OpenFusion
RTOrb Java™ Edition

Version 1.5

Product Guide

v PRISMTECH

OpenFusion
RTOrb Java™ Edition

PRODUCT GUIDE

& PRISMTECH

Part Number: RTJ-PG Doc Issue 49, 15 April 2011

Copyright Notice
© 2011 PrismTech Limited. All rights reserved.
This document may be reproduced in whole but not in part.

The information contained in this document is subject to change without notice and

is made available in good faith without liability on the part of PrismTech Limited or
PrismTech Corporation.

All trademarks acknowledged.

ii
& PRISMTECH Product Guide

CONTENTS

Table of Contents

Preface

I ntroduction

About thisProduct GUIde. Xi
@01 1= ox £ Xii

OpenFusion RTOrb Java(tm) Edition 3
What iISREal-IIME? ... e e e e 3
How RTOrb Providesfor Real-time 4
Features, Standardsand Compliance 4
Scopeof thisGuidefor RTOrb. ... e 5

| nstallation and Configuration

Chapter 1

Chapter 2

& PRISMTECH

Installation 9
L.0.1 ConNVENLIONS. . . o\ vttt e e et e e e 9
Ll PrereqUISItES . .ottt e 9
111 Operating SystemsS. oottt e 10
112 SystemVariables. 10
1.2 Installation Proceduret 10
L2 GENeral. ..o 10
122 Preparalion. . ..ottt e 11
123 Installation. 11
1231 IngtalingUsingGUI Mode 11
1.2.3.2 Instaling Using Command LineMode 11
1.2.4 Install theLicenceFile. e 12
1.2.5 Testingthelnstallation i, 13
L3 uningtaling e 13
Configuration 15
2.1 Configuration Optionsand Properties................ ... 15
200 ORB MOUES. . oottt e e e e e e 17
2000 EnterpriSeMOodeo 17
2112 Soft Red-TimeMode. e 17
2113 HardRea-TimeMode e 19
2.1.1.4 MultipleORBsinaSingleIVM. i 20
2.1.2 Configuration Properties 20
2.1.3 Threadpool Configuration.ttt 27
2.1.4 Messaging Configuration.ouu e 27
215 Object KEy Map. . ..o 28

\'

Product Guide

Table of Contents

LOgOING .« o ittt e 28
Configuring OpenFusion CORBA Services.covviivnnnnnn.. 29

Real-time Programming

Reviewing CORBA Concepts 33
BasiCCoNCEPLS . ..o 33
The ORB . ..o e 33
Distributed Object Computing. 33

T AN DA ENCIES . . ottt ettt e 34
Distributed Object Computingand CORBA.. oout. 36
Interfaces 36
Programming with CORBA Interfaces., 37
Delivering RequestsUsinganORB., 39

ORB ComPONeNtS . .. ot e 39
ADSIraction 40
Terminology Explained. i 41
Clientsand Servers.o 42

Object References. 42

First Class Objectsand Pseudo Objects. 43
Portable Object Adapter ... e 44
How the POA WOrKS.o e 45

POA Configuration. i e 46

POA POlICIES . . .o 46
Standard POA Policies. 46

POA Policy SUMMArYt et e e 47

POA Manager .« ..ot e e 48
Object References, Keys,and IDs. 48

S VANES . . . et 48
Object Creation and Activation. 48
REQUESE PrOCESSING . . . o oo e e e e e 49
Introduction to Real-time Systems 51
Real-time Systems. 51
Time- and Event-Triggered Systems. 52
Developing Real-time SystemswithRTOS 52
Predictability in Distributed Applications. 54
Featuresand Non-Determinism.t 54
Introduction to Real-time CORBA 57
Real-time Specification. i 57
Rea-timeCORBA Modules.t 57

v & PRISMTECH

Product Guide

Table of Contents

Rea-timeORB 58
Thread Scheduling. i e 58
Real-time CORBA Priority e e e 58
Native Priority and PriorityMappings.t 58
User-defined PriorityMappingscooii e 59
Rea-time CORBA CUITeNntt e 59
Priority MOJEIS 59
Real-time CORBA Mutexes and Priority Inheritance. 60
Threadpools. . .. oo e 60
Priority Banded Connections. oo 61
Non-Multiplexed CONNeCLioNS.ot 61
INVOCAioON TIMEOULSttt 61
Client and Server Protocol Configuration. 61
Real-time CORBA Configuration., 61
Real-time Portable Object Adapters. i L. 62
Priority Model 62
RTPOA . 62
POA Activation Methodswith Priority 62
Threadsand Threadpools. i 62
CUITENt . . 62
Threadpools 62
Thread Pool OperationBasicMode. 63
Laned Threadpoolo 64
Priority Banded CONNeCtionsoiii i 64
RTPOA CUIment.o e e 64
Associations Between Poolsand RTPOA oot 64
Priority Machinery e 65
Priority Phenomenaand Protocols. oL 65
CORBA Prionity . . oottt e e 68
CORBA MULEX . . ot i ettt e e e e e e e 69
Mutex NotifiesSinRT CORBA e 69
Why Mutex HasaPriority Protocol 69
The Real-time CORBA Mutex Interface. 70
Introduction to Real-time Java 71
Real-timeExtensiontoJavat 71
Thread Scheduling and Dispatching, 71
Memory Managementt e 72
SYNCIrONIZAtioNt 73
AsynchronousEventHandling i, 73
Asynchronous Transfer Of Control it 73
Asynchronous Thread Termination.ciou... 73
VII

& PRISMTECH Product Guide

Table of Contents

Physical MemOory ACCESS. . .. oottt e 73
Further Reading and Examplesinformation 74

Programming with RTOrb

Using the ORB 77
INtroduction 77
AdVICENOLES. . . o 78
CONVENTIONS. . . .ttt e e e e 79
UsingthelDL Compiler.t 79
Compiling Applications. e 81
System and Environment Settings. 81

Java Compiler 81
CommoN ReqQUITEMENESot 81

Sun Java Real-Time System Requirements. 81

IBM WebsphereReal TImeJVM. it 82
Deploying and Running Applications. 82
RTOrb RUNSCriptsS . ..o 82
SunJavaReal-timeSystem 83

IBM WebsphereReal TimeJVM. i, 83
RESOIVING SEIVEIS . .ot t 84
Application CreationExample i, 84
Running OpenFusion CORBA Services., 87
Creating Applications 89
General .. 89

A SimpleNon Real-Time Application 89
IDL Specification i 90
Javalmplementation 91
SEIVEr-SIOE. . oot 91
ClieNt-Side . . oo 92

A Simple Soft Real-time Application 94
SErVEr-SIde. . .. 95
Client-sideo 100

A SimpleHard Real-time Application 102
SEIVEr-SIOE. . oot 102
Client-Side . . oo 108

APl Enhancements 115
Classesand Methods.o e 115
Vauetypesand Factories. 116
EXaMples. ..o e 117
a & PRISMTECH

Product Guide

Table of Contents

Bibliography 123
Index 127

iX

& PRISMTECH Product Guide

Table of Contents

; &
Product Guide PRISMTECH

Preface
About this Product Guide

This Product Guide provides instructions and information needed to install,
configure and use OpenFusion RTOrb Java(tm) Edition.

Intended Audience

The Product Guide is intended to be used by software devel opers who wish to use
RTOrb to develop CORBA-based, real-time distributed applications in Java. RTOrb
can also be used as a conventional, non real-time, high performance enterprise Java
ORB for developers who do not need real-time capabilities.

Organisation

This Product Guide is divided into three major sections: Installation and
Configuration which provides information on installing and configuring RTOrb;
Real-time Programming provides background information on CORBA, Java and
real-time programming; and Programming with RTOrb which describes how to
create applications using RTOrb.

Conventions

& PRISMTECH

The conventions listed below are intended to guide and assist the reader in
understanding the Product Guide.

Item of special significance or where caution needs to be taken.
Item contains helpful hint or special information.

Information applies to Windows (e.g. XP, 2003, Windows 7) only.
Information appliesto Unix-based systems (e.g. Solaris) only.
Java language specific.

Hypertext links are shown as blue italic underlined.

On-Line (PDF) versions of this document: Items shown as cross-references to other
parts of the document, e.g. Contacts on page xii, behave as hypertext links: jump to
that section of the document by clicking on the cross-reference.

% Commands or input which the user enters on the
conmand |ine of their conputer term nal

Couri er, Courier Bol d, or Couri er |talic fontsindicate programming code.
The Couri er font also indicates file names.

Xi
Product Guide

Preface

Extended code fragments are shown as Cour i er font in shaded boxes:
NanmeConponent newNane[] = new NaneConponent|[1];

[l set id field to “exanple” and kind field to an enpty string
newNane[0] = new NaneConponent (“exanple”, “*);

r oot Cont ext . bi nd (newNane, denpCbject);

Italics and Italic Bold indicate new terms or emphasise an item.
Sans-serif Bold indicates user-related actions, such as File > Save from a menu.

Sep 1: Oneof several steps required to complete a task.

xii

Product Guide

Contacts

PrismTech can be reached at the following contact points for information and
technical support.

USA Corporate Headquarters European Head Office

PrismTech Corporation PrismTech Limited

400 TradeCenter PrismTech House

Suite 5900 5th Avenue Business Park

Woburn, MA Gateshead

01801 NE11 ONG

USA UK

Tel: +1 781 569 5819 Tel: +44 (0)191 497 9900
Fax: +44 (0)191 497 9901

Web: http: //www.prismtech.com

Technical questions: crc@prismtech.com (Customer Response Center)

Sales enquiries: sales@prismtech.com

& PRISMTECH

http://www.prismtech.com
mailto: crc@prismtech.com
mailto: sales@prismtech.com

INTRODUCTION

OpenFusion RTOrb Java(tm) Edition

The OpenFusion RTOrb Java(tm) Edition brings together two powerful

technologies: Real-time Java and Real-time CORBA. Real-time Java provides the
power, flexibility and convenience of a platform independent, real-time language.
Real-time CORBA provides the means of exploiting the benefits of Real-time Java
within a distributed, platform independent real-time architecture.

The OpenFusion RTOrb Java(tm) Edition product (RTOrb, for short) combines the
real-time Java language and real-time CORBA architecture into a single technology
which can produce real-time, distributed applications which are deployable across
diverse platforms with the minimum of effort.

What is Real-time?

&4 PRISMTECH

There are several definitions available which state what real-time means, such as:

“Immediate, as an event is occurring.” 1,

“The actual time during which physical eventstake place.” 2

“The processing and visibility of transactions and information as they occur,
and not on a periodic or batch basis.”®

“...computer systems that update information at the same rate as they receive
data...”*

Current computer systems have physical restrictions which limit the ability to
process information immediately, “as an event is occurring” - there are the
inevitable processing speed and resource limits which affect how fast data can be
processed. For the purpose of programming actual real-time applications, a more
realistic definition of real-time has been adopted:

An application for which the requirements, design, or developers state that
execution of application logic must or should occur within well-defined
temporal conditions.”

Or in other words, the processing or completion of tasks is not instantaneous, but
occurs within pre-defined time limits. This definition accepts the physical realities
of our present computing machines and systems.

http://www.hg.nasa.gov/office/pao/History/presrep95/r.htm

http://www.tel emet.com/weather_gloss_q r.htm
http://sun2.lenoir.cc.nc.us/~disted/distermc.htm

The American Heritage® Dictionary of the English Language, Fourth Edition, © 2000
Houghton Mifflin Company.

This definition is as given in Taking the Java™ Language into Uncharted Waters:
Project Mackinac, Sun’s RTSJ Implementation, Bollella et. al., Sun Microsystems, Inc.

3
Product Guide

PO PE

ol

Introduction

However, to complicate and possibly confuse matters, two different types of
real-time have been identified, each relating to their ability to meet “well-defined
temporal conditions’. The type are:

* hard real-time where the execution of the application logic must always meet the
temporal requirements,

« soft real-time where the execution of the application logic may sometimes meet
the temporal requirements.

A system where there are no well-defined temporal conditionsisreferred to asanon
real-time system.

These definitions are important (even if they appear to complicate matters) since
they provide flexibility as to the tempora stringency and capability which a system
will be designed to achieve. Some systems must perform strictly within the temporal
limits, whereas others can be more flexible, appreciating that it is likely to be more
difficult and costly to create the more stringent systems.

How RTOrb Providesfor Real-time

The language and architectural components of RTOrb address the practical issues of
developing real-time applications for the real world, whether they need to meet the
more demanding hard real-time requirements or the less demanding soft ones.
Real-time Java and Real-time CORBA address the respective practical aspects of
achieving hard or soft real-time requirements for distributed systems. Some aspects
include:

 end-to-end predictable execution, thread scheduling and dispatching, along with
the provision of distributable threads

* resource management, particularly memory management and allocation

* synchronisation, resource sharing and avoidance of priority inversi ont

« asynchronous event handling, transfer of control and thread termination

* interoperability and portability

Features, Sandards and Compliance

The OpenFusion RTOrb Java(tm) Edition product complies with the following
standards and specifications:

* OMG CORBA Specification, version 3
» GIOP Specification, version 1.3
* OMG Rea-Time CORBA Specification, version 1.2

1. These aspects are to ensure that things happen in the correct sequence in order to meet
specified temporal requirements.

4

Product Guide &4 PRISMTECH

Introduction

» Real-Time Specification for Java, version 1.0

RTOrb complies with the following specific areas of the specifications:
* IDL Compiler (compliant with CORBA 2.3 specification)

* ORB Interface

« Vaue Type Semantics

Abstract Interface Semantics

¢ DynAnys

Interface Repository

Portable Object Adapter

Interoperability Overview

ORB Interoperability Architecture

Portable Interceptors

CORBA Messaging (Messaging Quality of Service, Propagation of Messaging
QoS)

* ETF

Please note, however, that RTOrb does not yet support:

* CORBA Component Model (component, event, home)

* policy domains
* message routing & ordering

« DCE ESIOPR, Interworking, COM-CORBA or Automation mapping,
Interoperability with non-CORBA systems

« fault tolerance or secure interoperability
* real-time scheduling

* Object Reference Templates

 DII/DSI

o AMI

* BiDirectiona GIOP

Scope of thisGuidefor RTOrb

The goal of this guide isto help developers use RTOrb as quickly and effectively as
possible. Its scope includes essential background information, in addition to
installation, configuration and usage information.

5

& PRISMTECH Product Guide

Introduction

6
Product Guide

It is beyond the scope of this manual to provide full coverage of RTOrb’'s underlying
technologies, such as explaining real-time programming techniques and theory, or
covering the Real-time Java or Real-time CORBA specifications. Information on
these topicsis available in the various documents listed in the bibliography.

This guide provides a technological overview which developers and architects can
use as a starting point for understanding the intricacies of writing distributed, hard
or soft real-time, CORBA-based, Java programs.

A number of useful, if not essential, references are provided in the Bibliography:
readers are encouraged to use these references to develop understanding of this
powerful technology.

& PRISMTECH

INSTALLATION AND
CONFIGURATION

CHAPTER

| nstall ation

This chapter describes how to install OpenFusion RTOrb Java(tm) Edition
(RTOrb). Please follow the procedures carefully.

The RTOrb installation files can be downloaded from the PrismTech Web site
(www.prismtech.com).

Conventions

The following conventions are used in this chapter:
e Commonly used directories are shown as:
<CFJ_DI R> - where RTOrb isor will be installed
<JAVA HQOVE> - root directory of the Java Virtual Machine (JVM) installation

» The directory paths and environment variable separator shown here use the UNIX
forward-slash (/) and colon (:) separator conventions; Windows™ users should
replace these separators with the standard DOS back-slash (\) and semi-colon
(;) separators.

* |tems which are unique to UNIX or Windows are shown using the UNIX Only or
Windows Only icons, respectively. For example:

> SET CLASSPATH=. ; %CLASSPATHY

UNIX % CLASSPATH=. : $CLASSPATH;, export CLASSPATH

Prerequidtes
RTOrb depends on underlying services and technologies. If these services and
technologies are not properly installed and configured, then the OpenFusion RTOrb
Java(tm) Edition cannot perform as intended. Accordingly, please check that your
system meets each of the prerequisites described below before installing
OpenFusion RTOrb Java(tm) Edition.

i The currently supported platforms are listed on the RTOrb Supported Platforms web
page. The Supported Platforms web page can be accessed from the index.html page
located in the root directory where RTOrb isinstalled (<OFJ_DI R>).

Please refer to Supported Platforms and other Release Notes pages for the latest
information about this distribution.
& PRISMTECH 9

Installation and Configuration

http://www.prismtech.com

1 Instalation 1.2 Installation Procedure

Operating Sysems
For an up-to-date list of the operating systems that are supported by this release of

OpenFusion RTOrb Java(tm) Edition please see platforms.html in the
documentation directory.

& If RTOrb is used as a real-time ORB, then it must be installed on a real-time
platform with areal-time JVM conforming to the Real-Time Specification for Java
(RTSJ). The examples and settings given here show the IBM Websphere Real-Time
JVM: if required, users should replace these settings with those used by their own
real-time.

System Variables
The PATH and CLASSPATH environment variables must be set as described bel ow.

The PATH must include:
» the directory where the Javainterpreter islocated (i.e. <JAVA HOVE>/ bi n)
* the directory where RTOrb'’s scripts are or will be located (<OFJ_DI R>/ bi n)

The CLASSPATH must include:
* the current directory reference, indicated by the full-stop or period character (".").
i The ORB implementation codeisin| i b/ endor sed/ of j . j ar : it is not necessary
to manually add of j . j ar to the classpath since the RTOrb scripts handle this.
Example Environment Variable Setting usng the |BM Websphere JVM with RTOrb
Where:
/ opt / myOFJ isthe directory where RTOrb is or will beinstalled and

/usr/1ocal/jo9rt isthedirectory where the IBM WebSphere Real Time RT
Linux isinstalled

% PATH=/ opt/ nyOFJ/ bin:/usr/|ocal /j9rt: $PATH
% export PATH

% CLASSPATHE.

% export CLASSPATH

Ingallation Procedure

General

All installed RTOrb files are placed in the RTOrb installation directory specified
during installation - no files are stored in any of the UNIX system directories.

1. Inother words, running RTOrb in its real-time mode (see ORB Modes on page 17.)

10

Installation and Configuration 4 PrismTecH

1 Installation 1.2 Installation Procedure

RTOrb isinstalled using a Java-based Set up program. This program can be run
using a Graphical User Interface (GUI Mode) or from the command line (Command
Line Mode) which enables the install ation to be run from a script.

Preparation
It is recommended that any existing RTOrb installation be removed before installing
the current version (see Uninstalling on page 13). Please note the following
warning.

& Uninstalling OpenFusion RTOrb Java(tm) Edition removes all RTOrb files,
including the executables, licence, configuration, and datafileslocated in the RTOrb
sub-directories. If these files are required, then they should be backed-up prior to
uninstalling.

Ingtallation

As described above, RTOrb can be installed using an interactive graphical user
interface (GUI Mode) or using commands entered on the command line (Command
Line Mode). Using GUI Mode is generally the more popular method, however the
Command Line Mode is useful when automating the installation with a script.

Installing Using GUI Mode
Sep 1. Runj ava Set up (without any options) from the command line, as follows:

Change to the directory containing RTOrb’s Set up. cl ass or Set up. j ar. Set up
can be run directly on the command line or from a script:

% java Setup

Thiswill display the RTOrb installation’s graphical user interface.

Sep 2: Follow the instructions displayed in the GUI, selecting the services and components
you want to install.

Installing Using Command Line Mode
Sep 1. Runj ava Set up from the directory selected above with the options shown below.

Change to the directory containing the RTOrb Set up. cl ass or Set up. j ar.
Set up can be run directly on the command line or from a script.

 For JDK versions prior to JDK version 1.6, use:

% java Setup <-list | [<OFJ_DI R> [conponents]]>

1

K4 PrismTec Installation and Configuration

1 Instalation 1.2 Installation Procedure

e For JDK version 1.6 or later, use:

% java -jar Setup.jar <-list | [<OFJ_DI R> [conponents]]>

where

-1i st will list all available services and components, without performing the
installation

<OFJ_DI R> isthe directory where RTOrb isto beinstalled

[component s] isthelist of components and services to be installed; if no
components are specified, then all components will be installed

Example 1

List all available services and components
% java Setup -list

Example 2

Install all services and componentsto/ opt / myOFJ.

% java Setup /opt/nyOFJ

Example 3
Install the Naming Serviceto/ opt / my OFJ.

% java Setup /opt/nmyOFJ Nam ng

Ingtall theLicenceFile

A valid RTOrb license file must be placed into the <OFJ_DI R>/ et ¢ directory after
RTOrb has been installed. Please note that OpenFusion RTOrb Java(tm) Edition will
not run without a valid licencefile.

Licence files are provided by PrismTech for services or products which have been
purchased. Contact PrismTech for purchasing details (see Contacts on page xii).

Evaluation licences are provided when an OpenFusion product is downloaded from
the PrismTech Web site (at www.prismtech.com.)

12

Installation and Configuration 4 PrismTecH

http://www.prismtech.com

1 Instalation

1.3 Uninstalling

Testing the Ingtallation

The RTOrb installation can be tested by checking:

e the RTOrb is running properly by running an example (refer to
<OFJ_DI R>/ exanpl es/ i ndex. ht M). The examples can be run from any
directory since the precompiled RTOrb examples arein the of j . j ar file (which
is placed in the classpath by the RTOrb run scripts).

» For example, using the non real-time Hello example, run the Server and Client
programs in separate windows.

% run com prisntech. of j . exanpl es. cor ba. hel | 0. Server
% run com prisntech. ofj.exanpl es. corba. hell 0. d i ent

If both Server and Client run successfully, the Server window should display:

G eetingServer running... awaiting calls
G eetingService called by Client hello Cient

Uningalling

A

Sep 1:
Step 2:
Step 3:

&4 PRISMTECH

This section describes the procedure for uninstalling the OpenFusion RTOrb
Java(tm) Edition.

Uninstalling RTOrb removes all RTOrb files, including the executables, licence,
configuration, and data files located in the RTOrb sub-directories. If these files are
required, then they should be backed-up prior to uninstalling.

Stop any running OpenFusion services.

Backup any data, licence or other required files which are in the OpenFusion
directories.

Run theuni nst al | utility (located in the bi n directory):

% <OFJ_DI R>/ bi n/ uni nstal |

Windows users can also use Start | Programs | OpenFusion | Uninstall
OpenFusion to start the utility.

The utility displays a confirmation dialogue box which asks if you wish to proceed
with uninstallation. Clicking the Yes button will uninstall RTOrb.

13
Installation and Configuration

1 Installation 1.3 Uninstalling

14

Installation and Configuration 4 PrismTecH

CHAPTER

Configuration

Configuration Optionsand Properties

& PRISMTECH

Although RTOrb’s internal settings are pre-configured with standard or typically
used values (which enables RTOrb to be installed as quickly and easily as possible),
these settings can be given user-defined, custom values to meet specific operational
and application requirements.

A user’s custom properties file can be loaded into RTOrb by passing the properties
file's pathname to RTOrb’s cust om pr ops property: in other words, the value of
cust om pr ops isthe path to the propertiesfile that contains alist of the properties
that should be loaded by RTOrb.

Being able to load a custom properties file can be useful for application-specific
settings which need to be distributed with the code.

RTOrb’s user-configurabl e options and properties can be set:
* using the command line

-dlows system properties to be assigned by passing the
- D<property>=<val ue> switch to the program. When using the supplied
run orrunrt scripts, thisshould be the first argument.

e programmatically by passing Properti es objects to ORB. i nit() using the
form:
Properties props =
new Properties(System getProperties());
props. set Property ("PropertyKey", "PropertyValue");
org.ong. CORBA.ORB orb = ORB.init(args, props);

* passing values to RTOrb as program arguments. The arguments that are accepted
in this way ae ORBid, ORBInitRef, ORBDefaultlnitRef,
ORBLi st enEndpoi nt's and ORBpriorityrange. Note that
ORBpri orityrange is not described in the CORBA 3 specification. Also note
that:

- ORBi d <name> overrides the default ORB ID to set the name of this ORB. The
default ORB ID uses the form OFJ<n>, where <n> is an integer which starts
at 0 and isincremented for each default ID.

15
Installation and Configuration

2 Configuration

16

2.1 Configuration Optionsand Properties

- ORBLi st enEndpoi nt s sets the interface for the RootPOA to listen on. The
format for ORBLi st enEndpoi nts <argval > is

<ar gval > : = <host nanme>: <portspec> | <portspec>

<portspec> := <portnum> | <portnune, <portnunw

<host nane> : = STRING | | PADDRESS

<portnunt : = | NTEGER

ORBLi st enEndpoi nts overrides the ofj.etf.default-port_|ow
ofj.etf.default-port_high and ofj.etf.default-host properties.
For instance, if - ORBLi st enEndpoi nt 1234 has been specified this will
override the port properties (if set).

If ofj.listen-on-all-interfaces istrue (the default), the ORB will
listen on al interfaces on port 1234.
If listen-on-all-interfaces isoff the ORB will listen on the default

interface on port 1234.

If - ORBLi st enEndpoi nt 192.168. 100. 100: 1234 has been set this will
force the ORB to only listen on the above interface and port.

A child POA will use the RootPOA's listeners unless it has been created with a
Server Protocol Policy. This policy will contain one or more Protocols, each of
which will specify an interface on which the child POA will listen. Child POAs
do not inherit listeners from parent POAS.

For example:

ORBLi st enEndpoi nt's 12000 to listen on port 12000

ORBLi st enEndpoi nts 12000, 14000 on ports 12000 through 11400,
inclusive

- ORBpri orityrange alows the user to specify a minimum and maximum
priority to use in the real-time ORB.

Examples of ther un and r unrt commands are:

% run com prisntech.of]j.exanpl es. corba. hell 0. Server -ORBid ofj27

% runrt com prisntech. ofj.exanpl es. corba. hel | 0. Server -CORBi d
of j 27

using RTOrb’s configuration file

- the configuration file, of j . properti es, islocated in <OFJ_DI R>/ cl asses
- assign property values using the form of pr op=val ue (without spaces)

& PRISMTECH

Installation and Configuration

2 Configuration

A

2.1 Configuration Optionsand Properties

Properties are set in order: properties loaded later will override properties loaded
earlier. In addition to the different methods of loading properties files (as described
above), there are also several different properties files located in different
directories. The propertiesfiles are loaded into RTOrb in the following order:

configuration fileinj ava. hone/ i b

configuration filein user . hone

configuration file on the classpath

custom properties file named in cust om pr ops

command line properties

programmatically by passing Pr operti es objectsto ORB. i ni t ()

ORB Modes

OpenFusion RTOrb Java(tm) Edition supports one non-real-time mode and two
real-time modes of operation. Each of these modes offers different levels of
determinism and ease of use. The modes are:

e Enterprise Mode - In this mode, RTOrb functions as a conventional,
non-real-time ORB.

» Soft Real-Time Mode - This mode offers soft real-time determinism combined
with ease of use comparable with conventional programming in the Java
environment.

» Hard Real-Time M ode - This mode offersvery high levels of determinism, but is
the most complex to program.

Enterprise Mode

Enterprise mode has been designed to enable RTOrb to be used as a replacement for
non-real-time ORBs enabling a single ORB to meet the full range of project
reguirements.

Set the following properties as shown to run RTOrb as a non real-time enterprise
ORB:

or g. ong. CORBA. ORBCl ass=com pri sntech. ofj . orb. ORB

or g. ong. CORBA. ORBSI ngl et onCl ass=com pri snt ech. of j . or b. ORBSi ngl et on
Note that Enterprise Mode is the default which is set by the RTOrb r un script (see
RTOrb Run Scripts on page 82).

Soft Real-Time M ode

&4 PRISMTECH

The soft real-time mode has been designed to meet the needs of users who are
developing systems that have soft real-time characteristics. When used in
conjunction with a JVM with a real-time garbage collector, performance
characteristics suitable for soft real-time systems can be achieved whilst retaining

17
Installation and Configuration

2 Configuration 2.1 Configuration Optionsand Properties

the memory management techniques of conventional Java applications. The soft
real-time mode is therefore significantly easier to use than the other real-time modes
supported by OpenFusion RTOrb Java(tm) Edition.

Memory Management
The soft real-time mode isaso called the "Full Heap mode”. All internal objects and

all objects returned to the application are conventionally allocated in heap memory.
All internal threads are javax.realtime.RealtimeT hreads and run in heap memory.

The methods of the ORB, of the POAs and of the CORBA objects have been
designed to be called in any of the memory types supported by the RTSJ (Immortal
Memory, Scoped Memory), but the soft real-time mode has been designed to be
called only in heap memory. If your application carries out memory management
and runsin Immortal or Scoped Memory, you should use hard real-time mode.

The methods of the ORB, of the POAs and of the CORBA objects can becaledina
standard j ava. | ang. Thread orinaj avax.realtime. Real ti meThread.
Since the soft real-time mode uses only heap memory, it cannot be used with
NoHeapReal ti meThr eads.

The soft real-time mode implements the RTCORBA API but it can also be used
with no code changes by alegacy application designed for an enterprise ORB.

RTCORBA API Restrictions
The soft real-time mode implements the RTCORBA API.

Whent he_priority(short) methodis caled on a non real-time Thread (for
example, within Soft Real Time mode) and if the priority value exceeds the range of
thej ava. | ang. Thr ead, then the priority value will be set to

Thread. MAX_PRI ORI TY.

Advantages and Disadvantages of the Soft Redl-Time Mode

The major advantage of the soft real-time mode is that, as everything is allocated in
heap and can be garbage collected, the application is not required to carry out any
explicit memory management. This greatly ssimplifies the application.

Secondly, this mode allows the porting of a legacy application to a real-time
application very easily and with no code changes.

The main disadvantage of this mode isits lack of strong determinism. Whilst the
ORB avoids the use of the garbage collector as much as possible, the garbage

collector can still pre-empt your application, potentially causing jitter in the
response times.

Configuration of the Soft Red-Time Mode
When invoking RTOrb add the following properties to the command line:

18

Installation and Configuration 4 PrismTecH

2 Configuration

2.1 Configuration Optionsand Properties

- Dor g. ong. CORBA. ORBCl ass=com pri snt ech. ofj.rtorb. RTORB

- Dor g. ong. CORBA. ORBSI ngl et onCl ass=com pri snt ech. of j . or b. ORBSi ngl et on
- Dof j . rtnode=sof t

Note that the ofj.rtmode property is in the configuration file of j . properti es. It
defaults (for real-time mode) to soft. Also, the of j . rt node property can be set in
application code like other properties, but it must be set before any calls are made to
the ORB code.

Hard Real-Time M ode

The hard real-time mode has been designed to meet the needs of users who are
developing systems that have hard real-time characteristics. Using this mode, it is
possible to create applications that exhibit low levels of jitter (less than 1 ms).
However, in order to achieve this, applications must use features of RTSJ such as
Scoped Memory and No Heap Real Time Threads. In order to avoid interference
from the garbage collector, applications must not allocate any object in heap
memory and must, as a consequence of this, implement their own memory
management schemes. The hard real-time mode is therefore more complex to use
than the other modes supported by RTOrb Java Edition.

Memory Management

The hard real-time mode is designed to exhibit strong determinism and to only use
javax.realtime.NoHeapRealtimeThreads. Consequently, this mode is designed to
use only Immortal Memory and Scoped Memory. All internal objects and objects
returned to the application will be created in either Immortal Memory or in Scoped
Memory. All ORB and POAs initialisation methods have to be run in Immortal
Memory and in general it is recommended that any CORBA methods are run in
Immortal or Scoped memory.

In this mode, the application can use j avax. real ti me. Real ti meThr eads or
j avax. real ti me. NoHeapReal ti meThr eads but the ORB cannot be used in a
standard java.lang.Thread.

Advantages and Disadvantages of the Hard Real-Time Mode

The advantage of the hard real-time mode is the high level of determinism that can
be achieved. The cost of thisisincreased application complexity since applications
must implement their own memory management.

Configuration of the Hard Redl-Time Mode

&4 PRISMTECH

When invoking RTOrb add the following properties to the command line:

- Dor g. omg. CORBA. ORBC ass=com pri sntech. ofj.rtorb. RTORB
- Dor g. ong. CORBA. ORBSI ngl et onCl ass=com pri snt ech. of j . or b. ORBSi ngl et on
- Dof j . rt rode=har d

19
Installation and Configuration

2 Configuration 2.1 Configuration Optionsand Properties

Note that the of j . rt node property isin the configuration file of j . properti es.
Also, theof j . rt node property can be set in application code like other properties,
but it must be set before any calls are made to the ORB code.

Multiple ORBsin a Single JVM

RTOrb supports multiple ORBs of different types, in other words, a combination of
enterprise, soft real-time and hard real-timein asingle VM.

In order to create different ORBs within the same JVM inline within the code, use a
combination of the or g. ong. CORBA. ORBCl ass and of j . rt node properties and
pass these argumentsto ORB. i nit ().

Examples

Enter prise mode

Properties props = new Properties ();

props. put ("org.ong. CORBA. ORBC ass",
"com prisntech.ofj.orb. ORB");

props. put ("org.ong. CORBA. ORBSi ngl et ond ass",
"com prisntech. ofj.orb. ORBSi ngl et on");

Soft real-time mode

Properties props = new Properties ();

props. put ("org.ong. CORBA. ORBCl ass",
"comprisntech.ofj.rtorb. RTORB");

props. put ("org.ong. CORBA. ORBSI ngl et ond ass",
"com prisntech. ofj.orb. ORBSi ngl eton");

props. put ("ofj.rtnode", "soft");

Hard real-time mode

Properties props = new Properties ();
props. put ("org.ong. CORBA. ORBC ass”,
"“com prisntech.ofj.rtorb. RTORB");
props. put ("org.ong. CORBA. ORBSI ngl et ond ass",
"“com prismech. ofj.orb. ORBSi ngl et on");
props. put ("ofj.rtnode", "hard");

Configuration Properties

The tables shown in this section describe the properties that can be used to configure
RTOrb. Note that the properties for Threadpools and Messaging are given under
Sections 2.1.3, Threadpool Configuration, on page 27 and 2.1.4, Messaging
Configuration, on page 27, respectively

20

Installation and Configuration 4 PrismTecH

2 Configuration

2.1 Configuration Optionsand Properties

Table 1 General Settings

Property

Description

Default

ORBI ni t Ref . <nanme>=<r ef >

Defines aninitia reference. The <nanme> is
the name of the service, the <r ef > isthe
object reference. For example:

ORBI ni t Ref . MyServi ce=file:///hone/
me/ MyRef . i or

None

OF. License.File

The directory where the RTOrb license file
isinstalled on your system. Thisvaueis
automatically set by the RTOrb run and runrt
scripts. However, if the licensefileis placed
in another location, this value must be
changed accordingly.

<OFJ_DI R>/
etc

of j.
| NFQ DEBUG TRACE| ALL]

| 0g=[OFF| FATAL| ERROR| WARN|

The different log levels at which RTOrb can
log events. (See also section 2.1.6, Logging,
on page 28.)

WARN

of j.

| 0og.tinmestanmp=[off| on]

If logging ison, this property determines
whether time stamps are included in the log.

of f

of j.
=[ms| tine| date-ti nme]

| 0og. ti nestanmp-for mat

If loggingisonand of j . | og. ti mest anp
is set to on, this property determines the
style or format of time stamps. (See also
section 2.1.6, Logging, on page 28.)

of j.

| og. 1 ocation=[of f|on]

If logging is on, this property determines
whether the file and line number are
included in the log.

of f

ofj.

| 0g.thread=[of f| on]

If logging is on, this property determines
whether the current thread identifier is
inluded in the log.

of f

Table 2 ORB Configuration

Property

Description

Default

of j

.rtrmode=[soft | hard]

The real-time mode of the ORB.

sof t

of j.

orb. menory

The size of the temporary memory area used
to read replies on client side. Also the size of
the several temporary memory areas used to
call interceptors on client side.

200000

&4 PRISMTECH

21

Installation and Configuration

2 Configuration

2.1 Configuration Optionsand Properties

Table 2 ORB Configuration

Property Description Default
of j . orb. obj ect KeyMap. <nane> Allows more readable corbaloc URLs by no defaul t
mapping the actual object key to an arbitrary |val ue
string. See Section 2.1.5, Object Key Map,
on page 28.
ofj.orb_initializer.fail_on_er |Controlswhether ORB initialisationis of f
ror=[on| of f] allowed to continue or not if ORBInitializers
fail.
of j . gi op_ni nor _versi on The GIOP minor version number to be used |2
for newly created IORs
ofj.native_codeset_for_chars The code set that will be declared as the | SCB8859 1
native code set for char s in newly created
IORs.
ofj . native_codeset _for_wchars | The code set that will be declared as native |UTF16
code set for wehar s in newly created IORs.
of j . send-t ag- or b-t ype Flag to indicate whether the fal se
TAG_ORB_TY PE TaggedComponent
should be included in IORs
Table 3 objectcache Properties
Property Description Default
of j . obj ect cache. A comma-delimited list of class namesto be None.
cachedObj ect O asses managed by object.
A list of names must be supplied if object
caching is required.
of j . obj ect cache. <cl assname>. | The class name of the object cache See
cached ass implementation. Description.
Thedefault is:
com prisntech.ofj.util.objectcache. Obje
ct Cachel npl emrent ati on
of j . obj ect cache. <cl assname>. | Theinitial number of objects an object cache 0
of j . obj ect cache. <cl assname>. | The number of objects allocated at the same 1
gr owBy Amount timeif the cache is empty but the maximumSize
has not been reached.
22 & PRISMTECH

Installation and Configuration

2 Configuration

2.1 Configuration Optionsand Properties

Table 3 objectcache Properties (Continued)

Property Description Default
of j . obj ect cache. <cl assname>. | The maximum number of objects allocated by |128
maxi mungi ze the cache.
Thevalue of <cl assname> should be set to one
of:
* a specific class to which the property should
be applied, for example:
of j . obj ect cache. nypackage.
MyStruct.initial Si ze=0
o default - to define a property value for all
object cache instances, for example:
of j. obj ectcache. default-initial Size
=0
23

&4 PRISMTECH

Installation and Configuration

2 Configuration 2.1 Configuration Optionsand Properties

Table 4 POA Configuration Properties

Property Description Default

ofj.extra.agents Agents are threads that handle requests and run |5
servant code on the server side. These are only
used by Enterprise POAs and thereisasingle
agent threadpool per ORB instance. Thispoal is
used by all POAswithin an ORB.

extraAgentsis the number of extra agents that
can be run to handle simultaneous requests.
These extra Agents are added to the pool on
rootPOA creation. By default, anew Agent is
created on demand for each new connection.

If al available agents are busy then no datais
read from the connection(s).

There is no explicit buffering of messages.

The agent threads are only stopped when the
RootPOA is destroyed. Therefore if some
connections are closed the number of agent
threads will not decrease.

The number of threads is the number of
connections plusthe number of extraagents plus
the number of POAs. For example, if thereare 3
clients, and ofj.extra.agents has the value 5, and
thereis 1 POA, then there can be up to 9 agent
threads. If there are 4 clients and ofj.extra.agents
hasthevalue 2, and there are 2 POAS, then there
can be up to 8 threads.

of j. rtpoa. menory The amount of memory used by thereal-time | 200000
POA Reader on the server side.

Table5 ETF Configuration Properties

Property Description Default

ofj.etf.use-default-transports When set to t r ue, the default transport plugin, |true
I1OP, are used.

The following properties are TCP protocol properties.

24

Installation and Configuration 4 PrismTecH

2 Configuration

2.1 Configuration Optionsand Properties

Table 5 ETF Configuration Properties (Continued)

Property

Description

Default

of

.etf.

def aul t - send- buf fer -si ze

Provides a hint to the underlying platform
about the size of the buffers used for sending
data via a socket.

The platform’s default value should be used
when this property is set to 0.

0

of

.etf.

def aul t -recv-buffer-size

Provides a hint to the underlying platform
about the size of the buffers used when
receiving data via a socket.

The platform’s default value should be used
when this property is set to 0.

0

of j

.etf.

def aul t - keep-al i ve

Send keep alive messages on a connection. The
time between keep alivesis
platform-dependant, but is typically 2 hours.
The configurability of this property isaso
platform-dependant.

fal se

of j

.etf.

def aul t -dont-route

Specifies that data should not be sent viaa
gateway, but sent directly to connected hosts.

This property iscurrently ignored sinceit is not
possible to set this option on Java sockets.

fal se

of j

.etf.

def aul t - no- del ay

Disables Nagle's Algorithmwhen settof al se.
This algorithm can reduce network congestion
when many very small messages are sent, but in
some circumstances it can interact badly with
TCP delayed ACKs. The algorithm is probably
not helpful for most CORBA applications.

fal se

of j

.etf.

defaul t-port_I ow

This sets the default value of the lower bound
(lowest port address) of the range of TCP ports
used by POAs.

If the lowest and highest port range values are
not set or are set to negative values, then RTOrb
will select an ephemeral port to listen on.

If lowest and highest port range values are set
greater than O, then RTOrb will select an
available port within that range.

&4 PRISMTECH

25

Installation and Configuration

2 Configuration

2.1 Configuration Optionsand Properties

Table 5 ETF Configuration Properties (Continued)

Property

Description

Default

of j.etf.default-port_high

This sets the default value of the upper bound
(highest port address) of the range of TCP ports
used by POAs.

Seeofj.etf.defaul t-port | owabovefor
details

0

of j.etf.default-host

The default hostname used by POAs. The name
chosen by the ORB can be found by running
the

com prisntech. ofj.util.Networklnfo
utility.

This property accepts hostname as atext name
or as an | P address, either of which will be
written into the IOR.

ofj.etf.listen-on-all-interfaces

By default, the ORB now listens on all network
interfaces, and chooses a non-loopback
interface to put in IOR profiles.

If listen-on-all-interfacesis false, the ORB wiill
choose to listen on a non-loopback interface if
available, or the loopback interfaceif not. The
chosen address will be used in IOR profiles.

If listen-on-all-interfacesis false, it will listen
on the interface named by the def aul t - host
property if set, or the first non-loopback
interface if def aul t - host isnot set.

true

of j.etf.use-names

If use-namesistrue, the ORB will attempt to
use atextual hosthame rather than anumeric IP
addressin IOR profiles.

fal se

ofj.etf.server.reuseAddress

Enables applications to bind to a TCP socket
even if aprevious connection to the socketisin
atime out state. When enabled, this property
can be used to allow applications, typicaly
using awell known socket address, to bind to
the socket without needing to wait for the time
out period to expire.

fal se

26
Installation and Configuration

& PRISMTECH

2 Configuration

Threadpool Configuration

2.1 Configuration Optionsand Properties

If athreadpool is not created in the application, then a default threadpool with one
lane that allows request buffering is created and the default values in the table above
are assigned programmatically. If different values are required then the properties
can be set to override the default values. See Table 6 for the configuration

properties.
Table 6 Threadpool Configuration
Property Description Default
ofj.rtorb.deftp. stacksize The stack size, in bytes, that each thread in | 65535
the threadpool must have allocated.
ofj.rtorb.deftp.staticthreads |Thenumber of threadsthat are pre-created |5
and assigned to that threadpool at the time of
the threadpool creation.
ofj.rtorb. deftp.dynanicthreads |Thenumber of additional threadsthat may |0
be created dynamically when the static
threads are all in use and an additional thread
isrequired to service an invocation.
ofj.rtorb.deftp.priority The CORBA priority of the only laneinthe |16384
default threadpool.
ofj.rtorb. deftp. maxbuffreqgs The maximum number of requests that will |328
be buffered by thisthreadpool if all available
static and dynamic threads are in use and the
capability to borrow threads from lower
priority lanesis exhausted.
of j.rtorb. deft p. maxr eqsbuf f si ze | The maximum amount of memory, in bytes, 65535
that the buffered requests may use.
ofj.hardrt.mnpriority The minimum priority assigned to threads |20
running in hard real-time mode.
M essaging Configuration
Table 7 Messaging Configuration Properties
Property Description Default
of j . messagi ng. syncnone. t hr eads The number of threads in the threadpool 5
used for sending oneway sync_none
requests.
& PRISMTECH 27

Installation and Configuration

2 Configuration

2.1 Configuration Optionsand Properties

Table 7 M essaging Configuration Properties (Continued)

of j . messagi ng. syncnone. priority | The priority of the threads used for sending |16384

Property Description Default

oneway sync_none requests.

28

A

JVM Configuration

When running in hard real-time mode, the JVM should be configured to allow the
ORSB to:

* alocate all its data structuresin immortal memory
* provide enough scoped memory to allocate threadpool scopes.

The scopes should be dimensioned to allow the ORB to allocate at least all data
structures exchanged through the IDL.

The RTOrb runrt script provided with OpenFusion RTOrb Java(tm) Edition sets
the default size for immortal and scoped memory in the VM.

This memory size should be increased for applications which send large messages.

Object Key Map

An obj ect KeyMap facility exists that allows references to transient objects since it
is not possible to construct a transient object with a readable key. This functionality
may also be used with persistent objects. This obj ect KeyMap property allows
more readable CORBALOC URLs by mapping the actual object key to an arbitrary
string. The mapping currently allows clients of a service to access it using either
IOR or file URL references. See Table 2, ORB Configuration, on page 21.

The ofj.orb. object KeyMap. <name> is configured using the
ofj.properties file and by using the proprietary
com prisntech. ofj.orb. ORB. addObj ect Key(String name, String
val ue) function. For example:

of j . orb. obj ect KeyMap. MyServi ce=fil e:///home/ me/ MyService.ior

A client wishing to use a CORBALOC reference to a server may then use:
- DORBI ni t Ref . MySer vi ce=cor bal oc: i i op: <host >: <port >/ MyServi ce

L ogging

Theofj .l og property vauesdefinitionsare:

OFF - isthe highest logging level and turns logging off

FATAL - very severe error events that can possibly cause the application to abort
ERROR - error events that might allow the application to continue running

WARN - potentially harmful situations

& PRISMTECH

Installation and Configuration

2 Configuration

2.2 Configuring OpenFusion CORBA Services

I NFO- coarse grained information showing the application’s progress

DEBUG - fine grained information that can be useful for debugging an application
TRACE - very finely grained information, even more so than the DEBUG level

ALL - the lowest logging level and turns al logging on

L ogs can optionally include timestamps, file location, and current thread. These are
controlled by the following properties:

ofj.log.tinmestanp
on - include timestamps
of f - no timestamps
Defaultsto of f .

ofj.log.tinestanp-format
s - atime of theformt =<t i ne> where<t i me>isUTC in milliseconds
since 1970
tinme-atimeinlSO 8601 format, e.g. 14: 12: 42. 039. Thetimeisin the
local time zone.
dat e-ti me - an 1SO 8601 date followed by atime,
€.g.2010-03-03 11:23:02. 324
Defaultsto ns.

ofj.log.location
on - include location, i.e. file and line number
of f - nolocation
Defaultsto of f .

ofj.log.thread
on - include the current thread identifier
of f - nothread
Defaultsto of f .

Configuring OpenFuson CORBA Services

&4 PRISMTECH

PrismTech’s OpenFusion CORBA Services can be used with RTOrb. RTOrb
includes the OpenFusion Naming Service. Refer to the OpenFusion CORBA
Services Naming Service Guide and the OpenFusion CORBA Services System Guide
(especially the Common Configuration Properties section).

If you are using other OpenFusion services with RTOrb, then refer to that service's
guide as well as the System Guide.

29
Installation and Configuration

2 Configuration 2.2 Configuring OpenFusion CORBA Services

30

Installation and Configuration 4 PrismTecH

REAL-TIME
PROGRAMMING

CHAPTER

Reviewing CORBA Concepts

CORBA stands for Common Object Request Broker Architecture. CORBA is the
Object Management Group’s (OMG):

“open, vendor-independent architecture and infrastructure that computer
applications use to work together over networks. Using the standard protocol
I1OP, a CORBA-based program from any vendor, on almost any computer,
operating system, programming language, and network, can interoperate with a
CORBA-based program from the same or another vendor, on almost any other
computer, operating system, programming language, and network.”*

The Object Management Group is a non-profit consortium that produces and
maintains computer industry specifications for interoperable enterprise
applications.

Basic Concepts
The ORB

A core element of CORBA is the Object Request Broker, referred to as the ORB.

An ORB mediates between an object and one of itsclients. A client isdefined as any
computing context that invokes operations on the object (that is, sends it a message,
or invokes a method). ORBs can take many different forms. In common practice,
ORBs are mechanisms that mediate between clients and objects on different
computers, using some kind of network communication. ORBs are one of the
principal enabling technologiesin the field of distributed object computing.

Distributed Object Computing

& PRISMTECH

Most popular object-oriented programming languages provide language constructs
for encapsulation, inheritance, polymorphism, and other characteristic
object-oriented concepts. These mechanisms have proven beneficial when building
single-process applications. However, because they are implemented as
programming language features, the benefits are not available when the application
needs to interact with other processes or with remote machines. Programmers must
generally resort to techniques such as sockets to build distributed applications.

1. The OMG' sdefinition from its web site at http://www.omg.org.

33
Real-time Programming

http://www.omg.org

3 Reviewing CORBA Concepts 3.1 Basic Concepts

34

Distributed object technology extends the benefits of object-oriented technology
across process and machine boundaries to encompass entire networks. In short, this
technology makes remote objects appear to programmers as if they were local
objects (that is, simple programming-language objects in the same process). This
effect can be described as |ocation transparency.

Transparencies

Transparencies occur when a software abstraction allows programmers to cross a
computing boundary (such as a boundary between different languages, machines,
network protocols, and so on) without having to be aware of the boundary at all, or
without performing an explicit transformation to crossiit.

In an object system, location transparency means that an object’s client can invoke
the object’s methods in a natural manner, regardless of where the object actually
resides. The target object may reside in the client program itself (asisinherently the
case with most object-oriented programming languages), it may reside in another
address space on the same machine as the client, or it may reside on a remote
machine. The object’s programming interface (from the client’s perspective) is
identical in al cases. See Figure 1 for an illustration of this concept.

& PRISMTECH

Real-time Programming

3 Reviewing CORBA Concepts 3.1 Basic Concepts

&4 PRISMTECH

Local Invocation

Client Machine

Client Process

The remote and

local object

interfaces are [T~

identical to the \

client. o |
Interface Operation

Remote Inviocation

Client\\/\achine Server Machine

Client Rrocess Server Process

Object N .
Interface mote Invocation Operation
\r-—-

Figure 1 Remote Invocationsand L ocation Transparency

The ORB provides the location transparency in the CORBA model. ORBs also
provide many other useful transparencies, including the following:

e

* Programming language transparency- The client and the object may be written
in different programming languages and the ORB hides this fact; a Java client is
completely unaware that it is invoking an operation on alanguage-specific object,
whether Java, C++, or Smalltalk, and vice versa.

 Platform transparency- The client and object implementation programs may be
executing on different types of computing hardware, with different operating
systems, in such away that both programs are unaware of these differences.

* Representation transparency- Because of language, hardware, or compiler
differences, processes communicating through an ORB may have different
low-level data representations. The ORB automaticaly converts different byte
orders, word sizes, floating point representations, and so on, so that application
programmers can ignore the differences and avoid problems.

35
Real-time Programming

3 Reviewing CORBA Concepts 3.1 Basic Concepts

36

As lower-level distribution problems become transparent, architects and
programmers can focus their efforts on solving application problems, not plumbing
problems. Expressed in other terms, distributed object technology raises the level of
abstraction for distributed application design and devel opment.

Distributed Object Computing and CORBA

OMG specifications have emerged as the primary focus of industry standardization
in distributed object computing, client/server computing, and large-scale
object-oriented application development. The CORBA specifications provide the
foundation for the most comprehensive platform for system interoperability and
software portability that is foreseeable in today’s computing market.

To this end, CORBA specifies:

* aconcrete object model

* an abstract language for describing object interfaces

« abstract programming interfaces for implementing, using, and managing objects

e equivalent concrete programming interfaces in popular object-oriented
programming languages (that is, language mappings)

» operational interfaces between ORBSs to ensure interoperability between products
from different vendors

Other OMG specifications include CORBAservices, which specifies standard
interfaces for fundamental object services, such as naming and persistence, that are
frequently required and generally useful for managing objects regardless of their
function or application domain.

Interfaces

In the CORBA object model, attention is primarily focused on the object’s interface.
Aninterface isthe boundary layer that separates a consumer of an object’s service (a
client) from the supplier of the object’s service (an object implementation). The
interface defines what a client can know about an object and how a client may
interact with it. As such, it hides the low-level details on one side of the boundary
from the other side.

It may seem contradictory to describe interfaces as “hiding” things and providing
“transparencies’ at the same time, but it really isn't. The details that are hidden
(such as network protocols, programming language idiosyncrasies, physical data
organization, and so on) are like dirt on awindow. They obscure what you really
want to view—the abstract behaviour of the object. By wiping these details out of
the way (or hiding them) ORBs give an object’s consumer clear, un-obscured access
to the object’s essential behaviour, expressed in terminology natural to the
consumer.

& PRISMTECH

Real-time Programming

3 Reviewing CORBA Concepts 3.1 Basic Concepts

An interface may also be viewed as a contract between an object’s client and
implementation. The implementation agrees to respond to a given request with
certain results; both the client and the implementation agree on the information that
will be exchanged in a given operation, and so on. If both sides abide by the contract
and don't rely on any assumptions that aren't stated explicitly in the contract, then
the interaction between client and object will behave properly.

A CORBA interface consists of acollection of operations, attributes, and definitions
for data types that are used with the operations and attributes. CORBA interfaces
may be composed from other interfaces through inheritance.

Almost every section of the CORBA specification deals with one aspect of
interfaces or another, such as how interfaces are described, how the descriptions are
stored and managed, how abstract descriptions are mapped into concrete
programming interfaces in various programming languages, how object
implementations relate to and support an interface, and so on.

The CORBA specification defines a language for describing abstract object
interfaces, called Interface Definition Language, or IDL.

Programming with CORBA Interfaces

IDL can be used to generate the stubs and skeletons that are actually used when
programming. Since IDL is only an abstract interface description language, it must
be transformed into equivalent constructs in a concrete programming language to be
useful. The way in which these transformations are made for a particular languageis
called amapping for that language.

Figure 2 illustrates the relationships between stubs, skeletons, clients, object
implementations, and the ORB.

Client Object .
Implementation
IDL IDL
Stub Skeleton

Request

Object Request Broker

Figure2 ORB Component Relationships

Stubs

&4 PRISMTECH

Stubs are used by clients to invoke operations on target CORBA objects.

37
Real-time Programming

3 Reviewing CORBA Concepts 3.1 Basic Concepts

38

A stub is not the CORBA object itself. It represents a CORBA object and is, in part,
responsible for propagating requests (invocations) made on itself to the real target
object. In keeping with this role, stubs are sometimes called proxies or surrogates.
When the target object resides in a remote process, the stub is responsible for
packaging the request, with its parameters, into a message to send to the remote
process across a network, then receiving the reply message from the object,
unpacking the operation results from the message, and returning them to the calling
program.

Skeletons

Skeletons are used to build object implementations. An implementation of a
CORBA interface is a package of code in a concrete programming language that
provides the real behaviour of the object type. In some cases, the term
implementation is used to indicate the body of code in an abstract sense, that is, the
type (as opposed to an individual instance). In other cases, implementation can mean
a specific instance of the implementation type. When there is a possibility of
ambiguity, we will distinguish between the two as implementation type and
implementation instance.

A skeleton takes the form of an abstract base class declaration with abstract
functions that correspond to the operations in the IDL interface. Programmers
construct an implementation by deriving a new type from the skeleton class, then
providing method implementations for the operations inherited from the skeleton
class.

The stub and skeleton have identical (or nearly identical) interfaces. They are type
compatible (i.e., can be substituted for one another) at the level of the common base
interface.

Clientsand Servers

When a program includes the stub type and invokes operations on instances of the
stub type, that program is acting in the role of a client, with respect to the target
object represented by the particular stub instance. When a program includes an
implementation type (derived from the skeleton), creates instances of the
implementation type, and makes them available for use by clients, the program is
acting in the role of server, with respect to the implemented objects.

Note that the terms client and server merely describe roles that programs play with
respect to a particular object or set of objects. In a distributed object context (or
more specifically, a CORBA context), these terms do not indicate architectural roles
played by the programs, as they do in the traditional sense of client/server
computing. A client of one CORBA object may be the server for other clients.
Programs sharing each others' objects in avariety of client/server roles may in fact
be peers architecturally.

& PRISMTECH

Real-time Programming

3 Reviewing CORBA Concepts 3.1 Basic Concepts

Delivering Requests Using an ORB

As described above, an ORB is anything that mediates between a client and its
target object. By mediate, we mean to deliver the request from the client context to
the server context, invoke the method on the target object, and deliver results, if any,
back to the client. CORBA does not in any way prescribe or limit the mechanisms
that an ORB may use to accomplish this task. The range of possible
implementationsis extremely large, and hasinteresting consequences, both practical
and theoretical.

By leaving implementation decisions completely free, the CORBA specification
allows highly specialized ORBs to be optimised for particular environments with
unusual requirements, such as embedded real-time systems. For the purposes of this
discussion, however, we will describe the OpenFusion RTOrb Java(tm) Edition
implementation.

Delivering Requests to Remote Objects

The ORB isaset of libraries that are linked into the client and server programs of
the distributed CORBA-based application. When the client invokes an operation on
the object, via the stub, the stub and the client-resident ORB library cooperate to
assemble a message that describes the request. After assembling the message, the
stub invokes the appropriate function in the client-resident class, transmitting the
message to the server that contains the target object.

The message is received in the server by the server-resident ORB component. This
component is responsible for decoding the message. The portable object adapter
(POA) locates the specific object targeted in the request and passes the message
contents to the skeleton. The skeleton extracts the request parameters and invokes
the requested operation on the object implementation instance. The process then
reverses itself: the skeleton creates the reply message, sends it back to the client,
where the stub decodes it and returns the results to the client that made the request.

ORB Components

&4 PRISMTECH

The ORB is composed of everything that intervenes between the client and the
object to achieve location transparency. In a simple example, illustrated previously
in Figure 2, the ORB encompasses the stub, the client-resident ORB classes, the
server-resident ORB, and the skeleton. It can be argued that the network itself
constitutes part of the ORB, because it mediates data transfer between processes -
playing amajor role in providing location transparency.

In an ORB’s run-time environment, there may be a number of other processes
(which are neither the client nor the server) that become involved in some aspect of
the request delivery activity, to locate objects, start new server processes, monitor
the status of requests in progress, and so on. It is usually not possible to point to a
single process or software component and (accurately) call it the ORB.

39
Real-time Programming

3 Reviewing CORBA Concepts 3.1 Basic Concepts

40

Another way to determine what constitutes an ORB is to observe the two interface
boundaries that the ORB mediates between. By boundary, we mean a specific API
invocation (for example, function call, method invocation, and so on) through which
non-ORB elements (clients and object implementations) interact with the ORB.

The client interacts with the ORB by invoking a member function on a stub. This
boundary islabelled the client-ORB boundary in Figure 3. The object interacts with
the ORB primarily by having one of its member functions invoked by the ORB.
Thisboundary is labelled the ORB-object boundary in the figure. Anything between
those boundaries may be considered as part of the ORB for conceptual purposes.

Client Machine ORB Server Machine
Client Application Boundary Server
Process Space Process Space
Object IDL ~ Transoort IDL Object
Interface J Stub P Skeleton\Implmntn.
bject Request Broker
| |

Note: The Client machine and Server machine can be the same physical machine.

Figure3 The ORB asan Abstraction

Abstraction

Contrast the previous example with the following scenario. As mentioned above,
stubs and skeletons are derived from an interface. When a programmer uses an
ORB-based object, methods are invoked on the common interface, not the derived
stub or skeleton. Since both the stub class and the skeleton class (and, thus, the
implementation class) are derived from the interface base class, client code that
makes the invocation could be using either a stub that is bound to aremote object, or
it could be invoking a method directly on an implementation instance that is in the
same process. This use of C++ polymorphism allows the client to use remote and
local objectsin exactly the same way, without ever having to (or in some cases, even
being able to) distinguish between them.

When aclient “sends’ arequest to alocal implementation instance, what constitutes
the ORB? You might be tempted to say that there is no ORB present but, in fact,
thereis. All of the necessary elements are present - the client, the target object, and

& PRISMTECH

Real-time Programming

3 Reviewing CORBA Concepts 3.1 Basic Concepts

something that delivers the request from the client to the object. The delivery
mechanism (the ORB) in this case is the machine instruction that performs the
function call on the target object’s member function. The mediation between the
client and the object takes place in a single stack frame in the local machine.
Thinking of this asan ORB may seem too abstract, but from the programmer’s point
of view alocal invocation isindistinguishable (if the ORB is properly implemented)
from aremote invocation. If it communicates like an ORB, it's an ORB.

If you consider this scenario with respect to interface boundaries, the client-ORB
and ORB-object boundaries from the previous example have coalesced into asingle
client-ORB-aobject boundary, creating for us the mental image that the ORB (in the
case of local invocations) is atwo-dimensional, infinitely thin surface between the
client and the server.

Terminology Explained

&4 PRISMTECH

Figure 4 is an adaptation from the CORBA 2.3 specification. The following
subsections describe the elements shown in the figure and their roles in the overall
activity of delivering requests. Some of the descriptions given here do not exactly
match those in the CORBA specification. Where our descriptions vary, it is
generally to achieve greater clarity and to provide a more consistent overall picture.

ORB
Interface

Object Implementation

Static IDL
Skeleton Object
Adapter

IDL
Stubs

Up-call
interface

/777 ntertace is identical for all ORB implementations T

Multiple object adaptors may exist

[stubs and a skeleton exist for each object type Normal call
interface

] ORB-dependent interface

Figure4 The Sructure of Object Request Broker Interfaces

41
Real-time Programming

3 Reviewing CORBA Concepts 3.1 Basic Concepts

42

Clientsand Servers

As mentioned above, the terms client and server in a distributed object context have
a different meaning than the same terms used in the context of more traditional
client-server computing. In CORBA, the terms refer primarily to roles played by
different programs (or specific parts of programs) with respect to a particular object.
The client of an object isthe processing context from which arequest is made on the
object.

The term processing context is used advisedly, with some intentional ambiguity.
Sometimesit may refer to the program (or process) that makes a request; it may also
refer to a particular thread or a particular function from which an invocation is
made. In some cases, it may refer to another object (an implementation instance)
that contains a reference for the first object and makes requests on that object from
within one of the containing object’s methods. Though one object’s methods may in
fact constitute a client context for another object, thereisformally no such thing asa
client object in CORBA systems.

Likewise a server is the computing context in which an object is implemented.
Sometimes the word server is used to indicate the object itself; other times it may
denote the process in which an object resides. In general, its ambiguity is similar to
that of the term client. Note again that the terms client and server apply to roles that
components play, not the components themselves. Any given program may
simultaneously be a client of some objects and a server for other (or the same)
objects.

Object References

The meaning of the term object reference is relative to the context in which it is
used. When used in a programming context in the ORB, an object reference takes
the form of a C++ interface. Programmatic object references may also be converted
into character strings, which may be later converted back into object references.
These strings capture the information model encapsulated in the programmatic
reference. Even though the string is not usable as a reference in a program, it is
thought of as an object reference because it potentially locates and identifies a
particular implementation instance.

The term object reference may be used to denote the abstract concept of an object’s
identity and location. In the process of handling requests, the ORB maintains
internal data structures that it uses to locate, identify, and connect to the target
objects. Since these structures are opaque to ORB users, they may be discussed only
as an abstraction. One might say, for instance, that an object reference is passed
from aclient to a server as a parameter in an invocation. The thing being passed
inside the ORB is neither the stub nor the reference in string form. Though you may
not know its concrete form, it is sometimes useful to refer to this abstraction in
discussions as an object reference.

& PRISMTECH

Real-time Programming

3 Reviewing CORBA Concepts 3.1 Basic Concepts

First Class Objects and Pseudo Objects

In CORBA terminology, afirst class object is a fully functional CORBA object
supporting all of the attributes ascribed to regular CORBA objects:

« It has aunique identity assigned and managed by the ORB

« The ORB can supply references to the object that can be used by remote clientsto
make invocations on the object through the ORB

It supports at |east one CORBA interface described in IDL
* Itsreferences support al of the operations defined on CORBA: : Object

* |t behaves in a manner consistent with general descriptions of objects in the
CORBA specification

A first class object may also be referred to as arighteous object.

For various reasons, the CORBA specification and some CORBASservices
specifications define programming interfaces that, while object-oriented in style,
cannot satisfy the requirements of afirst-class object. In some cases the object is, of
necessity, local to the processin which it is used; in other cases the interface cannot
be properly expressed in IDL. In general, pseudo interfaces are used to provide APIs
for ORB components or utility objects specific to ORB or service functions, such as
the ORB interface itself or the interface for the POA. Pseudo interfaces generally
become programming objects in the language mappings (that is, aclassin C++), but
do not support required righteous object behaviours, such as:

» They cannot be remotely accessed

* They do not have real object references (although they do have programmatic
references)

» They do not support CORBA: : Object operations

Another characteristic of pseudo objectsisthat their interfaces are often described in
pseudo-IDL, or PIDL. PIDL isnot redly alanguage at al; it is more of adialect of
IDL that is used to describe interfaces for pseudo objects in a convenient, familiar
manner, while recognizing that the PIDL need never actually be compiled into stubs
and skeletons. Because this is the case, some pseudo interfaces described in PIDL
contain syntax or data types that are not legal IDL but are intended to describe
interface elements that are not allowed for righteous objects (hence, the need for
pseudo objects). The following subsections describe some of the more important
pseudo-objects.

The ORB Pseudo Object
The definition of ORB - given above - described the ORB as an abstract functional
entity that mediates requests. The CORBA specification also describes a
programming interface called the ORB pseudo object. This interface supports

43

& PRISMTECH Real-time Programming

3 Reviewing CORBA Concepts 3.2 Portable Object Adapter

44

operations that interact with the computing environment provided by the CORBA
implementation (the ORB in the abstract sense) such asinitialization, and operations
that perform utility functions, such as converting object references to and from
strings. Although this pseudo object interface is called the ORB and it is a
component of the abstract ORB entity, do not confuse the ORB pseudo object with
the actual ORB, or infer from the way the interface is described that the ORB is a
physical, identifiable object.

Object Adapters

The CORBA specification describes pseudo objects called object adapters that
provide part of the interface between the ORB and object implementations. In
particular, CORBA specifies an interface for the POA. The POA interface supports
the following capabilities:

It dlows implementations to associate ORB-managed object identities with
instances of user-supplied implementation classes

* It alows an implementation to inform the ORB that it (or one of itsinstances) has
undergone a state change that affects its relationship with the ORB, such as
activation (that is, the implementation or object is prepared to receive requests) or
deactivation (the object is not available to receive requests)

Portable Object Adapter

The Portable Object Adapter is the link between the ORB and individual servants
created in various programming languages. It is responsible for creating object
references and for routing requests from the ORB to the appropriate servant.

The CORBA specification defines the Portable Object Adapter (POA) with the
following features:

* source-level portability between ORB products
* allows multiple and distinct instances of the POA to exist in aserver
« dlowsindividual servantsto support multiple object identities simultaneously

 provides a mechanism by which policy information can be associated with
individual POA instances

* supports both persistent and transient objects

* supports object implementations that inherit from static skeleton classes, as well
as Dynamic Skeleton Interface (DSI) implementations

& PRISMTECH

Real-time Programming

3 Reviewing CORBA Concepts 3.2 Portable Object Adapter

3.2.1 How the POA Works

&4 PRISMTECH

In simplistic terms, after the client obtains an object reference it invokes a request
on that object. That request is transmitted via the ORB to the server application.
Refer to Figure 5, Request Dispatching. The POA is responsible for routing the
request to the appropriate servant, which incarnates the target object responsible for
processing the request.

Client Application Server Application

_ | Logical | [CORBA
Connection Object

Object
Reference

Figure5 Request Dispatching

The POA maintains an association between the Obj ect | d (embedded in the object
reference) and the servant (a programming language implementation of a CORBA
object). This association is maintained in a table called the Active Object Map.
When arequest is received, the object adapter looks at the Obj ect | d that came
with the request and finds the servant associated with that Obj ect | d from its
Active Object Map. Then it dispatches the request on that servant. A CORBA server
process can contain a number of different POAS, each having their own Active
Object Map. POAs are created in a hierarchical fashion, with the special Root POA
serving as a common ancestor to all other POAs.

The ability to create multiple POAs and to set characteristics on the POA using
policies allows you to control POA behaviour and, consequently, the scalability and
performance of your application.

45
Real-time Programming

3 Reviewing CORBA Concepts 3.2 Portable Object Adapter

46

POA Configuration

The RootPOA is configured via OFJ properties or arguments. If the
listen-on-all-interfaces property is set (the default case), it will listen on
all available interfaces. If not, it will listen on the interface named by the
def aul t - host property if set, or the first non-loopback interface if
def aul t - host isnot set.

Alternatively, one or more - ORBLi st enEndpoi nts <ar gval > arguments can be
given. Each argument specifies one interface to listen on. The format of <ar gval >
is:

<argval > : = <host nane>: <portspec> | <portspec>

<portspec> := <portnum> | <portnun®, <portnun>

<host nane> : = STRING | | PADDRESS

<portnunt : = | NTEGER
A child POA will use the RootPOA'’s listeners unless it has been created with a
Server Protocol Policy. This policy will contain one or more Protocols, each of
which will specify an interface on which the child POA will listen. Child POAs do
not inherit listeners from parent POAS.

POA Palicies

Key to the POA definition is the ability to create multiple POAs and to customize
each instance by setting policies. In general, you will define alist of policies, then
assign them to a POA when it is created. Once a POA is created with an assigned set
of policies, those policies cannot be changed for the life of the POA. A new POA
does not inherit policies from its parent POA.

Interfaces that define policies to be assigned to a POA must be derived from
CORBA: : Pol i cy tothecr eat ePOA method.

Sandard POA Policies
Lifespan Policy

POA: : create_lifespan_policy alowsyou to specify the lifespan of objects.
» TRANSI ENT objects cannot outlive the processesin which they are first created.
» PERSI STENT objects can outlive the process in which they are created.

The default value for this policy is TRANSI ENT.

Setting the TRANSI ENT policy does not prevent explicit reactivation of a servant
with the same object key. Change the object keysto enforce transient behaviour. The
easiest way to do thisisto create new POAs for servant reactivation.

& PRISMTECH

Real-time Programming

3 Reviewing CORBA Concepts 3.2 Portable Object Adapter

Object Id Uniqueness Policy

POA: : creat e_i d_uni queness_pol i cy specifies whether servants activated by
the POA must have unique Obj ect | ds.

* UNI QUE_I D specifies that each servant activated by that POA can support only
one bj ect | d.

e MULTI PLE_I D specifies that servants activated by that POA can support more
than one Chj ect I d.

The default value for this policy is UNI QUE_I D.

Id Assgnment Policy

POA: : create_i d_assi gnment _pol i cy specifies whether ID assignment is
performed by the POA or by the application.

* SYSTEM | D specifies that the POA generates and assigns Obj ect | ds.
* USER | D specifiesthat Obj ect | ds are assigned by the application.
The default value for this policy is SYSTEM | D.

POA Policy Summary

&4 PRISMTECH

All POA policy objects are locality constrained; that is, you cannot pass their
references as arguments to normal CORBA operations or convert them to strings
using ORB: : obj ect _t o_st ri ng. They can be accessed only within the context of
the ORB in which they were created.

Once you define the policies to be assigned to a POA, you can create the POA by
calling cr eat e_POA on an existing POA. The new POA becomes the child of the
POA on which the call was made. cr eat e_ POA takes three arguments: the name for
the new POA, areference to the POAManager for that POA, and alist of policiesto
be applied to the new POA. If no POAManager is specified, a new POAManager is
created.

47
Real-time Programming

3 Reviewing CORBA Concepts 3.2 Portable Object Adapter

POA Manager

The POAManager controls the flow of requests to one or more POA objects. The
POAManager interface supports operations to change the state of a POA to one of

the following:
Table 8 POA Sates
POA Sate Meaning
ACTI VE Cdling act i vat e on the POAManager allows regquests to

flow to the POAs that it controls.

| NACTI VE This state is entered when POAs are to be shut down using
the deactivate operation

DI SCARDI NG | In this state all incoming reguests (whose processing has not
yet begun) will be discarded. The POA enters this state
through the discard_requests operation when in the active or
holding state.

HOLDI NG In this state all incoming requests (whose processing has not
yet begun) will be discarded. The POA enters this state
through the discard_requests operation when in the active or
holding state.

Object References, Keys, and I Ds

The POA isresponsible for creating an object reference, which the client can use to
contact the target object. The object key is embedded within the object reference
and the object identifier is embedded within the object key. The policies you set on
the POA determine whether or not your application controls the content of the
Obj ect | d and whether servants can support multiple IDs. Obj ect | ds must be
unique within each individual POA; however different POAs can assign the same
oj ect | d.

Servants

The IDL compiler generates server-side skeleton classes. These skeletons are
abstract base classes from which your servant classes are derived. Servant classes
are obliged to implement all of the pure virtual functions declared in the generated
skeletons. Servants are responsible for incarnating CORBA aobjects. A servant isa
C++ instance used to service arequest.

Object Creation and Activation

A CORBA object must be created and activated before the client can invoke
operations on it. The POA remembers the relationship between the object and the
servant which created it.

48

Real-time Programming &4 PRISMTECH

3 Reviewing CORBA Concepts 3.2 Portable Object Adapter

Depending on the policies set on the POA, you will either:

e use PQA::activate object or POA :activate object with id to
activate the object. Once the object is activated, the POA can dispatch requests
arriving for that object. After activation, you may use the _this() or
POA: : servant _to_reference() operation to obtain an object reference from
the servant.

or

e use POA: : create_reference_with_id to create an object reference without
activating it

Request Processing

&4 PRISMTECH

When the ORB receives a request, it attempts to locate the appropriate POA and
deliver the request. It uses the received object reference, which contains the
Obj ect | d and POA identification, to locate the appropriate server and POA within
that server. The request is then handed off to the POA.

The POA now takes over and tries to locate the target object. The POA searches for
the servant associated with the Obj ect | d in its Active Object Map. Once a
reference to the servant is obtained, the appropriate method is invoked. Otherwise,
an exception is thrown.

49
Real-time Programming

3 Reviewing CORBA Concepts 3.2 Portable Object Adapter

50

Real-time Programming &4 PRISMTECH

CHAPTER

Introduction to Real-time Systems

This chapter expands on the short introduction given earlier and introduces some of
the essential aspects of real-time systems programming.

Real-time Systems

& PRISMTECH

The term real-time is used to define systems where the time taken for the execution
of atask istemporally deterministic (predictable). Thisyields, at the task level, the
notion of hard deadlines: a task must complete within the specified time. Thus a
real-time system executes tasks in a predictable manner with respect to time.

The degree of predictability is the basis for the terminology used to describe
real-time systems. Widely used categories are hard real time and soft real time. This
degree-of-predictability classification conveys relative descriptive utility, but more
precise definitions are implied for a given application.

In hard real-time systems, task execution that completes at an incorrect time means
system failure. A missed deadline is the same as awrong answer.

In soft real-time systems, task execution that completes at an incorrect time means
reduced system performance. A missed deadline is not catastrophic, but rather
degrades system performance.

Examples of hard real-time activities are:

« flight contral (inertial guidance and navigation)
* nuclear power plant control

 pacemakers (human heart)

vehicle anti-lock braking

« air-bag deployment systems

Examples of soft real-time activities are;

« command interpretation of inputs from a user interface

* saving or displaying management data

* ship navigation

* certain types of telecommunications traffic shaping functions

51
Real-time Programming

4 Introduction to Real-time Systems 4.1 Real-timeSystems

52

In general, real-time applications consist of soft and hard deadlines. Operating
systems try to guarantee the individual timing constraints of the hard deadline tasks
while attempting to minimize the average response times of the soft ones. Real-time
operating system (RTOS) kernels achieve this through the use of appropriate
features:

* near constant time system calls

« the ability to associate priority not only with the threads (or tasks) executing, but
al so the synchronization constructs such as mutates

* pre-emption to achieve greater determinism
* appropriate scheduling strategies

Time- and Event-Triggered Systems

Another way to classify real-time systems is based on whether they are
time-triggered or event-triggered. A trigger is an event that causes the start of some
action, for example, the execution of atask or the transmission of a message.

There are two distinctly different approaches to the design of real-time computer
applications: the event-triggered (ET) approach, and the time-triggered (TT)
approach. A triggering mechanism is used to start communication and processing
activities in each node of a computer system (network).

In the ET approach, all communication and processing activities are initiated upon
occurrence of a significant change of state. The regular event of a clock tick is not
such an event. In the TT approach, all communication and processing activities are
initiated at predetermined times. While ET systems are flexible, TT systems are
temporally predictable. In this guide, the systems discussed are event-triggered.

Developing Real-time Systemswith RTOS

Real-time Operating System (RTOS) kernels are built to support real-time tasking
through a number of important features that real-time systems use:

* priority based scheduling to perform real time inter-kernel process management
* priority aware synchronization constructs (semaphores for instance)
* concurrency constructs such as multi-tasking or multi-threading

* rea-time clock for a time reference for internal kernel task management and
housekeeping tasks

» mechanisms for inter-process and intra-process communication with associated
synchronization primitives

» bounded, constant-time fast context switch, and often an associated minimal base
kernel size (typically 16-32kb)

& PRISMTECH

Real-time Programming

4 Introduction to Real-time Systems 4.1 Real-timeSystems

&4 PRISMTECH

« internal kernel architecture geared to respond to external interrupts in a fast
manner, and so separate their execution from intra-kernel tasks

Pre-emption and priority-based scheduling are the most important characteristics of
real-time kernels. Together they give rise to the notion of priority, the central
mechanism used to achieve predictable, deterministic behaviour. These
characteristics are sufficient for soft real-time systems. Behavioural characteristics
include quick response and small execution times for higher priority tasks - while
yielding small average response times for other tasks. For hard real-time
applications however, a centrally important theme is missing in such kernels. It is
the notion of some form of guarantee, which is necessary for time-critical, hard
real-time behaviour.

To achieve hard real-time, distributed applications, the most important properties of
adistributed, mission-critical system RTOS and ORB tuple are:

« predictability - The RTOS must be able to predict in an a priori fashion the
consequences of scheduling any and all tasks under its control. If it is not possible
to guarantee an upper bound for the execution time of any task, the RTOS must be
able to take an alternative course of action to cope with such events. Predictability
is by far the single most important requirement on an RTOS, especially for hard
real-time application hosting.

« timeliness - The RTOS must comprise internal clocks for effective handling of
tasks with differing time constraints, and degree of importance or criticality.

« fault-tolerance - The RTOS should be immune (to some degree) to certain classes
of hardware and software failures. Mission critical components in such high
availability RTOS models should have fault-tolerance features inherent in their
design.

* design for peak load - The RTOS should provide some continued minimal level of
performance when subjected to unusually high peak loads. RTOS failure and
crash under such circumstances is an unacceptable scenario for hard real-time
applications. Therefore, they must be designed to cope with anticipated scenarios
of high sporadic load.

» maintainability - The RTOS kernel and ORB need to be designed in a modular,
pluggable fashion to ensure a minimal, optimised use of RTOS resources under
any load. In addition, the ability to make maodification/customisations to the
kernel - as the ORB based application might require - should be minimally
cross-coupled so as to be able to make the changes easily.

53
Real-time Programming

4 Introduction to Real-time Systems 4.1 Real-timeSystems

54

Predictability in Distributed Applications

Predictability of a complex, distributed, real-time application is achieved through
the careful combination of RTOS features, networking transport, IPC mechanism
implementations, and constant-time ORB internals design. A sum of these, yields a
degree of predictability that enables some level of Quality of Service (QoS) to be
furnished to the application built on the RTOS-ORB combination.

Asfar asthe RTOS is concerned, it should be able to plot the evolution of tasks and
events ahead of time in a given situation such that it can guarantee in advance that
all critical timing constraints are met by suitable scheduling of its internals.
Components that contribute to the possibility of predictably scheduling
deadline-restricted tasks are:

* the features and numbers of CPUs and the scheduling policies they support

* internal CPU features such as pre-fetch, pipe lining, cache memory, and direct
memory access, which can contribute to non-determinism

* types of scheduling agorithms employed in the kernel

* synchronization mechanisms

* types of priority-aware semaphore

* memory management policies, especialy heap management

e communication mechanism, e.g., whether the kernel is based on messages or
signas

* interrupt handling mechanisms

Features and Non-Deter minism

It isimportant for the distributed real-time application designer to understand the
features that will most contribute to non-determinism. These are discussed briefly in
the context of an RTOS and ORB.

Probably the single greatest contributor, at the ORB level, of non-determinismis a
trangport that is not QoS aware or priority respecting. In essence, the management of
ORB, application, and RTOS internal tasks needs to be efficiently managed by the
RTOS.

Perhaps the single greatest enemy of an effective hard real-time system design is the
phenomenon referred to as priority inversion.

Priority inversion occurs when a high priority task (that is, of possibly greater
importance and criticality) is blocked by aless critical, lower priority thread for an
unbounded period of time. Thistype of situation is often seen when the high priority
thread istrying to get access to a shared (with the low priority task) resource, which

& PRISMTECH

Real-time Programming

4 Introduction to Real-time Systems 4.1 Real-timeSystems

&4 PRISMTECH

the low priority task has locked for its own use. There is much detailed real-time
literature on this subject, and designs for its avoidance. For further reading, see
Bibliography on page 123, particularly Rajkumar and Buttazo.

The integration of ORB and application tasks is under the control of the application
designer, but the tasking and priority level control of the transport threadsis not, and
can give rise to priority inversions.

Other major contributors to non-determinism include:

DMA - Certain methods of direct memory - such as cycle-stealing access, used to
transfer data between devices and main memory - give rise to unbounded delays.
However, this can be overcome by using other techniques, such as time-slice
methods.

cache - This procedure buffers CPU-RAM exchanges in an attempt to reduce task
execution times. Under certain circumstances, this can contribute to
non-determinism.

interrupts - These events can be sporadically triggered due to 1/0 devices and can
impair predictability of areal time system due to the fact that they introduce
unbounded delays into the execution times of other processes.

system calls - The calls for hard real-time kernel primitives need to be pre-emptible
and implemented to have bounded execution times. These are then used by the
scheduling subsystem of the kernel to produce the necessary guaranteed,
temporally-correct behavioursinternally in the kernel.

semaphores - These should be modified to be priority aware and thus avoid the
priority inversion phenomenon. RTOS' normally furnish priority protocols when
implementing this modification. Examples include basic priority inheritance,
priority ceiling, and stack resource policy. These protocols temporarily modify task
priorities to avoid deadlock and anomalous priority assignments, which cause
non-determinism.

memory management - This must not produce unbounded delays in the course of
execution of real-time tasks. A common practice is to use fixed, constant time type
schemes to allocate, and address memory partitions to achieve predictable memory
access. It is usual to see a greater degree of static allocation, which reduces
flexibility for dynamic environments. The designer of real-time systems must make
trade off decisions when implementing on an RTOS using languages that permit
dynamic heap memory allocations, such as C++.

55
Real-time Programming

4 Introduction to Real-time Systems 4.1 Real-timeSystems

56

Real-time Programming &4 PRISMTECH

CHAPTER

| ntroduction to Real-time CORBA

This chapter introduces the essential aspects of the Real-time CORBA ORB.

Please note that real-time CORBA examples are provided in the OpenFusion RTOrb
Java(tm) Edition distribution’s html pages.

5.1 Real-time Specification

The Real-time CORBA Specification defines a set of real-time extensions to
standard CORBA specification.

Figure 6 shows the key Real-time CORBA entities. The features that these relate to
are described below.

o Scheduling ~
/ client Service server \
RTCORBA:: Servant
Current
CORBA:: RTCORBA::
Current Priority POA RT POA
RTCORBA::
Threadpool
|
AN B / M, J
ORB RTORB
lopP .
JosRtce| | Esop [[cver]| |, rcomen:
Real-time CORBA entity existing CORBA entity

Figure 6 Real-time CORBA Extensions

5.1.1 Real-time CORBA Modules

All CORBA IDL specified by Real-time CORBA is contained in new modules
RTCORBA and RTPor t abl eSer ver (with the exception of new service contexts,
which are additions to the |IOP module.)

57

& PRISMTECH Real-time Programming

5 Introduction to Real-time CORBA 5.1 Real-time Specification

58

Real-time ORB

Real-time CORBA defines an extension of the ORB interface, RTCORBA: : RTORB,
which handles operations concerned with the configuration of the real-time ORB
and manages the creation and destruction of instances of other Real-time CORBA
IDL interfaces.

Thread Scheduling

Real-time CORBA uses threads as a schedulable entity. Generally, a thread
represents a sequence of control flow within a single node. Threads form part of an
activity. Activities are scheduled by coordination of the scheduling of their
constituent threads. Real-time CORBA specifies interfaces through which the
characteristics of athread that are of interest can be manipulated. These interfaces
are Threadpool creation and the Real-time CORBA Current interface. The
Real-time CORBA view of athread is compatible with the POSIX definition of a
thread.

Real-time CORBA Priority

Real-time CORBA defines a universal, platform independent priority scheme called
Real-time CORBA Priority. It is introduced to overcome the heterogeneity of
different Operating System provided priority schemes, and allows Real-time
CORBA applications to make prioritised CORBA invocations in a consistent
fashion between nodes with different priority schemes.

For consistency, Real-time CORBA applications always should use CORBA
Priority to express the priorities in the system, even if all nodes in a system use the
same native thread priority scheme, or when using the server declared priority
model.

Native Priority and PriorityM appings

Real-time CORBA defines a NativePriority type to represent the priority scheme
that is‘native' to aparticular Operating System.

Priority values specified in terms of the Real-time CORBA Priority scheme must be
mapped into the native priority scheme of a given scheduler before they can be
applied to the underlying schedulable entities. On occasion, it is necessary for the
reverse mapping to be performed in order to obtain a Real-time CORBA Priority to
represent the present native priority of athread. The latter can occur, for example,
when priority inheritance is in use or when wishing to introduce an already running
thread into a Real-time CORBA system at its present (native) priority.

Real-time CORBA defines a PriorityMapping interface in order to allow the
Real-time ORB and applications to do both of these things.

& PRISMTECH

Real-time Programming

5 Introduction to Real-time CORBA 5.1 Real-time Specification

User-defined PriorityM appings

PrismTech provides a priority mapping implementation,
com prisntech.ofj.rtorb.PriorityMapping, which isautomatically
instantiated when the ORB is initialised. This default implementation uses a linear
algorithm that maps a range of CORBA priority values to the range
M N_NATI VE_PRI ORI TY to MAX_NATI VE_PRI ORI TY. This mapping algorithm is
identical to the algorithm used by TAO.

The priority mapping can be retrieved using the following static accessor call on
com prisntech.ofj.rtorb. RTORB:

public static org.ong. RTCORBA. Pri orityMappi ng

comprisntech.ofj.rtorb. RTORB. _get _priority_mappi ng()

A developer can provide their own priority mapping implementation. User-defined
priority mapping implementations can be used by calling the following static
method on RTORB:

public static void

comprisntech.ofj.rtorb. RTORB. _set_priority_mappi ng(
org. ong. RTCORBA. Pri ori tyMappi ng mappi ng)

This method overrides the default implementation with the supplied version.

Real-time CORBA Current

Real-time CORBA defines a Real-time CORBA Current interface to provide access
to the CORBA priority of athread.

Priority Modds

&4 PRISMTECH

One goal of Real-time CORBA isto bound and to minimize priority inversion in
CORBA invocations. One mechanism that is employed to achieve thisis
propagation of the activity priority from the client to the server, with the
requirement that the server side ORB make the up-call at this priority (subject to any
priority inheritance protocols that are in use).

However, in some scenarios, it is sufficient to design the application system by
setting the priority of servers, and having them handle all invocations at that priority.
Hence, Real-time CORBA supports two models for the priority at which a server
handles requests from clients:

« Client Propagated Priority Model: in which the server honours the priority of the
invocation, set by the client. The invocation’s Real-time CORBA Priority is
propagated to the server ORB and the server-side ORB maps this Real-time
CORBA Priority into its own native priority scheme wusing its
PriorityMappi ng.

59
Real-time Programming

5 Introduction to Real-time CORBA 5.1 Real-time Specification

60

Requests from non-Real-time CORBA ORBS; that is, ORBs that do not propagate
a Real-time CORBA Priority with the invocation are handled at a priority
specified by the server.

» Server Declared Priority Mode: in which the server handles requests at a

Real-time CORBA Priority assigned on the server side. This model is useful for
setting a boundary where new activities are begun with a CORBA invocation.

Real-time CORBA Mutexesand Priority Inheritance
The Mutex interface provides the mechanism for coordinating contention for system

resources. Real-time CORBA specifies an RTCORBA: : Mut ex locality constrained
interface, so that applications can use the same mutex implementation as the ORB.

A conforming Real-time CORBA implementation must provide an implementation
of Mut ex that implements some form of priority inheritance protocol. This may

include, but is not limited to, simple priority inheritance or aform of priority ceiling
protocol. The mutexes that Real-time CORBA makes available to the application
must have the same priority inheritance properties as those used by the ORB to
protect resources. This allows a consistent priority inheritance scheme to be

delivered across the whole system.

Threadpools

Real-time CORBA uses the Threadpool abstraction to manage threads of execution

on the server-side of the ORB. Threadpool characteristics can only be set when the
threadpool is created. Threadpools offer the following features:

» preallocation of threads - This helps reduce priority inversion, by allowing the

application programmer to ensure that there are enough thread resources to satisfy
acertain number of concurrent invocations, and helps reduce latency and increase
predictability, by avoiding the destruction and recreation of threads between
invocations.

* partitioning of threads - Having multiple thread pools associated with different

POAs alows one part of the system to be isolated from the thread usage of
another, possibly lower priority, part of the application system. This can again be
used to reduce priority inversion.

* bounding of thread usage - A threadpool can be used to set a maximum limit on

the number of threads that a POA or set of POAs may use. In systems where the
total number of threads that may be used is constrained, this can be used in
conjunction with threadpool partitioning to avoid priority inversion by thread
starvation.

* buffering of additional reqguests beyond the number that can be dispatched

concurrently by the assigned number of threads.

& PRISMTECH

Real-time Programming

5 Introduction to Real-time CORBA 5.1 Real-time Specification

Priority Banded Connections

In order to reduce priority inversion due to use of anon-priority respecting transport
protocol, RT CORBA provides the facility for a client to communicate with a server
via multiple connections, with each connection handling invocations that are made
at adifferent CORBA priority or range of CORBA priorities. The selection of the
appropriate connection is transparent to the application, which uses a single object
reference as normal.

Non-M ultiplexed Connections

Real-time CORBA allows a client to obtain a private transport connection to a
server, which will not be multiplexed (shared) with other client-server object
connections.

| nvocation Timeouts

Real-time CORBA applications may set a timeout on an invocation in order to
bound the time that the client application is blocked waiting for areply. This can be
used to improve the predictability of the system.

Client and Server Protocol Configuration

Real-time CORBA provides interfaces that enable the selection and configuration of
protocols on the server and client side of the ORB.

Real-time CORBA Configuration

New policy types are defined to configure the following server-side RT CORBA
features:

* server-side thread configuration (through Threadpools)

* priority model (propagated by client versus declared by server)
* protocol selection

« protocol configuration

Which CORBA policy application points (ORB, POA, Current) that a given policy
may be applied at is given along with the description of each policy. Real-time
CORBA defines a number of policies that may be applied on the client-side of
CORBA applications. These policies allow:

« the creation of priority-banded sets of connections between clients and servers;
« the creation of a non-multiplexed connection to a server;
« client-side protocol selection and configuration.

In addition, Real-time CORBA uses an existing CORBA policy to provide
invocation timeouts.

61

& PRISMTECH Real-time Programming

5 Introduction to Real-time CORBA 5.2 Readl-time Portable Object Adapters

Real-time Portable Object Adapters

Real-time Portable Object Adapters (RTPOA) configuration is one of the most
important features in real-time CORBA. Application developers can configure and
control hardware resources using real-time policies associated with real-time POASs.

This section describes priority models, the pluggable RTPOA, threads and
threadpools, and priority banded connections.

Priority Modé
RTOrb only supports both the RTCORBA: : SERVER_DECLARED and
RTCORBA: : CLI ENT_PROPAGATED priority models. Refer to the CORBA Priority
Model example included in the RTOrb examples to see how to set the
RTCORBA: : SERVER_DECLARED priority model policy for an RTPQA.

RTPOA

The RTPOA module which extends the standard POA interface with respect to
priority and resource configuration.

POA Activation Methodswith Priority

create_reference_with_priority()
create_reference_wi th_id_and_priority()
activate_object_ with_priority()
activate_object_with_id_and_priority()

Threadsand Threadpools

There are two basic ways of manipulating threads in RT CORBA,
RTCORBA: : Cur r ent and Threadpools (viapolicies at POA creation time).

Current
RT CORBA defines a RTCORBA::Current interface to provide access to the
CORBA priority of athread. Please refer to the CORBA Priority example included
with this product on how to access the priority of athread.

Threadpools

Thread pools are one of the most important features in Real-time CORBA. Threads
in pools can be pre-allocated and partitioned amongst active Real-time POA's.
Application developers and end-users configure and control processor resources
using thread pools. The possibility of experiencing priority inversion can be
bounded and reduced by configuring real-time POA's with threadpools where each
POA associates with one or more thread pools (see Figure 7). Note that threadpools
are independent of the POA lifecycle.

62
Real-time Programming

& PRISMTECH

5 Introduction to Real-time CORBA 5.2 Real-time Portable Object Adapters

5.2.3.3 Thread Pool Operation Basic Mode

Application developers and end-users configure and control processor resources
using thread pools (see Figure 7). Threads in the threadpool execute requests at the
object priority for which each request is targeted. Each POA associates with one or
more thread pools. However, you are reminded that thread pools are independent of
the POA lifecycle.

To dispatch requests to the correct queue and to the right servant on the server side,
each request needs to be handled by the right priority thread. To achieve this,
requests are pushed onto the queue of appropriate priority and are processed
synchronously by the waiting threads within a lane. There is a queue assigned to
each thread pool.

RTOrb Real-time Server

Priority | | Priority | | Priority
1-9 10-20 21-100

Client

GIOP
Request

| GloP
GIOP Request Lo .
Request L i Priority Banded Connections

I Priority Banded Connectionsd
Private Connections

&4 PRISMTECH

Figure7 Controlling Network Resources

The client side may hold multiple connections open through the use of individual
object references to end pointsin the server, based on priority band.

Threadpools can be configured for use with RTPOA's in one of two forms:
1. Non-laned Threadpool
2. Laned Threadpool

63
Real-time Programming

5 Introduction to Real-time CORBA 5.2 Readl-time Portable Object Adapters

64

Laned Threadpool

A threadpool can be created that has n partitions (lanes) each created to serve
requests at a specific priority. Each lane has m static threads running at the priority
defined for the lane. Whenever arequest arrives, a lane is chosen based on the
priority associated with the activated object. Please refer to the Threadpools
example included with this product on how to create a Threadpool with lanes.

As seen above, the half-sync layer consists of a thread pool associated with a POA.
A thread pool can be shared among POAS.

Priority Banded Connections

RT CORBA introduces the concept of priority banded connections. A real time
POA (RTPOA) supporting priority banded connections is capable of accepting
requests across transport with some concept or awareness of the requestors priority
at which the server should execute. Each client can open a number of connections
with a server, each connection handling a range of priorities defined in the priority
banded connection palicy.

Priority banded connections are useful when used in conjunction with a transport
protocol that does not respect priorities. Transports like TCP that are not easily
pre-emptable and do not respect priorities can incur head of line blocking where
requests of higher priority are blocked and unable to pre-empt requests at lower
priority. This leads to unbounded delays and the potential of priority inversion.
Priority bands allow multiple connections to be utilized to minimize the head of line
blocking that can occur where one connection is used for multiple priority requests.

An RTPOA that is configured with laned threadpools and priority banded
connections can provide more predictability. Please refer to the Connections
example included with this product on how to create priority banded connections.

RTPOA Current

Thisinterface is available to perform operations to access the identity of the object
on which a call was invoked. Thisis supplied for supporting servants that may
implement multiple objects.

Associations Between Pools and RTPOA

Each POA must have at least one thread pool attached to it. Thisis done by passing
athread pool policy to the POA. In the case where no policy is specified or an
invalid threadpool identifier is used, the ORB will use the default non-real time
threading approach, which consists of unlimited dynamic thread allocation. One
thread pool can be shared among multiple POAs.

& PRISMTECH

Real-time Programming

5 Introduction to Real-time CORBA 5.3 Priority Machinery

Priority Machinery

Priority isthe medium used to achieve QoSin real-time CORBA, hence the focus of
RTOrb application design. With the RTOrb priority scheduling is achieved via the
RTOS scheduler. Tasks or threads that comprise the application execute in a stable,
predictable manner as aresult of this priority scheduling. In addition if using only
the RTOS for scheduling purposes, it must provide proper mutexes and semaphores
to resolve resource contention, such as priority-aware application objects and/or
code segments.

The central theme in real-time CORBA programming is the notion of prioritised
scheduling of activities, tasks, or threads.

This section provides:

* background information on the phenomenon of priority inversion
» discussion of protocols used to overcome priority inversion

» discussion of priority mapping and CORBA priority scheme

Priority Phenomena and Protocols

&4 PRISMTECH

Priority inversion is a commonly known phenomenon in real-time systems. It
usually manifests in the form of unbounded delays of high priority tasks. Normally,
when priority inversion occurs, high priority tasks are forced to wait on low priority
tasks. This occurs when the high priority tasks are sharing common resources with
low priority tasks. If alow priority task locks the resource for its own use but is
pre-empted by a higher priority task, which also needs access to the common
resource, the high priority task will have to wait on the lower priority task.

To illustrate the concept of priority inversion more clearly, consider Figure 8. Here,
3 tasks or threads are executing, T4, T,, T3. The tasks are illustrated in order of
decreasing priority such that the priority of T, isthe greatest and that of T the least
of the 3. In addition, we assume that T, and T3 share a common resource, such as a
critical section, to which only one can have access at any point in time. The
following isatypical scenario illustrating priority inversion.

At timetg task Ty startsto run. At timet; task T3 locks and enters a critical section,
continuing to execute until time t,. The portion of time for which task Tz isin a
critical section is shown as shaded. At timet,, task T, pre-empts task T because T,
has a higher priority. Task t; now executes from time t, until time tg, at which point
it attempts to gain accessto the critical section, which has previously been locked by
lower priority task Ts. Task T istherefore forced to wait or block until such time as
T; releases the lock on the critical section shared between T, and T3. Task T3 is
allowed to run next. So at time t3, task T3 resumes execution and continues to work
its way through the critical section.

65
Real-time Programming

5 Introduction to Real-time CORBA 5.3 Priority Machinery

66

Now at time t,, task T, pre-empts task T3 and starts to run because task T, has a
higher priority than that of task Ts.

Task T4 isnow blocked by task T because of the shared resource, and task T is
blocked by task T,. Therefore T, isnow indirectly blocking task T, aswell. Task T,
blocks task T3 until T, completes at timets. As a consequence T3 is forced to block
for a significant amount of time (the length of the shared critical section plus the
execution time of task T»).

For an actual system, when several medium priority tasks exist with priorities
greater than that of task T3 but less than that of task T, it can lead to unbounded
delay or blocking.

This effect is known as priority inversion and occursin the timeinterval t; to tg.

T, Blocked

A | |

1 | A |
| | | |
A | | !
. e = m
t, t, ot oty ot t

| |
3
5 ts t

V/77Z] critical section
|:| Normal execution

Figure8 Priority Inversion
The priority inversion phenomenon in real-time systemsis one that can manifest any
time several tasks want to execute in the presence of services that are shared among
them.

Several approaches have been proposed to alleviate the priority inversion
phenomenon in real-time systems and much literature is available. A complete
description and analysisis beyond the scope of this document. The reader is directed
to further reading under Bibliography on page 123, particularly Buttazo.

The Real-time Extension aids the RT CORBA developer by providing priority
inheritance protocolsin the ORB. Specificaly, RTOrb’s RT CORBA mutex supplies
a default implementation that uses the simple priority inheritance protocol as an
example. Other protocols are also possible, but thisis used to illustrate the concept
and its applicability.

& PRISMTECH

Real-time Programming

5 Introduction to Real-time CORBA 5.3 Priority Machinery

&4 PRISMTECH

The priority inheritance protocol bounds any priority inversion that could possibly
occur. Although the ORB’s initial design is such that it tries to eliminate the
possibility, it can still occur as aresult of unusual transports, or hardware specifics
that are used in a particular setup.

Figure 9 and the following text explain how priority inheritance protocols bound
any possible priority inversion. The same three tasks are illustrated as in Figure 8.
Additionally, the relative priorities of the three tasks are depicted at the bottom of
thefigure as Py, P,, and P3.

Up to time t3, the behaviour of tasks T, and T3 are the same as in Figure 8. At time
t3, T4 isforced to block on T3 dueto T4 holding alock on acritical section to which
T, needs access. At this point the mechanism of priority inheritance is employed.
This mechanism causes T3 to inherit the priority P; of task T, which forcestask T3
to execute immediately and run through the remaining part of its critical section.
This forces T3 to execute from ts to tg at the T4 priority Py, which is the highest
priority in thisillustration. Note that task T, cannot pre-empt task T3 astask T, has
lower priority than the temporarily assigned priority (P, of task T3, through priority
inheritance).

Ty | A
| |
[: | | |
. |]

t t t t t

1 2 3 4 5 6

V//7777) critical section
|:| Normal execution

Figure9 Priority Inheritance Protocol to Bound Priority Inversion

Astask T exits the critical section, its priority is returned to its original value P; as
shown in Figure 9. At time ts, task T, can run because priority P, is greater than
priority P, of task T,. Thus it no longer needs to block on task T3, which was
holding alock on the critical section. Task T, now runs through the critical section
and to completion at tg. At time tg, task T, has the highest priority and executes as
shown in Figure 9.

67
Real-time Programming

5 Introduction to Real-time CORBA 5.3 Priority Machinery

CORBA Priority

CORBA uses a standard (canonical) form of priority that can be mapped to any
RTOS priority scheme. In effect, CORBA subsumes the heterogeneity in
RTOS-specific priority schemes and thus achieves uniformity. This allows CORBA
invocations to be made across multiple, different RTOS platforms - which may have
different native priority schemes - in a consistent manner. Therefore, CORBA
priority isawrapper for native priority schemes.

CORBA Priority Mapping
Priorities may be mapped from the CORBA priority scheme to the RTOS native

priority scheme. Thisis accomplished with an interface defined in IDL, and allows
you to forward and reverse map CORBA and native priorities as shown in Figure

10.
OoSsB RTCORBA OS A
Native Priority Native
Priority Priority
MAX [0] 32767

40

MIN @

Figure 10 Priority Mapping
An RTCORBA priority type id, defined in IDL to be of type CORBA short, is as
follows:

nodul e RTCORBA {
typedef short Priority;

const Priority mnPriority = 0;

const Priority maxPriority = 32767;

b
It spans the interval O to 32767. Higher values of RTCORBA priorities map to higher
native RTOS priorities.

68

Real-time Programming &4 PRISMTECH

5 Introduction to Real-time CORBA 5.4 CORBA Mutex

RTCORBA Current Interface

TheCurr ent interface in RTCORBA allows a developer access to the priority data
of the current locus of execution or thread. The interface allows for setting and
getting athread’s CORBA priority.

interface Current : CORBA::Current {

attribute Priority the _priority;

b
A thread has native base and elevated priorities, which may be different than the
observed CORBA mapped value.

Thisisaloca interface, which also storesinformation about its current CORBA and
native priorities in a thread-local storage structure. It is a singleton within the
context of its present locus of execution. A typical application’s use of the
RTCORBA current interface is illustrated below: Please refer to the CORBA
Priority example included with this product on how to use the RTCurrent get and set
methods, and use of the default priority mapping.

CORBA Mutex
Mutex Notifiesin RT CORBA

Real-time CORBA specifies an RTCORBA: : Mut ex locality-constrained interface so
that applications can use the same mutex implementation as the ORB. This mutex
interface provides the mechanism popularly used to coordinate access to shared
resources. In RTCORBA such a construct is required to have associated with it a
priority inheritance protocol to resolve any resource access contention by threads of
differing priorities.

Why Mutex HasaPriority Protocol

&4 PRISMTECH

The RTCORBA specification requires a mutex implementation to have some form
of priority inheritance protocol. This may include, but is not limited to, simple
priority inheritance. In addition, any type of priority-aware mutex that the ORB
makes available to the application must have the same priority inheritance protocols
as those used by the ORB to protect its own internal resources. It is imperative to
eliminate, if not bound, the priority inversion phenomenon, thereby allowing for
consistency across the whole system with regard to resolving any resource access
contention.

69
Real-time Programming

5 Introduction to Real-time CORBA 5.4 CORBA Mutex

The Real-time CORBA Mutex Interface

The IDL for the real-time CORBA specification is defined as:
nodul e RTCORBA

{
interface Mitex
{
void lock ();
voi d unl ock ();
bool ean try |l ock (in TineBase:: TinmeT max_wait);
b
interface RTORB
{
Mit ex create_nutex ()
voi d destroy_nutex (in Mitex the_mnutex);
hé
bi

70

Real-time Programming &4 PRISMTECH

CHAPTER

| ntroduction to Real-time Java

The Real-Time Specification for Java (RTSJ) defines an extension to the Java
specification for creating real-time applications using the Java programming
language. Real-Time Java (RTJ) has seven areas of extended semantics, including
thread scheduling and dispatching, memory management, synchronization,
asynchronous event handling, asynchronous transfer of control, asynchronous
thread termination and physical memory access.

This chapter provides high level descriptions of these areas and their constituent
components. You are directed to the Real-Time Specification for Java for complete
descriptions and the semantics that apply to particular classes, constructors,
methods and fields. It is strongly recommended that you refer to the references listed
under Further Reading and Examples Information on page 74.

Real-time Extenson to Java
Thread Scheduling and Dispatching

& PRISMTECH

Real-time programming must ensure that the execution of machine instruction
sequences, such as athread for example, are timel y2 or predictable. RTSJ uses the
concept of schedulable objects and schedulers to schedule the execution of these
instruction sequences.

Scheduling is the arranging of a set of threads to be executed in a particular order.
The order of thread execution is called a schedule and attempts to optimise the
system’s ability to meet (predefined) temporal constraints. The schedule’s method
of optimising the thread execution is called its metric. For example, atypical metric
in hard real-time systems is “number of missed deadlines’, noting that the only
acceptable value for that metric in a hard real-time system is zero (recalling that
hard real-time system do not allow time deadlines to be overrun.).

A schedulable object is implemented in RTSJ as an instance of any class that
implements the Schedul abl e interface. Three examples of schedulable objects are
RTJsReal ti meThr ead, NoHeapReal ti meThr ead, and AsyncEvent Handl er3

1. The RTSJ specifies seven, however other sources name eight areas of extended
semantics, exceptions being the eighth.

2. Thetermtimely here meansthat athread’ s execution will alwayscomplete beforeagiven
time limit has been passed.

3. Each of these three objects are required in any RTSJ-based application.

71
Real-time Programming

6 Introduction to Real-time Java 6.1 Real-time Extensionto Java

72

A scheduler isimplemented as an instance of ¢l ass Schedul er. Scheduling and
dispatching of the schedulable object is managed by a Schedul er instance. The
schedulable object has areference to the Schedul er instance.

There are often situations where schedul able objects compete for the resources so
they can run. All schedulable objects run in a thread. Each thread is assigned a
numeric priority value. This value is referred to as the thread’s priority. The
scheduler uses athread’s priority to help determine the thread's execution eligibility:
threads are selected for execution in the order of their priority, highest to lowest,
with the confines of a scheduling algorithm. The term dispatching refersto selecting
a thread with the highest execution eligibility, in other words the highest priority,
from the pool of threads that are ready to run.

The programmer is responsible for assigning thread priorities.

Memory Management

RTJ addresses the issue of the unpredictable latencies of Java® Garbage Collector by
providing memory management facilities which do not interfere with the
deterministic behaviour of real-time code. RTJ uses memory area types to enable
programmers how memory is allocated, controlled and released or garbage
collected.

RTJ has four basic memory areatypes. These are;

1. Scoped memory - gives bounds to an object’s lifetime of objects on the heap
(syntactic scope). When a scope is entered, every use of new causes the memory
to be allocated from the active memory scope. Scoped memory types provides
flexibility by allowing the application to use a memory area that has
characteristics that are appropriate to a particular syntactically defined region of
the code.

2. Physical memory - objects are created within specific physical memory regions
that have particular characteristics, such as having substantially faster access
than other memory locations.

3. Immortal memory - objects remain in memory from the point they are allocated
until the application’s Java runtime environment terminates. It is a memory
resource shared among all threads in an application. Objects allocated to
immortal memory are never garbage collected or moved.

4. Heap memory - represents the heap. RTSJ does not change the determinant of
lifetime of objects on the heap: lifetimeis determined by visibility.

Some support is provided by RTJ for budgeting memory allocation for threads using
memory areas. Maximum memory area consumption and maximum allocation rates
for individual real-time threads may be specified when the thread is created.

& PRISMTECH

Real-time Programming

6 Introduction to Real-time Java 6.1 Real-timeExtensionto Java

Synchronization
1

Serialized resources in areal-time environment can be subject to priority inversion-.
Priority inversion is dealt with by RTJ through:

« agorithms that prevent priority inversion between real-time Java threads when
they share a serialized resource (such as when the Javasynchr oni zed keyword
is used)

 providing wait-free queue classes which can be used when the priority
inversion-protection algorithms are insufficient

Asynchronous Event Handling

RTJ provides efficient mechanisms for programming disciplines that can
accommodate the asynchronous behaviour which existsin the real world. RTJ
generalizes the Java language’s mechanism of asynchronous event handling. A
notable feature of RTJ's asynchronous event handling is that the execution of an
application’slogic is scheduled and dispatched by an implemented scheduler.

Asynchronous Transfer Of Control

There are instances when the real-world environment changes both drastically and
asynchronously which requires the current point of logic execution to be
immediately and efficiently transferred to another location. RTSJ has a mechanism
which extends Java's exception handling to allow applications to programatically
change the point of control of another Java thread. Note that this asynchronous
transfer isrestricted to specifically written control logic which assumes that its point
of control may change asynchronously.

Asynchronous Thread Ter mination

Application logic may need to arrange for areal-time Java thread to expeditiously
and safely transfer its control to its outermost scope and end in a norma manner
when occasional drastic and asynchronous changes in the real-world happen. RTJ's
mechanism for asynchronous event handling and transfer of control is safe, unlike
the (deprecated) traditional unsafe Java mechanism for stopping threads.

Physical Memory Access
Physical memory access is desirable for many applications. RTJ provides a class
that allows programmers byte-level access to physical memory, as well as a class
that allows objects to be constructed in physical memory.

1. Priority inversion occurs, for example, when ahigh priority task iswaiting for aresource
which has been locked by alower priority task, thereby preventing the high priority task
from running. Thisis considered to be a system failure.

73

& PRISMTECH Real-time Programming

6 Introduction to Real-time Java 6.2 Further Reading and ExamplesInformation

74

Further Reading and Examples Information

Real-time Java examples are provided in the OpenFusion RTOrb Java(tm) Edition
distribution’s html pages.

A recommended reading and reference list is given in the Bibliography on page 123.
For convenience, references which are particularly relevant to RT Java are listed
below.

Real Time Java Platform Programming, Peter C. Dibble, Sun Microsystems Press
Java Series, 2002.

Highly recommended, provides essential information.

Concurrent and Real-Time Programming in Java, by Andy Wellings, John Wiley &
Sons Ltd, 2004.

This book provides an introduction to concurrent and real-time programming,
describes Java's concurrency model, introduces and discusses the RTSJ, and
includes examples.

Real-Time Systems and Programming Languages, Alan Burns and Andy Wellings,
Addison Wesley, Third Edition, 2001.

Describes real-time programming in Ada 95, Java, occam2 and C; covers a
variety of associated topics including, for example, reliability, concurrent
programming, design and distributed systems.

& PRISMTECH

Real-time Programming

i
PROGRAMMING WITH

RTORB
,

CHAPTER

Using the ORB

RTOrb can be used to create CORBA-based client-server applications, for either
enterprise or real-time applications. The major steps of creating applications using
RTOrb are the same whether creating enterprise or real-time applications, even
though the internal details of their respective client and server classes differ.

I ntroduction

Sep 1.

Sep 2:

Sep 3.
Sep 4.

Sep 5:

Sep 6:

Sep 7:
Sep 8:

& PRISMTECH

The steps for creating RTOrb-based applications are:

Declare the application’s classes and/or interfaces in an IDL specification. (See
About this release of OpenFusion RTOrb Java(tm) Edition on page 78).

Compile the application’s IDL specification with the IDL compiler to create the
Java source files and classes for the stubs, skeletons and/or tie classes and interfaces.

Write an implementation for the interface generated from the IDL specification.

Write a server (if not being implemented by third parties) as a main class. The main
classinstantiates the server as well as starts running the ORB.

Write aclient (if not being implemented by third parties) as amain class. The client
makes (remote) requests to the server instance.

Compile the devel oper-written source code and IDL-generated source code with a
Java compiler for the required platform.

Deploy the application’s server and client components on the required platforms.
Start the server and run the client.

This section describes the procedures, requirements and practical details needed to
create CORBA -based applications with RTOrb using the above steps. (Please note
that this section is not intended as a tutorial of how to write CORBA-based
applications. Basic information for writing CORBA-based applications is provided
in Section 8, Creating Applications, on page 89.)

The topics covered here include:
« ageneral description of how to use the ORB’s IDL to Java compiler

« the requirements, procedures and settings for creating, compiling, deploying and
running RTOrb-based applications

« brief information about running OpenFusion CORBA Services

77
Programming with RTOrb

7 Using the ORB

78

A

7.1 Introduction

About this release of OpenFusion RTOrb Java(tm) Edition

RTOrb must be initialised in immortal memory when running the ORB in hard
real-time mode. A Smple Soft Real-time Application on page 94 shows how to
initialise the ORB in immortal memory.

RTOrb must be initialised in heap memory when running the ORB in soft
real-time mode.

The ability to initialise RTOrb in scoped memory is not supported in the release.
There isadight memory leak when multiple calls are madeto ORB. i ni t ().

Advice Notes
1. The CORBA rel ease() method has now been implemented on Qbj ect . Itis

A

3.

4.

recommended that developers use this method for freeing objects that are no
longer needed. Refer to the CORBA Specification, release 04-03-12, Section
4322

Garbage collection can be minimised by caching structs and unions in the
skeleton classes. Using the object cache is atwo stage process:

Run the idl compiler with the -cacheplugin argument to generate object caching

code, for example:

idl -d generated -cacheplugin comprisnmtech.ofj.util.objectcache.
oj ect CachePl ugi nl npl enent ati on

myldl . idl

This generates additional code in the structs' and unions' helper classes and in

the skeleton classes of interfaces.

Configure RTOrb to use object caches for specific classes by setting the
cachedObj ect Cl asses properties in the of j . properties file. See the
Section 2.1.2, Configuration Properties, on page 20, for information about the
objectcache properties and their values.

The RTOrb object cache implementation enables the default implementations of
ObjectCache and ObjectCachePlugin to be easily replaced with a custom object
cache implementation.

Appendix A, API Enhancements, describes RTOrb enhancements to the OMG'’s
standard CORBA API.

WARNING: There is a potential problem with Realtime Threads and static
initialisers when using the Sun Real Time Java System. If an application is
started using deeply nested Realtime Threads and Runnables, and the first
reference to OpenFusion Java ORB is within those Threads, then it is possible

& PRISMTECH

Programming with RTOrb

7 Using the ORB 7.2 Usingthe DL Compiler

that class static initialisers will not be created correctly. PrismTech advises that
customerscal com prisntech.ofj.util.Classlnitializer.init()
at the start of their application in order to work around this problem.

Conventions
The following convention is used in this section:
<OFJ_DI R> - the directory where RTOrb isinstalled
<JAVA HOVME> - root directory of the Java Virtua Machine (JVM) installation

Usingthe DL Compiler

Basic instructions for using RTOrb’s IDL to Java compiler are given here. This
release of RTOrb uses the JacORB idl to Java compiler.

Detailed information, including descriptions of all of the compiler’s command line
options are provided in the ORBULilites.pdf document.

& You should read the instructions provided below and in the ORBUHilites.pdf
document before attempting to use the IDL compiler. Also, ensure the
<OFJ_DI R>/ bi n directory isin the system’s PATH.

The compiler isrun using thei dl script located in the <OFJ_DI R>/ bi n directory.
Thei dl compiler script is used from the command line as:

% 1idl [options] <idl files>

where

[opti ons] isalist of zero or more command-line options.
<idl _files>isalist of oneor more|DL sourcefiles

The IDL source files must have i dl as the filename extension, for example
nyfile.idl.

Usingi dl withthe-h or - hel p option displays usage information. The complete
list of command-line parameters is described in ORBUTtilites.pdf: refer to the
instructionsin that guide before using thei dI compiler.

The IDL compiler creates the files listed below. The number, type and names of the
generated output files can be changed using the command-line options, such as
disabling the creation of POA skeletons or client stubs.

The standard types of generated source Javafiles are:

e Operations - contains the generated Java interface which is mapped from the
developer-written IDL interface specification. The IDL specification includes the
interface’s IDL type, operations and exception definitions.

79

M PRISMTECH Programming with RTOrb

7 Using the ORB

80

7.2 Usingthe DL Compiler

* I nterface - contains an interface which extends the interface in the Operations

file as well as extending or g. ong. CORBA. (hj ect and
or g. ong. CORBA. portabl e. | DLEnti ty. Clients are able to obtain references
to objects that implement this interface.

* Hel per - provides a helper class which is needed to manipulate the mapped IDL

interface. The class contains several essentia static methods, including
narrow() .

* Hol der - contains a class which enablesi nout and out parametersto be passed
in Java (Java can only pass arguments by value).

* Stub - isresponsible for delegating shared functionality, such asi sa(), to the
vendor specific implementation. This file contain a class which extends
org. ong. CORBA. port abl e. Obj ect | npl .

* POA - contains a servant base class that implements the Java Operations interface
and provides skeleton code for the developer written object implementation. The
classin the POA file extendsor g. ong. Port abl eSer ver. Servant .

» POATI e - this file contains a class which extends the POA class. This class
enables a developer-written implementation class to inherit from more than one
servant base class, if needed, by delegating to the implementation class. This class
overcomes the single inheritance restriction of the Javalanguage.

The generated filenames for the above file types, unless customised by using the

IDL compiler’s command line options, are constructed as follows:

» With the exception of the Interface type, the interface name contained in the IDL
specification file is prepended to the file's type and given a.. j ava extension. For
example, if using an IDL specification file called MyApp. i dl containing an
interface called MyAppsl nt erface, the generated Operations file would be
called MyApps| nt er f aceQOper at i ons. j ava.

* Files generated for the Interface type have the same name as the interface name
defined in the IDL filename, but with a . j ava extension. For example, if afile
caled MApp.idl contains an interfface MAppsinterface, then
MyAppsl nt er f ace. j ava will be generated.

» The generated Sub files have an added underscore (_) prepended to the filename.
For example, the Stub file for MyApps. i dl containing the MyApps! nt er f ace
interface would be called _MyAppsl nt er f aceSt ub. j ava.

Example

To generate the client and server stub and skeleton files from an IDL source file
called MyApp. i dl containing an interface called MyApps| nt er f ace use:

% idl MApp.idl

& PRISMTECH

Programming with RTOrb

7 Using the ORB

7.3 Compiling Applications

The generated files are:

MyAppsl nt erfaceQperations. java
MyAppsl nterface. java

MyAppsl nt er f aceHel per.java
MyAppsl nt er faceHol der. j ava
_MyAppsl nterfaceStub. java
MyAppsl nt erfacePOA. j ava
MyAppsl nt er f acePOATI e. j ava

Anofjdefs.idl fileislocatedinthe<OFJ_DI R>/idl / ong directory. Thisfile
isincluded in al entry point IDL files, such as, Por t abl eSer ver. i dl , to ensure
that developers use the same IDL compiler options as those which were used to
generate the core stubs. To ensure that the same IDL compiler options are used, pass
- DOFJ as an argument to the IDL command line command.

Compiling Applications

The common requirements, procedures and settings needed for creating and
compiling RTOrb-based applications are described below.

System and Environment Settings

The system'’s environment variables should be set as described under Section 1.1.2,
System Variables, on page 10, before running RTOrb or RTOrb-based applications.

RTOrb classes and all of the precompiled examples are held in of j . jar. If a
developer uses the supplied scripts to run applications and follows the instructions
in Section 7.3.2, Java Compiler to compile, then it is not necessary toadd of j . j ar
to the classpath.

Java Compiler

Common Requirements

RTOrb-based applications must be compiled with a supported Java compiler. See
the RTOrb Release Notes for alist of supported Java compilers.

RTOrb uses endorsed directories. Detailed information about these is available on
Sun's web site at_http://java.sun.comVj2se/1.5.0/docs/quide/standards/index.html.

Sun Java Real-Time System Requirements

&4 PRISMTECH

The only requirement for the Sun Java Real-Time System is that the PATH must
include the directory whereit isinstalled.
Example Environment Variable Setting using the Java Real-Time System with RTOrb
Where:

/ opt / myOFJ isthe directory where RTOrb is or will beinstalled and

81
Programming with RTOrb

http://java.sun.com/j2se/1.5.0/docs/guide/standards/index.html

7 Using the ORB 7.4 Deploying and Running Applications

{fusr/local/j9rt isthedirectory where the Java Real-Time System is
installed.

UNIX % PATH=/ opt/ nyOFJ/ bi n:/usr/local/j9rt: $PATH
% export PATH

% CLASSPATH=.
% export CLASSPATH

Example Compiling with the Java Real-Time System
Compileafilecaled nyFi | e. j ava using the Java Real-Time System.

% javac -endorseddirs <install-dir>/1ib/endorsed <*.java>

IBM Websphere Real Time JVM
The requirements which are specific to the IBM Websphere Real Time VM are;

» Usethej avac - Xreal ti me option to enable the RTSJ classes provided by the
IBM WebSphere Real Time JVM to be used.

» Compileafilecadled nyFi | e. j ava with the IBM Websphere Real Time JVM:

% javac -Xrealtinme -endorseddirs <install-dir>/1ib/endorsed
<*. java>

Deploying and Running Applications
Information that is common to all RTOrb supported platforms about deploying and
running applicationsin provided below.

& Refer to Chapter 2, Configuration for information on configuration and property
settings which may be needed to deploy and run RTOrb-based applications.

Regardless of whether clients and servers are run from the same or different
machines or any particular platform, they always:

* Run as separate processes. Clients and servers are started in their own, separate
shells, windows or processes.

» Must be able to locate each other. Clients locate servers using one of the methods
described under Resolving Servers below. Servers locate clients using the internal
mechanisms provided by the ORB.

RTOrb Run Scripts

OpenFusion RTOrb Java(tm) Edition provides two convenience scripts which can
be used to run RTOrb-based non real-time and real-time applications, respectively
run andrunrt located inthe <OFJ_DI R>/ bi n directory.

82

Programming with RTOrb & PRISMTECH

7 Using the ORB 7.4 Deploying and Running Applications

e Ther un script starts non real-time applications along with OpenFusion CORBA
services (such as the OpenFusion Naming Service).

e Therunrt script starts soft and hard real-time applications.
Therunrt script isexecuted from the command line using:

% runrt [<defs>] <class> [<args>]

where
<def s> are property definitions of the form -Dname=value
<cl ass> isthe name of the classto run
<ar gs> are arguments required by the class (optional)

Table 9 describes ther un and r unr t scripts command line options.

Table 9 run Script Command Line Options

Option Description
-d Enable debugging of OpenFusion services.
-S Enable security controls.
- X Use the bootclasspath. The bootclasspath should contain al of the
installed OpenFusion classes followed by the user's environment
classpath. This overrides any CORBA classes defined by the VM.

Sun Java Real-time System

The following environment variable must be set before using ther unrt script on
the Sun Java Real-Time System:

- add <j ava_hone>/ bi n to the PATH.

Therunrt script sets the default size for the scoped and immortal memory heap
areausing the - XX: ScopedSi ze and - XX: | mort al Si ze flags.

IBM Websphere Real Time JVM
The following environment variables must be set before using the r unrt script on
the IBM Websphere Real Time JVM:
* Add <JAVA HOVE>/ bi n to the PATH.
Therunrt script sets the default size for the scoped and immortal memory heap
areausing the - Xgc: scopedMenor yMaxi munSi ze
and - Xgc: i mor t al MenorySi ze flags.
The- Xr eal ti me flag isused to run the Metronome real-time garbage collector and
to use RTSJ services.

83

M PRISMTECH Programming with RTOrb

7 Using the ORB

7.5 Application Creation Example

Resolving Servers

An application’s clients and server are run as separate processes. Subject to the
limitations of particular platforms, developers can implement their client(s) so that
they can find or resolve their server by either:

* reading the server’s IOR from afile created by the server,
* using acorbaloc URL or
* using the Naming Service.

Application Creation Example

Step 1.

84

The following example demonstrates how to create, compile, deploy and run a
RTOrb-based application. This example uses the example IDL specification and
source code files used for the CORBA Hello Example:

* ThelDL islocated in <OFJ_DI R>/ exanpl es/idl/hello.id

» The source codeisin <OFJ_DI R>/ exanpl es/j ava/ coni pri snt ech/ of j/
exanpl es/ corba/ hel |l o

Note: The OFJ example classes are supplied precompiled, for convenience, in
of j . j ar. Also, for convenience, the RTOrb distribution includes a very simple Ant
build. xm script that will compile java sources located in
<OFJ_DI R>/ exanpl es. Thisis an example build script that can be used and
extended by developers.

Declare the application’s classes and/or interfacesin an IDL specification.

The following IDL code declares the Gr eet i ngSer vi ce interface in afile called
hel l o.idl.

nodul e com

nmodul e prisntech

{
nodul e ofj
{
nodul e exanpl es
nodul e cor ba
i nterface GreetingService
string greeting(in string greetstr);
b
s
b
b

& PRISMTECH

Programming with RTOrb

7 Using the ORB

Step 2:

Sep 3

Sep 4.

Sep 5:

&4 PRISMTECH

7.5 Application Creation Example

An example hello.idl fileislocated in <OFJ_DI R>/ exanpl es/idl/hello.idl.

Compile the application’s IDL specification with the IDL compiler to create the
Java source files and classes for the stubs, skeletons and/or tie classes and interfaces.

Recall that the compiler isrun using thei dl script located in the <OFJ_DI R>/ bi n
directory.

Although no command line options are needed for compilation, since the example
uses all of the compiler’s default settings, the -d option is used here to specify where
the generated output files should be placed. For example, both the client skeleton
and server stub files are needed, default output file names are used and default file
extensions are used, and the generated output is placed under the ~/myOfj/src
directory.

% idl -d ~/nyOj/src hello.idl

Write an implementation for the interface generated from the IDL specification.

The example implementation file is called Gr eet i ngSer vi cel npl . j ava and
implementscl ass Greeti ngSer vi cel npl . TheGreet i ngServi cel npl . j ava
fileislocated in <OFJ_DI R>/ exanpl es/j ava/ con pri snt ech/ of j/

exanpl es/ cor ba/ hel | o for the purposes of this example.

G eet i ngSer vi cel npl isthe servant that will be used by the application’s server
component. Note that this class should extend the POA class (generated from the
IDL):

public class GreetingServicel npl extends
G eeti ngSer vi cePOA

The “ 1 npl ” part of the Gr eet i ngSer vi cel npl name is a convention which
signifiesthat the file is an implementation of the IDL interface specification.

Write a server (if not being implemented by third parties). The server must:
 import the application’s implementation class (e.g. G eet i ngSer vi cel npl)
» haveamai n() method which instantiates the server

* have a mechanism for publishing the servant’s IOR (for object resolution by the
client)

The example client implementation fileis Ser ver . j ava.
Write aclient (if not being implemented by third parties). The client must:

 import the application’s generated interface definition and associated helper class
(e.g. GreetingServi ce and G eet i ngSer vi ceHel per, respectively)

e contain amai n() method which instantiates the server

85
Programming with RTOrb

7 Using the ORB

86

Step 6:

Sep 7:

7.5 Application Creation Example

» contain a mechanism for obtaining the servant’s IOR (for object resolution of the
server’s servant)

Compile the developer-written source code and IDL-generated source code with a
Java compiler for the platform(s) the application’s components will run on.

The OFJ example classes are supplied precompiled, for convenience, within the
ofj.jar.

Before compiling ensure that all required environment variables, RTOrb properties
and other configuration settings are correctly set for the platform and RTOrb type
(non real-time or real-time) the application will use (see Chapter 2, Configuration)

Example Compiling on Red Hat Enterprise Linux with Websphere Real Time JVM

A non real-time compilation on Red Hat Enterprise Linux using the javac compiler
would use:

% javac -endorseddirs $OFJ_DI R ~/nyOfj/src/*.java -d
~/nyCfj/out/Hello

where

-d ~/myOFj/out/ Hel | o specifies the output directory for the compiled class
files

~/ myOfj/src/*.java are the Java source files to compile (for simplicity, all
Java source files are copied to the ~/ nyOf j / sr ¢ directory in this example)

A real-time compilation on Red Hat Enterprise Linux using the javac compiler
would use:

% javac -endorseddirs $OFJ_DIR -Xrealtine-d ~/ nyCfj/out/Hello
~/nyCfj/srcl*.java

Example Compiling on Solariswith the Sun Java Real-Time System
A non real-time compilation on Solaris using the javac compiler would use:

% javac ~/myOfj/src/*.java -d ~/ myOfj/out/ Hello

where
/ opt / myOFJ istheroot directory where RTOrb isinstalled

-d ~/ myOrj /out/ Hel | o specifies the output directory for the compiled class
files

~/ myOFj/src/*.java are the Java source files to compile (for simplicity, all
Javasource files are copied to the ~/ nyOf j / sr ¢ directory in this example)

Deploy the application’s server and client components on the platform(s).

& PRISMTECH

Programming with RTOrb

7 Using the ORB

Sep 8:

7.6 Running OpenFusion CORBA Services

Copy the compiled class files and directories to the destination location where they
are intended to be run from.

Start the server and run the client.
Servers and clients:
* are usually run from different shells, like the Hello example used here

* depend on environment and configuration settings (see Chapter 2, Configuration
and RTOrb Run Scripts on page 82.)

* may be able to use RTOrb's run and runrt convenience scripts (since they
perform many or all of the configuration tasks need to run the components)*
Example Sarting the Hello Server and Client components

After changing to the directory where the Server and Client classfiles are located, it
isrecommended that the Server and Client programs are run in different windows so
the output of each program can be seen separately.

Use:

% run com prisntech. of j . exanpl es. cor ba. hel | o. Server

% run com prisntech. ofj.exanpl es. corba. hell o. d i ent

If the call to the Server is successful, then it will return:

G eetingService called by Client hello Cient

Running OpenFuson CORBA Services

&4 PRISMTECH

PrismTech’s OpenFusion CORBA Services can be used with RTOrb. RTOrb
includes the OpenFusion Naming Service. Refer to the System Guide for
information on running the OpenFusion CORBA Services.

1. The run and runrt scripts can be a useful source of information for running
application components and creating custom run scripts.

87
Programming with RTOrb

7 Using the ORB 7.6 Running OpenFusion CORBA Services

88

Programming with RTOrb & PRISMTECH

CHAPTER

Creating Applications

General

The information provided in the previous section, Using the ORB, describes the
procedures for compiling, running and deploying applications using the ORB. This
section describes how to write the applications themselves and covers:

» How to write a simple non real-time application, called Hello. This application
contains the minimal, essentia elements needed to create a distributed
client-server application

* How to write a simple soft real-time version of the Hello application. This
application demonstrates basic soft real-time programming using RTOrb.

e How to write a simple hard real-time version of the Hello application. This
application demonstrates basic hard real-time programming using RTOrb.

It is assumed that readers understand basic CORBA programming with Java
concepts and practice. The descriptions given here concentrate on those aspects
which may be of most help, with basic operations (which readers should be familiar
with) being only lightly covered.

A SmpleNon Real-Time Application

& PRISMTECH

This example, the Hello application, is very simple: it contains the minimum
elements needed to create a working client-server application using RTOrb. The
Hello example application is also used in Section 7.5, Application Creation
Example to demonstrate the steps needed to compile, run and deploy applications.

Hello:
* hasan IDL specificationinhel | o. i dl which

- declaresthe Gr eet i ngSer vi ce interfaceand gr eet i ng() function
* hasaserver which

- performs the basic initialisation tasks required by all servers

- creates a GreetingService servant object; the servant’s single method prints a
greeting for the client which called the server.

- makes the GreetingService servant accessible to clients by saving the servant’s
stringified IOR to afile

89
Programming with RTOrb

8 Creating Applications 8.2 A SimpleNon Real-Time Application

- listens for requests from clients
* hasaclient which
- performs the basic initialisation tasks required by all clients

- obtains references to the GreetingService servant object by reading its
stringified IOR from afile

- callsthe gr eet i ng() method on the GreetingService object which displays a
greeting with the client’s name

& This example uses files for object resolution. Other methods of object resolution
must be used on platforms which do not have afile system.

The complete source code for the Hello application isin the following RTOrb
distribution directories:

<OFJ_DI R>/ exanpl es/ j aval/ conl pri snt ech/ of j / exanpl es/ cor ba/
product gui de/ enterprise

<OFJ_DI R>/ exanpl es/ i dl

GreetingServicelnpl.java is in
<OFJ_DI R>/ exampl es/j aval coni pri snt ech/ of j / exanpl es/

IDL Specification
The IDL specification for Hello is very simple: it declares a single interface,
G eeti ngServi ce, with asingle method, gr eet i ng() . The greeting() method
takes a string (the name of the client calling the method) and returns a string (a
greeting with the client’s name).
nodul e com

nmodul e prisntech
nodul e of j
nmodul e exanpl es
nodul e cor ba
i nterface G eetingService

string greeting (in string greetstr);
b
}
b
}
) S

i The nested module declarations, although not strictly required for this simple
application, demonstrate the application’s complete namespace hierarchy.

0

Programming with RTOrb & PRISMTECH

8 Creating Applications 8.2 A SimpleNon Real-Time Application

Java lmplementation

The IDL specification for Gr eet i ngSer vi ce isimplemented in Javaascl ass
G eet i ngSer vi cel npl . This class is written by the developer. The class extends
the IDL generated Gr eet i ngSer vi cePQA interface.

The name of an implementation class, by convention, is derived by taking the IDL
declared interface name and appending it with | npl .

The Greeti ngServi cel npl ’ s greeting() method isimplemented simply as:
public String greeting (String s)
{

Systemout.println
("G eeetingService called by Client " + s);

String replyMsg = "Hell o" + s;

return repl yMsg;
}

Thegreeti ng() method, as mentioned previously, takes a string (client’s name)
and returns a greeting with the name (a string).

Server-sde

&4 PRISMTECH

The Hello application’s server component, Ser ver , instantiates and activates the
G eet i ngSer vi ce servant. The servant’s IOR is published (making it available to
clients) by saving the IOR to a file. The server code is implemented in
Server . j ava and is described below.

The code imports org.omg. PortableServer.POA and
or g. ong. Por t abl eSer ver. POAHel per inorder to be able to manage its servant
(GreetingService). The server also imports the developer-written
G eet i ngSer vi ce implementation, Gr eet i ngSer vi cel npl .

i mport java.io.| CException;
inmport java.io.FileWiter;
inmport java.io.PrintWiter;

i mport org.ong. Port abl eServer . PQA;
i mport org.ong. Port abl eSer ver. POAHel per;

i mport com prisntech. ofj.exanpl es. corba. Greeti ngServi cel npl ;

The server code declares and definescl ass Ser ver.
Server .

« defines a mai n() method which does most of the work, such as performing
initialisation tasks, POA activation and running the ORB’sr un() method (which
listens for client requests)

91
Programming with RTOrb

8 Creating Applications 8.2 A SimpleNon Real-Time Application

* defines a utility method, wri t el OR(), which publishes the servant’'s IOR as a
stringified IOR to afile.

Initialisation and all other tasks are performed in Ser ver. java’'smai n(). The
following code fragment from mai n() :

* initialises the ORB and POA (using or g. ong. CORBA. ORB. i nit ())

* declares, initialises and activatesthe Gr eet i ngSer vi ce servant

* publishesthe servant’s IOR to afile which clients can use to locate the servant
* starts an event loop, the ORB’sr un() method, which waits for client requests.

public static void main (String[] args)

try

/1 Initialize the ORB
org. ong. CORBA. ORB morb =
org.ong. CORBA. ORB.init (args, null);

/'l Acquire Root PQOA
POA root POA = PQAHel per. narrow (
morb.resolve_initial _references ("RootPOA"));

/'l Create the servant
G eetingServicelnpl gs = new G eetingServicel npl ();

r oot PCA. t he_PQOAManager (). acti vate();

/Il Get a reference to the servant to enable clients

/'l to connect to it
or g. ong. CORBA. Obj ect obj =
root POA. servant _to_reference (gs);

// Save the servant’s IORto a file toe enable clients

/1l to retrieve it
witelOR (morb, obj, "hello.ior");

System out. printl n(
"G eetingServer running... awaiting calls");

/] start a thread to listen for client requests
morb.run ();

}
catch (Exception e)

e.printStackTrace();
}

Client-gde
The client component of the Hello application makes requests of the server to
perform tasks. The client must:
* perform basic initialisation
922

Programming with RTOrb & PRISMTECH

8 Creating Applications 8.2 A SimpleNon Real-Time Application

« obtain referencesto the server’'s Gr eet i ngSer vi ce object
« cal the G eet i ngSer vi ce object’s operations to perform the desired task

The client component, Cl i ent . j ava, must perform many of the same, basic
initialisation tasks that the server must perform, including:

 declare ORB and G eet i ngSer vi ce variables
« initialise the ORB

Itemsto Note

e Client.java imports GreetingService and G eetingServiceHel per
instead of the POA, POAHel per and G eet i ngSer vi cel npl classes imported
by the server, Ser ver. j ava.

* The examples assume that the JVM has been started with the ORBO ass and
ORBSi ngl et onC ass properties using RTOrb's the supplied scripts.
Accordingly, the examples do not pass them to the ORB initialisation parameters.

» The client reads the Gr eet i ngSer vi ce servant’s stringified IOR from the file
previously published by the server then convertsit to an object reference using the
G eeti ngServi ceHel per. narrow() and ORB’snarrow() methods:

GreetingService gsref = GreetingServiceHel per. narrow (
orb.string to _object (ior));

Thed i ent . j ava source code is shown below.

i mport java.io.| CException;

i mport java.io.lnputStream

i mport java.io. | nput StreanReader;
i mport java.io.FilelnputStream

i mport java.i o.BufferedReader;

i mport com prisntech. ofj.exanpl es. corba. G eeti ngServi ce;
i mport com prisntech. ofj.exanpl es. corba. G eeti ngSer vi ceHel per;

public class dient

{
private Cient ()
{
}
public static void main (String[] args)
{
try
{

org.ong. CORBA. ORB orb =
org.ong. CORBA.ORB.init (args, null);

String ior = readlOR ("hello.ior");
G eetingService gsref =
Greeti ngServi ceHel per. narrow (
orb.string _to_object (ior));

93

M PRISMTECH Programming with RTOrb

8 Creating Applications 8.3 A Simple Soft Real-time Application

if (gsref == null)

Systemout.println (
"Unable to narrow server: " + ior);
Systemexit (1);

/1 call GreetingService.greeting() nethod
Systemout.println ("Response fromserver is "
+ gsref.greeting(" hello Cient"));

}
catch (Exception e)

e.print StackTrace();

}

/1 WUility for reading a stringified IOR froma file
private static String readl OR (String iorFile)
throws | OExcepti on

String ior = null;
I nput Stream i orURL = new Fil el nputStream (iorFile);
Buf f eredReader in = new BufferedReader (

new | nput St reanReader (iorURL));

ior = in.readLine();
in.close();
return ior;

}
A Smple Soft Real-time Application

This example, the Soft Real-time Hello application, is, similar to the non real-time
Hello example shown above. It contains the minimum elements needed to create a
working client-server application using RTOrb, but as a soft real-time application.

Soft Real-time Hello:

* uUses Real ti meThreads in HeapMenory, threadpool and priority lane for
processing client requests

* usesthe same
- IDL specification (hel | 0. i dI): see IDL Specification on page 90
- Greeti ngServi ce implementation (G eet i ngSer vi cel npl . j ava): see
Java Implementation on page 91

- servant object resolution technique (using a file for publishing the servant’s
IOR)

that was used by the Hello example

» performs the initialisation tasks specifically required for soft real-time execution
in addition to the same basic initialisation tasks performed by Hello

94

Programming with RTOrb & PRISMTECH

8 Creating Applications 8.3 A Simple Soft Real-time Application

The soft real-time associated tasks and procedures are described below. The
complete source code for the Real-time Hello application is located in:

<OFJ_DI R>/ exanpl es/j ava/ com pri snt ech/ of j / exanpl es/ cor ba/ pr od
uct gui de/ sof t

<OFJ_DI R>/ exanmpl es/idl/

G eetingServicel npl.javaisin
<OFJ_DI R>/ exanpl es/ javal com pri snt ech/ of j / exanpl es.

Server-dde

&4 PRISMTECH

The Soft Real-time Hello application’s server component, Ser ver , instantiates and
activates the Gr eet i ngSer vi ce servant, similar to the Hello application, but
performs additional initialisation tasks needed for real-time operation.

The server code is implemented in the Server. java file located in the
<OFJ_DI R>/ exanpl es/ javal con pri snt ech/ of j / exanpl es/ cor ba/ prod
uct gui de/ sof t directory.

Like Hello, the soft real-time Sever.java code imports
org. ong. Port abl eServer. POA, or g. ong. Port abl eSer ver. POAHel per
and the Gr eet i ngSer vi ce implementation, Gr eet i ngSer vi cel npl . However,
the code &l so imports classes which are needed for soft real-time threading, memory
alocation and memory management. These additional classes are shown in bold in
the following code fragment.

i mport java.io.| CException;
inmport java.io.FileWiter;
inmport java.io.PrintWiter;

i mport javax.realtine.RealtinmeThread;

i mport org.ong. Portabl eServer. | nplicitActivationPolicyVal ue;
i mport org.ong. Port abl eServer . POA;
i mport org.ong. Port abl eServer . POAHel per;

i mport com prisntech. ofj.exanpl es. corba. G eeti ngServi cel npl ;

The server code declares and defines cl ass Server. Server extends
Real ti meThr ead. Classes which run Real ti meThr ead threads must inherit
Real ti meThr ead. Ser ver has an empty, default constructor.

public class Server extends Realti nmeThread

{
/1 Variable for holding argunents passed to the ORB
private String[] m.args;
public Server ()
{
}
95
Programming with RTOrb

8 Creating Applications 8.3 A Simple Soft Real-time Application

96

Programming with RTOrb

The class' mai n() method performs some basic initialisation tasks (the remaining
initialisation tasks have been delegated to the class’ r un() method) and starts a
real-time thread which, indirectly, runs the ORB’sr un() method (which listens for
client requests).

Thefirst initialisation tasks that mai n() performsisto allocate a server instance to
heap memory, pass any command line arguments to the server instance and start the
server's real-time thread.

public static void main (String[] args)

try
{

/] Allocate server instance to heap menory
Server srv = new Server ();
MenoryArea nmem = | nmortal Menory. i nstance();

/1 Pass any command |ine argunments to this new i nstance
srv.setargs(args);

The server’s real-time thread can be started after these initialisation tasks are
complete.

/] start real-tinme thread
srv.start();

Note that cl ass Ser ver hasinherited the st art () method from cl ass
Real ti meThread. Real ti meThread. start () callstheinherited class' run()
method, in thiscase, Server.run().

Server 'srun() method performs tasks which initialise the ORB, acquire the
real-time ORB and POA, as well as doing the other tasks that are needed for making
the Gr eet i ngSer vi ce servant available for processing requests from clients.

/] overrides RealtinmeThread::run(), called by srv.start()
public void run()

try
{

[/ Initialize the ORB and real-time ORB. Mist be called
/1 from Real ti meThread: : run() or exception is thrown
org. ong. CORBA. ORB morb =

org.ong. CORBA.ORB.init (args, null);

/1 Acquire Root PQA
PQA root POA =
POAHel per . narr ow(

m orb.resolve_initial _references("Root POA"));

/1 Acquire RTORB
org. ong. RTCORBA. RTORB rt ORB =
or g. ong. RTCORBA. RTORBHel per . narr ow (
m orb.resol ve_initial _references("RTORB"));

& PRISMTECH

8 Creating Applications 8.3 A Simple Soft Real-time Application

&4 PRISMTECH

The first set of tasks, shown in the code fragment above, initialises the ORB and
obtains references to the POA and the real-time ORB.

The next set of tasks that r un() performsis to establish a threadpool and priority
threadpool lane that the Gr eet i ngSer vi ce servant can use for processing, since
thisis areal-time server. Only one priority laneis created in this example, since the
example does not do very much. However, more powerful applications which
anticipate multiple, simultaneous client requests would likely use more than one
threadpool lane.

The comments shown in the code below describe the properties, being passed as
arguments, that are used by the Thr eadpool Lane constructor and
rt ORB. create_t hreadpool _wi th_| anes() method to configure the
threadpool and lane, respectively.

Threadpool lanes must be created before the threadpool since they are passed to
create_t hreadpool _with_| anes() aselementsof an array of lanes.

/1 Initialise a threadpool and one priority |ane which

/1 the GreetingService servant (GreetingServicel npl)
/1 will use for processing requests
or g. ong. RTCORBA. Thr eadpool Lane[] | anes
= new or g. ong. RTCORBA. Thr eadpool Lane[1] ;

/]l Create priority |ane
| anes[0] = new org. ong. RTCORBA. Thr eadpool Lane

(short) 15000, // Default CORBA Priority assigned
1, /1 Number of static threads in |ane
0 /1 Nunber of dynam c threads

)

/!l Create a threadpool for the Threadpool Lane
int pool 1 = rtORB.create_threadpool _with_| anes

32 * 1024, // stack size for threads in pool

| anes, /] the | anes

true, /1 allow borrowi ng threads between pool s
true, /1 allow request buffering

1000, /1 max nunber buffered requests all owed
1000000 /1l max size of request_buffer (Bytes)

)&

The servant will be associated with a real-time POA, RTPOA, that has been
configured with appropriate policies. The real-time POA in this example has a
thread policy with a single threadpool, a client propagated priority model and an
implicit activation policy.

97
Programming with RTOrb

8 Creating Applications 8.3 A Simple Soft Real-time Application

98

The following code fragment shows how the POA policies are set, real-time POA
created and activated, and servant instance associated with the POA.

/1 create policies for the RTPOA that will be
/1 associated with the Hello servant, RTThreadpool
/1 and the Lanes

/1 threadpool policy for RTPOA
or g. ong. RTCORBA. Thr eadpool Policy tp_policy =
rt ORB. creat e_t hreadpool _policy (pool _1);

/] priority nodel for the real-time execution policy
org. ong. RTCORBA. PriorityMdel Policy pmpolicy =
rt ORB.create_priority_nodel _policy
(
org. ong. RTCORBA. Pri orityMdel . CLI ENT_PROPAGATED,
(short) 1

1

/1 inplicit activation policy
org. ong. CORBA. Policy ia policy =
root POA. create_inplicit_activation_policy
I mplicitActivationPolicyVal ue. | MPLI Cl T_ACTI VATI ON) ;

/1 CORBA Policies for instantiating the RTPOA
org. ong. CORBA. Pol i cy[] policies =
{

tp_policy, [/ threadpool policy
pmpolicy, // priority nodel policy
ia_policy, // inplicit activation policy

/1 Create POA using policies defined above

/1 Acquire POAManager

org. ong. Port abl eServer. POAManager manager =
r oot POA. t he_POAManager () ;

/1 Acquire the root POA
org. ong. RTPor t abl eServer. POA t his_root POA =
or g. ong. RTPor t abl eSer ver . POAHel per. narrow (r oot PQA) ;

/'l Create RTPQA on the root POA using policies defined above
PQOA ny_RTPQA =
thi s_root POA. creat e POA(" myRTPQOA", manager, policies);

/|l Create the servant
GreetingServicelnpl gs = new G eetingServicel npl ();

// Add to and activate the servant in the RTPOA
my_RTPQOA. activat e_obj ect (gs);

/]l CGet a reference to the servant (to enable clients

/1 to obtain its IOR
or g. ong. CORBA. Obj ect obj =
my_RTPOA. servant _to_reference (gs);

/1 Activate the RTPOA
my_RTPQOA. t he_POAManager () . acti vate();

& PRISMTECH

Programming with RTOrb

8 Creating Applications 8.3 A Simple Soft Real-time Application

The stringified IOR of the servant instance is published to afile (using the Server’s
utility, wri t el OR() enabling clients to obtain the IOR and resolve the servant
object. After publishing the IOR, the ORB’sr un() method is executed and begins
listening for client requests.
/1 Publish servant’s stringified IORto a file
witel OR (morb, obj, "hello.ior");

System out . print| n(
"GreetingServer running in RT... awaiting calls");

/] start thread to listen for client requests
morb.run ();

}
catch (Exception e)

{
e.printStackTrace();

}

The following code fragment shows the Server’'swri t el OR() and set ar gs()
utility methods.

/1 Wility for witing stringified IORto a file

private static void witel OR

or g. ong. CORBA. ORB or b,
or g. ong. CORBA. Obj ect obj ref,
String fil enane

)
{
try
{
PrintWiter pw = new PrintWiter (
new FileWiter (filename));
pw. println (orb.object_to_string(objref));
pw. fl ush();
pw. cl ose();
}
catch (1 CException ioe)
Systemout.println (
"Encount ered exception witing " + filenane);
Systemexit (0);
}

/1 Wility for setting application argunents
public void setargs (String[] args)
{

m args = args;

99

M PRISMTECH Programming with RTOrb

8 Creating Applications 8.3 A Simple Soft Real-time Application

100

Client-sde

The Soft Real-time Hello application’s client component, Cl i ent , performs the
same basic initialisation tasks that its non real-time Hello application counterpart
did, but it also performs additional initialisation tasks which are needed for soft
real-time operation and similarly as needed by the soft real-time Ser ver
component.

The client code is implemented in the Cl i ent.j ava file located in the
<OFJ_DI R>/ exanpl es/j ava/ com pri snt ech/ of j / exanpl es/ cor ba/ pr od
uct gui de/ sof t directory.

The soft real-time Cl i ent code imports the same classes as the non real-time
version, although it also imports the classes which are needed for soft real-time
operation. These additional classes are shown in bold in the code fragment bel ow.

i mport java.io.|nputStream

i mport java.i o.|nput StreanReader;
i mport java.io.FilelnputStream

i mport java.i o. Buf f er edReader;

i mport java.io.| CException;

i mport javax.realtinme. RealtimeThread;
i mport org.ong. RTCORBA. Curr ent Hel per;

i mport com prisntech. ofj.exanpl es. corba. G eeti ngServi ce;
i nport com prisntech. ofj.exanpl es. corba. G eeti ngServi ceHel per;

The client code declares and defines cl ass Cli ent. Cli ent extends
Real ti neThr ead, thesameascl ass Ser ver in the server component.
public class dient extends RealtimeThread

/1 variable to hold argunents
private String[] args;

or g. ong. CORBA. ORB or b;

/1 Variable to hold reference to GeetingService server
public static G eetingService gsref;

E)ublic Cient()
}

Themai n() method preforms some basic initialisation tasks: the tasks are similar to
those performed by cl ass Server.

The first task is to initialise the client object and allocate it to heap memory. The
cl nt.setargs (args) cal, shownin last line of the following code, uses the
class setargs() utility method to forward any command line arguments passed to
the client on to the ORB when it isinitialised. The client instance is then run using
the class' start () method.

& PRISMTECH

Programming with RTOrb

8 Creating Applications 8.3 A Simple Soft Real-time Application

public static void main (String[] args)
Client clnt = new Cient ();

clnt.setargs (args);

[/l Starting the real-tine thread
clnt.start();
}

Recall that st art () isinherited from Real t i meThr ead and that it calls the class
ownrun() method, which:

* initialises the ORB

* retrieves the IOR for the Server's Gr eet i ngSer vi ce servant (using the Client’s
readl OR() utility method)

« obtainsareferenceto the servant (using Gr eet i ngSer vi ceHel per. narrow())
* makes arequest on the servant (gsref . greeting(" rthello Cient"))

public void run()
{
try

{
org. ong. CORBA. ORB orb = org. ong. CORBA. ORB.init (args, null);

String ior = readlOR ("hello.ior");
gsref = GreetingServiceHel per. narrow (
orb.string _to_object (ior));

i{f (gsref == null)

Systemout.println ("Unable to narrow server: " + ior);
Systemexit (1);
}

//get and set the priority with RTCORBA:: Current variable
org. ong. RTCORBA. Current rtc;
tc = CurrentHel per. narrow (

orb.resolve_initial _references ("RTCurrent"));

/Il Set local current thread to low priority in the client
tc.the_priority((short) 15000);

/1l Call (the renpte) GreetingService' s greeting nethod
Systemout.println ("Response fromserver is "
gsref.greeting(" rthello Cient"));

}
catch (Exception e)

e.printStackTrace();

101

M PRISMTECH Programming with RTOrb

8 Creating Applications 8.4 A SimpleHard Real-time Application

102

If the call to the Server is successful, then its servant, Gr eet i ngSer vi ce, will
return:

G eetingService called by Client rthello Cient

A SmpleHard Real-time Application

This example, the Hard Real-time Hello application, is, similar to the non real-time
Hello example shown above. It contains the minimum elements needed to create a
working client-server application using RTOrb, but as a hard real-time application.

Hard Real-time Hello:

* uses NoHeapReal ti meThr eads in | mort al Menory, threadpool and priority
lane for processing client requests

* usesthe same
- IDL specification (hel | 0. i dlI): see IDL Specification on page 90
- GreetingServi ce implementation (Gr eet i ngSer vi cel npl . j ava): see
Java I mplementation on page 91

- servant aobject resolution technique (using a file for publishing the servant’s
IOR)

that was used by the Hello example

» performs the initialisation tasks specifically required for hard real-time execution
in addition to the same basic initialisation tasks performed by Hello

The hard real-time associated tasks and procedures are described below. The
complete source code for the Real-time Hello application is located in:

<OFJ_DI R>/ exanpl es/j ava/ com pri snt ech/ of j / exanpl es/ cor ba/ pr od
uct gui de/ hard

<OFJ_DI R>/ exanpl es/ i dl

GreetingServi cel npl . javaisin
<OFJ_DI R>/ exanpl es/j aval/ coni pri snt ech/ of j / exanpl es.

Server-dde

The Hard Real-time Hello application’s server component, Ser ver , instantiates and
activates the Gr eet i ngSer vi ce servant, similar to the Hello application, but
performs additional initialisation tasks needed for hard real-time operation.

The server code is implemented in the Server . java file located in the
<OFJ_DI R>/ exanpl es/javal/ cont pri snt ech/ of j / exanpl es/ cor ba/ prod
uct gui de/ har d directory.

& PRISMTECH

Programming with RTOrb

8 Creating Applications 8.4 A SimpleHard Real-time Application

&4 PRISMTECH

Like Hello, the hard real-time Sever.java code imports
org. ong. Port abl eServer. POA, or g. ong. Port abl eSer ver . POAHel per
and the Gr eet i ngSer vi ce implementation, Gr eet i ngSer vi cel npl . However,
the code also imports classes which are needed for hard real-time threading,
memory allocation and memory management. These additional classes are shown in
bold in the following code fragment.

i mport java.io.| CException;
inmport java.io.FileWiter;
inmport java.io.PrintWiter;

i mport javax.realtine.|lmortal Menory;
i mport javax.realtine. NoHeapReal ti meThr ead;
i mport javax.realtinmnme.RealtineThread;

i mport org.ongy. Portabl eServer. | nplicitActivationPolicyVal ue;
i mport org.ong. Port abl eServer . PQA;
i mport org.ong. Port abl eServer. POAHel per;

i mport com prisntech. ofj.exanpl es. corba. G eeti ngServi cel npl ;

The server code declares and defines cl ass Server. Server extends
NoHeapReal t i meThr ead. Classes which run Real ti meThr ead threads must
inherit NoHeapReal ti meThread. The server's constructor calls the
NoHeapReal Ti meThr ead superclass, passing a pointer to the singleton
| nor t al Menory object.

public class Server extends NoHeapReal ti neThr ead

/1 Variable for holding arguments passed to the ORB
private static String[] args;

public Server ()
{

super (null, Inmrortal Menory.instance());

The class’ nai n() method performs some basic initialisation tasks (the remaining
initialisation tasks have been delegated to the class' run() method) and starts a
real-time thread, NoHeapReal ti meThr ead, which indirectly runs the ORB’s
run() method (which listens for client requests).

The first initialisation tasks that mai n() performsisto allocate a server instance to
immortal memory, pass any command line arguments to the server instance and start
the server's real-time thread. Using immortal memory allows the server to be
available to all of the application’s threads the entire time its Java runtime
environment is running (see Section 6.1.2, Memory Management, on page 72).

public static void main (String[] args)

{

103
Programming with RTOrb

8 Creating Applications 8.4 A SimpleHard Real-time Application

try
{

// instantiate to imortal nenory using cl ass | oader
Server srv = Server) |Immortal Menory.instance ().new nstance
(d ass. f or Namg(

"com prisntech. of j. exanpl es. cor ba. product gui de. hard. Server"));

/1 Pass any command |ine argunments to this new i nstance
srv.setargs(args);

The server’s real-time thread, NoHeapReal t i neThr ead, can be started after these
initialisation tasks are complete and if the real-time JVM is able to schedule the
thread to run.

/| Check that the JVM can schedul e the server thread to run
if (!srv.getSchedul er().isFeasible())
{

System out . print| n(
"RTCORBA Hel | oServer cannot be scheduled to run.");

el se

[/l start real-tinme thread
srv.start();

}

Note that cl ass Ser ver hasinherited the st art () method from cl ass
NoHeapReal ti meThr ead. NoHeapReal ti meThread. start () callsthe
inherited class' run() method, in this case, Server. run().

Server 'srun() method performs tasks which initialise the ORB, acquire the
real-time ORB and POA, as well as doing the other tasks that are needed for making
the G eet i ngSer vi ce servant available for processing requests from clients.

/] overrides RealtinmeThread::run(), called by srv.start()
public void run()

try
{
// Initialize the ORB and real -tine ORB. Must be called

/1 from Realti meThread: :run() or exception is thrown
org. ong. CORBA. ORB morb =

org.ong. CORBA. ORB.init (args, null);

/1 Acquire Root PQOA
POA r oot POA =
POAHel per . narr ow

morb.resolve_initial _references("Root POA"));

/1 Acquire RTORB
org. ong. RTCORBA. RTORB rt ORB =
or g. ong. RTCORBA. RTORBHel per . narrow (
m orb.resol ve_initial _references("RTORB"));

104

Programming with RTOrb & PRISMTECH

8 Creating Applications 8.4 A SimpleHard Real-time Application

&4 PRISMTECH

The first set of tasks, shown in the code fragment above, initialises the ORB and
obtains references to the POA and the real-time ORB.

The next set of tasks that r un() performsis to establish a threadpool and priority
threadpool lane that the Gr eet i ngSer vi ce servant can use for processing, since
thisis areal-time server. Only one priority laneis created in this example, since the
example does not do very much. However, more powerful applications which
anticipate multiple, simultaneous client requests would likely use more than one
threadpool lane.

The comments shown in the code below describe the properties, being passed as
arguments, that are used by the Thr eadpool Lane constructor and
rt ORB. create_t hreadpool _wi th_| anes() method to configure the
threadpool and lane, respectively.

Threadpool lanes must be created before the threadpool since they are passed to
create_t hreadpool _with_| anes() aselementsof an array of lanes.

/1 Initialise a threadpool and one priority |ane which
/1 will be used for processing requests
or g. ong. RTCORBA. Thr eadpool Lane[] | anes
= new or g. ong. RTCORBA. Thr eadpool Lane[1] ;

/]l Create priority |ane
| anes[0] = new org. ong. RTCORBA. Thr eadpool Lane

(short) 15000, // Default CORBA Priority assigned
1, /1 Number of static threads in |ane
0 /1 Nunber of dynam c threads

)

/]l Create a threadpool for the Threadpool Lane
int pool 1 = rtORB.create_threadpool _with_| anes

(

32 * 1024, // stack size for threads in pool

| anes, /] the | anes

true, /1 allow borrowi ng threads between pool s
true, /1 allow request buffering

1000, /1 max nunber buffered requests all owed
1000000 /1l max size of request_buffer (Bytes)

)&

The servant will be associated with a real-time POA, RTPOA, that has been
configured with appropriate policies. The real-time POA in this example has a
thread policy with a single threadpool, a client propagated priority model and an
implicit activation policy.

The following code fragment shows how the POA poalicies are set, real-time POA
created and activated, and servant instance associated with the POA.

/Il create policies for the RTPOA that will be
/'l associated with the Hello servant, RTThreadpool
/1 and the Lanes

105
Programming with RTOrb

8 Creating Applications 8.4 A SimpleHard Real-time Application

/1 threadpool policy for RTPOA
or g. ong. RTCORBA. Thr eadpool Policy tp_policy =
rt ORB. creat e_t hreadpool _policy (pool _1);

/] priority nodel for the real-time execution policy
org. ong. RTCORBA. PriorityMdel Policy pmpolicy =
rt ORB.create_priority_mnodel _policy

(
org. ong. RTCORBA. Pri orityMdel . CLI ENT_PROPAGATED,
(short) 15000

1

/1 inplicit activation policy
org. ong. CORBA. Policy ia policy =
root POA. create_inplicit_activation_policy
I mplicitActivationPolicyVal ue. | MPLI Cl T_ACTI VATI ON) ;

/1 CORBA Policies for instantiating the RTPOA
org. ong. CORBA. Pol i cy[] policies =
{

tp_policy, [/ threadpool policy
pmpolicy, // priority nodel policy
ia_policy, // inplicit activation policy

/1 create POA using policies defined above

/1 acquire POAManager

org. ong. Port abl eServer. POAManager nanager =
r oot POA. t he_POAManager () ;

/1 acquire the root POA
org. ong. RTPor t abl eServer. POA t his_root POA =
or g. ong. RTPor t abl eSer ver . POAHel per. narrow (r oot PQA) ;

/1 create RTPQA on the root POA using policies defined above
PQOA ny_RTPQA =
thi s_root POA. creat e_ POA(" nmyRTPQA", manager, policies);

/|l create the servant
GreetingServicelnpl gs = new G eetingServicel npl();

// add to and activate the servant in the RTPOA
my_RTPQOA. activat e_obj ect (gs);

/]l CGet a reference to the servant (to enable clients
/1 to obtain its IOR

or g. ong. CORBA. Obj ect obj =
my_RTPOA. servant _to_reference (gs);

/1 Activate the RTPOA
my_RTPQOA. t he_POAManager () . acti vate();

The stringified IOR of the servant instance is published to afile (using the Server’s
utility, wri t el OR() enabling clients to obtain the IOR and resolve the servant
object. After publishing the IOR, the ORB’sr un() method is executed and begins
listening for client requests.

/] Publish servant’s stringified IORto a file
witelOR (morb, obj, "hello.ior");
106

Programming with RTOrb & PRISMTECH

8 Creating Applications 8.4 A SimpleHard Real-time Application

System out . print| n(
"GreetingServer running in RT... awaiting calls");

/] start thread to listen for client requests
morb.run ();

}
catch (Exception e)

{
e.printStackTrace();

}

The following code fragment shows the Server’'swri t el OR() and set args()
utility methods.

writel OR()

/1 Wility for witing stringified IORto a file
private static void witel OR (

or g. ong. CORBA. ORB or b,

or g. ong. CORBA. Ohj ect obj ref,

String fil ename)

{
try
{
PrintWiter pw = new PrintWiter (
new FileWiter (filename));
pw. println (orb.object _to_string(objref));
pw. f I ush();
pw. cl ose();
}
catch (1 CException ioe)
Systemout.println (
"Encount ered exception witing " + filenane);
Systemexit (0);
}

/] Uility for setting application argunments
public void setargs (String[] args)
{

m args = args;

setargs()

The input arguments to set ar gs() must be copied to immortal memory when
using hard real-time mode.

/1l Uility for setting application argunments
public void setargs (final String [] in_args)

Real ti meThread al |l ocator = new Real ti neThread (
(nul'l, null, null, Imortal Menory.instance (),
107

M PRISMTECH Programming with RTOrb

8 Creating Applications

nul |, new Runnable ())
public void run ()

String[] ol dArgs
String[] newArgs

i n_args;

newArgs[i] = oldArgs[i];

args = newAr gs;
});}
allocator.start ();
try
allocator.join ();
E:at ch (InterruptedException ie)
%
}
Client-sde

8.4 A SimpleHard Real-time Application

new String[ol dArgs.length |;
for (int i = 0; i < oldArgs.Iength;

The Hard Real-time Hello application’s client component, Cl i ent , performs the
same basic initialisation tasks that its non real-time Hello application counterpart
did, but it also performs additional initialisation tasks which are needed for hard
real-time operation and similarly as needed by the hard real-time Ser ver

component.

The client code is implemented in the Cl i ent.java file located in the
<OFJ_DI R>/ exanpl es/javal/ com pri snt ech/ of j / exanpl es/ cor ba/ pr od

uct gui de/ har d directory.

The hard real-time Cl i ent code imports the same classes as the non real-time
version, although it also imports the classes which are needed for hard real-time
operation. These additional classes are shown in bold in the code fragment bel ow.

i mport java
i mport java

.i 0.l nputStream
i
i mport java.i
i
i

0. | nput St r eanReader ;
0. Fi |l el nput Stream
0. Buf f er edReader ;

0. | OExcepti on;

i mport java
i mport java

i nport javax.realtinme.|lmortal Menory;
i mport javax.realtinme. NoHeapReal ti meThr ead;
i mport javax.realtinme. RealtimeThread;

i mport org.ong. RTCORBA. Curr ent Hel per;

i mport com prisntech. ofj.exanpl es. corba. G eeti ngServi ce;

i nport com prisntech. ofj.exanpl es. corba. G eeti ngServi ceHel per;

Programming with RTOrb

& PRISMTECH

8 Creating Applications 8.4 A SimpleHard Real-time Application

The client code declares and defines cl ass Cli ent. Cli ent extends
NoHeapReal ti meThr ead, the sameascl ass Ser ver inthe server component.
public class dient extends NoHeapReal ti neThr ead

/'l variable to hold arguments
private String[] args;

org. ong. CORBA. ORB or b;

/1l Variable to hold reference to G eetingService server
public static G eetingService gsref;

?ublic Cient()

super (null, Inmrortal Menory.instance ());

The mai n() method preforms some basic initialisation tasks and checks to see it
can run in the real-time JVM: the tasks are similar to those performed by cl ass
Server.

Thefirst task isto initialise the client object and alocateit to immortal memory. The
cl nt.setargs (args) cal, shown inlast line of the following code fragment,
usesthe class' set ar gs() utility method to forward any command line arguments
passed to the client on to the ORB when it isinitialised.
public static void main (String[] args)
Client clnt = null;
try

clnt = (dient) Inmortal Menory.instance ().new nstance
(d ass. forNanme (

"com prisnt ech. of j . exanpl es. cor ba. product gui de. hard.Client"));
}
catch (Exception e)

Systemout.println ("exc caught" + e.toString());

clnt.setargs (args);

The last two tasks that mai n() does, which are similar to the final tasks performed
by the Server. mai n() method, are to determine if the client instance can be
scheduled to be run by the VM and if it can, then call the class' st art () method.

if (!'clnt.getScheduler().isFeasible())

/! not possible to run at this tine
System out . print | n(
"Runni ng RTCORBA GreetingService Client is not feasible");

109
M PRISMTECH Programming with RTOrb

8 Creating Applications 8.4 A SimpleHard Real-time Application

el se

// can schedule to run
clnt.start();

}

The client instance is then run using the class' st art () method. Recall that
start () isinherited from NoHeapRealtimeThread and that it calls the class' own
run() method.

If the client is able to be scheduled to run by the WM, thenrun() iscaled and it
* initialises the ORB

* retrieves the IOR for the Server’'s Gr eet i ngSer vi ce servant (using the Client’s
readl OR() utility method)

* obtainsareferenceto the servant (using Gr eet i ngSer vi ceHel per. narrow())
» makes arequest on the servant (gsref.greeting (" rthello dient"))

public void run()
{
try
{
org. ong. CORBA. ORB orb = org.ong. CORBA. ORB.init (args, null);
String ior = readlOR ("hello.ior");
gsref = G eetingServiceHel per. narrow (

orb.string_to_object (ior));
if (gsref == null)

Systemout.println ("Unable to narrow server : " + ior);
Systemexit (1);
}

/1 get and set the priority using RTCORBA:: Current
org. ong. RTCORBA. Current rtc;
rtc = Current Hel per. narrow
(orb.resolve_initial _references ("RTCurrent"));

/] set local current thread to low priority in client
rtc.the_priority((short) 15000);

/1l renotely call GreetingService s greeting nethod
Systemout.println ("Response fromserver is "
+ gsref.greeting(" rthello Cient"));
}
catch (Exception e)

e.print StackTrace();

110

Programming with RTOrb & PRISMTECH

8 Creating Applications 8.4 A SimpleHard Real-time Application

If the call to the Server is successful, then its servant, Gr eet i ngSer vi ce, will
return:

G eetingService called by Client rthello Cient

m

M PRISMTECH Programming with RTOrb

8 Creating Applications 8.4 A SimpleHard Real-time Application

112

Programming with RTOrb & PRISMTECH

APPENDICES

Appendix

API| Enhancements

RTOrb provides enhancements to the OMG'’s standard CORBA API. These
enhancements described below

Classesand M ethods

InputSream Class
com prisntech. ofj.orb. I nputStream

InputStream ()
public InputStream (org. ong. CORBA. ORB, byte[])

Thisisthel nput St r eamclass constructor for creating InputStreams.

rest ()
public void reset ()

reset resetsthe stream to a pristine initial state. This should only be used with
non-allocator based objects. It will not remove or erase the internal contained byte
array. It will only reset the read and write pointers.

setBuffer ()
public void setBuffer (byte[])

set Buf f er replaces the internal buffer with the supplied byte array. This also
implicitly resets the stream.

setLittleEndian ()
public void setLittl eEndi an (bool ean endi an)

set Littl eEndi an() setsthe ordering of bytes in the buffer to have lower
significance at lower addresses or the little end.

OutputSream Class
com prisntech. ofj.orb. Qut put Stream

Use the standard OMG create_output_stream() method on
or g. ong. CORBA. ORB to construct an OutputStream.

getBuffer Copy()
public byte [] getBufferCopy()

115

& PRISMTECH Product Guide

Appendices

get Buf f er Copy returns the marshalled data by returning a copy of the byte array
datafor this stream.

Only acopy of the stream’s used bytes are returned.

getWritePosition ()
public int getWitePosition ()

get Wit ePosi tion() getsthe stream’s current write position.

reset ()
public void reset ()

reset () resetsthe stream to a pristine initial state. r eset () should only be used
with non-allocator based objects. r eset () will not remove or erase the internal
contained byte array: it only resets the write and used pointers.

setBuffer ()
public void setBuffer (byte[])

set Buf f er () replaces the internal buffer with the supplied byte array.
set Buf f er () also implicitly resets the stream. set Buf f er () leaves the write
position at zero.

setWritePosition ()
public void setWitePosition (int)

set WitePosition() setsthe current write position of the stream. A
or g. ong. CORBA. MARSHAL exception will occur if set Wit ePosition() isset
outside the stream’s bounds.

set Wit ePosi ti on() isintended to allow usersto overwrite datathat has already
been written into the stream. If avalue of x isequal to si ze(), then calling
set Wit ePosi tion() and writing beyond x will produce undefined behaviour.

size()
public int size ()

si ze() returnsthe current size of the stream (in other words, the amount of written
data.

The underlying byte buffer may be longer than si ze() or thevalue of wri t ePos.

Valuetypesand Factories

116
Product Guide

It is possible to use a valuetype without providing a corresponding factory. This
feature can be used by supplying an implementation class which has a name of the
form:

<vt>| npl

& PRISMTECH

Appendices

Examples

& PRISMTECH

where <vt > isthe name of the valuetype defined inthe IDL.

For example, if the valuetype is called Thi ng, then the implementation class must
be called Thi ngl npl .

The implementation class must be on the classpath so that the ORB can find it at run
time.

Example 1 Writing a valuetypeto a siream

Using avaluetype called Ret ri eval Resul t, this examples shows how to write a
valuetype to a stream.

TheRetri eval Resul t isdefinedin IDL as:
val uet ype Retrieval Result

{

private Fl oat Sequence scores;

private Wt ringVal ueSequence i ds;

private | ong size;

Fl oat Sequence get Scores();

W5t ri ngVal ueSequence getlds();

| ong getSize();

voi d set Scores(in Fl oat Sequence scores);

void setlds(in WatringVal ueSequence ids);

void setSize(in |long size);

factory init(in FloatSequence scores,

in WstringVal ueSequence ids, ins long size);

H

The Retri eval Resul t valuetype is first retrieved from the server. A long
placeholder is written to later write the size into. Next the valuetype itself iswritten
to the stream.

As shown in the following code example, it is possible to get a copy of the written
bytes and create an inputstream for reading from those bytes.

Finally, by recording the final write position it is possible to calculate the size of the
Ret ri eval Resul t and record its size in the stream.

1 Retrieval Result rresult = server.search();

2 QutputStream os = (QutputStreamnmorb.create_output_stream ();

3 Systemerr.println ("Streamsize " + os.size () +

4 " and wite position " + os.getWitePosition ());

117
Product Guide

Appendices

118
Product Guide

int offset = os.getWitePosition ();
/1 Pl acehol der for |ength

0S. Wi

0S. Wi

te_long (0);

te_value (rresult);

int offset2 = os.getWitePosition ();
Systemerr.println ("Ofset2 =" + offset2 + " and " +

os.size ());

/] Test the value has been witten.
byte []I b = os. getBufferCopy ();
I nput Stream i nput Str =

new com prisntech.ofj.orb. I nputStream (getQOb (), |b);

assert
assert

True (0 == inputStr.read_long ());
True

(Arrays.equals (rresult.getScores (),

I Wi

(Retrieval Resul t Hel per.read (inputStr)).getScores ()));

te the actual size of the Retrieval Result

os.setWitePosition (offset);

0S. Wi

te_long (offset2 - offset);

/] Reset the write position to the original.

0s. set

Systemerr.println ("Stream si ze

WitePosition (offset?2);

+ o0s.size () +
and wite position " + os.getWitePosition ());

Example 2 Reusing an OutputStream

This example shows how to set the buffer of an existing Qut put St r eam The
stream created in Example 1 isused. Additional information isthen written into the
stream.

AnIOR iswritten to a new byte buffer then, asin Example 1, Ret ri eval Resul t is
written to the buffer.

However, thistime a new InputStream is created from the outputstream and the data
isread back again.

1
2

[/ Dummy ior string
bytString ior =
"1 ORO00000000000100000000000000A0000102000000000931302E312E302E3400

’byte [JiorB = new byte [4 + ior.getBytes ().length];

/1 Use a new byte array with an existing stream

0s. set

Buf fer (iorB);

/'l Wite the ior bytes out.

os.wite long (ior.getBytes ().length);
os.wite (ior.getBytes());

/[l Wite the long and Retrieval Result as before.

of f set

= os.getWitePosition ();

os.wite long (0);

& PRISMTECH

Appendices

15 os.wite_value (rresult);

16

17 Systemerr.println ("Streamsize " + os.size () +
18 " and wite position " + os.getWitePosition ());
19

20 os.setWitePosition (offset);

21 os.write_long (os.size() - offset);
22 os.setWitePosition (os.size ());
23

24 |/ Read the data.

25 InputStreamis = os.create_input_stream();

26 int strLength = is.read_long ();

27 Systemerr.println ("Read string length of " + strLength);
28 byte []str = new byte[strLength];

29 is.read_octet_array (str, 0, strLength);

30 Systemerr.println ("Read string of " + new String (str));
31 int valueSize = is.read_long ();

32 Retrieval Resul t Hel per.read (is);

119

& PRISMTECH Product Guide

Appendices

120

Product Guide &4 PRISMTECH

BIBLIOGRAPHY

Bibliography

The documents and articles listed below are referred to in the text or are recommended reading.

[1] A Comprehensive Source of Information on Real-time Systems and Design,
Jensen D.,http://mwww.real-time.org.

[2] Concurrent and Real-Time Programming in Java, Andy Wellings, John Wiley & Sons Ltd.,
2004.

[3] Patterns for Concurrent and Networked Objects, Pattern Oriented Software Architecture -
Volume 2, Schmidt D., et. a.,. JWiley, 2000.

[4] Predictable Scheduling Algorithms and Applications, Hard Real-time Computing Systems,
Buttazo G, Kluwer Academic Press, 1997.

[5] Programming for the Real World, Posix.4, Gallmeister B.O., O'Reilly and associates, 1995.
[6] Real-Time Java Programming, Peter C. Dibble, Sun Microsystems Press Java Series, 2002.
[7] Real-Time Specification for Java (RTSJ) v1.0.1, Rudy Belliardi, et. a., http://www.rtsj.org
[8] Real-Time Specification for Java, Bollella G, et. a., Addison Wesley, 2000.

[9] Real-Time Systems and Programming Languages, Alan Burns and Andy Wellings, Addison
Wesley, Third Edition, 2001.

[10]Real-Time Systems: Design Principles for Distributed Embedded Applications, Kopetz, H.,
Kluwer Academic Press, Fourth Edition, 1997.

[11]Sun Java Real-Time System, http://java.sun.com/j2se/realtime, Sun Microsystems.

[12]Synchronization in Real-time Systems: A Priority Inheritance Approach, Rajkumar R., Kluwer
Academic Press, 1991.

[13]What is Predictability for Real-time Systems, Stankovic J.A. and Ramamritham K., Journal of
Real-time Systems, Issue 2, 1990.

123

& PRISMTECH Product Guide

http://www.real-time.org
http://java.sun.com/j2se/realtime

Bibliography

124

Product Guide &4 PRISMTECH

INDEX

| nd ex

abstraction, object reference. 42
adapters,object. i 44
AdviceNotes ... 78
Application Creation Example. 84
associate
Priorityo 52
priority inheritance protocol 69
thread pools, poa. 64
basic object adapter interface. 44
Bibliography oL 123
BOAinterface. 44
bounded
CaChe. ..o 55
Characterstrings........... ...l 42
ClassesandMethods 115
cient. 38, 42
definition. L 42
differentterms., 42
processingcontext., 42
role ... 38
Stub . 38
Client and Server Protocol Configuration 61
client and server protocol configuration. 61
Client-side. 100
Common Requirements 8l
Compiling Applications. 81
Compliance. 4
complianCe.ovviiiiii 4
computing, distributed object............... 36
definition. L 33

Configuration of the Hard Real-Time Mode . . .19
Configuration of the Soft Real-Time Mode. . . .18

Configuration Options and Properties 15
Configuration Properties 20
& PRISMTECH

Asynchronous Event Handling. 73
asynchronous event handling. 73
Asynchronous Thread Termination 73
asynchronous thread termination. 73
Asynchronous Transfer Of Control 73
asynchronous transfer of control 73
avoidancetechniques. 55

execution times and predictability 53

priority inversion 67

system call executiontimes 55

Configuring OpenFusion CORBA Services .. .29
connections

non-multiplexed 61
control, asynchronoustransferof 73
ConventionSoviiiie i 9,79
corba

real-timemutex interface 70
corba model

location transparency 35
CORBAMUIEX. . ..ot ie e 69
corbamutex 69
CORBA Priority. . ..ot 68
corbapriority 68
CORBA Priority Mapping. 68
corbapriority mapping., .. 68
corba specification. 36
corbato nativepriority. 68
CorbaServices. 36
Current 62
CUMENt. . ..o e 62
Currentinterface. 69
currentinterface. oL 69

127

Product Guide

Index

deliveringrequests. 39,41 distributed object computing. 33, 36
Deploying and Running Applications. 82 distributed object technology 34
Developing Real-time Systemswith RTOS ... 52 distributed systems
dispatching, threads. 71 important properties 53
distributedobject. 36 predictability 54
EnterpriseMode 17 Examples............. 117
environment variables. 15 ExamplesInformation. 74
event handling, asynchronous. 73 executiontimes,bounded 53
Features............ ..., 4,54 firstclassobjects........................ 43
first classobject, righteous 43 Further Reading. 74
getBufferCopy() ...t 115 getWritePosition () 116
Hard Real-time Application 102 Hard Real-TimeMode 19
IBM Websphere Real TimeJVM 82, 83 commandlinemode 11
IDL gumodeiiiiii 11
MUEEX . . ottt e 70 Installing Using Command Line Mode. 11
idl 37 Installing Using GUI Mode. 11
MUEEX . o ottt e 70 Intended Audience Xi
rtcorbapriority. oL, 68 interface
IDL Specification 90 client 36
inheritance contract 37
mutex and resource contention 69 CUITENE . oottt e e e e 69
InputStream ()o 115 definition. L 36
InputStream Class. 115 implementation 37
Install theLicenceFile 12 inheritance. 37
Ingtallation. 11 mapping priorities. 68
installation. i 11 MUEEX . .« ettt 70
Installation Procedure 10 object implementation. 36
installing Interface Definition Language (IDL) 37
128 & PRISMTECH

Product Guide

Introduction
Invocation Timeouts
invocation timeouts

JVM Configuration

licencefile, installing
location transparency

notifiesin rt corba

priority protocol

specification requirement
mutex interface

Mutex Notifiesin RT CORBA
Mutex, priority protocol

Non-Determinism
non-determinism
Non-Multiplexed Connections
non-multiplexed connections

interface, base object adapter 44
interface, BOA 44
interface, programming, orb pseudo object43
interrupt triggering 55
J
JavaCompiler........................... 8l
Javalmplementation. 91
L
Laned Threadpool. 64
laned threadpool 64
languagemapping. 37
M
MaPPINGg ..o 37
mapping priorities. 68
mediationbyorb............. L. 39
Memory Management 18, 19, 72
memory management 72
Messaging Configuration.................. 27
method invocation 49
Multiple ORBsinaSingleJVM 20
MUEES. . . .t 69
mutex
N
native priority and priority mappings. 58
Native Priority and PriorityMappings 58
network
controllingresources. 63
O
object
adapters. 44
pseudoobjects..............., 44
firstelass. ... i 43
pPSeudo.o 43
righteous.............. 43

services, fundamental, standard interfaces . . .36

&4 PRISMTECH

129
Product Guide

Index

130

definition oL 42
object technology, distributed. 34
object,pseudo 43
object, righteous 43
object, target 34
omg

specifications. 36
Operating Systems.ovvenn... 10
operatingsystems 10
orb

asanabstraction. 40
Physical Memory Access 73
physical memory access 73
PIDL ..o 43
platfform transparency 35
POA

activeobjectmap...................... 45

AQUMENES. . .ot 47

Create . . oo 47

functionality.......................... 44

policies. 46

(00160 - PR 45
POA Activation Methods with Priority. 62
POA activation methods with priority 62
PoOIS . .. 64
predictability

distributed applications 54

real-timeterms. 51

riosand........... .. i 53
Predictability in Distributed Applications. 54
predictability, distributed systems. 54
Preparation 11
Prerequisites oo 9
priority

ASSOCIAE. . . vt 52

associate inheritance protocol 69

corbatonative................, 68

data. 69

INVEISION ..ottt 65

model 62

nativetocorba.............., 68

phenomenaand protocols 65

Product Guide

ct++polymorphism 40
interfaceboundaries 40
location transparency.l 35
mediation. i 39
pseudoobject............... 43
role. . ..o 39
what congtitutes. 39
ORBMOES.o 17
orb, mediationby 39
Organisationcoivunivn... Xi
OutputStreamClass. 115
protocol 55
protocol, mutex implementation 69
rtcorbatypeid.............., 68
scheduling.................., 65
storagestructureo e 69
Priority Banded Connections 61, 64
priority banded connections 61, 64

priority inversion
defined. i 54
priority inversion, bounded. 67
Priority Machinery 65
priority machinery. 65
priority mapping, corba. 68
priority mappings 58
PriorityModel 62
Priority Models. 59
prioritymodels oL 59
Priority Phenomenaand Protocols 65
priority,corba. 68
processing context, client 42
processing, request 49
programming interface, orb pseudo object 43
programming language transparency 35
protocol configuration, client and server 61
PrOXI€S. . ottt 38
pseudoobject. i, 43
objectadapters. 44
orb . 43
PIDL ... 43
pseudo-idl, 43
pseudo-idl 43
& PRISMTECH

Index

QUEUE. . . .ottt ettt i 63,64 queue assigntothreadpool................ 63
Rea-time 4 red-timesystems, developing 52
real-time......... ... i 3 Real-time, Whatis........................ 3
corbaconfiguration. 61 reference,object. 42
corbacurrent..............., 59 characterstring. 42
corbamodules. 57 definition. 42
corbamutexes., 60 representation transparency 35
corbapriority. 58 request
defined 51 assemblingmessages 39
extensontojava..............coiin.. 71 request ProcesSiNgovvvvv i e e 49
hard......... .. 51 requests
0] o 58 delivering o 41
portable object adapters 62 delivering to remote objects. 39
priority inheritance 60 requests, delivering. 41
SOft L 51 toremoteobjects., 39
terminology............ o 51 reset (..o 115, 116
triggers ..o 52 ResolvingServers.oooiint. 84
Real-time CORBA Configuration 61 resources, controlling. 63
Real-time CORBA Current 59 righteousobject 43
Real-time CORBA Modules. 57 roleclient.......... 38
Real-time CORBA Mutexes and Priority RTCORBA API Restrictions. 18
Inheritance. 60 RTCORBA Current Interface. 69
Real-time CORBA Priority 58 RTOrb Run Scripts. . ..o 82
Real-time ExtensiontoJava. 71 RTOS
real-timemutex interface 70 relevanceinred-time................... 52
Red-timeORB.......................... 58 rtos, rea-timesystems.................... 52
Real-time Portable Object Adapters. 62 RTPOA. ... 62, 64
Real-time Specification 57 RTPOACurrent. ..., 64
real-time specification 57 RTPOA currentcovviun.... 64
Red-timeSystems 51 Running OpenFusion CORBA Services 87
rea-timesystems 51
scheduling........................... 58, 65 role ... 38
scheduling, threads. 71 skeleton. ... 38
Scope of thisGuidefor RTOrb 5 Server-side...................... 91, 95, 102
SEIVEl 38,42 satargs() ... 107
definition.............. o L 42 seBuffer()............ ... 115, 116
differentterms. 42 selittleEndian() 115
& PRISMTECH 131

Product Guide

Index

132

setWritePosition (). 116
SIZ8() . e 116
skeleton 38
definition oL 38
implementationinstance 38
implementationtype 38
implementations. 38
SV et 38
P o 38
SOCKELS. . ot 33
Soft Real-TimeMode 17
specification
cortha 36
mutex implementation. 69
stack. ..o 55
Standards. 4
standards 4
SHNGS .o 42
targetobject........... L, 34
terminology 51
Testing thelnstallation 13
The Real-time CORBA Mutex Interface 70
thread pool
operation,basicmode 63
Thread Pool Operation BasicMode 63
thread pool, queue assignedto 63, 64
thread pools
assoCialePoa . ..o v 64
associationswithrtpoa. 64
Thread Scheduling. 58
thread scheduling. 58
Thread Scheduling and Dispatching 71
thread scheduling and dispatching 71
thread termination, asynchronous. 73
Threadpool Configuration. 27
unbounded delays
avoidancetechniques. 55
illustrated discussionof 65
interrupts 55

Product Guide

strings, character 42
Stub .. 37
client ... 38
definition............ o 37
INVOCALIONS. . ..ot 37
PrOXi€S. . o\ o et e 38
SUMMOQALES. . v v v ettt 38
stub,client. 38
Sun JavaRed-time System. 83
Sun Java Real-Time System Requirements ... 81
SUIMMOQALES . v vt et et 38
Synchronization 73
synchronization. 52,73
System and Environment Settings 8l
system call execution times, bounded. 55
SystemVariables. 10
systemvariables 10
threadpool, laned. 64
threadpools 60, 62
threads. i 62
threadpools,and. 62
Time- and Event-Triggered Systems 52
time- and event-triggered systems 52
transparencies 34
transparency, location. 34
corbamodelol 35
orb .o 35
transparency, platform 35
transparency, programming language. 35
transparency, representation. 35
tuple. . ..o 53

type
skeleton 38
languageinfluence..................... 55
priority inversion. 54
Uningtalling. 13
uninstallingRTOrb. 13
& PRISMTECH

Index

Usingthe IDL Compiler................... 79
Vauetypesand Factories 116 SySteM . . 10
variables variables, environment. 15
WHtelOR() ..o 107
133
&4 PRISMTECH

Product Guide

Index

134

Product Guide & PRISMTECH

	Product Guide
	Table of Contents
	Preface
	About this Product Guide
	Contacts

	Introduction
	OpenFusion RTOrb Java(tm) Edition
	What is Real-time?
	How RTOrb Provides for Real-time
	Features, Standards and Compliance
	Scope of this Guide for RTOrb

	Installation and Configuration
	1 Installation
	1.0.1 Conventions
	1.1 Prerequisites
	1.1.1 Operating Systems
	1.1.2 System Variables

	1.2 Installation Procedure
	1.2.1 General
	1.2.2 Preparation
	1.2.3 Installation
	1.2.3.1 Installing Using GUI Mode
	1.2.3.2 Installing Using Command Line Mode

	1.2.4 Install the Licence File
	1.2.5 Testing the Installation

	1.3 Uninstalling

	2 Configuration
	2.1 Configuration Options and Properties
	2.1.1 ORB Modes
	2.1.1.1 Enterprise Mode
	2.1.1.2 Soft Real-Time Mode
	2.1.1.3 Hard Real-Time Mode
	2.1.1.4 Multiple ORBs in a Single JVM

	2.1.2 Configuration Properties
	2.1.3 Threadpool Configuration
	2.1.4 Messaging Configuration
	2.1.5 Object Key Map
	2.1.6 Logging

	2.2 Configuring OpenFusion CORBA Services

	Real-time Programming
	3 Reviewing CORBA Concepts
	3.1 Basic Concepts
	3.1.1 The ORB
	3.1.1.1 Distributed Object Computing
	3.1.1.2 Transparencies

	3.1.2 Distributed Object Computing and CORBA
	3.1.2.1 Interfaces
	3.1.2.2 Programming with CORBA Interfaces
	3.1.2.3 Delivering Requests Using an ORB

	3.1.3 ORB Components
	3.1.3.1 Abstraction

	3.1.4 Terminology Explained
	3.1.4.1 Clients and Servers
	3.1.4.2 Object References
	3.1.4.3 First Class Objects and Pseudo Objects

	3.2 Portable Object Adapter
	3.2.1 How the POA Works
	3.2.1.1 POA Configuration

	3.2.2 POA Policies
	3.2.2.1 Standard POA Policies
	3.2.2.2 POA Policy Summary

	3.2.3 POA Manager
	3.2.4 Object References, Keys, and IDs
	3.2.5 Servants
	3.2.6 Object Creation and Activation
	3.2.7 Request Processing

	4 Introduction to Real-time Systems
	4.1 Real-time Systems
	4.1.1 Time- and Event-Triggered Systems
	4.1.2 Developing Real-time Systems with RTOS
	4.1.3 Predictability in Distributed Applications
	4.1.4 Features and Non-Determinism

	5 Introduction to Real-time CORBA
	5.1 Real-time Specification
	5.1.1 Real-time CORBA Modules
	5.1.2 Real-time ORB
	5.1.3 Thread Scheduling
	5.1.4 Real-time CORBA Priority
	5.1.5 Native Priority and PriorityMappings
	5.1.5.1 User-defined PriorityMappings

	5.1.6 Real-time CORBA Current
	5.1.7 Priority Models
	5.1.8 Real-time CORBA Mutexes and Priority Inheritance
	5.1.9 Threadpools
	5.1.10 Priority Banded Connections
	5.1.11 Non-Multiplexed Connections
	5.1.12 Invocation Timeouts
	5.1.13 Client and Server Protocol Configuration
	5.1.14 Real-time CORBA Configuration

	5.2 Real-time Portable Object Adapters
	5.2.1 Priority Model
	5.2.2 RTPOA
	5.2.2.1 POA Activation Methods with Priority

	5.2.3 Threads and Threadpools
	5.2.3.1 Current
	5.2.3.2 Threadpools
	5.2.3.3 Thread Pool Operation Basic Mode
	5.2.3.4 Laned Threadpool
	5.2.3.5 Priority Banded Connections

	5.2.4 RTPOA Current
	5.2.5 Associations Between Pools and RTPOA

	5.3 Priority Machinery
	5.3.1 Priority Phenomena and Protocols
	5.3.1.1 CORBA Priority

	5.4 CORBA Mutex
	5.4.1 Mutex Notifies in RT CORBA
	5.4.2 Why Mutex Has a Priority Protocol
	5.4.3 The Real-time CORBA Mutex Interface

	6 Introduction to Real-time Java
	6.1 Real-time Extension to Java
	6.1.1 Thread Scheduling and Dispatching
	6.1.2 Memory Management
	6.1.3 Synchronization
	6.1.4 Asynchronous Event Handling
	6.1.5 Asynchronous Transfer Of Control
	6.1.6 Asynchronous Thread Termination
	6.1.7 Physical Memory Access

	6.2 Further Reading and Examples Information

	Programming with RTOrb
	7 Using the ORB
	7.1 Introduction
	7.1.1 Advice Notes
	7.1.2 Conventions

	7.2 Using the IDL Compiler
	7.3 Compiling Applications
	7.3.1 System and Environment Settings
	7.3.2 Java Compiler
	7.3.2.1 Common Requirements
	7.3.2.2 Sun Java Real-Time System Requirements
	7.3.2.3 IBM Websphere Real Time JVM

	7.4 Deploying and Running Applications
	7.4.1 RTOrb Run Scripts
	7.4.1.1 Sun Java Real-time System
	7.4.1.2 IBM Websphere Real Time JVM

	7.4.2 Resolving Servers

	7.5 Application Creation Example
	7.6 Running OpenFusion CORBA Services

	8 Creating Applications
	8.1 General
	8.2 A Simple Non Real-Time Application
	8.2.1 IDL Specification
	8.2.2 Java Implementation
	8.2.3 Server-side
	8.2.4 Client-side

	8.3 A Simple Soft Real-time Application
	8.3.1 Server-side
	8.3.2 Client-side

	8.4 A Simple Hard Real-time Application
	8.4.1 Server-side
	8.4.2 Client-side

	Appendices
	A API Enhancements
	Classes and Methods
	InputStream Class
	OutputStream Class

	Valuetypes and Factories
	Examples

	Bibliography
	Index

