation directory, <domain> is the name
of the domain, <node> is the name of the node, <service> is the name of the
Service, and <javaobject> is the name of the Java Object.
For example, an instance of the ChannelConfiguratorObject Java Object in the
Administration Manager’s Object Hierarchy could be represented by the following
XML file:
<INSTALL>/domains/OpenFusion/localhost/NotificationService/
 ChannelConfiguratorObject/ChannelConfiguratorObject.xml
161
System Guide�������	

 Appendices
162
System Guide �������	

GLOSSARY

Glossary
Definitions
Term Meaning
Activate Prepare an object to receive requests.
Active Object Map A table of associations between Object IDs and Servants, which is

maintained by a POA to allow it to dispatch incoming requests.
Administration
Manager

Tool used to manage and configure the OpenFusion Services.

alias An additional or alternative name for the same thing; an object
containing the name of another object. Aliases enable one object to
have more than one name. For example: LoadBalancer and
LoadBalancerAlias refer to same object. This enables LoadBalancer
to change dynamically even after being bound into the Naming
Service.

AMI See Asynchronous Messaging Interface.
AOM See Active Object Map.
Asynchronous
Messaging Interface

This is an extension of CORBA functionality into a complete
messaging semantics (as opposed to request brokering). This
includes various modes of communication between the originator
and recipient and also various qualities of service.

bind To bind is to associate a meaningful name with an object reference as
a name-value pair. Binding is the process of associating a name with
a remote object in a server application, so that a client application
can resolve the name and obtain a reference to the (remote) object. A
binding is an association between a name and a reference.

BOA Basic Object Adapter – the standard within CORBA versions 2.2 and
lower which specifies how objects invoke and obtain references to
each other.
An object adapter is the way in which a programming language
object in the server is associated with a CORBA object. The BOA
loosely describes an inheritance and delegation based approach. The
BOA has been deprecated and is superseded by the POA.

CCM CORBA Component Model.
CFA Common Facilities Architecture.
composite namespace See Federated namespace.
165
System Guide�������	

Glossary
ConnectionFactory A connection factory is an administered object that JMS clients use
primarily for bootstrapping purposes. There are both topic and queue
connection factories, which are typically resolved from the Java
Naming and Directory Interface (JNDI). Clients use the factory
object to create new connections.

Constraint Selection criterion or search condition. See TCL (Trader Constraint
Language).

context See Naming context.
CORBA Common Object Request Broker Architecture. An open standard for

interoperable distributed object systems developed and maintained
by the OMG. The standard only defines the architecture; it is up to
individual companies how they produce actual implementations.

Corbaloc The Corbaloc URL scheme provides URLs that are familiar to
people and similar to ftp or http URLs. This URL format is
independent of the Naming Service.

Corbaname A Corbaname URL is similar to a Corbaloc URL except that a
Corbaname URL also contains a stringified name that identifies a
binding in a naming context.

Core Object Model The fundamental object-oriented model in the OMA which defines
the basic concepts on which CORBA is based.

COS CORBA Object Service. This is a label for a broad set of add-on
services that extend the core CORBA specification.

cyclic A ‘backward’ reference from a naming context to a ‘parent’ or
‘grandparent’ context in the same naming graph.

DCE Distributed Computing Environment. A distributed computing
architecture developed by the OSF before CORBA.

DCOM Distributed Component Object Model (COM). The architecture and
implementation of the distributed request/response technology from
Microsoft.

delegate One object only presents an interface and makes a local call to
another object which actually implements the functions offered by
the first. Enables separation of application and control interfaces;
used in OpenFusion Load Balancing (a Naming Service option).
Also referred to as a ‘Tie’ in CORBA.

Definitions
Term Meaning
166
System Guide �������	

Glossary
Directory Service A service providing facilities for organising and finding objects. The
service often includes operations for creating, adding, removing, and
modifying the attributes associated with objects in a directory. The
CORBA Naming and Trading Services are collectively referred to as
directory services.

DTD Document Type Definition. A file containing declarations that
specify a format for XML files.

DTF Domain Task Force; OMG working group.
EJB Enterprise Java Beans. Part of the J2EE standard which defines the

application and data component models.
ESIOP Environment-Specific Inter-ORB Protocol. The implementation of

GIOP for a non-TCP/IP environment, e.g., DCE.
etherealize The action of destroying a Servant associated with an Object ID, so

that the ID no longer identifies a CORBA object with respect to a
particular POA.

fail-over The use of two or more systems running in parallel so that if one fails
another immediately takes over with no disruption apparent to users.
Normally implemented as two identical synchronised systems,
nominated “master” and “slave”. The slave takes over if the master
fails. Fail-over is usually performed at a low level and is therefore
transparent to applications.

federated namespace A single logical namespace comprised of multiple autonomous
naming systems.

federation A grouping of autonomous systems linked in such a way as to appear
to be or to work as a single system. A component within one system
should be able to communicate or interact with a component of a
different system as though it were communicating or interacting with
another component in the same system, even though the systems may
be implemented on different platforms using different languages
and/or protocols.

GIOP General Inter-ORB Protocol. The high level specification of wire
protocol introduced in CORBA 2.0. All CORBA 2.0-compliant
ORBs use this common wire protocol specification, which allows
clients and servers using different ORBs to interoperate. GIOP is
implemented using a network protocol. See also IIOP and ESIOP.

Definitions
Term Meaning
167
System Guide�������	

Glossary
HTTP Hypertext Transfer Protocol. The standard Internet transport protocol
for HTML documents.

IDL Interface Definition Language. A high-level declarative language for
defining the interfaces of distributed objects. It is used for the
def ini t ion of CORBA services and objects because i t i s
platform-independent.

IDL compiler An application which converts an IDL specificat ion into
programming-language-specific stub and skeleton files which are
used to implement distributed objects.

IFR Interface Repository.
IIOP Internet Inter-ORB protocol. A TCP/IP-based protocol developed by

the OMG. The IIOP enables multiple ORBs to interoperate to
provide requests to objects. The implementation of GIOP for TCP/IP.

incarnate The action of providing a running Servant to serve requests
associated with a particular Object ID. A POA will keep this
association in its Active Object Map.

initial context The starting point for the resolution of names for naming and
directory operations. Also known as a root context.

INS Interoperable Naming Service. One of the CORBA services. The
Interoperable Naming Service functions just like the Naming
Service, holding bindings between meaningful names and Object
References (IORs). The INS provides additional “under the covers”
support for interoperability between different ORBs.

instrumentation Functions which return information about the current status of a
system or items within it. Used for monitoring performance and
detecting problems. For example, resetable counters can report the
number of events occurring in a specified time interval (see also
Quality of Service).

Interface Repository
(IFR or IR)

The CORBA service (server or component) that stores meta-data
about IDL interfaces. A CORBA component which stores type
information and makes it available through standard interfaces at run
time. It contains all the registered component interface definitions,
including the methods they support and the parameters they require.
Programs may use the IFR APIs to access and update this
information.

Definitions
Term Meaning
168
System Guide �������	

Glossary
IOP Inter-Operable Protocol.
IOR Interoperable Object Reference. An Object Reference (OR) is the

way a CORBA Object is named. The IOR is the CORBA
2.x-compliant format for a standard representation of an OR for all
ORBs.

Istring An IDL data type, the “internationalized string”, which is not
implemented. In the original CORBA specifications, the Istring was
“a placeholder for an internationalized string data type”; it is now
only retained for compatibility reasons, and is always mapped to the
string data type with typedef string Istring in IDL.

JDMK Java Dynamic Management Kit.
Jini A distributed system based on the idea of federating groups of users

and the resources required by those users.
JMS Java Message Service. Part of the J2EE standard specifying how

applications can send asynchronous messages to each other.
JMX Java Management eXtensions.
JNDI Java Naming and Directory Interface. JNDI is a standard extension

to the Java platform which provides Java-enabled applications with a
unified interface to multiple naming and directory services.

JTS Java Transaction Service; an API defined as a part of the J2EE
specification for transactional capabilities.

LDAP Lightweight Directory Access Protocol; an API defined to provide a
common interface to data stores, regardless of their underlying
nature and location.

load balancing Optimisation of the use of available resources in order to minimise
the time between the issue of a request for a service and the
performance of that service. Load balancing involves the distribution
of requests for a particular service amongst multiple servers which
provide that service. The methods used to allocate requests are
known as policies.

marshalling Convers ion o f da ta in to a p rogramming- language- and
architecture-independent format ready for transmission.

Definitions
Term Meaning
169
System Guide�������	

Glossary
MessageConsumer A message consumer is an object that receives JMS messages. A
consumer in the point-to-point model is referred to as a queue
receiver, while the publish/subscribe model uses the term topic
subscriber. Message consumers are created by sessions and may use
either a push model to receive messages asynchronously, or a pull
model to receive messages synchronously. JMS supports both
transient and durable message consumers.

MessageProducer A message producer is an object that sends JMS messages. A
producer in the point-to-point model is referred to as a queue sender,
while the publish/subscribe model uses the term topic publisher.
Message producers are created by sessions.

meta-data Data which describes the format of the representation or storage of
other data.

MOF Meta-Object Facility.
MSMQ Microsoft Message Queue; a messaging product from Microsoft.
MTS Microsoft Transaction Server; a transaction processor product from

Microsoft.
name binding In the Naming Service name bindings are contained in naming

contexts. A binding can refer to either an object or another naming
context. The process of associating a Name with a remote object in a
server application, so that a client application can resolve the Name
and obtain a reference to the remote object.

name resolution The process of resolving a name to obtain a reference to the object to
which it is bound.

name space The set of all names in a naming system.
naming context An object containing name bindings which refer to other objects,

which may be naming contexts. A set of naming contexts which can
be traversed by following (resolving) the bindings it such bindings is
a naming graph.

naming graph An hierarchy of naming contexts and objects in a Naming Service.
Name bindings are contained in naming contexts. A binding can
refer to either an object or another naming context. A set of naming
contexts which can be traversed by following (resolving) such
bindings is a Naming graph.

Definitions
Term Meaning
170
System Guide �������	

Glossary
naming system A connected set of naming contexts. The naming contexts are all of
the same type, have the same naming convention, and provide the
same set of operations with identical semantics.

NTP Network Time Protocol.
object adapter The ORB component which provides object reference, activation,

and state related services to an object implementation. See also BOA
and POA.

OMA Object Management Architecture. The overall architecture and
roadmap of the OMG, of which CORBA forms a part.

OMG Object Management Group. A cross-industry consortium which
develops and promotes the CORBA open-systems standards.

OR Object Reference. The way CORBA objects are identified.
ORB Object Request Broker.
OSF Open Software Foundation.
OTM Object Transaction Monitor. A set of CORBA Services for

developing Enterprise systems.
PIDL Pseudo Interface Definition Language (Pseudo-IDL). This is

identical to IDL, however it is not used for describing a remotely
accessed CORBA Object but rather an object in the CORBA
infrastructure that is implicitly local.

POA Portable Object Adapter. An object adapter is the way in which a
programming language object in the server is associated with a
CORBA object. The POA describes a full set of models and policies
for managing object life-cycles. (Introduced in CORBA 2.3,
superseding the BOA.)

point-to-point Method of event delivery which ensures that an event generated by a
supplier is received by a subscriber once (and only once). Sometimes
referred to as “exactly once” delivery. Contrast with normal “at least
once” delivery (as in the publish-subscribe model).

POS Persistence Object Service. A deprecated CORBA Service for
storing the state of implementation objects into a database. The PSS
supersedes the POS.

Definitions
Term Meaning
171
System Guide�������	

Glossary
provider resource file An optional properties file named [prefix/]jndiprovider.properties,
where prefix is the package name of the service provider class with
each period character converted to a forward slash character (“/”).
This file is used by the JNDI when determining the values of the
following JNDI-defined properties:
java.naming.factory.object

java.naming.factory.state

java.naming.factory.control

java.naming.factory.url.pkgs

PSS Persistence State Service. A CORBA Service for storing the state of
implementation objects into a database. The PSS supersedes the
POS.

QoS Quality of Service.
reference Information needed for accessing an object. It contains one or more

addresses for referring to or communicating with an object. See also
Object reference.

resolve (resolution) The process of obtaining an object reference from a name binding.
(See also name binding.)

rollback To undo the successful steps of a sequence of operations when one
step fails. Part of a method of ensuring database integrity whereby if
any one of a group of related operations or updates fails, then all the
other operations in the group are undone and the database is restored
to the state it was in before the operations were attempted.

RPC Remote Procedure Call. A strategy which allows procedures to be
called from outside the currently running program's memory. RPC
allows two or more different programs to interoperate with one
another.

RUP Rational Unified Process.
SASL Simple Authentication and Security Layer.

Definitions
Term Meaning
172
System Guide �������	

Glossary
servant An implementation object that provides the run-time semantics of
one or more CORBA objec ts . An ins tance of an ob jec t
implementation for an IDL interface. The servant object is registered
with the ORB so that the ORB knows where to send invocations. It is
the servant that performs the services requested when a CORBA
object's method is invoked.

session A session is the context used by clients for sending and receiving
messages. Sessions are created by connections and are factories for
creating message suppliers and consumers as well as message
objects. Each session retains messages received by all its consumers
until they have been acknowledged.

SID Service ID, Server Persistent ID, or Server persistence UUID scope.
SII Static Invocation Interface (or Stub Invocation Interface). This is the

client-side API for generating network messages that is based on the
stubs that are code-generated by the IDL compiler for a given IDL
interface. See also DII.

SNMP Simple Network Management Protocol. A widely used standard for
specifying systems management interfaces and operations.

SOAP Simple Object Access Protocol. A protocol for sending RPC calls
over the Internet encoded as XML and using the HTTP protocol.
This is intended to avoid the firewall problems that face the use of
protocols such as IIOP.

SSL Secure Socket Layer.
stringification Conversion of an object reference to a character string. Used when

an object reference needs to be saved in a text file or stored in a
database (persistence) or sent to a client program.

TCL Trader Constraint Language. A simple language used for
constructing constraints (also referred to as search conditions or
selection criteria) used in queries to retrieve offers from servers.

TCP/IP Transport Control Protocol/Internet Protocol. A network protocol
used on the Internet and many internal networks. TCP is for
establishing connections between hosts and guaranteeing delivery of
data packets in the correct order; IP determines the structure of the
packets themselves.

Definitions
Term Meaning
173
System Guide�������	

Glossary
TOG The Open Group.
TP Transaction Processor. Typically used as TP Monitor. A kind of

middleware that manages connections and transactions to databases.
trader An object which supports the Trading Service. A trader can be a

server, a client, or both. The components (Register, Proxy, Lookup,
Admin, Link) provide the functions for handling offers of service
and queries.

transaction server A server which supports transactional semantics, (for example,
commit or rollback).

UML Unified Modelling Language. A standard developed and maintained
by the OMG to facilitate object analysis and design representation. A
method of modelling any process using simple diagrams; used for
communications and analysis/design.

UUID Universally Unique IDentifier. A 128-bit identifier generated by an
algorithm which will never produce the same value twice and hence
can uniquely identify entities in a distributed system.

XMI XML Metadata Interchange.
XML eXtensible Markup Language. A standard for representing data in a

language- and database-neutral format. XML separates a document’s
definition, content, and presentation (style).

XSL eXtensible Stylesheet Language. A standard for defining the
formatting of an XML document.

XSLT XSL Transformation. A standard for describing transformations
between XML documents.

Definitions
Term Meaning
174
System Guide �������	

INDEX

Index

A
Access Control List . 118
Access Entry Details. 137
Accessibility . 22
ACL . 118
ACL Groups . 123
acls (property). 131
Add new principals. 137, 138
Adding

Java Objects . 16
Nodes . 15
Singletons . 16

Administration Manager. 9

Properties . 65
Administration Manager Tool 111
adminMgrTool . 112
Appenders. 155
Assign a Principal to a Class or Method 139
Assign Principals Globally. 140
Assign Value

Globally . 25
to Peers . 24
to Properties . 23

Authentication . 25, 118
Authorised Credentials. 125

B
BAD_PARAM Exception Count (property) . . . 54
BaseBrowser class . 159
Browser

CORBA Object . 29
Framework . 7

Log . 28
Save Configuration . 28

BrowserClassName element 160
BrowserName element 160

C
C++ Support . 98
CategoryName . 151
Central Configuration

Set up Host . 31
Central Configuration Host (property) 35, 66
Central Host . 31
Changing the Order of Services and Singletons.18
ClassName element . 160
CLASSPATH

Jar files . 95
clients

user defined. 94
clientSideLogin (property) 132
Command Line Switches 8

-noorb . 8
-port. 8
-remote . 8

-start . 6
-status . 6
-stop . 6

Command Line Tools. 111
Conditional Properties 23, 151
ConfigFile object (property). 132
configGen . 114
Configuration . 127

Distributed Installation 31
Files . 145
from the Command Line. 152
Save . 28

Configuration Generator 114
Configuration Manager

configuring persistent storage
JDBC Data Source 101

Configure from Remote Host (property) . . . 35, 36
177
System Guide�������	

 Index
Configuring . 70, 152
Secure Client . 130
Secure Service . 127

ConfigViaWebServer (property). 67
Conversion Characters 156
CORBA Object

Browser . 29
CORBA Object Activity Timeout (property) . . 55
CORBA Process Interface. 75

CORBA.BadParamExceptions (property) 54
CORBA.Calls (property) 55
CORBA.InitializeExceptions (property). 54
CORBA.InternalExceptions (property) 54
Creating

ACL Groups . 123
Principal Mappings 124

Credentials . 125

D
Daemons . 3
DB.JBDC.Driver (property) 47
DB.JDBC.AutoCreate (property) 44
DB.JDBC.ConnectionAttempts (property) 48
DB.JDBC.ConnectionRetryInterval (property). 49
DB.JDBC.Handler (property) 45
DB.JDBC.Logging (property). 47
DB.JDBC.Password (property) 48
DB.JDBC.Type (property) 45
DB.JDBC.URL (property) 47
DB.JDBC.User (property). 47
DB.WriteBatch (property). 44
DB.WriteInterval (property) 43
Default Trap Community (property) 72
Default Trap Port (property) 72

DefaultTrapCommunity (property). 72
DefaultTrapPort (property) 72
Delete

Nodes. 17
selected browser . 28

Delete Access Entries Globally. 140
Dependencies . 151
Directory Tree . 147, 150
Distributed Installation 31
Domain . 12, 147
Domain Configuration Parameters 9
Domain.dtd . 151
DynAnyFactory class . 91

creation operations . 91

E
Enable Dynamic Portable Interceptors (property)

56
Enable Traps (property) 71
Enable Write Access (property) 73
EnableDynamicInterceptors (property). 56

EnableTraps (property) 71
EnableWriteAccess (property) 73
Enter user identity . 28
Event Log option. 52

F
File

Browser . 28
option . 52

File Append (property) 51

File Backup Number (property) 51
File Maximum Size (property) 51
fileLocations (property group) 131
178
System Guide

�������	

 Index
G
Generic Security Service Username and Password

120
getValue() method . 76
Group Persistence File

Example . 124
GroupName . 151

Groups . 119, 123
groups (property) . 131
GSSUP . 120, 125
gssupCredential (property). 130
gssupUsers (property) 131

H
hsqldb . 101, 107

client/server. 108
HSQLDBObject .108

Name. .108
NoSystemExit .109

Port . 110
Silent . 110
Timeout. 109
Trace . 109

I
Identifiable interface. 117
IDL

compiling . 97
Implementation Name . 58
Implementation Repository 33
Incoming Call Count (property) 55
Informix . 101, 105
INITIALIZE Exception Count (property) 54
Instrumentation. 69
Interfaces . 141
INTERNAL Exception Count (property) 54

IOR Decoder . 111
IOR File Name (property) 64
IOR Name Service (property) 63
IOR Name Service Entry (property) 63
IOR URL (property). 63
IOR.File (property). 64
IOR.Name (property) . 63
IOR.Server (property) . 63
IOR.URL (property). 64
iorDecoder . 111

J
JAAS. 117, 128
JAAS Configuration File (property). 128
jaasLoginConfig (property) 132
jaasLoginConfigName (property) 132
JacORB. .96, 97, 98
jacorb.properties file. 33
Jar Files. .95
Java

IDL Compilation. 97
Properties . 59

Java Authentication and Authorisation Service117
Java Object

Properties . 160
Java Objects . 12, 149, 159

Adding . 16
Managing . 159

java.security.auth.login.config (system property) .
129, . 132

JavaObject interface . 159
JavaObject.dtd . 151, 160
JDBC Auto-create tables (property). 44
JDBC Connection Attempts (property) 48
JDBC Connection Retry Interval (property) . . . 49
JDBC Data Source . 101
179
System Guide�������	

 Index
hsqldb. 107
Informix . 105
Oracle. 103
SQL Server . 105
Sybase . 104

JDBC Database Type (property) 45, 101
JDBC Driver . 47, 101
JDBC Handler (property) 44, 101
JDBC Logging (property) 47, 101
JDBC Password (property) 48, 101
JDBC URL (property) 45, 101

JDBC User (property) 47, 101
JVM Flags (property) . 60
JVM Free Memory (property). 60
JVM Information (property) 59
JVM Total Memory (property) 60
JVM.Flags (property) . 60
JVM.FreeMemory (property) 60
JVM.Info (property) . 60
JVM.TotalMemory (property) 60
JVM.XBoot (property) 61

L
Launch

file browser . 28
Layout Managers. 155
License File . 12
Load CORBA Singletons on Startup (property) 56
LoadOnStart (property) 56
localhost . 10, 12
Locking

Nodes . 19
Properties . 18

Log
Layout . 155
Messages . 155

Log File (property) . 51
Log Layout (property) . 49
Log Level (property) . 53
Log Pattern (property) . 49
Log Plugin (property) . 52
Log Service

Plugin option . 52
log4j. 155

log4j.appender.Default (property). 53
log4j.appender.Default.Append (property) 51
log4j.appender.Default.Facility (property) 50
log4j.appender.Default.File (property) 52
log4j.appender.Default.layout (property) 50
log4j.appender.Default.layout.ConversionPattern

(property) . 49
log4j.appender.Default.LogID (property) 53
log4j.appender.Default.MaxBackupIndex

(property) . 51
log4j.appender.Default.MaxFileSize (property) 51
log4j.appender.Default.SyslogHost (property) . 50
log4j.rootLogger (property) 53
Logging Plugin

Event Log . 52
File. 52
Log Service . 52
Rolling File . 52
Syslog . 52

LoginModule. 120, 125

M
Manageable Resources 69
manager (script). 4, 8
manager.bat . 3, 8
Mandatory

Properties . 22
Mapping Principals . 120
Max Active Clients (property) 71

Max Packet Size (property). 70
MaxActiveClients (property) 71
MaxPacketSize (property). 71
Memory Profiler . 26
Multiple Object Identity 87
MySQL . 106
180
System Guide

�������	

 Index
N
Name (property) .108
New UUID . 25
No System Exit (property) 109
Node.dtd . 151
Nodes . 12, 147

Adding . 15

Deleting . 17
-noorb (Command Line Switch) 8
Notify Log ID (property) 53
Number of active CORBA objects (property) . . 55
Number of purged CORBA objects (property) . 55

O
object

creation . 84
creation flags. 86
deactivation . 87
destruction. 87
existence . 88
identity . 86
implementations . 88
information . 83
persistent state. .89
reactvation. 88
references . 88
stringification . 83

Object Browser. 29
Object Cache Maximum Size (property) 57
Object Cache Minimum size (property) 57
Object Cache Purge Interval (property) 57
Object Hierarchy 10, 31, 145

Extending . 15
Icons . 11

Object Purging (property). 56
ObjectAdapter class . 84

implementing an interface 92
initialization . 84
multiple object identity 87
object creation. .84
object deactivation . 87
object destruction . 87
object existence. 88
object identity .86
object implementation. 88
object persistent state 89
object reactivation. 88
object references . 88

ObjectRegistry.Interval (property) 58
ObjectRegistry.MaxSize (property) 57
ObjectRegistry.MinSize (property) 57
ObjectRegistry.Objects (property) 55
ObjectRegistry.Purge (property) 57
ObjectRegistry.Purges (property). 55
OF.Security.Password (system property). 131
OF.Security.UserName (system property) 131
OF_Admin_URL (property) 34
OF_DOMAIN_URL . 9
OF_DOMAINS_URL . 9
OF_DOMAINS_URL (property). 33
OF_NODE_URL . 9
OpenFusion Graphical Tools 7

Starting . 8
OpenFusion Install URL (property) 35, 36, 66
OpenFusion Java IDL Compilation 97
OpenFusion.Manager . 65
OpenFusionInstallURL (property) 66
Oracle . 101, 103
ORB

Daemons . 3
initialization . 82
shutdown. 83

ORB Initialization Arguments (property) 58
Orb.Name (property) . 58
ORBAdapter class . 82

object information. 83
object stringification . 83
ORB initialization. 82
ORB shutdown . 83
Recommendations . 90
restrictions . 90

ORBInitRef.ImplementationRepository (property)
181
System Guide�������	

 Index
33

P
PAM . 117, 125
Pattern Layout . 155
Persistence Properties . 43
persistent servers . 93
Persistent Storage . 101
PID (property) . 59
Pluggable Authentication Modules . 117, 120, 125
POA Name (property) 58, 65
POA.Name (property) 58, 65
-port (Command Line Switch) 8
Port (property) 59, 66, 70, 110
Portability classes . 81
Pre-load Properties (property) 67
PreLoadProperties (property) 67
Principal . 118, 137

Mapping. 120, 124
Principal Persistence File

Example . 124
principalMappings (property) 131
Principals Panel . 137
Process Interface . 75

ProcessSingleton Configuration 62
Properties . 21

Administration Manager 65
Assign Value Globally 25
Assign Value to Peers 24
Assigning Values. 23
Conditional . 23, 151
Java Properties. 59
Locking . 18
Locking Nodes . 19
Mandatory . 22
New UUID . 25
Persistence . 43
Refresh. 24
Reset Counter . 24
Security . 59
Set . 24
System . 61
Type. 21
XML File . 151, 160

Properties.dtd . 152

R
Read-only Community (property) 73
ReadOnlyCommunity (property) 73
Read-write Community (property) 73
ReadWriteCommunity (property) 73
Refresh . 24

current node . 28
selected browser. 28

Reload Security Configuration (signal). 122
-remote (Command Line Switch) 8
Remote OpenFusion Install URL (property)35, 36,

 . 67
Remote Singletons. 34
Remove a Principal from a Class or Method . 139
Remove All Principals from a Class or Method . .

140
Reset Counter . 24
Resolve Name (property) 64
ResolveName (property) 64
Restoring Services and Singletons 20
Rolling File option . 52
Root node . 12
RTOrb . 96, 97, 98
run script

command line format. 96
using . 96

Running OpenFusion . 3
RunOpenFusionInstallURL (property) 67
RunViaWebServer (property) 66
182
System Guide

�������	

 Index
S
Save

Configuration . 28
Save Changes to Security Access Entries 137
Securable Objects . 117
Secure Client . 130
Securing an Interface or Method 121
Security

Properties . 59
User Identity . 25

Security Access Entries 136
Security Configuration 127
Security Configuration File 130

Example . 132
Security Configuration File (property). 129
Security Credentials File

Example . 126
Security Credentials File (property) 129
Security Enabled (property) 127
Security Hierarchy Options 136
Security Manager . 133
Security Object Icons . 136
Security Principals . 137
security.ConfigFile (property) 130
security.Enabled (property) 128
security.UserDataFile (property) 129
security.UserDataFile (system property) 132
security.XMLACLPersistenceFile (property) . 129
security.XMLACLPersistenceFile (system

property) . 131
security.XMLGroupPersistenceFile (property) 128
security.XMLGroupPersistenceFile (system

property) . 131
security.XMLPrincipalPersistenceFile. 131
security.XMLPrincipalPersistenceFile (property) .

128
securityEnabled (property) 130
server

running . 90
running user defined . 94

server (script) . 5, 6
Server Persistent ID (property). 48
Server Port (property). 59, 66
Server Process ID (property) 59

Servers
Persistent. 93

serverSideLogin (property) 132
Service . 12, 148

Changing the Order . 18
Log . 25

service
resolving . 94

Service Portability . 81
Service Resolution . 83
Service Timeout (property) 68
Service.dtd . 152
Service.Timeout (property) 68
Services

Starting . 14
Set. 24
Shared File System. 33
SID (property) . 48
Signals . 25
Silent (property) . 110
Singleton.dtd . 152
Singletons . 12, 148

Adding . 16
Changing the Order . 18
Remote . 34

SNMP Agent . 70
SNMPAgentObject. 70
SQL Scripts . 102
SQL Server. 101, 105
Starting

Services. 4, 14
Status . 12
Status.Timeout (property) 68
StatusTimeout (property) 68
Stop current action . 28
Storage Write Batch Size (property) 43, 101
Storage Write Interval (property). 43, 101
Subject . 118
Supplying Authorised Credentials 125
Sybase. 101, 104
Syslog Facility (property). 50
Syslog Host (property) . 50
Syslog option . 52
183
System Guide�������	

 Index
System Name (property) 62
System Properties . 61
System Type (property). 61

System.Name (property) 62
System.Type (property) 61

T
Timeout (property) 55, 109
Tomcat Home Directory (property) 37
Tomcat Port (property) 39
Tomcat Security Policy File (property). 39
Tomcat WAR directory (property) 38
Tomcat WAR Files (property) 39
Tomcat Web Server. 34, 36
Tomcat Work Directory (property) 38
Tomcat.Archives (property) 39
Tomcat.Context (property) 38
Tomcat.Home (property). 38
Tomcat.PolicyFile (property) 39
Tomcat.Port (property) 39
Tomcat.WorkDir (property) 38
Tool Bar. 27

CORBA Object Browser 31

Tool Bar Button
Delete selected browser. 28
Launch the file browser 28
Refresh selected browser. 28
Refresh the current node 28
Save Configuration . 28
Stop current action. 28
View the browser log 28

Tool Bar Buttons. 137
Tool Tips . 11
Trace (property) . 109
Trap Hosts File (property). 71
Trap On Authentication Failure (property) 72
TrapHostsFile (property). 71
TrapOnAuthenticationFailure (property) 72
Type . 21

U
Unlicenced

Java Object. 12
Singleton . 12

Use Xbootclasspath (property) 61

User Identity . 25
User Name (property) . 61
User.Name (property) . 61

V
View browser log . 28

W
Web Archives . 37 Web server . 34

X
Xbootclasspath . 61
XML

Configuration Files 111, 145
Schema. 151
Templates. 150

XML ACL Persistence (property). 129
XML Group Persistence (property) 128
XML Group Persistence File

Example. 124
XML Principal Persistence (property) 128
184
System Guide

�������	

 Index
XML Principal Persistence File Example . 124
185
System Guide�������	

 Index
186
System Guide

�������	

	System Guide
	Table of Contents
	List of Figures
	Preface
	About the System Guide
	Organisation
	Contacts

	Common System Operations
	1 Running Servers
	1.1 Starting Servers from the Administration Manager
	1.2 Starting Servers from the Command Line

	2 OpenFusion Graphical Tools
	2.1 The Browser Framework
	2.1.1 Starting the Administration Manager
	2.1.1.1 Command Line Switches
	2.1.1.2 Domain Configuration Parameters

	2.2 Administration Manager
	2.2.1 Object Hierarchy
	2.2.1.1 Tool Tips
	2.2.1.2 Object Hierarchy Icons
	2.2.1.3 Status
	2.2.1.4 Starting the Services
	2.2.1.5 Extending the Object Hierarchy

	2.2.2 Locking
	2.2.2.1 Locking Nodes
	2.2.2.2 Locking Properties

	2.2.3 Restoring Services and Singletons
	2.2.4 Properties
	2.2.4.1 Type
	2.2.4.2 Mandatory
	2.2.4.3 Accessibility
	2.2.4.4 Conditional Properties
	2.2.4.5 Assigning Values to Properties
	2.2.4.6 Actions that Can be Performed on Properties
	2.2.4.7 Signals

	2.2.5 User Identity
	2.2.6 Service Log
	2.2.7 Memory Profiler
	2.2.8 Tool Bar Options

	2.3 The CORBA Object Browser
	2.4 Distributed Installation Configuration
	2.4.1 The Central Configuration Host
	2.4.2 Using a Shared File System
	2.4.2.1 Set up the Central Host
	2.4.2.2 Implementation Repository
	2.4.2.3 Environment Properties

	2.4.3 Using a Web Server
	2.4.3.1 Set up the Central Host
	2.4.3.2 Configure Remote Singletons
	2.4.3.3 Set the Central Host Properties
	2.4.3.4 Set up the Remote Machine
	2.4.3.5 Working with Central Configuration

	2.5 Tomcat Web Server Integration
	2.5.1 Deployment of Web Archives
	2.5.2 Security
	2.5.3 Deploying Java Server Pages
	2.5.4 Configuration
	2.5.5 Testing the Tomcat Installation

	3 Common Configuration Properties
	3.1 Persistence Properties
	3.2 Logging Properties
	3.3 CORBA Properties
	3.4 Security Properties
	3.5 Java Properties
	3.6 System Properties
	3.7 Common Singleton Properties
	3.8 Administration Manager Properties
	3.8.1 CORBA Properties
	3.8.2 Configure Properties
	3.8.3 General Properties

	4 Instrumentation
	4.1 Overview
	4.1.1 Manageable Resources
	4.1.2 Object Counters

	4.2 SNMP Agent
	4.2.1 Configuring the SNMP Agent
	4.2.2 Notifications
	4.2.3 Trap Hosts File
	4.2.4 Starting the SNMP Agent
	4.2.5 Stopping the SNMP Agent
	4.2.6 OpenFusion MIBs

	4.3 CORBA Process Interface
	4.3.1 Using the Process Interface
	4.3.1.1 Example Program

	5 Service Portability
	5.1 Portability Classes
	5.1.1 The ORBAdapter Class
	5.1.1.1 ORB Initialization
	5.1.1.2 ORB Shutdown
	5.1.1.3 Object Information
	5.1.1.4 Object Stringification
	5.1.1.5 Service Resolution

	5.1.2 The ObjectAdapter Class
	5.1.2.1 Initialization
	5.1.2.2 Object Creation
	5.1.2.3 Object Identity
	5.1.2.4 Multiple Object Identity
	5.1.2.5 Object Deactivation
	5.1.2.6 Object Destruction
	5.1.2.7 Object Reactivation
	5.1.2.8 Object Existence
	5.1.2.9 Object References
	5.1.2.10 Object Implementations
	5.1.2.11 Persistent Object State
	5.1.2.12 Running a Server
	5.1.2.13 Restrictions
	5.1.2.14 Recommendations

	5.1.3 The DynAnyFactory Class
	5.1.3.1 Creation Operations

	5.1.4 Implementing an Interface
	5.1.5 Persistent Servers

	5.2 Running User Defined Clients and Servers
	5.2.1 Resolving Services
	5.2.2 Jar Files
	5.2.3 Using OpenFusion Run Scripts
	5.2.4 Command Line Format

	5.3 OpenFusion Java IDL Compilation
	5.4 C++ Support

	6 Configuring Persistent Storage
	6.1 Configuring a JDBC Data Source
	6.2 Oracle
	6.2.1 Oracle Thin Drivers
	6.2.2 Oracle OCI Drivers

	6.3 Sybase
	6.4 Informix
	6.5 SQL Server
	6.6 MySQL
	6.7 hsqldb
	6.7.1 Create an hsqldb Instance
	6.7.2 Configure OpenFusion Services to Run with hsqldb Persistence
	6.7.3 hsqldb in Client/Server Mode
	6.7.3.1 Name
	6.7.3.2 Timeout
	6.7.3.3 Trace
	6.7.3.4 No System Exit
	6.7.3.5 Silent
	6.7.3.6 Port

	6.7.4 Restoring Data

	7 Command Line Tools
	7.1 IOR Decoder
	7.2 Administration Manager Tool
	7.3 Configuration Generator

	Security Service
	8 Description
	8.1 Concepts and Architecture
	8.1.1 Securable Objects
	8.1.2 Authentication
	8.1.3 ACLs
	8.1.4 Groups
	8.1.5 Mapping Principals
	8.1.6 LoginModule

	9 Using Specific Features
	9.1 Securing an Interface or Method
	9.1.1 Excluding Methods from the Security Manager

	9.2 Creating ACL Groups
	9.3 Creating Principal Mappings
	9.4 Supplying Authorised Credentials

	10 Security Configuration
	10.1 Configuring a Secure OpenFusion Service
	10.1.1 Security Administration Manager Properties

	10.2 Configuring a Secure Client
	10.2.1 Security Configuration File Properties

	11 Security Administration Manager
	11.1 Starting the Security Administration Manager
	11.2 Using the Security Administration Manager
	11.2.1 Object Hierarchy
	11.2.1.1 Security Hierarchy Options
	11.2.1.2 Excluding Methods from the Object Hierarchy

	11.2.2 Tool Bar Buttons
	11.2.3 Principals Panel
	11.2.3.1 Operations
	11.2.3.2 Implementing Security Configuration Changes
	11.2.3.3 Interfaces

	Appendices
	A XML Configuration Files
	The Object Hierarchy
	Completing the XML File Installation
	Directory Tree

	XML Files
	Domains and Nodes

	XML Templates
	Directory Tree
	Defining a Property in the XML File

	XML Schema
	Command Line Configuration

	B Log Messages
	Using a Pattern Layout
	Conversion Characters

	C Managing Java Objects
	Creating the Java Object
	Describing the Java Object in XML
	Defining Properties for the Java Object
	The Object Hierarchy

	Glossary
	Index

