
OpenFusion
RTOrb Java™ Edition

Version 1.5

Product Guide
�������	

OpenFusion
RTOrb Java™ Edition
PRODUCT GUIDE
Part Number: RTJ-PG Doc Issue 49, 15 April 2011
PRISMTECH

Copyright Notice
© 2011 PrismTech Limited. All rights reserved.

This document may be reproduced in whole but not in part.

The information contained in this document is subject to change without notice and
is made available in good faith without liability on the part of PrismTech Limited or
PrismTech Corporation.

All trademarks acknowledged.
ii
Product Guide

�������	

CONTENTS

Table of Contents
Preface

About this Product Guide . xi
Contacts .xii

Introduction
OpenFusion RTOrb Java(tm) Edition 3
What is Real-time? . 3
How RTOrb Provides for Real-time . 4
Features, Standards and Compliance . 4
Scope of this Guide for RTOrb. 5

Installation and Configuration
Chapter 1 Installation 9

1.0.1 Conventions . 9
1.1 Prerequisites . 9
1.1.1 Operating Systems . 10
1.1.2 System Variables . 10
1.2 Installation Procedure . 10
1.2.1 General. 10
1.2.2 Preparation . 11
1.2.3 Installation . 11
1.2.3.1 Installing Using GUI Mode . 11
1.2.3.2 Installing Using Command Line Mode . 11
1.2.4 Install the Licence File. 12
1.2.5 Testing the Installation . 13
1.3 Uninstalling . 13

Chapter 2 Configuration 15
2.1 Configuration Options and Properties . 15
2.1.1 ORB Modes . 17
2.1.1.1 Enterprise Mode . 17
2.1.1.2 Soft Real-Time Mode . 17
2.1.1.3 Hard Real-Time Mode . 19
2.1.1.4 Multiple ORBs in a Single JVM. 20
2.1.2 Configuration Properties . 20
2.1.3 Threadpool Configuration . 27
2.1.4 Messaging Configuration. 27
2.1.5 Object Key Map. 28
v
Product Guide

�������	

Table of Contents
2.1.6 Logging . 28
2.2 Configuring OpenFusion CORBA Services . 29

Real-time Programming
Chapter 3 Reviewing CORBA Concepts 33

3.1 Basic Concepts . 33
3.1.1 The ORB . 33
3.1.1.1 Distributed Object Computing. 33
3.1.1.2 Transparencies . 34
3.1.2 Distributed Object Computing and CORBA. 36
3.1.2.1 Interfaces . 36
3.1.2.2 Programming with CORBA Interfaces. 37
3.1.2.3 Delivering Requests Using an ORB . 39
3.1.3 ORB Components . 39
3.1.3.1 Abstraction . 40
3.1.4 Terminology Explained . 41
3.1.4.1 Clients and Servers . 42
3.1.4.2 Object References. 42
3.1.4.3 First Class Objects and Pseudo Objects . 43
3.2 Portable Object Adapter . 44
3.2.1 How the POA Works. 45
3.2.1.1 POA Configuration. 46
3.2.2 POA Policies . 46
3.2.2.1 Standard POA Policies . 46
3.2.2.2 POA Policy Summary . 47
3.2.3 POA Manager . 48
3.2.4 Object References, Keys, and IDs . 48
3.2.5 Servants . 48
3.2.6 Object Creation and Activation . 48
3.2.7 Request Processing . 49

Chapter 4 Introduction to Real-time Systems 51
4.1 Real-time Systems. 51
4.1.1 Time- and Event-Triggered Systems. 52
4.1.2 Developing Real-time Systems with RTOS . 52
4.1.3 Predictability in Distributed Applications . 54
4.1.4 Features and Non-Determinism. 54

Chapter 5 Introduction to Real-time CORBA 57
5.1 Real-time Specification. 57
5.1.1 Real-time CORBA Modules . 57
vi
Product Guide �������	

Table of Contents
5.1.2 Real-time ORB . 58
5.1.3 Thread Scheduling . 58
5.1.4 Real-time CORBA Priority . 58
5.1.5 Native Priority and PriorityMappings . 58
5.1.5.1 User-defined PriorityMappings . 59
5.1.6 Real-time CORBA Current . 59
5.1.7 Priority Models . 59
5.1.8 Real-time CORBA Mutexes and Priority Inheritance 60
5.1.9 Threadpools . 60
5.1.10 Priority Banded Connections . 61
5.1.11 Non-Multiplexed Connections. 61
5.1.12 Invocation Timeouts . 61
5.1.13 Client and Server Protocol Configuration . 61
5.1.14 Real-time CORBA Configuration . 61
5.2 Real-time Portable Object Adapters. 62
5.2.1 Priority Model . 62
5.2.2 RTPOA . 62
5.2.2.1 POA Activation Methods with Priority . 62
5.2.3 Threads and Threadpools. 62
5.2.3.1 Current . 62
5.2.3.2 Threadpools . 62
5.2.3.3 Thread Pool Operation Basic Mode . 63
5.2.3.4 Laned Threadpool . 64
5.2.3.5 Priority Banded Connections . 64
5.2.4 RTPOA Current . 64
5.2.5 Associations Between Pools and RTPOA . 64
5.3 Priority Machinery . 65
5.3.1 Priority Phenomena and Protocols. 65
5.3.1.1 CORBA Priority . 68
5.4 CORBA Mutex . 69
5.4.1 Mutex Notifies in RT CORBA . 69
5.4.2 Why Mutex Has a Priority Protocol . 69
5.4.3 The Real-time CORBA Mutex Interface . 70

Chapter 6 Introduction to Real-time Java 71
6.1 Real-time Extension to Java . 71
6.1.1 Thread Scheduling and Dispatching . 71
6.1.2 Memory Management . 72
6.1.3 Synchronization . 73
6.1.4 Asynchronous Event Handling . 73
6.1.5 Asynchronous Transfer Of Control . 73
6.1.6 Asynchronous Thread Termination . 73
vii
Product Guide

�������	

Table of Contents
6.1.7 Physical Memory Access. 73
6.2 Further Reading and Examples Information . 74

Programming with RTOrb
Chapter 7 Using the ORB 77

7.1 Introduction . 77
7.1.1 Advice Notes . 78
7.1.2 Conventions . 79
7.2 Using the IDL Compiler. 79
7.3 Compiling Applications . 81
7.3.1 System and Environment Settings. 81
7.3.2 Java Compiler . 81
7.3.2.1 Common Requirements . 81
7.3.2.2 Sun Java Real-Time System Requirements. 81
7.3.2.3 IBM Websphere Real Time JVM. 82
7.4 Deploying and Running Applications . 82
7.4.1 RTOrb Run Scripts . 82
7.4.1.1 Sun Java Real-time System . 83
7.4.1.2 IBM Websphere Real Time JVM. 83
7.4.2 Resolving Servers . 84
7.5 Application Creation Example . 84
7.6 Running OpenFusion CORBA Services . 87

Chapter 8 Creating Applications 89
8.1 General . 89
8.2 A Simple Non Real-Time Application . 89
8.2.1 IDL Specification . 90
8.2.2 Java Implementation . 91
8.2.3 Server-side . 91
8.2.4 Client-side . 92
8.3 A Simple Soft Real-time Application . 94
8.3.1 Server-side . 95
8.3.2 Client-side . 100
8.4 A Simple Hard Real-time Application . 102
8.4.1 Server-side . 102
8.4.2 Client-side . 108

Appendix A API Enhancements 115
Classes and Methods . 115
Valuetypes and Factories. 116
Examples . 117
viii
Product Guide �������	

Table of Contents
Bibliography 123

Index 127
ix
Product Guide

�������	

Table of Contents
x
Product Guide �������	

Preface
About this Product Guide

This Product Guide provides instructions and information needed to install,
configure and use OpenFusion RTOrb Java(tm) Edition.

Intended Audience
The Product Guide is intended to be used by software developers who wish to use
RTOrb to develop CORBA-based, real-time distributed applications in Java. RTOrb
can also be used as a conventional, non real-time, high performance enterprise Java
ORB for developers who do not need real-time capabilities.

Organisation
This Product Guide is divided into three major sections: Installation and
Configuration which provides information on installing and configuring RTOrb;
Real-time Programming provides background information on CORBA, Java and
real-time programming; and Programming with RTOrb which describes how to
create applications using RTOrb.

Conventions
The conventions listed below are intended to guide and assist the reader in
understanding the Product Guide.
Item of special significance or where caution needs to be taken.
Item contains helpful hint or special information.
Information applies to Windows (e.g. XP, 2003, Windows 7) only.
Information applies to Unix-based systems (e.g. Solaris) only.
Java language specific.
Hypertext links are shown as blue italic underlined.
On-Line (PDF) versions of this document: Items shown as cross-references to other
parts of the document, e.g. Contacts on page xii, behave as hypertext links: jump to
that section of the document by clicking on the cross-reference.

Courier, Courier Bold, or Courier Italic fonts indicate programming code.
The Courier font also indicates file names.

% Commands or input which the user enters on the
command line of their computer terminal

i
WIN

UNIX

Java
xi
Product Guide

�������	

Preface
Extended code fragments are shown as Courier font in shaded boxes:

Italics and Italic Bold indicate new terms or emphasise an item.
Sans-serif Bold indicates user-related actions, such as File > Save from a menu.

Step 1: One of several steps required to complete a task.

Contacts
PrismTech can be reached at the following contact points for information and
technical support.

Web: http://www.prismtech.com
Technical questions: crc@prismtech.com (Customer Response Center)
Sales enquiries: sales@prismtech.com

 NameComponent newName[] = new NameComponent[1];

 // set id field to “example” and kind field to an empty string
 newName[0] = new NameComponent (“example”, ““);

 rootContext.bind (newName, demoObject);

USA Corporate Headquarters European Head Office
PrismTech Corporation
400 TradeCenter
Suite 5900
Woburn, MA
01801
USA

Tel: +1 781 569 5819

PrismTech Limited
PrismTech House
5th Avenue Business Park
Gateshead
NE11 0NG
UK

Tel: +44 (0)191 497 9900
Fax: +44 (0)191 497 9901
xii
Product Guide

�������	

http://www.prismtech.com
mailto: crc@prismtech.com
mailto: sales@prismtech.com

INTRODUCTION

OpenFusion RTOrb Java(tm) Edition
The OpenFusion RTOrb Java(tm) Edition brings together two powerful
technologies: Real-time Java and Real-time CORBA. Real-time Java provides the
power, flexibility and convenience of a platform independent, real-time language.
Real-time CORBA provides the means of exploiting the benefits of Real-time Java
within a distributed, platform independent real-time architecture.
The OpenFusion RTOrb Java(tm) Edition product (RTOrb, for short) combines the
real-time Java language and real-time CORBA architecture into a single technology
which can produce real-time, distributed applications which are deployable across
diverse platforms with the minimum of effort.

What is Real-time?
There are several definitions available which state what real-time means, such as:

 “Immediate, as an event is occurring.”1,

“The actual time during which physical events take place.”2

 “The processing and visibility of transactions and information as they occur,
and not on a periodic or batch basis.”3

“...computer systems that update information at the same rate as they receive
data...”4

Current computer systems have physical restrictions which limit the ability to
process information immediately, “as an event is occurring”- there are the
inevitable processing speed and resource limits which affect how fast data can be
processed. For the purpose of programming actual real-time applications, a more
realistic definition of real-time has been adopted:

An application for which the requirements, design, or developers state that
execution of application logic must or should occur within well-defined
temporal conditions.5

Or in other words, the processing or completion of tasks is not instantaneous, but
occurs within pre-defined time limits. This definition accepts the physical realities
of our present computing machines and systems.

1. http://www.hq.nasa.gov/office/pao/History/presrep95/r.htm
2. http://www.telemet.com/weather_gloss_q_r.htm
3. http://sun2.lenoir.cc.nc.us/~disted/distermc.htm
4. The American Heritage® Dictionary of the English Language, Fourth Edition, © 2000

Houghton Mifflin Company.
5. This definition is as given in Taking the Java™ Language into Uncharted Waters:

Project Mackinac, Sun’s RTSJ Implementation, Bollella et. al., Sun Microsystems, Inc.

 3

Product Guide�������	

Introduction
However, to complicate and possibly confuse matters, two different types of
real-time have been identified, each relating to their ability to meet “well-defined
temporal conditions”. The type are:
• hard real-time where the execution of the application logic must always meet the

temporal requirements,
• soft real-time where the execution of the application logic may sometimes meet

the temporal requirements.
A system where there are no well-defined temporal conditions is referred to as a non
real-time system.
These definitions are important (even if they appear to complicate matters) since
they provide flexibility as to the temporal stringency and capability which a system
will be designed to achieve. Some systems must perform strictly within the temporal
limits, whereas others can be more flexible, appreciating that it is likely to be more
difficult and costly to create the more stringent systems.

How RTOrb Provides for Real-time
The language and architectural components of RTOrb address the practical issues of
developing real-time applications for the real world, whether they need to meet the
more demanding hard real-time requirements or the less demanding soft ones.
Real-time Java and Real-time CORBA address the respective practical aspects of
achieving hard or soft real-time requirements for distributed systems. Some aspects
include:
• end-to-end predictable execution, thread scheduling and dispatching, along with

the provision of distributable threads
• resource management, particularly memory management and allocation
• synchronisation, resource sharing and avoidance of priority inversion1
• asynchronous event handling, transfer of control and thread termination
• interoperability and portability

Features, Standards and Compliance
The OpenFusion RTOrb Java(tm) Edition product complies with the following
standards and specifications:
• OMG CORBA Specification, version 3
• GIOP Specification, version 1.3
• OMG Real-Time CORBA Specification, version 1.2

1. These aspects are to ensure that things happen in the correct sequence in order to meet
specified temporal requirements.
4
Product Guide

�������	

Introduction
• Real-Time Specification for Java, version 1.0
RTOrb complies with the following specific areas of the specifications:
• IDL Compiler (compliant with CORBA 2.3 specification)
• ORB Interface
• Value Type Semantics
• Abstract Interface Semantics
• DynAnys

• Interface Repository
• Portable Object Adapter
• Interoperability Overview
• ORB Interoperability Architecture
• Portable Interceptors
• CORBA Messaging (Messaging Quality of Service, Propagation of Messaging

QoS)
• ETF
Please note, however, that RTOrb does not yet support:
• CORBA Component Model (component, event, home)
• policy domains
• message routing & ordering
• DCE ESIOP, Interworking, COM-CORBA or Automation mapping,

Interoperability with non-CORBA systems
• fault tolerance or secure interoperability
• real-time scheduling
• Object Reference Templates
• DII/DSI
• AMI
• BiDirectional GIOP

Scope of this Guide for RTOrb
The goal of this guide is to help developers use RTOrb as quickly and effectively as
possible. Its scope includes essential background information, in addition to
installation, configuration and usage information.
5
Product Guide�������	

Introduction
It is beyond the scope of this manual to provide full coverage of RTOrb’s underlying
technologies, such as explaining real-time programming techniques and theory, or
covering the Real-time Java or Real-time CORBA specifications. Information on
these topics is available in the various documents listed in the bibliography.
This guide provides a technological overview which developers and architects can
use as a starting point for understanding the intricacies of writing distributed, hard
or soft real-time, CORBA-based, Java programs.
A number of useful, if not essential, references are provided in the Bibliography:
readers are encouraged to use these references to develop understanding of this
powerful technology.
6
Product Guide

�������	

INSTALLATION AND

CONFIGURATION

CHAPTER

1 Installation
This chapter describes how to install OpenFusion RTOrb Java(tm) Edition
(RTOrb). Please follow the procedures carefully.
The RTOrb installation files can be downloaded from the PrismTech Web site
(www.prismtech.com).

1.0.1 Conventions
The following conventions are used in this chapter:
• Commonly used directories are shown as:

<OFJ_DIR> - where RTOrb is or will be installed
<JAVA_HOME> - root directory of the Java Virtual Machine (JVM) installation

• The directory paths and environment variable separator shown here use the UNIX
forward-slash (/) and colon (:) separator conventions; Windows™ users should
replace these separators with the standard DOS back-slash (\) and semi-colon
(;) separators.

• Items which are unique to UNIX or Windows are shown using the UNIX Only or
Windows Only icons, respectively. For example:

1.1 Prerequisites
RTOrb depends on underlying services and technologies. If these services and
technologies are not properly installed and configured, then the OpenFusion RTOrb
Java(tm) Edition cannot perform as intended. Accordingly, please check that your
system meets each of the prerequisites described below before installing
OpenFusion RTOrb Java(tm) Edition.
The currently supported platforms are listed on the RTOrb Supported Platforms web
page. The Supported Platforms web page can be accessed from the index.html page
located in the root directory where RTOrb is installed (<OFJ_DIR>).
Please refer to Supported Platforms and other Release Notes pages for the latest
information about this distribution.

> SET CLASSPATH=.;%CLASSPATH%;

% CLASSPATH=.:$CLASSPATH; export CLASSPATH

WIN

UNIX

i

9
 Installation and Configuration�������	

http://www.prismtech.com

1 Installation 1.2 Installation Procedure

1.1.1 Operating Systems
For an up-to-date list of the operating systems that are supported by this release of
OpenFusion RTOrb Java(tm) Edition please see platforms.html in the
documentation directory.
If RTOrb is used as a real-time ORB,1 then it must be installed on a real-time
platform with a real-time JVM conforming to the Real-Time Specification for Java
(RTSJ). The examples and settings given here show the IBM Websphere Real-Time
JVM: if required, users should replace these settings with those used by their own
real-time.

1.1.2 System Variables
The PATH and CLASSPATH environment variables must be set as described below.
The PATH must include:
• the directory where the Java interpreter is located (i.e. <JAVA_HOME>/bin)
• the directory where RTOrb’s scripts are or will be located (<OFJ_DIR>/bin)

The CLASSPATH must include:
• the current directory reference, indicated by the full-stop or period character (".").
The ORB implementation code is in lib/endorsed/ofj.jar: it is not necessary
to manually add ofj.jar to the classpath since the RTOrb scripts handle this.

Example Environment Variable Setting using the IBM Websphere JVM with RTOrb
Where:

/opt/myOFJ is the directory where RTOrb is or will be installed and
/usr/local/j9rt is the directory where the IBM WebSphere Real Time RT
Linux is installed

1.2 Installation Procedure
1.2.1 General

All installed RTOrb files are placed in the RTOrb installation directory specified
during installation - no files are stored in any of the UNIX system directories.

1. In other words, running RTOrb in its real-time mode (see ORB Modes on page 17.)

% PATH=/opt/myOFJ/bin:/usr/local/j9rt:$PATH
% export PATH
% CLASSPATH=.
% export CLASSPATH

i

UNIX
10
Installation and Configuration

�������	

1 Installation 1.2 Installation Procedure

RTOrb is installed using a Java-based Setup program. This program can be run
using a Graphical User Interface (GUI Mode) or from the command line (Command
Line Mode) which enables the installation to be run from a script.

1.2.2 Preparation
It is recommended that any existing RTOrb installation be removed before installing
the current version (see Uninstalling on page 13). Please note the following
warning.

Uninstalling OpenFusion RTOrb Java(tm) Edition removes all RTOrb files,
including the executables, licence, configuration, and data files located in the RTOrb
sub-directories. If these files are required, then they should be backed-up prior to
uninstalling.

1.2.3 Installation
As described above, RTOrb can be installed using an interactive graphical user
interface (GUI Mode) or using commands entered on the command line (Command
Line Mode). Using GUI Mode is generally the more popular method, however the
Command Line Mode is useful when automating the installation with a script.

1.2.3.1 Installing Using GUI Mode
Step 1: Run java Setup (without any options) from the command line, as follows:

Change to the directory containing RTOrb’s Setup.class or Setup.jar. Setup
can be run directly on the command line or from a script:

This will display the RTOrb installation’s graphical user interface.
Step 2: Follow the instructions displayed in the GUI, selecting the services and components

you want to install.

1.2.3.2 Installing Using Command Line Mode
Step 1: Run java Setup from the directory selected above with the options shown below.

Change to the directory containing the RTOrb Setup.class or Setup.jar.
Setup can be run directly on the command line or from a script.
• For JDK versions prior to JDK version 1.6, use:

% java Setup

% java Setup <-list | [<OFJ_DIR> [components]]>
11
Installation and Configuration�������	

1 Installation 1.2 Installation Procedure

• For JDK version 1.6 or later, use:

where
-list will list all available services and components, without performing the
installation
<OFJ_DIR> is the directory where RTOrb is to be installed
[components] is the list of components and services to be installed; if no
components are specified, then all components will be installed

Example 1
List all available services and components

Example 2
Install all services and components to /opt/myOFJ.

Example 3
Install the Naming Service to /opt/myOFJ.

1.2.4 Install the Licence File
A valid RTOrb license file must be placed into the <OFJ_DIR>/etc directory after
RTOrb has been installed. Please note that OpenFusion RTOrb Java(tm) Edition will
not run without a valid licence file.
Licence files are provided by PrismTech for services or products which have been
purchased. Contact PrismTech for purchasing details (see Contacts on page xii).
Evaluation licences are provided when an OpenFusion product is downloaded from
the PrismTech Web site (at www.prismtech.com.)

% java -jar Setup.jar <-list | [<OFJ_DIR> [components]]>

% java Setup -list

% java Setup /opt/myOFJ

% java Setup /opt/myOFJ Naming
12
Installation and Configuration

�������	

http://www.prismtech.com

1 Installation 1.3 Uninstalling

1.2.5 Testing the Installation
The RTOrb installation can be tested by checking:
• the RTOrb is running properly by running an example (refer to
<OFJ_DIR>/examples/index.html). The examples can be run from any
directory since the precompiled RTOrb examples are in the ofj.jar file (which
is placed in the classpath by the RTOrb run scripts).

• For example, using the non real-time Hello example, run the Server and Client
programs in separate windows.

If both Server and Client run successfully, the Server window should display:

1.3 Uninstalling
This section describes the procedure for uninstalling the OpenFusion RTOrb
Java(tm) Edition.

Uninstalling RTOrb removes all RTOrb files, including the executables, licence,
configuration, and data files located in the RTOrb sub-directories. If these files are
required, then they should be backed-up prior to uninstalling.

Step 1: Stop any running OpenFusion services.
Step 2: Backup any data, licence or other required files which are in the OpenFusion

directories.
Step 3: Run the uninstall utility (located in the bin directory):

Windows users can also use Start | Programs | OpenFusion | Uninstall
OpenFusion to start the utility.

The utility displays a confirmation dialogue box which asks if you wish to proceed
with uninstallation. Clicking the Yes button will uninstall RTOrb.

% run com.prismtech.ofj.examples.corba.hello.Server
% run com.prismtech.ofj.examples.corba.hello.Client

GreetingServer running... awaiting calls
GreetingService called by Client hello Client

% <OFJ_DIR>/bin/uninstall

WIN
13
Installation and Configuration�������	

1 Installation 1.3 Uninstalling

14
Installation and Configuration

�������	

CHAPTER

2 Configuration
2.1 Configuration Options and Properties

Although RTOrb’s internal settings are pre-configured with standard or typically
used values (which enables RTOrb to be installed as quickly and easily as possible),
these settings can be given user-defined, custom values to meet specific operational
and application requirements.
A user’s custom properties file can be loaded into RTOrb by passing the properties
file’s pathname to RTOrb’s custom.props property: in other words, the value of
custom.props is the path to the properties file that contains a list of the properties
that should be loaded by RTOrb.
Being able to load a custom properties file can be useful for application-specific
settings which need to be distributed with the code.
RTOrb’s user-configurable options and properties can be set:
• using the command line

 - allows system properties to be assigned by passing the
-D<property>=<value> switch to the program. When using the supplied
run or runrt scripts, this should be the first argument.

• programmatically by passing Properties objects to ORB.init() using the
form:
Properties props =
 new Properties(System.getProperties());
props.setProperty ("PropertyKey", "PropertyValue");
org.omg.CORBA.ORB orb = ORB.init(args, props);

• passing values to RTOrb as program arguments. The arguments that are accepted
in this way are ORBid, ORBInitRef, ORBDefaultInitRef,
ORBListenEndpoints and ORBpriorityrange. Note that
ORBpriorityrange is not described in the CORBA 3 specification. Also note
that:
 - ORBid <name> overrides the default ORB ID to set the name of this ORB. The

default ORB ID uses the form OFJ<n>, where <n> is an integer which starts
at 0 and is incremented for each default ID.
15
 Installation and Configuration�������	

2 Configuration 2.1 Configuration Options and Properties

 - ORBListenEndpoints sets the interface for the RootPOA to listen on. The
format for ORBListenEndpoints <argval> is
<argval> := <hostname>:<portspec> | <portspec>

<portspec> := <portnum> | <portnum>,<portnum>

<hostname> := STRING | IPADDRESS

<portnum> := INTEGER

 - ORBListenEndpoints overrides the ofj.etf.default-port_low,
ofj.etf.default-port_high and ofj.etf.default-host properties.
For instance, if -ORBListenEndpoint 1234 has been specified this will
override the port properties (if set).
If ofj.listen-on-all-interfaces is true (the default), the ORB will
listen on all interfaces on port 1234.
If listen-on-all-interfaces is off the ORB will listen on the default
interface on port 1234.
If -ORBListenEndpoint 192.168.100.100:1234 has been set this will
force the ORB to only listen on the above interface and port.
A child POA will use the RootPOA’s listeners unless it has been created with a
Server Protocol Policy. This policy will contain one or more Protocols, each of
which will specify an interface on which the child POA will listen. Child POAs
do not inherit listeners from parent POAs.
For example:
ORBListenEndpoints 12000 to listen on port 12000
ORBListenEndpoints 12000, 14000 on ports 12000 through 11400,
inclusive

 - ORBpriorityrange allows the user to specify a minimum and maximum
priority to use in the real-time ORB.

Examples of the run and runrt commands are:

• using RTOrb’s configuration file
 - the configuration file, ofj.properties, is located in <OFJ_DIR>/classes
 - assign property values using the form of prop=value (without spaces)

% run com.prismtech.ofj.examples.corba.hello.Server -ORBid ofj27

% runrt com.prismtech.ofj.examples.corba.hello.Server -ORBid
ofj27
16
Installation and Configuration

�������	

2 Configuration 2.1 Configuration Options and Properties

Properties are set in order: properties loaded later will override properties loaded
earlier. In addition to the different methods of loading properties files (as described
above), there are also several different properties files located in different
directories. The properties files are loaded into RTOrb in the following order:

configuration file in java.home/lib
configuration file in user.home
configuration file on the classpath
custom properties file named in custom.props
command line properties
programmatically by passing Properties objects to ORB.init()

2.1.1 ORB Modes
OpenFusion RTOrb Java(tm) Edition supports one non-real-time mode and two
real-time modes of operation. Each of these modes offers different levels of
determinism and ease of use. The modes are:
• Enterprise Mode - In this mode, RTOrb functions as a conventional,

non-real-time ORB.
• Soft Real-Time Mode - This mode offers soft real-time determinism combined

with ease of use comparable with conventional programming in the Java
environment.

• Hard Real-Time Mode - This mode offers very high levels of determinism, but is
the most complex to program.

2.1.1.1 Enterprise Mode
Enterprise mode has been designed to enable RTOrb to be used as a replacement for
non-real-time ORBs enabling a single ORB to meet the full range of project
requirements.
Set the following properties as shown to run RTOrb as a non real-time enterprise
ORB:
org.omg.CORBA.ORBClass=com.prismtech.ofj.orb.ORB
org.omg.CORBA.ORBSingletonClass=com.prismtech.ofj.orb.ORBSingleton

Note that Enterprise Mode is the default which is set by the RTOrb run script (see
RTOrb Run Scripts on page 82).

2.1.1.2 Soft Real-Time Mode
The soft real-time mode has been designed to meet the needs of users who are
developing systems that have soft real-time characteristics. When used in
conjunction with a JVM with a real-time garbage collector, performance
characteristics suitable for soft real-time systems can be achieved whilst retaining

i

17
Installation and Configuration�������	

2 Configuration 2.1 Configuration Options and Properties

the memory management techniques of conventional Java applications. The soft
real-time mode is therefore significantly easier to use than the other real-time modes
supported by OpenFusion RTOrb Java(tm) Edition.

2.1.1.2.1 Memory Management
The soft real-time mode is also called the "Full Heap mode". All internal objects and
all objects returned to the application are conventionally allocated in heap memory.
All internal threads are javax.realtime.RealtimeThreads and run in heap memory.
The methods of the ORB, of the POAs and of the CORBA objects have been
designed to be called in any of the memory types supported by the RTSJ (Immortal
Memory, Scoped Memory), but the soft real-time mode has been designed to be
called only in heap memory. If your application carries out memory management
and runs in Immortal or Scoped Memory, you should use hard real-time mode.
The methods of the ORB, of the POAs and of the CORBA objects can be called in a
standard java.lang.Thread or in a javax.realtime.RealtimeThread.
Since the soft real-time mode uses only heap memory, it cannot be used with
NoHeapRealtimeThreads.
The soft real-time mode implements the RTCORBA API but it can also be used
with no code changes by a legacy application designed for an enterprise ORB.

2.1.1.2.2 RTCORBA API Restrictions
The soft real-time mode implements the RTCORBA API.
When the_priority(short) method is called on a non real-time Thread (for
example, within Soft RealTime mode) and if the priority value exceeds the range of
the java.lang.Thread, then the priority value will be set to
Thread.MAX_PRIORITY.

2.1.1.2.3 Advantages and Disadvantages of the Soft Real-Time Mode
The major advantage of the soft real-time mode is that, as everything is allocated in
heap and can be garbage collected, the application is not required to carry out any
explicit memory management. This greatly simplifies the application.
Secondly, this mode allows the porting of a legacy application to a real-time
application very easily and with no code changes.
The main disadvantage of this mode is its lack of strong determinism. Whilst the
ORB avoids the use of the garbage collector as much as possible, the garbage
collector can still pre-empt your application, potentially causing jitter in the
response times.

2.1.1.2.4 Configuration of the Soft Real-Time Mode
When invoking RTOrb add the following properties to the command line:
18
Installation and Configuration

�������	

2 Configuration 2.1 Configuration Options and Properties

-Dorg.omg.CORBA.ORBClass=com.prismtech.ofj.rtorb.RTORB
-Dorg.omg.CORBA.ORBSingletonClass=com.prismtech.ofj.orb.ORBSingleton
-Dofj.rtmode=soft

Note that the ofj.rtmode property is in the configuration file ofj.properties. It
defaults (for real-time mode) to soft. Also, the ofj.rtmode property can be set in
application code like other properties, but it must be set before any calls are made to
the ORB code.

2.1.1.3 Hard Real-Time Mode
The hard real-time mode has been designed to meet the needs of users who are
developing systems that have hard real-time characteristics. Using this mode, it is
possible to create applications that exhibit low levels of jitter (less than 1 ms).
However, in order to achieve this, applications must use features of RTSJ such as
Scoped Memory and No Heap Real Time Threads. In order to avoid interference
from the garbage collector, applications must not allocate any object in heap
memory and must, as a consequence of this, implement their own memory
management schemes. The hard real-time mode is therefore more complex to use
than the other modes supported by RTOrb Java Edition.

2.1.1.3.1 Memory Management
The hard real-time mode is designed to exhibit strong determinism and to only use
javax.realtime.NoHeapRealtimeThreads. Consequently, this mode is designed to
use only Immortal Memory and Scoped Memory. All internal objects and objects
returned to the application will be created in either Immortal Memory or in Scoped
Memory. All ORB and POAs initialisation methods have to be run in Immortal
Memory and in general it is recommended that any CORBA methods are run in
Immortal or Scoped memory.
In this mode, the application can use javax.realtime.RealtimeThreads or
javax.realtime.NoHeapRealtimeThreads but the ORB cannot be used in a
standard java.lang.Thread.

2.1.1.3.2 Advantages and Disadvantages of the Hard Real-Time Mode
The advantage of the hard real-time mode is the high level of determinism that can
be achieved. The cost of this is increased application complexity since applications
must implement their own memory management.

2.1.1.3.3 Configuration of the Hard Real-Time Mode
When invoking RTOrb add the following properties to the command line:
-Dorg.omg.CORBA.ORBClass=com.prismtech.ofj.rtorb.RTORB
-Dorg.omg.CORBA.ORBSingletonClass=com.prismtech.ofj.orb.ORBSingleton
-Dofj.rtmode=hard

i

19
Installation and Configuration�������	

2 Configuration 2.1 Configuration Options and Properties

Note that the ofj.rtmode property is in the configuration file ofj.properties.
Also, the ofj.rtmode property can be set in application code like other properties,
but it must be set before any calls are made to the ORB code.

2.1.1.4 Multiple ORBs in a Single JVM
RTOrb supports multiple ORBs of different types, in other words, a combination of
enterprise, soft real-time and hard real-time in a single JVM.
In order to create different ORBs within the same JVM inline within the code, use a
combination of the org.omg.CORBA.ORBClass and ofj.rtmode properties and
pass these arguments to ORB.init ().

Examples

Enterprise mode
Properties props = new Properties ();
props.put ("org.omg.CORBA.ORBClass",
 "com.prismtech.ofj.orb.ORB");
props.put ("org.omg.CORBA.ORBSingletonClass",
 "com.prismtech.ofj.orb.ORBSingleton");

Soft real-time mode
Properties props = new Properties ();
props.put ("org.omg.CORBA.ORBClass",
 "com.prismtech.ofj.rtorb.RTORB");
props.put ("org.omg.CORBA.ORBSingletonClass",
 "com.prismtech.ofj.orb.ORBSingleton");
props.put ("ofj.rtmode", "soft");

Hard real-time mode
Properties props = new Properties ();
props.put ("org.omg.CORBA.ORBClass",
 "com.prismtech.ofj.rtorb.RTORB");
props.put ("org.omg.CORBA.ORBSingletonClass",
 "com.prismtech.ofj.orb.ORBSingleton");
props.put ("ofj.rtmode", "hard");

2.1.2 Configuration Properties
The tables shown in this section describe the properties that can be used to configure
RTOrb. Note that the properties for Threadpools and Messaging are given under
Sections 2.1.3, Threadpool Configuration, on page 27 and 2.1.4, Messaging
Configuration, on page 27, respectively

i

20
Installation and Configuration

�������	

2 Configuration 2.1 Configuration Options and Properties

Table 1 General Settings

Property Description Default
ORBInitRef.<name>=<ref> Defines an initial reference. The <name> is

the name of the service, the <ref> is the
object reference. For example:
ORBInitRef.MyService=file:///home/
me/MyRef.ior

None

OF.License.File The directory where the RTOrb license file
is installed on your system. This value is
automatically set by the RTOrb run and runrt
scripts. However, if the license file is placed
in another location, this value must be
changed accordingly.

<OFJ_DIR>/
etc

ofj.log=[OFF|FATAL|ERROR|WARN|
INFO|DEBUG|TRACE|ALL]

The different log levels at which RTOrb can
log events. (See also section 2.1.6, Logging,
on page 28.)

WARN

ofj.log.timestamp=[off|on] If logging is on, this property determines
whether time stamps are included in the log.

off

ofj.log.timestamp-format
=[ms|time|date-time]

If logging is on and ofj.log.timestamp
is set to on, this property determines the
style or format of time stamps. (See also
section 2.1.6, Logging, on page 28.)

ms

ofj.log.location=[off|on] If logging is on, this property determines
whether the file and line number are
included in the log.

off

ofj.log.thread=[off|on] If logging is on, this property determines
whether the current thread identifier is
inluded in the log.

off

Table 2 ORB Configuration

Property Description Default
ofj.rtmode=[soft | hard] The real-time mode of the ORB. soft

ofj.orb.memory The size of the temporary memory area used
to read replies on client side. Also the size of
the several temporary memory areas used to
call interceptors on client side.

200000
21
Installation and Configuration�������	

2 Configuration 2.1 Configuration Options and Properties

ofj.orb.objectKeyMap.<name> Allows more readable corbaloc URLs by
mapping the actual object key to an arbitrary
string. See Section 2.1.5, Object Key Map,
on page 28.

no default
value

ofj.orb_initializer.fail_on_er
ror=[on|off]

Controls whether ORB initialisation is
allowed to continue or not if ORBInitializers
fail.

off

ofj.giop_minor_version The GIOP minor version number to be used
for newly created IORs

2

ofj.native_codeset_for_chars The code set that will be declared as the
native code set for chars in newly created
IORs.

ISO8859_1

ofj.native_codeset_for_wchars The code set that will be declared as native
code set for wchars in newly created IORs.

UTF16

ofj.send-tag-orb-type Flag to indicate whether the
TAG_ORB_TYPE TaggedComponent
should be included in IORs

false

Table 2 ORB Configuration

Property Description Default

Table 3 objectcache Properties

Property Description Default
ofj.objectcache.
cachedObjectClasses

A comma-delimited list of class names to be
managed by object.
A list of names must be supplied if object
caching is required.

None.

ofj.objectcache.<classname>.
cacheClass

The class name of the object cache
implementation.
The default is:
com.prismtech.ofj.util.objectcache.Obje
ctCacheImplementation

See
Description.

ofj.objectcache.<classname>.
initialSize

The initial number of objects an object cache
contains.

0

ofj.objectcache.<classname>.
growByAmount

The number of objects allocated at the same
time if the cache is empty but the maximumSize
has not been reached.

1

22
Installation and Configuration

�������	

2 Configuration 2.1 Configuration Options and Properties

ofj.objectcache.<classname>.
maximumSize

The maximum number of objects allocated by
the cache.
The value of <classname> should be set to one
of:
• a specific class to which the property should

be applied, for example:
ofj.objectcache.mypackage.
MyStruct.initialSize=0

• default - to define a property value for all
object cache instances, for example:
ofj.objectcache.default-initialSize
=0

128

Table 3 objectcache Properties (Continued)

Property Description Default
23
Installation and Configuration�������	

2 Configuration 2.1 Configuration Options and Properties

Table 4 POA Configuration Properties

Property Description Default
ofj.extra.agents Agents are threads that handle requests and run

servant code on the server side. These are only
used by Enterprise POAs and there is a single
agent threadpool per ORB instance. This pool is
used by all POAs within an ORB.
extraAgents is the number of extra agents that
can be run to handle simultaneous requests.
These extra Agents are added to the pool on
rootPOA creation. By default, a new Agent is
created on demand for each new connection.
If all available agents are busy then no data is
read from the connection(s).
There is no explicit buffering of messages.
The agent threads are only stopped when the
RootPOA is destroyed. Therefore if some
connections are closed the number of agent
threads will not decrease.
The number of threads is the number of
connections plus the number of extra agents plus
the number of POAs. For example, if there are 3
clients, and ofj.extra.agents has the value 5, and
there is 1 POA, then there can be up to 9 agent
threads. If there are 4 clients and ofj.extra.agents
has the value 2, and there are 2 POAs, then there
can be up to 8 threads.

5

ofj.rtpoa.memory The amount of memory used by the real-time
POA Reader on the server side.

200000

Table 5 ETF Configuration Properties

Property Description Default
ofj.etf.use-default-transports When set to true, the default transport plugin,

IIOP, are used.
true

The following properties are TCP protocol properties.
24
Installation and Configuration

�������	

2 Configuration 2.1 Configuration Options and Properties

ofj.etf.default-send-buffer-size Provides a hint to the underlying platform
about the size of the buffers used for sending
data via a socket.
The platform’s default value should be used
when this property is set to 0.

0

ofj.etf.default-recv-buffer-size Provides a hint to the underlying platform
about the size of the buffers used when
receiving data via a socket.
The platform’s default value should be used
when this property is set to 0.

0

ofj.etf.default-keep-alive Send keep alive messages on a connection. The
time between keep alives is
platform-dependant, but is typically 2 hours.
The configurability of this property is also
platform-dependant.

false

ofj.etf.default-dont-route Specifies that data should not be sent via a
gateway, but sent directly to connected hosts.
This property is currently ignored since it is not
possible to set this option on Java sockets.

false

ofj.etf.default-no-delay Disables Nagle's Algorithm when set to false.
This algorithm can reduce network congestion
when many very small messages are sent, but in
some circumstances it can interact badly with
TCP delayed ACKs. The algorithm is probably
not helpful for most CORBA applications.

false

ofj.etf.default-port_low This sets the default value of the lower bound
(lowest port address) of the range of TCP ports
used by POAs.
If the lowest and highest port range values are
not set or are set to negative values, then RTOrb
will select an ephemeral port to listen on.
If lowest and highest port range values are set
greater than 0, then RTOrb will select an
available port within that range.

0

Table 5 ETF Configuration Properties (Continued)

Property Description Default
25
Installation and Configuration�������	

2 Configuration 2.1 Configuration Options and Properties

ofj.etf.default-port_high This sets the default value of the upper bound
(highest port address) of the range of TCP ports
used by POAs.
See ofj.etf.default-port_low above for
details

0

ofj.etf.default-host The default hostname used by POAs. The name
chosen by the ORB can be found by running
the
com.prismtech.ofj.util.NetworkInfo
utility.
This property accepts hostname as a text name
or as an IP address, either of which will be
written into the IOR.

ofj.etf.listen-on-all-interfaces By default, the ORB now listens on all network
interfaces, and chooses a non-loopback
interface to put in IOR profiles.
If listen-on-all-interfaces is false, the ORB will
choose to listen on a non-loopback interface if
available, or the loopback interface if not. The
chosen address will be used in IOR profiles.
If listen-on-all-interfaces is false, it will listen
on the interface named by the default-host
property if set, or the first non-loopback
interface if default-host is not set.

true

ofj.etf.use-names If use-names is true, the ORB will attempt to
use a textual hostname rather than a numeric IP
address in IOR profiles.

false

ofj.etf.server.reuseAddress Enables applications to bind to a TCP socket
even if a previous connection to the socket is in
a time out state. When enabled, this property
can be used to allow applications, typically
using a well known socket address, to bind to
the socket without needing to wait for the time
out period to expire.

false

Table 5 ETF Configuration Properties (Continued)

Property Description Default
26
Installation and Configuration

�������	

2 Configuration 2.1 Configuration Options and Properties

2.1.3 Threadpool Configuration
If a threadpool is not created in the application, then a default threadpool with one
lane that allows request buffering is created and the default values in the table above
are assigned programmatically. If different values are required then the properties
can be set to override the default values. See Table 6 for the configuration
properties.

2.1.4 Messaging Configuration

Table 6 Threadpool Configuration

Property Description Default
ofj.rtorb.deftp.stacksize The stack size, in bytes, that each thread in

the threadpool must have allocated.
65535

ofj.rtorb.deftp.staticthreads The number of threads that are pre-created
and assigned to that threadpool at the time of
the threadpool creation.

5

ofj.rtorb.deftp.dynamicthreads The number of additional threads that may
be created dynamically when the static
threads are all in use and an additional thread
is required to service an invocation.

0

ofj.rtorb.deftp.priority The CORBA priority of the only lane in the
default threadpool.

16384

ofj.rtorb.deftp.maxbuffreqs The maximum number of requests that will
be buffered by this threadpool if all available
static and dynamic threads are in use and the
capability to borrow threads from lower
priority lanes is exhausted.

328

ofj.rtorb.deftp.maxreqsbuffsize The maximum amount of memory, in bytes,
that the buffered requests may use.

65535

ofj.hardrt.minpriority The minimum priority assigned to threads
running in hard real-time mode.

20

Table 7 Messaging Configuration Properties

Property Description Default
ofj.messaging.syncnone.threads The number of threads in the threadpool

used for sending oneway sync_none
requests.

5

27
Installation and Configuration�������	

2 Configuration 2.1 Configuration Options and Properties

JVM Configuration
When running in hard real-time mode, the JVM should be configured to allow the
ORB to:
• allocate all its data structures in immortal memory
• provide enough scoped memory to allocate threadpool scopes.
The scopes should be dimensioned to allow the ORB to allocate at least all data
structures exchanged through the IDL.
The RTOrb runrt script provided with OpenFusion RTOrb Java(tm) Edition sets
the default size for immortal and scoped memory in the JVM.
This memory size should be increased for applications which send large messages.

2.1.5 Object Key Map
An objectKeyMap facility exists that allows references to transient objects since it
is not possible to construct a transient object with a readable key. This functionality
may also be used with persistent objects. This objectKeyMap property allows
more readable CORBALOC URLs by mapping the actual object key to an arbitrary
string. The mapping currently allows clients of a service to access it using either
IOR or file URL references. See Table 2, ORB Configuration, on page 21.
The ofj.orb.objectKeyMap.<name> i s c on f ig u r e d u s i ng t h e
ofj.properties f i l e a nd by u s i ng t he p r op r i e t a r y
com.prismtech.ofj.orb.ORB.addObjectKey(String name, String
value) function. For example:

ofj.orb.objectKeyMap.MyService=file:///home/me/MyService.ior

A client wishing to use a CORBALOC reference to a server may then use:
-DORBInitRef.MyService=corbaloc:iiop:<host>:<port>/MyService

2.1.6 Logging
The ofj.log property values definitions are:
OFF - is the highest logging level and turns logging off
FATAL - very severe error events that can possibly cause the application to abort
ERROR - error events that might allow the application to continue running
WARN - potentially harmful situations

ofj.messaging.syncnone.priority The priority of the threads used for sending
oneway sync_none requests.

16384

Table 7 Messaging Configuration Properties (Continued)

Property Description Default
28
Installation and Configuration

�������	

2 Configuration 2.2 Configuring OpenFusion CORBA Services

INFO - coarse grained information showing the application’s progress
DEBUG - fine grained information that can be useful for debugging an application
TRACE - very finely grained information, even more so than the DEBUG level
ALL - the lowest logging level and turns all logging on
Logs can optionally include timestamps, file location, and current thread. These are
controlled by the following properties:
ofj.log.timestamp

on - include timestamps
off - no timestamps
Defaults to off.

ofj.log.timestamp-format
ms - a time of the form t=<time> where <time> is UTC in milliseconds
since 1970
time - a time in ISO 8601 format, e.g. 14:12:42.039. The time is in the
local time zone.
date-time - an ISO 8601 date followed by a time,
e.g. 2010-03-03 11:23:02.324
Defaults to ms.

ofj.log.location
on - include location, i.e. file and line number
off - no location
Defaults to off.

ofj.log.thread
on - include the current thread identifier
off - no thread
Defaults to off.

2.2 Configuring OpenFusion CORBA Services
PrismTech’s OpenFusion CORBA Services can be used with RTOrb. RTOrb
includes the OpenFusion Naming Service. Refer to the OpenFusion CORBA
Services Naming Service Guide and the OpenFusion CORBA Services System Guide
(especially the Common Configuration Properties section).
If you are using other OpenFusion services with RTOrb, then refer to that service’s
guide as well as the System Guide.
29
Installation and Configuration�������	

2 Configuration 2.2 Configuring OpenFusion CORBA Services

30
Installation and Configuration

�������	

REAL-TIME

PROGRAMMING

CHAPTER

3 Reviewing CORBA Concepts
CORBA stands for Common Object Request Broker Architecture. CORBA is the
Object Management Group’s (OMG):

“open, vendor-independent architecture and infrastructure that computer
applications use to work together over networks. Using the standard protocol
IIOP, a CORBA-based program from any vendor, on almost any computer,
operating system, programming language, and network, can interoperate with a
CORBA-based program from the same or another vendor, on almost any other
computer, operating system, programming language, and network.”1

The Object Management Group is a non-profit consortium that produces and
maintains computer industry specifications for interoperable enterprise
applications.

3.1 Basic Concepts
3.1.1 The ORB

A core element of CORBA is the Object Request Broker, referred to as the ORB.
An ORB mediates between an object and one of its clients. A client is defined as any
computing context that invokes operations on the object (that is, sends it a message,
or invokes a method). ORBs can take many different forms. In common practice,
ORBs are mechanisms that mediate between clients and objects on different
computers, using some kind of network communication. ORBs are one of the
principal enabling technologies in the field of distributed object computing.

3.1.1.1 Distributed Object Computing
Most popular object-oriented programming languages provide language constructs
for encapsulation, inheritance, polymorphism, and other characteristic
object-oriented concepts. These mechanisms have proven beneficial when building
single-process applications. However, because they are implemented as
programming language features, the benefits are not available when the application
needs to interact with other processes or with remote machines. Programmers must
generally resort to techniques such as sockets to build distributed applications.

1. The OMG’s definition from its web site at http://www.omg.org.

33

 Real-time Programming�������	

http://www.omg.org

3 Reviewing CORBA Concepts 3.1 Basic Concepts

Distributed object technology extends the benefits of object-oriented technology
across process and machine boundaries to encompass entire networks. In short, this
technology makes remote objects appear to programmers as if they were local
objects (that is, simple programming-language objects in the same process). This
effect can be described as location transparency.

3.1.1.2 Transparencies
Transparencies occur when a software abstraction allows programmers to cross a
computing boundary (such as a boundary between different languages, machines,
network protocols, and so on) without having to be aware of the boundary at all, or
without performing an explicit transformation to cross it.
In an object system, location transparency means that an object’s client can invoke
the object’s methods in a natural manner, regardless of where the object actually
resides. The target object may reside in the client program itself (as is inherently the
case with most object-oriented programming languages), it may reside in another
address space on the same machine as the client, or it may reside on a remote
machine. The object’s programming interface (from the client’s perspective) is
identical in all cases. See Figure 1 for an illustration of this concept.
34
Real-time Programming

�������	

3 Reviewing CORBA Concepts 3.1 Basic Concepts

Figure 1 Remote Invocations and Location Transparency
The ORB provides the location transparency in the CORBA model. ORBs also
provide many other useful transparencies, including the following:
• Programming language transparency- The client and the object may be written

in different programming languages and the ORB hides this fact; a Java client is
completely unaware that it is invoking an operation on a language-specific object,
whether Java, C++, or Smalltalk, and vice versa.

• Platform transparency- The client and object implementation programs may be
executing on different types of computing hardware, with different operating
systems, in such a way that both programs are unaware of these differences.

• Representation transparency- Because of language, hardware, or compiler
differences, processes communicating through an ORB may have different
low-level data representations. The ORB automatically converts different byte
orders, word sizes, floating point representations, and so on, so that application
programmers can ignore the differences and avoid problems.

Client Machine

Client Process

Invocation
Object

Interface

Server Machine

Server Process

Object

Operation

Object

ObjectRemote Invocation

Remote Invocation

The remote and
local object
interfaces are
identical to the
client.

Client Machine

Client Process

Invocation

Object

Operation

Object

Object

Local Invocation

Object
Interface
35
Real-time Programming�������	

3 Reviewing CORBA Concepts 3.1 Basic Concepts

As lower-level distribution problems become transparent, architects and
programmers can focus their efforts on solving application problems, not plumbing
problems. Expressed in other terms, distributed object technology raises the level of
abstraction for distributed application design and development.

3.1.2 Distributed Object Computing and CORBA
OMG specifications have emerged as the primary focus of industry standardization
in distributed object computing, client/server computing, and large-scale
object-oriented application development. The CORBA specifications provide the
foundation for the most comprehensive platform for system interoperability and
software portability that is foreseeable in today’s computing market.
To this end, CORBA specifies:
• a concrete object model
• an abstract language for describing object interfaces
• abstract programming interfaces for implementing, using, and managing objects
• equivalent concrete programming interfaces in popular object-oriented

programming languages (that is, language mappings)
• operational interfaces between ORBs to ensure interoperability between products

from different vendors
Other OMG specifications include CORBAservices, which specifies standard
interfaces for fundamental object services, such as naming and persistence, that are
frequently required and generally useful for managing objects regardless of their
function or application domain.

3.1.2.1 Interfaces
In the CORBA object model, attention is primarily focused on the object’s interface.
An interface is the boundary layer that separates a consumer of an object’s service (a
client) from the supplier of the object’s service (an object implementation). The
interface defines what a client can know about an object and how a client may
interact with it. As such, it hides the low-level details on one side of the boundary
from the other side.
It may seem contradictory to describe interfaces as “hiding” things and providing
“transparencies” at the same time, but it really isn’t. The details that are hidden
(such as network protocols, programming language idiosyncrasies, physical data
organization, and so on) are like dirt on a window. They obscure what you really
want to view—the abstract behaviour of the object. By wiping these details out of
the way (or hiding them) ORBs give an object’s consumer clear, un-obscured access
to the object’s essential behaviour, expressed in terminology natural to the
consumer.
36
Real-time Programming

�������	

3 Reviewing CORBA Concepts 3.1 Basic Concepts

An interface may also be viewed as a contract between an object’s client and
implementation. The implementation agrees to respond to a given request with
certain results; both the client and the implementation agree on the information that
will be exchanged in a given operation, and so on. If both sides abide by the contract
and don’t rely on any assumptions that aren’t stated explicitly in the contract, then
the interaction between client and object will behave properly.
A CORBA interface consists of a collection of operations, attributes, and definitions
for data types that are used with the operations and attributes. CORBA interfaces
may be composed from other interfaces through inheritance.
Almost every section of the CORBA specification deals with one aspect of
interfaces or another, such as how interfaces are described, how the descriptions are
stored and managed, how abstract descriptions are mapped into concrete
programming interfaces in various programming languages, how object
implementations relate to and support an interface, and so on.
The CORBA specification defines a language for describing abstract object
interfaces, called Interface Definition Language, or IDL.

3.1.2.2 Programming with CORBA Interfaces
IDL can be used to generate the stubs and skeletons that are actually used when
programming. Since IDL is only an abstract interface description language, it must
be transformed into equivalent constructs in a concrete programming language to be
useful. The way in which these transformations are made for a particular language is
called a mapping for that language.
Figure 2 illustrates the relationships between stubs, skeletons, clients, object
implementations, and the ORB.

Figure 2 ORB Component Relationships

3.1.2.2.1 Stubs
Stubs are used by clients to invoke operations on target CORBA objects.

Object Request Broker

Client

IDL
Stub

IDL
Skeleton

Object
Implementation

Request
37
Real-time Programming�������	

3 Reviewing CORBA Concepts 3.1 Basic Concepts

A stub is not the CORBA object itself. It represents a CORBA object and is, in part,
responsible for propagating requests (invocations) made on itself to the real target
object. In keeping with this role, stubs are sometimes called proxies or surrogates.
When the target object resides in a remote process, the stub is responsible for
packaging the request, with its parameters, into a message to send to the remote
process across a network, then receiving the reply message from the object,
unpacking the operation results from the message, and returning them to the calling
program.

3.1.2.2.2 Skeletons
Skeletons are used to build object implementations. An implementation of a
CORBA interface is a package of code in a concrete programming language that
provides the real behaviour of the object type. In some cases, the term
implementation is used to indicate the body of code in an abstract sense, that is, the
type (as opposed to an individual instance). In other cases, implementation can mean
a specific instance of the implementation type. When there is a possibility of
ambiguity, we will distinguish between the two as implementation type and
implementation instance.
A skeleton takes the form of an abstract base class declaration with abstract
functions that correspond to the operations in the IDL interface. Programmers
construct an implementation by deriving a new type from the skeleton class, then
providing method implementations for the operations inherited from the skeleton
class.
The stub and skeleton have identical (or nearly identical) interfaces. They are type
compatible (i.e., can be substituted for one another) at the level of the common base
interface.

3.1.2.2.3 Clients and Servers
When a program includes the stub type and invokes operations on instances of the
stub type, that program is acting in the role of a client, with respect to the target
object represented by the particular stub instance. When a program includes an
implementation type (derived from the skeleton), creates instances of the
implementation type, and makes them available for use by clients, the program is
acting in the role of server, with respect to the implemented objects.
Note that the terms client and server merely describe roles that programs play with
respect to a particular object or set of objects. In a distributed object context (or
more specifically, a CORBA context), these terms do not indicate architectural roles
played by the programs, as they do in the traditional sense of client/server
computing. A client of one CORBA object may be the server for other clients.
Programs sharing each others’ objects in a variety of client/server roles may in fact
be peers architecturally.
38
Real-time Programming

�������	

3 Reviewing CORBA Concepts 3.1 Basic Concepts

3.1.2.3 Delivering Requests Using an ORB
As described above, an ORB is anything that mediates between a client and its
target object. By mediate, we mean to deliver the request from the client context to
the server context, invoke the method on the target object, and deliver results, if any,
back to the client. CORBA does not in any way prescribe or limit the mechanisms
that an ORB may use to accomplish this task. The range of possible
implementations is extremely large, and has interesting consequences, both practical
and theoretical.
By leaving implementation decisions completely free, the CORBA specification
allows highly specialized ORBs to be optimised for particular environments with
unusual requirements, such as embedded real-time systems. For the purposes of this
discussion, however, we will describe the OpenFusion RTOrb Java(tm) Edition
implementation.

3.1.2.3.1 Delivering Requests to Remote Objects
The ORB is a set of libraries that are linked into the client and server programs of
the distributed CORBA-based application. When the client invokes an operation on
the object, via the stub, the stub and the client-resident ORB library cooperate to
assemble a message that describes the request. After assembling the message, the
stub invokes the appropriate function in the client-resident class, transmitting the
message to the server that contains the target object.
The message is received in the server by the server-resident ORB component. This
component is responsible for decoding the message. The portable object adapter
(POA) locates the specific object targeted in the request and passes the message
contents to the skeleton. The skeleton extracts the request parameters and invokes
the requested operation on the object implementation instance. The process then
reverses itself: the skeleton creates the reply message, sends it back to the client,
where the stub decodes it and returns the results to the client that made the request.

3.1.3 ORB Components
The ORB is composed of everything that intervenes between the client and the
object to achieve location transparency. In a simple example, illustrated previously
in Figure 2, the ORB encompasses the stub, the client-resident ORB classes, the
server-resident ORB, and the skeleton. It can be argued that the network itself
constitutes part of the ORB, because it mediates data transfer between processes -
playing a major role in providing location transparency.
In an ORB’s run-time environment, there may be a number of other processes
(which are neither the client nor the server) that become involved in some aspect of
the request delivery activity, to locate objects, start new server processes, monitor
the status of requests in progress, and so on. It is usually not possible to point to a
single process or software component and (accurately) call it the ORB.
39
Real-time Programming�������	

3 Reviewing CORBA Concepts 3.1 Basic Concepts

Another way to determine what constitutes an ORB is to observe the two interface
boundaries that the ORB mediates between. By boundary, we mean a specific API
invocation (for example, function call, method invocation, and so on) through which
non-ORB elements (clients and object implementations) interact with the ORB.
The client interacts with the ORB by invoking a member function on a stub. This
boundary is labelled the client-ORB boundary in Figure 3. The object interacts with
the ORB primarily by having one of its member functions invoked by the ORB.
This boundary is labelled the ORB-object boundary in the figure. Anything between
those boundaries may be considered as part of the ORB for conceptual purposes.

Figure 3 The ORB as an Abstraction

3.1.3.1 Abstraction
Contrast the previous example with the following scenario. As mentioned above,
stubs and skeletons are derived from an interface. When a programmer uses an
ORB-based object, methods are invoked on the common interface, not the derived
stub or skeleton. Since both the stub class and the skeleton class (and, thus, the
implementation class) are derived from the interface base class, client code that
makes the invocation could be using either a stub that is bound to a remote object, or
it could be invoking a method directly on an implementation instance that is in the
same process. This use of C++ polymorphism allows the client to use remote and
local objects in exactly the same way, without ever having to (or in some cases, even
being able to) distinguish between them.
When a client “sends” a request to a local implementation instance, what constitutes
the ORB? You might be tempted to say that there is no ORB present but, in fact,
there is. All of the necessary elements are present - the client, the target object, and

Server Machine

Server
Process Space

Client Machine

Client Application
Process Space

Object
Interface

Object
Implmntn.

Object Request Broker

TransportIDL
Stub

IDL
Skeleton

ORB
Boundary

Note: The Client machine and Server machine can be the same physical machine.
40
Real-time Programming

�������	

3 Reviewing CORBA Concepts 3.1 Basic Concepts

something that delivers the request from the client to the object. The delivery
mechanism (the ORB) in this case is the machine instruction that performs the
function call on the target object’s member function. The mediation between the
client and the object takes place in a single stack frame in the local machine.
Thinking of this as an ORB may seem too abstract, but from the programmer’s point
of view a local invocation is indistinguishable (if the ORB is properly implemented)
from a remote invocation. If it communicates like an ORB, it’s an ORB.
If you consider this scenario with respect to interface boundaries, the client-ORB
and ORB-object boundaries from the previous example have coalesced into a single
client-ORB-object boundary, creating for us the mental image that the ORB (in the
case of local invocations) is a two-dimensional, infinitely thin surface between the
client and the server.

3.1.4 Terminology Explained
Figure 4 is an adaptation from the CORBA 2.3 specification. The following
subsections describe the elements shown in the figure and their roles in the overall
activity of delivering requests. Some of the descriptions given here do not exactly
match those in the CORBA specification. Where our descriptions vary, it is
generally to achieve greater clarity and to provide a more consistent overall picture.

Figure 4 The Structure of Object Request Broker Interfaces

Client Object Implementation

Object
Adapter

IDL
Stubs

ORB
Interface

Static IDL
Skeleton

ORB Core

Interface is identical for all ORB implementations

Multiple object adaptors may exist

Stubs and a skeleton exist for each object type

ORB-dependent interface

Up-call
interface

Normal call
interface
41
Real-time Programming�������	

3 Reviewing CORBA Concepts 3.1 Basic Concepts

3.1.4.1 Clients and Servers
As mentioned above, the terms client and server in a distributed object context have
a different meaning than the same terms used in the context of more traditional
client-server computing. In CORBA, the terms refer primarily to roles played by
different programs (or specific parts of programs) with respect to a particular object.
The client of an object is the processing context from which a request is made on the
object.
The term processing context is used advisedly, with some intentional ambiguity.
Sometimes it may refer to the program (or process) that makes a request; it may also
refer to a particular thread or a particular function from which an invocation is
made. In some cases, it may refer to another object (an implementation instance)
that contains a reference for the first object and makes requests on that object from
within one of the containing object’s methods. Though one object’s methods may in
fact constitute a client context for another object, there is formally no such thing as a
client object in CORBA systems.
Likewise a server is the computing context in which an object is implemented.
Sometimes the word server is used to indicate the object itself; other times it may
denote the process in which an object resides. In general, its ambiguity is similar to
that of the term client. Note again that the terms client and server apply to roles that
components play, not the components themselves. Any given program may
simultaneously be a client of some objects and a server for other (or the same)
objects.

3.1.4.2 Object References
The meaning of the term object reference is relative to the context in which it is
used. When used in a programming context in the ORB, an object reference takes
the form of a C++ interface. Programmatic object references may also be converted
into character strings, which may be later converted back into object references.
These strings capture the information model encapsulated in the programmatic
reference. Even though the string is not usable as a reference in a program, it is
thought of as an object reference because it potentially locates and identifies a
particular implementation instance.
The term object reference may be used to denote the abstract concept of an object’s
identity and location. In the process of handling requests, the ORB maintains
internal data structures that it uses to locate, identify, and connect to the target
objects. Since these structures are opaque to ORB users, they may be discussed only
as an abstraction. One might say, for instance, that an object reference is passed
from a client to a server as a parameter in an invocation. The thing being passed
inside the ORB is neither the stub nor the reference in string form. Though you may
not know its concrete form, it is sometimes useful to refer to this abstraction in
discussions as an object reference.
42
Real-time Programming

�������	

3 Reviewing CORBA Concepts 3.1 Basic Concepts

3.1.4.3 First Class Objects and Pseudo Objects
In CORBA terminology, a first class object is a fully functional CORBA object
supporting all of the attributes ascribed to regular CORBA objects:
• It has a unique identity assigned and managed by the ORB
• The ORB can supply references to the object that can be used by remote clients to

make invocations on the object through the ORB
• It supports at least one CORBA interface described in IDL
• Its references support all of the operations defined on CORBA::Object
• It behaves in a manner consistent with general descriptions of objects in the

CORBA specification
A first class object may also be referred to as a righteous object.
For various reasons, the CORBA specification and some CORBAservices
specifications define programming interfaces that, while object-oriented in style,
cannot satisfy the requirements of a first-class object. In some cases the object is, of
necessity, local to the process in which it is used; in other cases the interface cannot
be properly expressed in IDL. In general, pseudo interfaces are used to provide APIs
for ORB components or utility objects specific to ORB or service functions, such as
the ORB interface itself or the interface for the POA. Pseudo interfaces generally
become programming objects in the language mappings (that is, a class in C++), but
do not support required righteous object behaviours, such as:
• They cannot be remotely accessed
• They do not have real object references (although they do have programmatic

references)
• They do not support CORBA::Object operations
Another characteristic of pseudo objects is that their interfaces are often described in
pseudo-IDL, or PIDL. PIDL is not really a language at all; it is more of a dialect of
IDL that is used to describe interfaces for pseudo objects in a convenient, familiar
manner, while recognizing that the PIDL need never actually be compiled into stubs
and skeletons. Because this is the case, some pseudo interfaces described in PIDL
contain syntax or data types that are not legal IDL but are intended to describe
interface elements that are not allowed for righteous objects (hence, the need for
pseudo objects). The following subsections describe some of the more important
pseudo-objects.

3.1.4.3.1 The ORB Pseudo Object
The definition of ORB - given above - described the ORB as an abstract functional
entity that mediates requests. The CORBA specification also describes a
programming interface called the ORB pseudo object. This interface supports
43
Real-time Programming�������	

3 Reviewing CORBA Concepts 3.2 Portable Object Adapter

operations that interact with the computing environment provided by the CORBA
implementation (the ORB in the abstract sense) such as initialization, and operations
that perform utility functions, such as converting object references to and from
strings. Although this pseudo object interface is called the ORB and it is a
component of the abstract ORB entity, do not confuse the ORB pseudo object with
the actual ORB, or infer from the way the interface is described that the ORB is a
physical, identifiable object.

3.1.4.3.2 Object Adapters
The CORBA specification describes pseudo objects called object adapters that
provide part of the interface between the ORB and object implementations. In
particular, CORBA specifies an interface for the POA. The POA interface supports
the following capabilities:
• It allows implementations to associate ORB-managed object identities with

instances of user-supplied implementation classes
• It allows an implementation to inform the ORB that it (or one of its instances) has

undergone a state change that affects its relationship with the ORB, such as
activation (that is, the implementation or object is prepared to receive requests) or
deactivation (the object is not available to receive requests)

3.2 Portable Object Adapter
The Portable Object Adapter is the link between the ORB and individual servants
created in various programming languages. It is responsible for creating object
references and for routing requests from the ORB to the appropriate servant.
The CORBA specification defines the Portable Object Adapter (POA) with the
following features:
• source-level portability between ORB products
• allows multiple and distinct instances of the POA to exist in a server
• allows individual servants to support multiple object identities simultaneously
• provides a mechanism by which policy information can be associated with

individual POA instances
• supports both persistent and transient objects
• supports object implementations that inherit from static skeleton classes, as well

as Dynamic Skeleton Interface (DSI) implementations
44
Real-time Programming

�������	

3 Reviewing CORBA Concepts 3.2 Portable Object Adapter

3.2.1 How the POA Works
In simplistic terms, after the client obtains an object reference it invokes a request
on that object. That request is transmitted via the ORB to the server application.
Refer to Figure 5, Request Dispatching. The POA is responsible for routing the
request to the appropriate servant, which incarnates the target object responsible for
processing the request.

Figure 5 Request Dispatching
The POA maintains an association between the ObjectId (embedded in the object
reference) and the servant (a programming language implementation of a CORBA
object). This association is maintained in a table called the Active Object Map.
When a request is received, the object adapter looks at the ObjectId that came
with the request and finds the servant associated with that ObjectId from its
Active Object Map. Then it dispatches the request on that servant. A CORBA server
process can contain a number of different POAs, each having their own Active
Object Map. POAs are created in a hierarchical fashion, with the special RootPOA
serving as a common ancestor to all other POAs.
The ability to create multiple POAs and to set characteristics on the POA using
policies allows you to control POA behaviour and, consequently, the scalability and
performance of your application.

Client Application Server Application

Client
ORB

Server
ORB

POA

Servant

CORBA
Object

Object
Reference

Request
Invocation

Logical
Connection
45
Real-time Programming�������	

3 Reviewing CORBA Concepts 3.2 Portable Object Adapter

3.2.1.1 POA Configuration
The RootPOA is configured via OFJ propert ies or arguments . I f the
listen-on-all-interfaces property is set (the default case), it will listen on
all available interfaces. If not, it will listen on the interface named by the
default-host property if set , or the first non-loopback interface if
default-host is not set.
Alternatively, one or more -ORBListenEndpoints <argval> arguments can be
given. Each argument specifies one interface to listen on. The format of <argval>
is:

<argval> := <hostname>:<portspec> | <portspec>
<portspec> := <portnum> | <portnum>,<portnum>
<hostname> := STRING | IPADDRESS
<portnum> := INTEGER

A child POA will use the RootPOA’s listeners unless it has been created with a
Server Protocol Policy. This policy will contain one or more Protocols, each of
which will specify an interface on which the child POA will listen. Child POAs do
not inherit listeners from parent POAs.

3.2.2 POA Policies
Key to the POA definition is the ability to create multiple POAs and to customize
each instance by setting policies. In general, you will define a list of policies, then
assign them to a POA when it is created. Once a POA is created with an assigned set
of policies, those policies cannot be changed for the life of the POA. A new POA
does not inherit policies from its parent POA.
Interfaces that define policies to be assigned to a POA must be derived from
CORBA::Policy to the createPOA method.

3.2.2.1 Standard POA Policies

3.2.2.1.1 Lifespan Policy
POA::create_lifespan_policy allows you to specify the lifespan of objects.
• TRANSIENT objects cannot outlive the processes in which they are first created.
• PERSISTENT objects can outlive the process in which they are created.
The default value for this policy is TRANSIENT.
Setting the TRANSIENT policy does not prevent explicit reactivation of a servant
with the same object key. Change the object keys to enforce transient behaviour. The
easiest way to do this is to create new POAs for servant reactivation.
46
Real-time Programming

�������	

3 Reviewing CORBA Concepts 3.2 Portable Object Adapter

3.2.2.1.2 Object Id Uniqueness Policy
POA::create_id_uniqueness_policy specifies whether servants activated by
the POA must have unique ObjectIds.
• UNIQUE_ID specifies that each servant activated by that POA can support only

one ObjectId.
• MULTIPLE_ID specifies that servants activated by that POA can support more

than one ObjectId.
The default value for this policy is UNIQUE_ID.

3.2.2.1.3 Id Assignment Policy
POA::create_id_assignment_policy specifies whether ID assignment is
performed by the POA or by the application.
• SYSTEM_ID specifies that the POA generates and assigns Object Ids.
• USER_ID specifies that ObjectIds are assigned by the application.
The default value for this policy is SYSTEM_ID.

3.2.2.2 POA Policy Summary
All POA policy objects are locality constrained; that is, you cannot pass their
references as arguments to normal CORBA operations or convert them to strings
using ORB::object_to_string. They can be accessed only within the context of
the ORB in which they were created.
Once you define the policies to be assigned to a POA, you can create the POA by
calling create_POA on an existing POA. The new POA becomes the child of the
POA on which the call was made. create_POA takes three arguments: the name for
the new POA, a reference to the POAManager for that POA, and a list of policies to
be applied to the new POA. If no POAManager is specified, a new POAManager is
created.
47
Real-time Programming�������	

3 Reviewing CORBA Concepts 3.2 Portable Object Adapter

3.2.3 POA Manager
The POAManager controls the flow of requests to one or more POA objects. The
POAManager interface supports operations to change the state of a POA to one of
the following:

3.2.4 Object References, Keys, and IDs
The POA is responsible for creating an object reference, which the client can use to
contact the target object. The object key is embedded within the object reference
and the object identifier is embedded within the object key. The policies you set on
the POA determine whether or not your application controls the content of the
ObjectId and whether servants can support multiple IDs. ObjectIds must be
unique within each individual POA; however different POAs can assign the same
ObjectId.

3.2.5 Servants
The IDL compiler generates server-side skeleton classes. These skeletons are
abstract base classes from which your servant classes are derived. Servant classes
are obliged to implement all of the pure virtual functions declared in the generated
skeletons. Servants are responsible for incarnating CORBA objects. A servant is a
C++ instance used to service a request.

3.2.6 Object Creation and Activation
A CORBA object must be created and activated before the client can invoke
operations on it. The POA remembers the relationship between the object and the
servant which created it.

Table 8 POA States

POA State Meaning
ACTIVE Calling activate on the POAManager allows requests to

flow to the POAs that it controls.
INACTIVE This state is entered when POAs are to be shut down using

the deactivate operation
DISCARDING In this state all incoming requests (whose processing has not

yet begun) will be discarded. The POA enters this state
through the discard_requests operation when in the active or
holding state.

HOLDING In this state all incoming requests (whose processing has not
yet begun) will be discarded. The POA enters this state
through the discard_requests operation when in the active or
holding state.
48
Real-time Programming

�������	

3 Reviewing CORBA Concepts 3.2 Portable Object Adapter

Depending on the policies set on the POA, you will either:
• use POA::activate_object or POA::activate_object_with_id to

activate the object. Once the object is activated, the POA can dispatch requests
arriving for that object. After activation, you may use the _this() or
POA::servant_to_reference() operation to obtain an object reference from
the servant.

or
• use POA::create_reference_with_id to create an object reference without

activating it

3.2.7 Request Processing
When the ORB receives a request, it attempts to locate the appropriate POA and
deliver the request. It uses the received object reference, which contains the
ObjectId and POA identification, to locate the appropriate server and POA within
that server. The request is then handed off to the POA.
The POA now takes over and tries to locate the target object. The POA searches for
the servant associated with the ObjectId in its Active Object Map. Once a
reference to the servant is obtained, the appropriate method is invoked. Otherwise,
an exception is thrown.
49
Real-time Programming�������	

3 Reviewing CORBA Concepts 3.2 Portable Object Adapter

50
Real-time Programming

�������	

CHAPTER

4 Introduction to Real-time Systems
This chapter expands on the short introduction given earlier and introduces some of
the essential aspects of real-time systems programming.

4.1 Real-time Systems
The term real-time is used to define systems where the time taken for the execution
of a task is temporally deterministic (predictable). This yields, at the task level, the
notion of hard deadlines: a task must complete within the specified time. Thus a
real-time system executes tasks in a predictable manner with respect to time.
The degree of predictability is the basis for the terminology used to describe
real-time systems. Widely used categories are hard real time and soft real time. This
degree-of-predictability classification conveys relative descriptive utility, but more
precise definitions are implied for a given application.
In hard real-time systems, task execution that completes at an incorrect time means
system failure. A missed deadline is the same as a wrong answer.
In soft real-time systems, task execution that completes at an incorrect time means
reduced system performance. A missed deadline is not catastrophic, but rather
degrades system performance.
Examples of hard real-time activities are:
• flight control (inertial guidance and navigation)
• nuclear power plant control
• pacemakers (human heart)
• vehicle anti-lock braking
• air-bag deployment systems

Examples of soft real-time activities are:
• command interpretation of inputs from a user interface
• saving or displaying management data
• ship navigation
• certain types of telecommunications traffic shaping functions
51
 Real-time Programming�������	

4 Introduction to Real-time Systems 4.1 Real-time Systems

In general, real-time applications consist of soft and hard deadlines. Operating
systems try to guarantee the individual timing constraints of the hard deadline tasks
while attempting to minimize the average response times of the soft ones. Real-time
operating system (RTOS) kernels achieve this through the use of appropriate
features:
• near constant time system calls
• the ability to associate priority not only with the threads (or tasks) executing, but

also the synchronization constructs such as mutates
• pre-emption to achieve greater determinism
• appropriate scheduling strategies

4.1.1 Time- and Event-Triggered Systems
Another way to classify real-time systems is based on whether they are
time-triggered or event-triggered. A trigger is an event that causes the start of some
action, for example, the execution of a task or the transmission of a message.
There are two distinctly different approaches to the design of real-time computer
applications: the event-triggered (ET) approach, and the time-triggered (TT)
approach. A triggering mechanism is used to start communication and processing
activities in each node of a computer system (network).
In the ET approach, all communication and processing activities are initiated upon
occurrence of a significant change of state. The regular event of a clock tick is not
such an event. In the TT approach, all communication and processing activities are
initiated at predetermined times. While ET systems are flexible, TT systems are
temporally predictable. In this guide, the systems discussed are event-triggered.

4.1.2 Developing Real-time Systems with RTOS
Real-time Operating System (RTOS) kernels are built to support real-time tasking
through a number of important features that real-time systems use:
• priority based scheduling to perform real time inter-kernel process management
• priority aware synchronization constructs (semaphores for instance)
• concurrency constructs such as multi-tasking or multi-threading
• real-time clock for a time reference for internal kernel task management and

housekeeping tasks
• mechanisms for inter-process and intra-process communication with associated

synchronization primitives
• bounded, constant-time fast context switch, and often an associated minimal base

kernel size (typically 16-32kb)
52
Real-time Programming

�������	

4 Introduction to Real-time Systems 4.1 Real-time Systems

• internal kernel architecture geared to respond to external interrupts in a fast
manner, and so separate their execution from intra-kernel tasks

Pre-emption and priority-based scheduling are the most important characteristics of
real-time kernels. Together they give rise to the notion of priority, the central
mechanism used to achieve predictable, deterministic behaviour. These
characteristics are sufficient for soft real-time systems. Behavioural characteristics
include quick response and small execution times for higher priority tasks - while
yielding small average response times for other tasks. For hard real-time
applications however, a centrally important theme is missing in such kernels. It is
the notion of some form of guarantee, which is necessary for time-critical, hard
real-time behaviour.
To achieve hard real-time, distributed applications, the most important properties of
a distributed, mission-critical system RTOS and ORB tuple are:
• predictability - The RTOS must be able to predict in an a priori fashion the

consequences of scheduling any and all tasks under its control. If it is not possible
to guarantee an upper bound for the execution time of any task, the RTOS must be
able to take an alternative course of action to cope with such events. Predictability
is by far the single most important requirement on an RTOS, especially for hard
real-time application hosting.

• timeliness - The RTOS must comprise internal clocks for effective handling of
tasks with differing time constraints, and degree of importance or criticality.

• fault-tolerance - The RTOS should be immune (to some degree) to certain classes
of hardware and software failures. Mission critical components in such high
availability RTOS models should have fault-tolerance features inherent in their
design.

• design for peak load - The RTOS should provide some continued minimal level of
performance when subjected to unusually high peak loads. RTOS failure and
crash under such circumstances is an unacceptable scenario for hard real-time
applications. Therefore, they must be designed to cope with anticipated scenarios
of high sporadic load.

• maintainability - The RTOS kernel and ORB need to be designed in a modular,
pluggable fashion to ensure a minimal, optimised use of RTOS resources under
any load. In addition, the ability to make modification/customisations to the
kernel - as the ORB based application might require - should be minimally
cross-coupled so as to be able to make the changes easily.
53
Real-time Programming�������	

4 Introduction to Real-time Systems 4.1 Real-time Systems

4.1.3 Predictability in Distributed Applications
Predictability of a complex, distributed, real-time application is achieved through
the careful combination of RTOS features, networking transport, IPC mechanism
implementations, and constant-time ORB internals design. A sum of these, yields a
degree of predictability that enables some level of Quality of Service (QoS) to be
furnished to the application built on the RTOS-ORB combination.
As far as the RTOS is concerned, it should be able to plot the evolution of tasks and
events ahead of time in a given situation such that it can guarantee in advance that
all critical timing constraints are met by suitable scheduling of its internals.
Components that contribute to the possibility of predictably scheduling
deadline-restricted tasks are:
• the features and numbers of CPUs and the scheduling policies they support
• internal CPU features such as pre-fetch, pipe lining, cache memory, and direct

memory access, which can contribute to non-determinism
• types of scheduling algorithms employed in the kernel
• synchronization mechanisms
• types of priority-aware semaphore
• memory management policies, especially heap management
• communication mechanism, e.g., whether the kernel is based on messages or

signals
• interrupt handling mechanisms

4.1.4 Features and Non-Determinism
It is important for the distributed real-time application designer to understand the
features that will most contribute to non-determinism. These are discussed briefly in
the context of an RTOS and ORB.
Probably the single greatest contributor, at the ORB level, of non-determinism is a
transport that is not QoS aware or priority respecting. In essence, the management of
ORB, application, and RTOS internal tasks needs to be efficiently managed by the
RTOS.
Perhaps the single greatest enemy of an effective hard real-time system design is the
phenomenon referred to as priority inversion.
Priority inversion occurs when a high priority task (that is, of possibly greater
importance and criticality) is blocked by a less critical, lower priority thread for an
unbounded period of time. This type of situation is often seen when the high priority
thread is trying to get access to a shared (with the low priority task) resource, which
54
Real-time Programming

�������	

4 Introduction to Real-time Systems 4.1 Real-time Systems

the low priority task has locked for its own use. There is much detailed real-time
literature on this subject, and designs for its avoidance. For further reading, see
Bibliography on page 123, particularly Rajkumar and Buttazo.
The integration of ORB and application tasks is under the control of the application
designer, but the tasking and priority level control of the transport threads is not, and
can give rise to priority inversions.
Other major contributors to non-determinism include:
DMA - Certain methods of direct memory - such as cycle-stealing access, used to
transfer data between devices and main memory - give rise to unbounded delays.
However, this can be overcome by using other techniques, such as time-slice
methods.
cache - This procedure buffers CPU-RAM exchanges in an attempt to reduce task
execution t imes. Under certain circumstances, this can contribute to
non-determinism.
interrupts - These events can be sporadically triggered due to I/O devices and can
impair predictability of a real time system due to the fact that they introduce
unbounded delays into the execution times of other processes.
system calls - The calls for hard real-time kernel primitives need to be pre-emptible
and implemented to have bounded execution times. These are then used by the
scheduling subsystem of the kernel to produce the necessary guaranteed,
temporally-correct behaviours internally in the kernel.
semaphores - These should be modified to be priority aware and thus avoid the
priority inversion phenomenon. RTOS’ normally furnish priority protocols when
implementing this modification. Examples include basic priority inheritance,
priority ceiling, and stack resource policy. These protocols temporarily modify task
priorities to avoid deadlock and anomalous priority assignments, which cause
non-determinism.
memory management - This must not produce unbounded delays in the course of
execution of real-time tasks. A common practice is to use fixed, constant time type
schemes to allocate, and address memory partitions to achieve predictable memory
access. It is usual to see a greater degree of static allocation, which reduces
flexibility for dynamic environments. The designer of real-time systems must make
trade off decisions when implementing on an RTOS using languages that permit
dynamic heap memory allocations, such as C++.
55
Real-time Programming�������	

4 Introduction to Real-time Systems 4.1 Real-time Systems

56
Real-time Programming

�������	

CHAPTER

5 Introduction to Real-time CORBA
This chapter introduces the essential aspects of the Real-time CORBA ORB.
Please note that real-time CORBA examples are provided in the OpenFusion RTOrb
Java(tm) Edition distribution’s html pages.

5.1 Real-time Specification
The Real-time CORBA Specification defines a set of real-time extensions to
standard CORBA specification.
Figure 6 shows the key Real-time CORBA entities. The features that these relate to
are described below.

Figure 6 Real-time CORBA Extensions

5.1.1 Real-time CORBA Modules
All CORBA IDL specified by Real-time CORBA is contained in new modules
RTCORBA and RTPortableServer (with the exception of new service contexts,
which are additions to the IOP module.)
57
 Real-time Programming�������	

5 Introduction to Real-time CORBA 5.1 Real-time Specification

5.1.2 Real-time ORB
Real-time CORBA defines an extension of the ORB interface, RTCORBA::RTORB,
which handles operations concerned with the configuration of the real-time ORB
and manages the creation and destruction of instances of other Real-time CORBA
IDL interfaces.

5.1.3 Thread Scheduling
Real-time CORBA uses threads as a schedulable entity. Generally, a thread
represents a sequence of control flow within a single node. Threads form part of an
activity. Activities are scheduled by coordination of the scheduling of their
constituent threads. Real-time CORBA specifies interfaces through which the
characteristics of a thread that are of interest can be manipulated. These interfaces
are Threadpool creation and the Real-time CORBA Current interface. The
Real-time CORBA view of a thread is compatible with the POSIX definition of a
thread.

5.1.4 Real-time CORBA Priority
Real-time CORBA defines a universal, platform independent priority scheme called
Real-time CORBA Priority. It is introduced to overcome the heterogeneity of
different Operating System provided priority schemes, and allows Real-time
CORBA applications to make prioritised CORBA invocations in a consistent
fashion between nodes with different priority schemes.
For consistency, Real-time CORBA applications always should use CORBA
Priority to express the priorities in the system, even if all nodes in a system use the
same native thread priority scheme, or when using the server declared priority
model.

5.1.5 Native Priority and PriorityMappings
Real-time CORBA defines a NativePriority type to represent the priority scheme
that is ‘native’ to a particular Operating System.
Priority values specified in terms of the Real-time CORBA Priority scheme must be
mapped into the native priority scheme of a given scheduler before they can be
applied to the underlying schedulable entities. On occasion, it is necessary for the
reverse mapping to be performed in order to obtain a Real-time CORBA Priority to
represent the present native priority of a thread. The latter can occur, for example,
when priority inheritance is in use or when wishing to introduce an already running
thread into a Real-time CORBA system at its present (native) priority.
Real-time CORBA defines a PriorityMapping interface in order to allow the
Real-time ORB and applications to do both of these things.
58
Real-time Programming

�������	

5 Introduction to Real-time CORBA 5.1 Real-time Specification

5.1.5.1 User-defined PriorityMappings
P r i s m Te c h p r o v i d e s a p r i o r i t y m a p p i n g i m p le m e n ta t io n ,
com.prismtech.ofj.rtorb.PriorityMapping, which is automatically
instantiated when the ORB is initialised. This default implementation uses a linear
algori thm that maps a range of CORBA prior i ty values to the range
MIN_NATIVE_PRIORITY to MAX_NATIVE_PRIORITY. This mapping algorithm is
identical to the algorithm used by TAO.
The priority mapping can be retrieved using the following static accessor call on
com.prismtech.ofj.rtorb.RTORB:

public static org.omg.RTCORBA.PriorityMapping
com.prismtech.ofj.rtorb.RTORB._get_priority_mapping()

A developer can provide their own priority mapping implementation. User-defined
priority mapping implementations can be used by calling the following static
method on RTORB:

public static void
 com.prismtech.ofj.rtorb.RTORB._set_priority_mapping(

org.omg.RTCORBA.PriorityMapping mapping)

This method overrides the default implementation with the supplied version.

5.1.6 Real-time CORBA Current
Real-time CORBA defines a Real-time CORBA Current interface to provide access
to the CORBA priority of a thread.

5.1.7 Priority Models
One goal of Real-time CORBA is to bound and to minimize priority inversion in
CORBA invocations. One mechanism that is employed to achieve this is
propagation of the activity priority from the client to the server, with the
requirement that the server side ORB make the up-call at this priority (subject to any
priority inheritance protocols that are in use).
However, in some scenarios, it is sufficient to design the application system by
setting the priority of servers, and having them handle all invocations at that priority.
Hence, Real-time CORBA supports two models for the priority at which a server
handles requests from clients:
• Client Propagated Priority Model: in which the server honours the priority of the

invocation, set by the client. The invocation’s Real-time CORBA Priority is
propagated to the server ORB and the server-side ORB maps this Real-time
CORBA Priority into its own native priority scheme using its
PriorityMapping.
59
Real-time Programming�������	

5 Introduction to Real-time CORBA 5.1 Real-time Specification

Requests from non-Real-time CORBA ORBs; that is, ORBs that do not propagate
a Real-time CORBA Priority with the invocation are handled at a priority
specified by the server.

• Server Declared Priority Model: in which the server handles requests at a
Real-time CORBA Priority assigned on the server side. This model is useful for
setting a boundary where new activities are begun with a CORBA invocation.

5.1.8 Real-time CORBA Mutexes and Priority Inheritance
The Mutex interface provides the mechanism for coordinating contention for system
resources. Real-time CORBA specifies an RTCORBA::Mutex locality constrained
interface, so that applications can use the same mutex implementation as the ORB.
A conforming Real-time CORBA implementation must provide an implementation
of Mutex that implements some form of priority inheritance protocol. This may
include, but is not limited to, simple priority inheritance or a form of priority ceiling
protocol. The mutexes that Real-time CORBA makes available to the application
must have the same priority inheritance properties as those used by the ORB to
protect resources. This allows a consistent priority inheritance scheme to be
delivered across the whole system.

5.1.9 Threadpools
Real-time CORBA uses the Threadpool abstraction to manage threads of execution
on the server-side of the ORB. Threadpool characteristics can only be set when the
threadpool is created. Threadpools offer the following features:
• preallocation of threads - This helps reduce priority inversion, by allowing the

application programmer to ensure that there are enough thread resources to satisfy
a certain number of concurrent invocations, and helps reduce latency and increase
predictability, by avoiding the destruction and recreation of threads between
invocations.

• partitioning of threads - Having multiple thread pools associated with different
POAs allows one part of the system to be isolated from the thread usage of
another, possibly lower priority, part of the application system. This can again be
used to reduce priority inversion.

• bounding of thread usage - A threadpool can be used to set a maximum limit on
the number of threads that a POA or set of POAs may use. In systems where the
total number of threads that may be used is constrained, this can be used in
conjunction with threadpool partitioning to avoid priority inversion by thread
starvation.

• buffering of additional requests beyond the number that can be dispatched
concurrently by the assigned number of threads.
60
Real-time Programming

�������	

5 Introduction to Real-time CORBA 5.1 Real-time Specification

5.1.10 Priority Banded Connections
In order to reduce priority inversion due to use of a non-priority respecting transport
protocol, RT CORBA provides the facility for a client to communicate with a server
via multiple connections, with each connection handling invocations that are made
at a different CORBA priority or range of CORBA priorities. The selection of the
appropriate connection is transparent to the application, which uses a single object
reference as normal.

5.1.11 Non-Multiplexed Connections
Real-time CORBA allows a client to obtain a private transport connection to a
server, which will not be multiplexed (shared) with other client-server object
connections.

5.1.12 Invocation Timeouts
Real-time CORBA applications may set a timeout on an invocation in order to
bound the time that the client application is blocked waiting for a reply. This can be
used to improve the predictability of the system.

5.1.13 Client and Server Protocol Configuration
Real-time CORBA provides interfaces that enable the selection and configuration of
protocols on the server and client side of the ORB.

5.1.14 Real-time CORBA Configuration
New policy types are defined to configure the following server-side RT CORBA
features:
• server-side thread configuration (through Threadpools)
• priority model (propagated by client versus declared by server)
• protocol selection
• protocol configuration
Which CORBA policy application points (ORB, POA, Current) that a given policy
may be applied at is given along with the description of each policy. Real-time
CORBA defines a number of policies that may be applied on the client-side of
CORBA applications. These policies allow:
• the creation of priority-banded sets of connections between clients and servers;
• the creation of a non-multiplexed connection to a server;
• client-side protocol selection and configuration.
In addition, Real-time CORBA uses an existing CORBA policy to provide
invocation timeouts.
61
Real-time Programming�������	

5 Introduction to Real-time CORBA 5.2 Real-time Portable Object Adapters

5.2 Real-time Portable Object Adapters
Real-time Portable Object Adapters (RTPOA) configuration is one of the most
important features in real-time CORBA. Application developers can configure and
control hardware resources using real-time policies associated with real-time POAs.
This section describes priority models, the pluggable RTPOA, threads and
threadpools, and priority banded connections.

5.2.1 Priority Model
RTOrb only suppor t s bo th the RTCORBA::SERVER_DECLARED and
RTCORBA::CLIENT_PROPAGATED priority models. Refer to the CORBA Priority
Model example included in the RTOrb examples to see how to set the
RTCORBA::SERVER_DECLARED priority model policy for an RTPOA.

5.2.2 RTPOA
The RTPOA module which extends the standard POA interface with respect to
priority and resource configuration.

5.2.2.1 POA Activation Methods with Priority

5.2.3 Threads and Threadpools
There a re two bas ic ways o f manipula t ing th reads in RT CORBA,
RTCORBA::Current and Threadpools (via policies at POA creation time).

5.2.3.1 Current
RT CORBA defines a RTCORBA::Current interface to provide access to the
CORBA priority of a thread. Please refer to the CORBA Priority example included
with this product on how to access the priority of a thread.

5.2.3.2 Threadpools
Thread pools are one of the most important features in Real-time CORBA. Threads
in pools can be pre-allocated and partitioned amongst active Real-time POA's.
Application developers and end-users configure and control processor resources
using thread pools. The possibility of experiencing priority inversion can be
bounded and reduced by configuring real-time POA's with threadpools where each
POA associates with one or more thread pools (see Figure 7). Note that threadpools
are independent of the POA lifecycle.

create_reference_with_priority()
create_reference_with_id_and_priority()
activate_object_with_priority()
activate_object_with_id_and_priority()
62
Real-time Programming

�������	

5 Introduction to Real-time CORBA 5.2 Real-time Portable Object Adapters

5.2.3.3 Thread Pool Operation Basic Mode
Application developers and end-users configure and control processor resources
using thread pools (see Figure 7). Threads in the threadpool execute requests at the
object priority for which each request is targeted. Each POA associates with one or
more thread pools. However, you are reminded that thread pools are independent of
the POA lifecycle.
To dispatch requests to the correct queue and to the right servant on the server side,
each request needs to be handled by the right priority thread. To achieve this,
requests are pushed onto the queue of appropriate priority and are processed
synchronously by the waiting threads within a lane. There is a queue assigned to
each thread pool.

Figure 7 Controlling Network Resources
The client side may hold multiple connections open through the use of individual
object references to end points in the server, based on priority band.
Threadpools can be configured for use with RTPOA's in one of two forms:
1. Non-laned Threadpool
2. Laned Threadpool

Private Connections

Client
Stubs

(endpoint bindings)

Priority
1-9

Priority
21-100

Priority
10-20

GIOP
Request

GIOP
Request

GIOP
Request

RTOrb Real-time Server

Real-time
Object

Real-time
Object

Real-time
Object

Real-time
Object

Priority 1-9 Priority 10-20 Priority 21-100

Listener ListenerListener

Priority Banded Connections
Priority Banded Connections
63
Real-time Programming�������	

5 Introduction to Real-time CORBA 5.2 Real-time Portable Object Adapters

5.2.3.4 Laned Threadpool
A threadpool can be created that has n partitions (lanes) each created to serve
requests at a specific priority. Each lane has m static threads running at the priority
defined for the lane. Whenever a request arrives, a lane is chosen based on the
priority associated with the activated object. Please refer to the Threadpools
example included with this product on how to create a Threadpool with lanes.
As seen above, the half-sync layer consists of a thread pool associated with a POA.
A thread pool can be shared among POAs.

5.2.3.5 Priority Banded Connections
RT CORBA introduces the concept of priority banded connections. A real time
POA (RTPOA) supporting priority banded connections is capable of accepting
requests across transport with some concept or awareness of the requestors priority
at which the server should execute. Each client can open a number of connections
with a server, each connection handling a range of priorities defined in the priority
banded connection policy.
Priority banded connections are useful when used in conjunction with a transport
protocol that does not respect priorities. Transports like TCP that are not easily
pre-emptable and do not respect priorities can incur head of line blocking where
requests of higher priority are blocked and unable to pre-empt requests at lower
priority. This leads to unbounded delays and the potential of priority inversion.
Priority bands allow multiple connections to be utilized to minimize the head of line
blocking that can occur where one connection is used for multiple priority requests.
An RTPOA that is configured with laned threadpools and priority banded
connections can provide more predictability. Please refer to the Connections
example included with this product on how to create priority banded connections.

5.2.4 RTPOA Current
This interface is available to perform operations to access the identity of the object
on which a call was invoked. This is supplied for supporting servants that may
implement multiple objects.

5.2.5 Associations Between Pools and RTPOA
Each POA must have at least one thread pool attached to it. This is done by passing
a thread pool policy to the POA. In the case where no policy is specified or an
invalid threadpool identifier is used, the ORB will use the default non-real time
threading approach, which consists of unlimited dynamic thread allocation. One
thread pool can be shared among multiple POAs.
64
Real-time Programming

�������	

5 Introduction to Real-time CORBA 5.3 Priority Machinery

5.3 Priority Machinery
Priority is the medium used to achieve QoS in real-time CORBA, hence the focus of
RTOrb application design. With the RTOrb priority scheduling is achieved via the
RTOS scheduler. Tasks or threads that comprise the application execute in a stable,
predictable manner as a result of this priority scheduling. In addition if using only
the RTOS for scheduling purposes, it must provide proper mutexes and semaphores
to resolve resource contention, such as priority-aware application objects and/or
code segments.
The central theme in real-time CORBA programming is the notion of prioritised
scheduling of activities, tasks, or threads.
This section provides:
• background information on the phenomenon of priority inversion
• discussion of protocols used to overcome priority inversion
• discussion of priority mapping and CORBA priority scheme

5.3.1 Priority Phenomena and Protocols
Priority inversion is a commonly known phenomenon in real-time systems. It
usually manifests in the form of unbounded delays of high priority tasks. Normally,
when priority inversion occurs, high priority tasks are forced to wait on low priority
tasks. This occurs when the high priority tasks are sharing common resources with
low priority tasks. If a low priority task locks the resource for its own use but is
pre-empted by a higher priority task, which also needs access to the common
resource, the high priority task will have to wait on the lower priority task.
To illustrate the concept of priority inversion more clearly, consider Figure 8. Here,
3 tasks or threads are executing, T1, T2, T3. The tasks are illustrated in order of
decreasing priority such that the priority of T1 is the greatest and that of T3 the least
of the 3. In addition, we assume that T1 and T3 share a common resource, such as a
critical section, to which only one can have access at any point in time. The
following is a typical scenario illustrating priority inversion.
At time t0 task T3 starts to run. At time t1 task T3 locks and enters a critical section,
continuing to execute until time t2. The portion of time for which task T3 is in a
critical section is shown as shaded. At time t2, task T1 pre-empts task T3 because T1
has a higher priority. Task t1 now executes from time t2 until time t3, at which point
it attempts to gain access to the critical section, which has previously been locked by
lower priority task T3. Task T1 is therefore forced to wait or block until such time as
T3 releases the lock on the critical section shared between T1 and T3. Task T3 is
allowed to run next. So at time t3, task T3 resumes execution and continues to work
its way through the critical section.
65
Real-time Programming�������	

5 Introduction to Real-time CORBA 5.3 Priority Machinery

Now at time t4, task T2 pre-empts task T3 and starts to run because task T2 has a
higher priority than that of task T3.
Task T1 is now blocked by task T3 because of the shared resource, and task T3 is
blocked by task T2. Therefore T2 is now indirectly blocking task T1 as well. Task T2
blocks task T3 until T2 completes at time t5. As a consequence T3 is forced to block
for a significant amount of time (the length of the shared critical section plus the
execution time of task T2).
For an actual system, when several medium priority tasks exist with priorities
greater than that of task T3 but less than that of task T1, it can lead to unbounded
delay or blocking.
This effect is known as priority inversion and occurs in the time interval t3 to t6.

Figure 8 Priority Inversion
The priority inversion phenomenon in real-time systems is one that can manifest any
time several tasks want to execute in the presence of services that are shared among
them.
Several approaches have been proposed to alleviate the priority inversion
phenomenon in real-time systems and much literature is available. A complete
description and analysis is beyond the scope of this document. The reader is directed
to further reading under Bibliography on page 123, particularly Buttazo.
The Real-time Extension aids the RT CORBA developer by providing priority
inheritance protocols in the ORB. Specifically, RTOrb’s RT CORBA mutex supplies
a default implementation that uses the simple priority inheritance protocol as an
example. Other protocols are also possible, but this is used to illustrate the concept
and its applicability.

T1 Blocked

Critical section
Normal execution

T1

T2

T3 t0 t1 t2 t3 t4 t5 t6 t7
66
Real-time Programming

�������	

5 Introduction to Real-time CORBA 5.3 Priority Machinery

The priority inheritance protocol bounds any priority inversion that could possibly
occur. Although the ORB’s initial design is such that it tries to eliminate the
possibility, it can still occur as a result of unusual transports, or hardware specifics
that are used in a particular setup.
Figure 9 and the following text explain how priority inheritance protocols bound
any possible priority inversion. The same three tasks are illustrated as in Figure 8.
Additionally, the relative priorities of the three tasks are depicted at the bottom of
the figure as P1, P2, and P3.
Up to time t3, the behaviour of tasks T1 and T3 are the same as in Figure 8. At time
t3, T1 is forced to block on T3 due to T3 holding a lock on a critical section to which
T1 needs access. At this point the mechanism of priority inheritance is employed.
This mechanism causes T3 to inherit the priority P1 of task T1, which forces task T3
to execute immediately and run through the remaining part of its critical section.
This forces T3 to execute from t3 to t5 at the T1 priority P1, which is the highest
priority in this illustration. Note that task T2 cannot pre-empt task T3 as task T2 has
lower priority than the temporarily assigned priority (P1 of task T3, through priority
inheritance).

Figure 9 Priority Inheritance Protocol to Bound Priority Inversion
As task T3 exits the critical section, its priority is returned to its original value P3 as
shown in Figure 9. At time t5, task T1 can run because priority P1 is greater than
priority P2 of task T2. Thus it no longer needs to block on task T3, which was
holding a lock on the critical section. Task T1 now runs through the critical section
and to completion at t6. At time t6, task T2 has the highest priority and executes as
shown in Figure 9.

T1

T2

T3 t0 t1 t2 t3 t4 t5 t6 t7

Critical section
Normal execution

P1

P3

P2
67
Real-time Programming�������	

5 Introduction to Real-time CORBA 5.3 Priority Machinery

5.3.1.1 CORBA Priority
CORBA uses a standard (canonical) form of priority that can be mapped to any
RTOS priority scheme. In effect, CORBA subsumes the heterogeneity in
RTOS-specific priority schemes and thus achieves uniformity. This allows CORBA
invocations to be made across multiple, different RTOS platforms - which may have
different native priority schemes - in a consistent manner. Therefore, CORBA
priority is a wrapper for native priority schemes.

5.3.1.1.1 CORBA Priority Mapping
Priorities may be mapped from the CORBA priority scheme to the RTOS native
priority scheme. This is accomplished with an interface defined in IDL, and allows
you to forward and reverse map CORBA and native priorities as shown in Figure
10.

Figure 10 Priority Mapping
An RTCORBA priority type id, defined in IDL to be of type CORBA short, is as
follows:

module RTCORBA {
typedef short Priority;
const Priority minPriority = 0;
const Priority maxPriority = 32767;
};

It spans the interval 0 to 32767. Higher values of RTCORBA priorities map to higher
native RTOS priorities.

to_CORBA()

OS B
Native
Priority

RTCORBA
Priority

OS A
Native
Priority

0 32767

0

0

31

255

40

200

5
to_native()

MAX

MIN
68
Real-time Programming

�������	

5 Introduction to Real-time CORBA 5.4 CORBA Mutex

5.3.1.1.2 RTCORBA Current Interface
The Current interface in RTCORBA allows a developer access to the priority data
of the current locus of execution or thread. The interface allows for setting and
getting a thread’s CORBA priority.

interface Current : CORBA::Current {
attribute Priority the_priority;
};

A thread has native base and elevated priorities, which may be different than the
observed CORBA mapped value.
This is a local interface, which also stores information about its current CORBA and
native priorities in a thread-local storage structure. It is a singleton within the
context of its present locus of execution. A typical application’s use of the
RTCORBA current interface is illustrated below: Please refer to the CORBA
Priority example included with this product on how to use the RTCurrent get and set
methods, and use of the default priority mapping.

5.4 CORBA Mutex
5.4.1 Mutex Notifies in RT CORBA

Real-time CORBA specifies an RTCORBA::Mutex locality-constrained interface so
that applications can use the same mutex implementation as the ORB. This mutex
interface provides the mechanism popularly used to coordinate access to shared
resources. In RTCORBA such a construct is required to have associated with it a
priority inheritance protocol to resolve any resource access contention by threads of
differing priorities.

5.4.2 Why Mutex Has a Priority Protocol
The RTCORBA specification requires a mutex implementation to have some form
of priority inheritance protocol. This may include, but is not limited to, simple
priority inheritance. In addition, any type of priority-aware mutex that the ORB
makes available to the application must have the same priority inheritance protocols
as those used by the ORB to protect its own internal resources. It is imperative to
eliminate, if not bound, the priority inversion phenomenon, thereby allowing for
consistency across the whole system with regard to resolving any resource access
contention.
69
Real-time Programming�������	

5 Introduction to Real-time CORBA 5.4 CORBA Mutex

5.4.3 The Real-time CORBA Mutex Interface
The IDL for the real-time CORBA specification is defined as:
module RTCORBA
{
 interface Mutex
 {
 void lock ();
 void unlock ();
 boolean try_lock (in TimeBase::TimeT max_wait);
 };

 interface RTORB
 {
 ...
 Mutex create_mutex ();
 void destroy_mutex (in Mutex the_mutex);
 ...
 };
};
70
Real-time Programming

�������	

CHAPTER

6 Introduction to Real-time Java
The Real-Time Specification for Java (RTSJ) defines an extension to the Java
specification for creating real-time applications using the Java programming
language. Real-Time Java (RTJ) has seven areas of extended semantics, including
thread scheduling and dispatching, memory management, synchronization,
asynchronous event handling, asynchronous transfer of control, asynchronous
thread termination and physical memory access.1

This chapter provides high level descriptions of these areas and their constituent
components. You are directed to the Real-Time Specification for Java for complete
descriptions and the semantics that apply to particular classes, constructors,
methods and fields. It is strongly recommended that you refer to the references listed
under Further Reading and Examples Information on page 74.

6.1 Real-time Extension to Java
6.1.1 Thread Scheduling and Dispatching

Real-time programming must ensure that the execution of machine instruction
sequences, such as a thread for example, are timely2 or predictable. RTSJ uses the
concept of schedulable objects and schedulers to schedule the execution of these
instruction sequences.
Scheduling is the arranging of a set of threads to be executed in a particular order.
The order of thread execution is called a schedule and attempts to optimise the
system’s ability to meet (predefined) temporal constraints. The schedule’s method
of optimising the thread execution is called its metric. For example, a typical metric
in hard real-time systems is “number of missed deadlines”, noting that the only
acceptable value for that metric in a hard real-time system is zero (recalling that
hard real-time system do not allow time deadlines to be overrun.).
A schedulable object is implemented in RTSJ as an instance of any class that
implements the Schedulable interface. Three examples of schedulable objects are
RTJ’s RealtimeThread, NoHeapRealtimeThread, and AsyncEventHandler.3

1. The RTSJ specifies seven, however other sources name eight areas of extended
semantics, exceptions being the eighth.

2. The term timely here means that a thread’s execution will always complete before a given
time limit has been passed.

3. Each of these three objects are required in any RTSJ-based application.

71

 Real-time Programming�������	

6 Introduction to Real-time Java 6.1 Real-time Extension to Java

A scheduler is implemented as an instance of class Scheduler. Scheduling and
dispatching of the schedulable object is managed by a Scheduler instance. The
schedulable object has a reference to the Scheduler instance.
There are often situations where schedulable objects compete for the resources so
they can run. All schedulable objects run in a thread. Each thread is assigned a
numeric priority value. This value is referred to as the thread’s priority. The
scheduler uses a thread’s priority to help determine the thread’s execution eligibility:
threads are selected for execution in the order of their priority, highest to lowest,
with the confines of a scheduling algorithm. The term dispatching refers to selecting
a thread with the highest execution eligibility, in other words the highest priority,
from the pool of threads that are ready to run.
The programmer is responsible for assigning thread priorities.

6.1.2 Memory Management
RTJ addresses the issue of the unpredictable latencies of Java’ Garbage Collector by
providing memory management facilities which do not interfere with the
deterministic behaviour of real-time code. RTJ uses memory area types to enable
programmers how memory is allocated, controlled and released or garbage
collected.
RTJ has four basic memory area types. These are:
1. Scoped memory - gives bounds to an object’s lifetime of objects on the heap

(syntactic scope). When a scope is entered, every use of new causes the memory
to be allocated from the active memory scope. Scoped memory types provides
flexibility by allowing the application to use a memory area that has
characteristics that are appropriate to a particular syntactically defined region of
the code.

2. Physical memory - objects are created within specific physical memory regions
that have particular characteristics, such as having substantially faster access
than other memory locations.

3. Immortal memory - objects remain in memory from the point they are allocated
until the application’s Java runtime environment terminates. It is a memory
resource shared among all threads in an application. Objects allocated to
immortal memory are never garbage collected or moved.

4. Heap memory - represents the heap. RTSJ does not change the determinant of
lifetime of objects on the heap: lifetime is determined by visibility.

Some support is provided by RTJ for budgeting memory allocation for threads using
memory areas. Maximum memory area consumption and maximum allocation rates
for individual real-time threads may be specified when the thread is created.
72
Real-time Programming

�������	

6 Introduction to Real-time Java 6.1 Real-time Extension to Java

6.1.3 Synchronization
Serialized resources in a real-time environment can be subject to priority inversion1.
Priority inversion is dealt with by RTJ through:
• algorithms that prevent priority inversion between real-time Java threads when

they share a serialized resource (such as when the Java synchronized keyword
is used)

• providing wait-free queue classes which can be used when the priority
inversion-protection algorithms are insufficient

6.1.4 Asynchronous Event Handling
RTJ provides efficient mechanisms for programming disciplines that can
accommodate the asynchronous behaviour which exists in the real world. RTJ
generalizes the Java language’s mechanism of asynchronous event handling. A
notable feature of RTJ’s asynchronous event handling is that the execution of an
application’s logic is scheduled and dispatched by an implemented scheduler.

6.1.5 Asynchronous Transfer Of Control
There are instances when the real-world environment changes both drastically and
asynchronously which requires the current point of logic execution to be
immediately and efficiently transferred to another location. RTSJ has a mechanism
which extends Java’s exception handling to allow applications to programatically
change the point of control of another Java thread. Note that this asynchronous
transfer is restricted to specifically written control logic which assumes that its point
of control may change asynchronously.

6.1.6 Asynchronous Thread Termination
Application logic may need to arrange for a real-time Java thread to expeditiously
and safely transfer its control to its outermost scope and end in a normal manner
when occasional drastic and asynchronous changes in the real-world happen. RTJ’s
mechanism for asynchronous event handling and transfer of control is safe, unlike
the (deprecated) traditional unsafe Java mechanism for stopping threads.

6.1.7 Physical Memory Access
Physical memory access is desirable for many applications. RTJ provides a class
that allows programmers byte-level access to physical memory, as well as a class
that allows objects to be constructed in physical memory.

1. Priority inversion occurs, for example, when a high priority task is waiting for a resource
which has been locked by a lower priority task, thereby preventing the high priority task
from running. This is considered to be a system failure.
73
Real-time Programming�������	

6 Introduction to Real-time Java 6.2 Further Reading and Examples Information

6.2 Further Reading and Examples Information
Real-time Java examples are provided in the OpenFusion RTOrb Java(tm) Edition
distribution’s html pages.
A recommended reading and reference list is given in the Bibliography on page 123.
For convenience, references which are particularly relevant to RT Java are listed
below.
Real Time Java Platform Programming, Peter C. Dibble, Sun Microsystems Press
Java Series, 2002.

Highly recommended, provides essential information.
Concurrent and Real-Time Programming in Java, by Andy Wellings, John Wiley &
Sons Ltd, 2004.

This book provides an introduction to concurrent and real-time programming,
describes Java’s concurrency model, introduces and discusses the RTSJ, and
includes examples.

Real-Time Systems and Programming Languages, Alan Burns and Andy Wellings,
Addison Wesley, Third Edition, 2001.

Describes real-time programming in Ada 95, Java, occam2 and C; covers a
variety of associated topics including, for example, reliability, concurrent
programming, design and distributed systems.
74
Real-time Programming

�������	

PROGRAMMING WITH

RTORB

CHAPTER

7 Using the ORB
RTOrb can be used to create CORBA-based client-server applications, for either
enterprise or real-time applications. The major steps of creating applications using
RTOrb are the same whether creating enterprise or real-time applications, even
though the internal details of their respective client and server classes differ.

7.1 Introduction
The steps for creating RTOrb-based applications are:

Step 1: Declare the application’s classes and/or interfaces in an IDL specification. (See
About this release of OpenFusion RTOrb Java(tm) Edition on page 78).

Step 2: Compile the application’s IDL specification with the IDL compiler to create the
Java source files and classes for the stubs, skeletons and/or tie classes and interfaces.

Step 3: Write an implementation for the interface generated from the IDL specification.
Step 4: Write a server (if not being implemented by third parties) as a main class. The main

class instantiates the server as well as starts running the ORB.
Step 5: Write a client (if not being implemented by third parties) as a main class. The client

makes (remote) requests to the server instance.
Step 6: Compile the developer-written source code and IDL-generated source code with a

Java compiler for the required platform.
Step 7: Deploy the application’s server and client components on the required platforms.
Step 8: Start the server and run the client.

This section describes the procedures, requirements and practical details needed to
create CORBA-based applications with RTOrb using the above steps. (Please note
that this section is not intended as a tutorial of how to write CORBA-based
applications. Basic information for writing CORBA-based applications is provided
in Section 8, Creating Applications, on page 89.)
The topics covered here include:
• a general description of how to use the ORB’s IDL to Java compiler
• the requirements, procedures and settings for creating, compiling, deploying and

running RTOrb-based applications
• brief information about running OpenFusion CORBA Services
77
 Programming with RTOrb�������	

7 Using the ORB 7.1 Introduction

About this release of OpenFusion RTOrb Java(tm) Edition

• RTOrb must be initialised in immortal memory when running the ORB in hard
real-time mode. A Simple Soft Real-time Application on page 94 shows how to
initialise the ORB in immortal memory.

• RTOrb must be initialised in heap memory when running the ORB in soft
real-time mode.

• The ability to initialise RTOrb in scoped memory is not supported in the release.
• There is a slight memory leak when multiple calls are made to ORB.init().

7.1.1 Advice Notes
1. The CORBA release() method has now been implemented on Object. It is

recommended that developers use this method for freeing objects that are no
longer needed. Refer to the CORBA Specification, release 04-03-12, Section
4.3.2.2.

2. Garbage collection can be minimised by caching structs and unions in the
skeleton classes. Using the object cache is a two stage process:

 - Run the idl compiler with the -cacheplugin argument to generate object caching
code, for example:
idl -d generated -cacheplugin com.prismtech.ofj.util.objectcache.
 ObjectCachePluginImplementation
myIdl.idl

This generates additional code in the structs’ and unions’ helper classes and in
the skeleton classes of interfaces.

 - Configure RTOrb to use object caches for specific classes by setting the
cachedObjectClasses properties in the ofj.properties file. See the
Section 2.1.2, Configuration Properties, on page 20, for information about the
objectcache properties and their values.
The RTOrb object cache implementation enables the default implementations of
ObjectCache and ObjectCachePlugin to be easily replaced with a custom object
cache implementation.

3. Appendix A, API Enhancements, describes RTOrb enhancements to the OMG’s
standard CORBA API.

4. WARNING: There is a potential problem with Realtime Threads and static
initialisers when using the Sun Real Time Java System. If an application is
started using deeply nested Realtime Threads and Runnables, and the first
reference to OpenFusion Java ORB is within those Threads, then it is possible
78
Programming with RTOrb

�������	

7 Using the ORB 7.2 Using the IDL Compiler

that class static initialisers will not be created correctly. PrismTech advises that
customers call com.prismtech.ofj.util.ClassInitializer.init()
at the start of their application in order to work around this problem.

7.1.2 Conventions
The following convention is used in this section:

<OFJ_DIR> - the directory where RTOrb is installed
<JAVA_HOME> - root directory of the Java Virtual Machine (JVM) installation

7.2 Using the IDL Compiler
Basic instructions for using RTOrb’s IDL to Java compiler are given here. This
release of RTOrb uses the JacORB idl to Java compiler.
Detailed information, including descriptions of all of the compiler’s command line
options are provided in the ORBUtilites.pdf document.
You should read the instructions provided below and in the ORBUtilites.pdf
document before attempting to use the IDL compiler. Also, ensure the
<OFJ_DIR>/bin directory is in the system’s PATH.
The compiler is run using the idl script located in the <OFJ_DIR>/bin directory.
The idl compiler script is used from the command line as:

where
[options] is a list of zero or more command-line options.
<idl_files> is a list of one or more IDL source files

The IDL source files must have idl as the filename extension, for example
myfile.idl.
Using idl with the -h or -help option displays usage information. The complete
list of command-line parameters is described in ORBUtilites.pdf: refer to the
instructions in that guide before using the idl compiler.
The IDL compiler creates the files listed below. The number, type and names of the
generated output files can be changed using the command-line options, such as
disabling the creation of POA skeletons or client stubs.
The standard types of generated source Java files are:
• Operations - contains the generated Java interface which is mapped from the

developer-written IDL interface specification. The IDL specification includes the
interface’s IDL type, operations and exception definitions.

% idl [options] <idl_files>
79
Programming with RTOrb�������	

7 Using the ORB 7.2 Using the IDL Compiler

• Interface - contains an interface which extends the interface in the Operations
file as well as extending org.omg.CORBA.Object and
org.omg.CORBA.portable.IDLEntity. Clients are able to obtain references
to objects that implement this interface.

• Helper - provides a helper class which is needed to manipulate the mapped IDL
interface. The class contains several essential static methods, including
narrow().

• Holder - contains a class which enables inout and out parameters to be passed
in Java (Java can only pass arguments by value).

• Stub - is responsible for delegating shared functionality, such as isa(), to the
vendor specific implementation. This file contain a class which extends
org.omg.CORBA.portable.ObjectImpl.

• POA - contains a servant base class that implements the Java Operations interface
and provides skeleton code for the developer written object implementation. The
class in the POA file extends org.omg.PortableServer.Servant.

• POATie - this file contains a class which extends the POA class. This class
enables a developer-written implementation class to inherit from more than one
servant base class, if needed, by delegating to the implementation class. This class
overcomes the single inheritance restriction of the Java language.

The generated filenames for the above file types, unless customised by using the
IDL compiler’s command line options, are constructed as follows:
• With the exception of the Interface type, the interface name contained in the IDL

specification file is prepended to the file’s type and given a .java extension. For
example, if using an IDL specification file called MyApp.idl containing an
interface called MyAppsInterface, the generated Operations file would be
called MyAppsInterfaceOperations.java.

• Files generated for the Interface type have the same name as the interface name
defined in the IDL filename, but with a .java extension. For example, if a file
called MyApp.idl contains an interface MyAppsInterface, then
MyAppsInterface.java will be generated.

• The generated Stub files have an added underscore (_) prepended to the filename.
For example, the Stub file for MyApps.idl containing the MyAppsInterface
interface would be called _MyAppsInterfaceStub.java.

Example
To generate the client and server stub and skeleton files from an IDL source file
called MyApp.idl containing an interface called MyAppsInterface use:

% idl MyApp.idl
80
Programming with RTOrb

�������	

7 Using the ORB 7.3 Compiling Applications

The generated files are:
MyAppsInterfaceOperations.java
MyAppsInterface.java
MyAppsInterfaceHelper.java
MyAppsInterfaceHolder.java
_MyAppsInterfaceStub.java
MyAppsInterfacePOA.java
MyAppsInterfacePOATie.java

An ofjdefs.idl file is located in the <OFJ_DIR>/idl/omg directory. This file
is included in all entry point IDL files, such as, PortableServer.idl, to ensure
that developers use the same IDL compiler options as those which were used to
generate the core stubs. To ensure that the same IDL compiler options are used, pass
-DOFJ as an argument to the IDL command line command.

7.3 Compiling Applications
The common requirements, procedures and settings needed for creating and
compiling RTOrb-based applications are described below.

7.3.1 System and Environment Settings
The system’s environment variables should be set as described under Section 1.1.2,
System Variables, on page 10, before running RTOrb or RTOrb-based applications.
RTOrb classes and all of the precompiled examples are held in ofj.jar. If a
developer uses the supplied scripts to run applications and follows the instructions
in Section 7.3.2, Java Compiler to compile, then it is not necessary to add ofj.jar
to the classpath.

7.3.2 Java Compiler

7.3.2.1 Common Requirements
RTOrb-based applications must be compiled with a supported Java compiler. See
the RTOrb Release Notes for a list of supported Java compilers.
RTOrb uses endorsed directories. Detailed information about these is available on
Sun’s web site at http://java.sun.com/j2se/1.5.0/docs/guide/standards/index.html.

7.3.2.2 Sun Java Real-Time System Requirements
The only requirement for the Sun Java Real-Time System is that the PATH must
include the directory where it is installed.

Example Environment Variable Setting using the Java Real-Time System with RTOrb
Where:

/opt/myOFJ is the directory where RTOrb is or will be installed and

i

i

81
Programming with RTOrb�������	

http://java.sun.com/j2se/1.5.0/docs/guide/standards/index.html

7 Using the ORB 7.4 Deploying and Running Applications

/usr/local/j9rt is the directory where the Java Real-Time System is
installed.

Example Compiling with the Java Real-Time System
Compile a file called myFile.java using the Java Real-Time System.

7.3.2.3 IBM Websphere Real Time JVM
The requirements which are specific to the IBM Websphere Real Time JVM are:
• Use the javac -Xrealtime option to enable the RTSJ classes provided by the

IBM WebSphere Real Time JVM to be used.
• Compile a file called myFile.java with the IBM Websphere Real Time JVM:

7.4 Deploying and Running Applications
Information that is common to all RTOrb supported platforms about deploying and
running applications in provided below.
Refer to Chapter 2, Configuration for information on configuration and property
settings which may be needed to deploy and run RTOrb-based applications.
Regardless of whether clients and servers are run from the same or different
machines or any particular platform, they always:
• Run as separate processes. Clients and servers are started in their own, separate

shells, windows or processes.
• Must be able to locate each other. Clients locate servers using one of the methods

described under Resolving Servers below. Servers locate clients using the internal
mechanisms provided by the ORB.

7.4.1 RTOrb Run Scripts
OpenFusion RTOrb Java(tm) Edition provides two convenience scripts which can
be used to run RTOrb-based non real-time and real-time applications, respectively
run and runrt located in the <OFJ_DIR>/bin directory.

% PATH=/opt/myOFJ/bin:/usr/local/j9rt:$PATH
% export PATH
% CLASSPATH=.
% export CLASSPATH

% javac -endorseddirs <install-dir>/lib/endorsed <*.java>

UNIX

% javac -Xrealtime -endorseddirs <install-dir>/lib/endorsed
<*.java>
82
Programming with RTOrb

�������	

7 Using the ORB 7.4 Deploying and Running Applications

• The run script starts non real-time applications along with OpenFusion CORBA
services (such as the OpenFusion Naming Service).

• The runrt script starts soft and hard real-time applications.
The runrt script is executed from the command line using:

where
<defs> are property definitions of the form -Dname=value
<class> is the name of the class to run
<args> are arguments required by the class (optional)

Table 9 describes the run and runrt scripts command line options.

7.4.1.1 Sun Java Real-time System
The following environment variable must be set before using the runrt script on
the Sun Java Real-Time System:
 - add <java_home>/bin to the PATH.

The runrt script sets the default size for the scoped and immortal memory heap
area using the -XX:ScopedSize and -XX:ImmortalSize flags.

7.4.1.2 IBM Websphere Real Time JVM
The following environment variables must be set before using the runrt script on
the IBM Websphere Real Time JVM:
• Add <JAVA_HOME>/bin to the PATH.
The runrt script sets the default size for the scoped and immortal memory heap
area using the -Xgc:scopedMemoryMaximumSize
and -Xgc:immortalMemorySize flags.
The -Xrealtime flag is used to run the Metronome real-time garbage collector and
to use RTSJ services.

% runrt [<defs>] <class> [<args>]

Table 9 run Script Command Line Options

Option Description
-d Enable debugging of OpenFusion services.
-s Enable security controls.
-x Use the bootclasspath. The bootclasspath should contain all of the

installed OpenFusion classes followed by the user's environment
classpath. This overrides any CORBA classes defined by the JVM.
83
Programming with RTOrb�������	

7 Using the ORB 7.5 Application Creation Example

7.4.2 Resolving Servers
An application’s clients and server are run as separate processes. Subject to the
limitations of particular platforms, developers can implement their client(s) so that
they can find or resolve their server by either:
• reading the server’s IOR from a file created by the server,
• using a corbaloc URL or
• using the Naming Service.

7.5 Application Creation Example
The following example demonstrates how to create, compile, deploy and run a
RTOrb-based application. This example uses the example IDL specification and
source code files used for the CORBA Hello Example:
• The IDL is located in <OFJ_DIR>/examples/idl/hello.idl
• The source code is in <OFJ_DIR>/examples/java/com/prismtech/ofj/
examples/corba/hello

Note: The OFJ example classes are supplied precompiled, for convenience, in
ofj.jar. Also, for convenience, the RTOrb distribution includes a very simple Ant
b u il d . x m l s c r i p t t h a t w i l l c o m p i l e j a v a s ou r c e s l o c a t e d i n
<OFJ_DIR>/examples. This is an example build script that can be used and
extended by developers.

Step 1: Declare the application’s classes and/or interfaces in an IDL specification.
The following IDL code declares the GreetingService interface in a file called
hello.idl.

i

module com
{
 module prismtech
 {
 module ofj
 {
 module examples
 {
 module corba
 {
 interface GreetingService
 {
 string greeting(in string greetstr);
 };
 };
 };
 };
 };
};
84
Programming with RTOrb

�������	

7 Using the ORB 7.5 Application Creation Example

An example hello.idl file is located in <OFJ_DIR>/examples/idl/hello.idl.
Step 2: Compile the application’s IDL specification with the IDL compiler to create the

Java source files and classes for the stubs, skeletons and/or tie classes and interfaces.
Recall that the compiler is run using the idl script located in the <OFJ_DIR>/bin
directory.
Although no command line options are needed for compilation, since the example
uses all of the compiler’s default settings, the -d option is used here to specify where
the generated output files should be placed. For example, both the client skeleton
and server stub files are needed, default output file names are used and default file
extensions are used, and the generated output is placed under the ~/myOfj/src
directory.

Step 3: Write an implementation for the interface generated from the IDL specification.
The example implementation file is called GreetingServiceImpl.java and
implements class GreetingServiceImpl. The GreetingServiceImpl.java
file is located in <OFJ_DIR>/examples/java/com/prismtech/ofj/
examples/corba/hello for the purposes of this example.
GreetingServiceImpl is the servant that will be used by the application’s server
component. Note that this class should extend the POA class (generated from the
IDL):

public class GreetingServiceImpl extends
GreetingServicePOA

The “Impl” part of the GreetingServiceImpl name is a convention which
signifies that the file is an implementation of the IDL interface specification.

Step 4: Write a server (if not being implemented by third parties). The server must:
• import the application’s implementation class (e.g. GreetingServiceImpl)
• have a main() method which instantiates the server
• have a mechanism for publishing the servant’s IOR (for object resolution by the

client)
The example client implementation file is Server.java.

Step 5: Write a client (if not being implemented by third parties). The client must:
• import the application’s generated interface definition and associated helper class

(e.g. GreetingService and GreetingServiceHelper, respectively)
• contain a main() method which instantiates the server

% idl -d ~/myOfj/src hello.idl

i

UNIX

i

85
Programming with RTOrb�������	

7 Using the ORB 7.5 Application Creation Example

• contain a mechanism for obtaining the servant’s IOR (for object resolution of the
server’s servant)

Step 6: Compile the developer-written source code and IDL-generated source code with a
Java compiler for the platform(s) the application’s components will run on.
The OFJ example classes are supplied precompiled, for convenience, within the
ofj.jar.
Before compiling ensure that all required environment variables, RTOrb properties
and other configuration settings are correctly set for the platform and RTOrb type
(non real-time or real-time) the application will use (see Chapter 2, Configuration)

Example Compiling on Red Hat Enterprise Linux with Websphere Real Time JVM
A non real-time compilation on Red Hat Enterprise Linux using the javac compiler
would use:

where
-d ~/myOfj/out/Hello specifies the output directory for the compiled class
files
~/myOfj/src/*.java are the Java source files to compile (for simplicity, all
Java source files are copied to the ~/myOfj/src directory in this example)

A real-time compilation on Red Hat Enterprise Linux using the javac compiler
would use:

Example Compiling on Solaris with the Sun Java Real-Time System
A non real-time compilation on Solaris using the javac compiler would use:

where
/opt/myOFJ is the root directory where RTOrb is installed
-d ~/myOfj/out/Hello specifies the output directory for the compiled class
files
~/myOfj/src/*.java are the Java source files to compile (for simplicity, all
Java source files are copied to the ~/myOfj/src directory in this example)

Step 7: Deploy the application’s server and client components on the platform(s).

% javac -endorseddirs $OFJ_DIR ~/myOfj/src/*.java -d
~/myOfj/out/Hello

% javac -endorseddirs $OFJ_DIR -Xrealtime-d ~/myOfj/out/Hello
~/myOfj/src/*.java

% javac ~/myOfj/src/*.java -d ~/myOfj/out/Hello

i

86
Programming with RTOrb

�������	

7 Using the ORB 7.6 Running OpenFusion CORBA Services

Copy the compiled class files and directories to the destination location where they
are intended to be run from.

Step 8: Start the server and run the client.
Servers and clients:
• are usually run from different shells, like the Hello example used here
• depend on environment and configuration settings (see Chapter 2, Configuration

and RTOrb Run Scripts on page 82.)
• may be able to use RTOrb’s run and runrt convenience scripts (since they

perform many or all of the configuration tasks need to run the components)1

Example Starting the Hello Server and Client components
After changing to the directory where the Server and Client class files are located, it
is recommended that the Server and Client programs are run in different windows so
the output of each program can be seen separately.
Use:

If the call to the Server is successful, then it will return:

7.6 Running OpenFusion CORBA Services
PrismTech’s OpenFusion CORBA Services can be used with RTOrb. RTOrb
includes the OpenFusion Naming Service. Refer to the System Guide for
information on running the OpenFusion CORBA Services.

1. The run and runrt scripts can be a useful source of information for running
application components and creating custom run scripts.

% run com.prismtech.ofj.examples.corba.hello.Server

% run com.prismtech.ofj.examples.corba.hello.Client

GreetingService called by Client hello Client
87
Programming with RTOrb�������	

7 Using the ORB 7.6 Running OpenFusion CORBA Services

88
Programming with RTOrb

�������	

CHAPTER

8 Creating Applications
8.1 General

The information provided in the previous section, Using the ORB, describes the
procedures for compiling, running and deploying applications using the ORB. This
section describes how to write the applications themselves and covers:
• How to write a simple non real-time application, called Hello. This application

contains the minimal, essential elements needed to create a distributed
client-server application

• How to write a simple soft real-time version of the Hello application. This
application demonstrates basic soft real-time programming using RTOrb.

• How to write a simple hard real-time version of the Hello application. This
application demonstrates basic hard real-time programming using RTOrb.

It is assumed that readers understand basic CORBA programming with Java
concepts and practice. The descriptions given here concentrate on those aspects
which may be of most help, with basic operations (which readers should be familiar
with) being only lightly covered.

8.2 A Simple Non Real-Time Application
This example, the Hello application, is very simple: it contains the minimum
elements needed to create a working client-server application using RTOrb. The
Hello example application is also used in Section 7.5, Application Creation
Example to demonstrate the steps needed to compile, run and deploy applications.
Hello:
• has an IDL specification in hello.idl which

 - declares the GreetingService interface and greeting() function
• has a server which

 - performs the basic initialisation tasks required by all servers
 - creates a GreetingService servant object; the servant’s single method prints a

greeting for the client which called the server.
 - makes the GreetingService servant accessible to clients by saving the servant’s

stringified IOR to a file

i

89
 Programming with RTOrb�������	

8 Creating Applications 8.2 A Simple Non Real-Time Application

 - listens for requests from clients
• has a client which

 - performs the basic initialisation tasks required by all clients
 - obtains references to the GreetingService servant object by reading its

stringified IOR from a file
 - calls the greeting() method on the GreetingService object which displays a

greeting with the client’s name

This example uses files for object resolution. Other methods of object resolution
must be used on platforms which do not have a file system.

The complete source code for the Hello application is in the following RTOrb
distribution directories:
 <OFJ_DIR>/examples/java/com/prismtech/ofj/examples/corba/

productguide/enterprise

<OFJ_DIR>/examples/idl

GreetingServiceImpl.java is in
<OFJ_DIR>/examples/java/com/prismtech/ofj/examples/

8.2.1 IDL Specification
The IDL specification for Hello is very simple: it declares a single interface,
GreetingService, with a single method, greeting(). The greeting() method
takes a string (the name of the client calling the method) and returns a string (a
greeting with the client’s name).

The nested module declarations, although not strictly required for this simple
application, demonstrate the application’s complete namespace hierarchy.

module com
{
 module prismtech
 {
 module ofj
 {
 module examples
 {
 module corba
 {
 interface GreetingService
 {
 string greeting (in string greetstr);
 };
 };
 };
 };
 };
};

i

90
Programming with RTOrb

�������	

8 Creating Applications 8.2 A Simple Non Real-Time Application

8.2.2 Java Implementation
The IDL specification for GreetingService is implemented in Java as class
GreetingServiceImpl. This class is written by the developer. The class extends
the IDL generated GreetingServicePOA interface.
The name of an implementation class, by convention, is derived by taking the IDL
declared interface name and appending it with Impl.
The GreetingServiceImpl’s greeting() method is implemented simply as:

The greeting() method, as mentioned previously, takes a string (client’s name)
and returns a greeting with the name (a string).

8.2.3 Server-side
The Hello application’s server component, Server, instantiates and activates the
GreetingService servant. The servant’s IOR is published (making it available to
clients) by saving the IOR to a file. The server code is implemented in
Server.java and is described below.
T h e c o d e i m p o r t s org.omg.PortableServer.POA a n d
org.omg.PortableServer.POAHelper in order to be able to manage its servant
(GreetingService) . The server also imports the developer-writ ten
GreetingService implementation, GreetingServiceImpl.

The server code declares and defines class Server.
Server:
• defines a main() method which does most of the work, such as performing

initialisation tasks, POA activation and running the ORB’s run() method (which
listens for client requests)

public String greeting (String s)
 {
 System.out.println
 ("GreeetingService called by Client " + s);

 String replyMsg = "Hello" + s;

 return replyMsg;
 }

i

import java.io.IOException;
import java.io.FileWriter;
import java.io.PrintWriter;

import org.omg.PortableServer.POA;
import org.omg.PortableServer.POAHelper;

import com.prismtech.ofj.examples.corba.GreetingServiceImpl;
91
Programming with RTOrb�������	

8 Creating Applications 8.2 A Simple Non Real-Time Application

• defines a utility method, writeIOR(), which publishes the servant’s IOR as a
stringified IOR to a file.

Initialisation and all other tasks are performed in Server.java’s main(). The
following code fragment from main():
• initialises the ORB and POA (using org.omg.CORBA.ORB.init())
• declares, initialises and activates the GreetingService servant
• publishes the servant’s IOR to a file which clients can use to locate the servant
• starts an event loop, the ORB’s run() method, which waits for client requests.

8.2.4 Client-side
The client component of the Hello application makes requests of the server to
perform tasks. The client must:
• perform basic initialisation

 public static void main (String[] args)
 {
 try
 {
 // Initialize the ORB
 org.omg.CORBA.ORB m_orb =
 org.omg.CORBA.ORB.init (args, null);

 // Acquire Root POA
 POA rootPOA = POAHelper.narrow (
 m_orb.resolve_initial_references ("RootPOA"));

 // Create the servant
 GreetingServiceImpl gs = new GreetingServiceImpl();

 rootPOA.the_POAManager().activate();

 // Get a reference to the servant to enable clients
 // to connect to it
 org.omg.CORBA.Object obj =
 rootPOA.servant_to_reference (gs);

 // Save the servant’s IOR to a file toe enable clients
 // to retrieve it
 writeIOR (m_orb, obj, "hello.ior");

 System.out.println(
 "GreetingServer running... awaiting calls");

 // start a thread to listen for client requests
 m_orb.run ();
 }
 catch (Exception e)
 {
 e.printStackTrace();
 }
 }
92
Programming with RTOrb

�������	

8 Creating Applications 8.2 A Simple Non Real-Time Application

• obtain references to the server’s GreetingService object
• call the GreetingService object’s operations to perform the desired task

The client component, Client.java, must perform many of the same, basic
initialisation tasks that the server must perform, including:
• declare ORB and GreetingService variables
• initialise the ORB

Items to Note
• Client.java imports GreetingService and GreetingServiceHelper

instead of the POA, POAHelper and GreetingServiceImpl classes imported
by the server, Server.java.

• The examples assume that the JVM has been started with the ORBClass and
ORBSingletonClass properties using RTOrb’s the supplied scripts.
Accordingly, the examples do not pass them to the ORB initialisation parameters.

• The client reads the GreetingService servant’s stringified IOR from the file
previously published by the server then converts it to an object reference using the
GreetingServiceHelper.narrow() and ORB’s narrow() methods:
GreetingService gsref = GreetingServiceHelper.narrow (
 orb.string_to_object (ior));

The Client.java source code is shown below.

import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.FileInputStream;
import java.io.BufferedReader;

import com.prismtech.ofj.examples.corba.GreetingService;
import com.prismtech.ofj.examples.corba.GreetingServiceHelper;

public class Client
{
 private Client ()
 {
 }

 public static void main (String[] args)
 {
 try
 {
 org.omg.CORBA.ORB orb =
 org.omg.CORBA.ORB.init (args, null);

 String ior = readIOR ("hello.ior");
 GreetingService gsref =
 GreetingServiceHelper.narrow (
 orb.string_to_object (ior));
93
Programming with RTOrb�������	

8 Creating Applications 8.3 A Simple Soft Real-time Application

8.3 A Simple Soft Real-time Application
This example, the Soft Real-time Hello application, is, similar to the non real-time
Hello example shown above. It contains the minimum elements needed to create a
working client-server application using RTOrb, but as a soft real-time application.
Soft Real-time Hello:
• uses RealtimeThreads in HeapMemory, threadpool and priority lane for

processing client requests
• uses the same

 - IDL specification (hello.idl): see IDL Specification on page 90
 - GreetingService implementation (GreetingServiceImpl.java): see

 Java Implementation on page 91
 - servant object resolution technique (using a file for publishing the servant’s

IOR)
that was used by the Hello example

• performs the initialisation tasks specifically required for soft real-time execution
in addition to the same basic initialisation tasks performed by Hello

 if (gsref == null)
 {
 System.out.println (
 "Unable to narrow server: " + ior);
 System.exit (1);
 }

 // call GreetingService.greeting() method
 System.out.println ("Response from server is "
 + gsref.greeting(" hello Client"));
 }
 catch (Exception e)
 {
 e.printStackTrace();
 }
 }

 // Utility for reading a stringified IOR from a file
 private static String readIOR (String iorFile)
 throws IOException
 {
 String ior = null;
 InputStream iorURL = new FileInputStream (iorFile);
 BufferedReader in = new BufferedReader (
 new InputStreamReader (iorURL));

 ior = in.readLine();
 in.close();
 return ior;
 }
}

94
Programming with RTOrb

�������	

8 Creating Applications 8.3 A Simple Soft Real-time Application

The soft real-time associated tasks and procedures are described below. The
complete source code for the Real-time Hello application is located in:
<OFJ_DIR>/examples/java/com/prismtech/ofj/examples/corba/prod

uctguide/soft

<OFJ_DIR>/examples/idl/

GreetingServiceImpl.java is in
<OFJ_DIR>/examples/java/com/prismtech/ofj/examples.

8.3.1 Server-side
The Soft Real-time Hello application’s server component, Server, instantiates and
activates the GreetingService servant, similar to the Hello application, but
performs additional initialisation tasks needed for real-time operation.
The server code is implemented in the Server.java file located in the
<OFJ_DIR>/examples/java/com/prismtech/ofj/examples/corba/prod
uctguide/soft directory.
L i k e H e l l o , t h e s o f t r e a l - t i m e Sever.java c o d e i m p o r t s
org.omg.PortableServer.POA, org.omg.PortableServer.POAHelper
and the GreetingService implementation, GreetingServiceImpl. However,
the code also imports classes which are needed for soft real-time threading, memory
allocation and memory management. These additional classes are shown in bold in
the following code fragment.

The server code declares and defines class Server. Server extends
RealtimeThread. Classes which run RealtimeThread threads must inherit
RealtimeThread. Server has an empty, default constructor.

import java.io.IOException;
import java.io.FileWriter;
import java.io.PrintWriter;

import javax.realtime.RealtimeThread;

import org.omg.PortableServer.ImplicitActivationPolicyValue;
import org.omg.PortableServer.POA;
import org.omg.PortableServer.POAHelper;

import com.prismtech.ofj.examples.corba.GreetingServiceImpl;

public class Server extends RealtimeThread
{
 // Variable for holding arguments passed to the ORB
 private String[] m_args;

 public Server ()
 {
 }
95
Programming with RTOrb�������	

8 Creating Applications 8.3 A Simple Soft Real-time Application

The class’ main() method performs some basic initialisation tasks (the remaining
initialisation tasks have been delegated to the class’ run() method) and starts a
real-time thread which, indirectly, runs the ORB’s run() method (which listens for
client requests).
The first initialisation tasks that main() performs is to allocate a server instance to
heap memory, pass any command line arguments to the server instance and start the
server's real-time thread.

The server’s real-time thread can be started after these initialisation tasks are
complete.

Note that class Server has inherited the start() method from class
RealtimeThread. RealtimeThread.start() calls the inherited class’ run()
method, in this case, Server.run().
Server’s run() method performs tasks which initialise the ORB, acquire the
real-time ORB and POA, as well as doing the other tasks that are needed for making
the GreetingService servant available for processing requests from clients.

 public static void main (String[] args)
 {
 try
 {
 // Allocate server instance to heap memory
 Server srv = new Server ();
 MemoryArea mem = ImmortalMemory.instance();

 // Pass any command line arguments to this new instance
 srv.setargs(args);

 // start real-time thread
 srv.start();

 // overrides RealtimeThread::run(), called by srv.start()
 public void run()
 {
 try
 {
 // Initialize the ORB and real-time ORB. Must be called
 // from RealtimeThread::run() or exception is thrown
 org.omg.CORBA.ORB m_orb =
 org.omg.CORBA.ORB.init (args, null);

 // Acquire Root POA
 POA rootPOA =
 POAHelper.narrow(
 m_orb.resolve_initial_references("RootPOA"));

 // Acquire RTORB
 org.omg.RTCORBA.RTORB rtORB =
 org.omg.RTCORBA.RTORBHelper.narrow (
 m_orb.resolve_initial_references("RTORB"));
96
Programming with RTOrb

�������	

8 Creating Applications 8.3 A Simple Soft Real-time Application

The first set of tasks, shown in the code fragment above, initialises the ORB and
obtains references to the POA and the real-time ORB.
The next set of tasks that run() performs is to establish a threadpool and priority
threadpool lane that the GreetingService servant can use for processing, since
this is a real-time server. Only one priority lane is created in this example, since the
example does not do very much. However, more powerful applications which
anticipate multiple, simultaneous client requests would likely use more than one
threadpool lane.
The comments shown in the code below describe the properties, being passed as
arguments , tha t a re used by the ThreadpoolLane cons t ruc tor and
rtORB.create_threadpool_with_lanes() method to configure the
threadpool and lane, respectively.
Threadpool lanes must be created before the threadpool since they are passed to
create_threadpool_with_lanes() as elements of an array of lanes.

The servant will be associated with a real-time POA, RTPOA, that has been
configured with appropriate policies. The real-time POA in this example has a
thread policy with a single threadpool, a client propagated priority model and an
implicit activation policy.

 // Initialise a threadpool and one priority lane which
 // the GreetingService servant (GreetingServiceImpl)
 // will use for processing requests
 org.omg.RTCORBA.ThreadpoolLane[] lanes
 = new org.omg.RTCORBA.ThreadpoolLane[1];

 // Create priority lane
 lanes[0] = new org.omg.RTCORBA.ThreadpoolLane
 (
 (short) 15000, // Default CORBA Priority assigned
 1, // Number of static threads in lane
 0 // Number of dynamic threads
);

 // Create a threadpool for the ThreadpoolLane
 int pool_1 = rtORB.create_threadpool_with_lanes
 (
 32 * 1024, // stack size for threads in pool
 lanes, // the lanes
 true, // allow borrowing threads between pools
 true, // allow request buffering
 1000, // max number buffered requests allowed
 1000000 // max size of request_buffer (Bytes)
);
97
Programming with RTOrb�������	

8 Creating Applications 8.3 A Simple Soft Real-time Application

The following code fragment shows how the POA policies are set, real-time POA
created and activated, and servant instance associated with the POA.
 // create policies for the RTPOA that will be
 // associated with the Hello servant, RTThreadpool
 // and the Lanes

 // threadpool policy for RTPOA
 org.omg.RTCORBA.ThreadpoolPolicy tp_policy =
 rtORB.create_threadpool_policy (pool_1);

 // priority model for the real-time execution policy
 org.omg.RTCORBA.PriorityModelPolicy pm_policy =
 rtORB.create_priority_model_policy
 (
 org.omg.RTCORBA.PriorityModel.CLIENT_PROPAGATED,
 (short) 1
);

 // implicit activation policy
 org.omg.CORBA.Policy ia_policy =
 rootPOA.create_implicit_activation_policy (
 ImplicitActivationPolicyValue.IMPLICIT_ACTIVATION);

 // CORBA Policies for instantiating the RTPOA
 org.omg.CORBA.Policy[] policies =
 {
 tp_policy, // threadpool policy
 pm_policy, // priority model policy
 ia_policy, // implicit activation policy
 };

 // Create POA using policies defined above
 // Acquire POAManager
 org.omg.PortableServer.POAManager manager =
 rootPOA.the_POAManager();

 // Acquire the rootPOA
 org.omg.RTPortableServer.POA this_rootPOA =
 org.omg.RTPortableServer.POAHelper.narrow (rootPOA);

 // Create RTPOA on the rootPOA using policies defined above
 POA my_RTPOA =
 this_rootPOA.create_POA("myRTPOA", manager, policies);

 // Create the servant
 GreetingServiceImpl gs = new GreetingServiceImpl();

 // Add to and activate the servant in the RTPOA
 my_RTPOA.activate_object (gs);

 // Get a reference to the servant (to enable clients
 // to obtain its IOR)
 org.omg.CORBA.Object obj =
 my_RTPOA.servant_to_reference (gs);

 // Activate the RTPOA
 my_RTPOA.the_POAManager().activate();
98
Programming with RTOrb

�������	

8 Creating Applications 8.3 A Simple Soft Real-time Application

The stringified IOR of the servant instance is published to a file (using the Server’s
utility, writeIOR() enabling clients to obtain the IOR and resolve the servant
object. After publishing the IOR, the ORB’s run() method is executed and begins
listening for client requests.

The following code fragment shows the Server’s writeIOR() and setargs()
utility methods.

 // Publish servant’s stringified IOR to a file
 writeIOR (m_orb, obj, "hello.ior");

 System.out.println(
 "GreetingServer running in RT... awaiting calls");

 // start thread to listen for client requests
 m_orb.run ();
 }
 catch (Exception e)
 {
 e.printStackTrace();
 }
 }

 // Utility for writing stringified IOR to a file
 private static void writeIOR
 (
 org.omg.CORBA.ORB orb,
 org.omg.CORBA.Object objref,
 String filename
)
 {
 try
 {
 PrintWriter pw = new PrintWriter (
 new FileWriter (filename));
 pw.println (orb.object_to_string(objref));
 pw.flush();
 pw.close();
 }
 catch (IOException ioe)
 {
 System.out.println (
 "Encountered exception writing " + filename);
 System.exit (0);
 }
 }

 // Utility for setting application arguments
 public void setargs (String[] args)
 {
 m_args = args;
 }
99
Programming with RTOrb�������	

8 Creating Applications 8.3 A Simple Soft Real-time Application

8.3.2 Client-side
The Soft Real-time Hello application’s client component, Client, performs the
same basic initialisation tasks that its non real-time Hello application counterpart
did, but it also performs additional initialisation tasks which are needed for soft
real-time operation and similarly as needed by the soft real-time Server
component.
The client code is implemented in the Client.java file located in the
<OFJ_DIR>/examples/java/com/prismtech/ofj/examples/corba/prod
uctguide/soft directory.
The soft real-time Client code imports the same classes as the non real-time
version, although it also imports the classes which are needed for soft real-time
operation. These additional classes are shown in bold in the code fragment below.

The client code declares and defines class Client . Client extends
RealtimeThread, the same as class Server in the server component.

The main() method preforms some basic initialisation tasks: the tasks are similar to
those performed by class Server.
The first task is to initialise the client object and allocate it to heap memory. The
clnt.setargs (args) call, shown in last line of the following code, uses the
class’ setargs() utility method to forward any command line arguments passed to
the client on to the ORB when it is initialised. The client instance is then run using
the class' start () method.

import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.FileInputStream;
import java.io.BufferedReader;
import java.io.IOException;

import javax.realtime.RealtimeThread;

import org.omg.RTCORBA.CurrentHelper;

import com.prismtech.ofj.examples.corba.GreetingService;
import com.prismtech.ofj.examples.corba.GreetingServiceHelper;

public class Client extends RealtimeThread
{
 // variable to hold arguments
 private String[] args;

 org.omg.CORBA.ORB orb;

 // Variable to hold reference to GreetingService server
 public static GreetingService gsref;

 public Client()
 {
 }
100
Programming with RTOrb

�������	

8 Creating Applications 8.3 A Simple Soft Real-time Application

Recall that start() is inherited from RealtimeThread and that it calls the class’
own run() method, which:
• initialises the ORB
• retrieves the IOR for the Server’s GreetingService servant (using the Client’s
readIOR() utility method)

• obtains a reference to the servant (using GreetingServiceHelper.narrow())
• makes a request on the servant (gsref.greeting(" rthello Client"))

 public static void main (String[] args)
 {
 Client clnt = new Client ();

 clnt.setargs (args);

// Starting the real-time thread
 clnt.start();
 }

 public void run()
 {
 try
 {
 org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init (args, null);
 String ior = readIOR ("hello.ior");
 gsref = GreetingServiceHelper.narrow (
 orb.string_to_object (ior));

 if (gsref == null)
 {
 System.out.println ("Unable to narrow server: " + ior);
 System.exit (1);
 }

 //get and set the priority with RTCORBA::Current variable
 org.omg.RTCORBA.Current rtc;
 tc = CurrentHelper.narrow (
 orb.resolve_initial_references ("RTCurrent"));

 // Set local current thread to low priority in the client
 tc.the_priority((short) 15000);

 // Call (the remote) GreetingService’s greeting method
 System.out.println ("Response from server is "
 gsref.greeting(" rthello Client"));
 }
 catch (Exception e)
 {
 e.printStackTrace();
 }
 }
101
Programming with RTOrb�������	

8 Creating Applications 8.4 A Simple Hard Real-time Application

If the call to the Server is successful, then its servant, GreetingService, will
return:

8.4 A Simple Hard Real-time Application
This example, the Hard Real-time Hello application, is, similar to the non real-time
Hello example shown above. It contains the minimum elements needed to create a
working client-server application using RTOrb, but as a hard real-time application.
Hard Real-time Hello:
• uses NoHeapRealtimeThreads in ImmortalMemory, threadpool and priority

lane for processing client requests
• uses the same

 - IDL specification (hello.idl): see IDL Specification on page 90
 - GreetingService implementation (GreetingServiceImpl.java): see

 Java Implementation on page 91
 - servant object resolution technique (using a file for publishing the servant’s

IOR)
that was used by the Hello example

• performs the initialisation tasks specifically required for hard real-time execution
in addition to the same basic initialisation tasks performed by Hello

The hard real-time associated tasks and procedures are described below. The
complete source code for the Real-time Hello application is located in:
<OFJ_DIR>/examples/java/com/prismtech/ofj/examples/corba/prod

uctguide/hard

<OFJ_DIR>/examples/idl

GreetingServiceImpl.java is in
<OFJ_DIR>/examples/java/com/prismtech/ofj/examples.

8.4.1 Server-side
The Hard Real-time Hello application’s server component, Server, instantiates and
activates the GreetingService servant, similar to the Hello application, but
performs additional initialisation tasks needed for hard real-time operation.
The server code is implemented in the Server.java file located in the
<OFJ_DIR>/examples/java/com/prismtech/ofj/examples/corba/prod
uctguide/hard directory.

GreetingService called by Client rthello Client
102
Programming with RTOrb

�������	

8 Creating Applications 8.4 A Simple Hard Real-time Application

L ik e H e l l o , t h e h a r d r e a l - t i m e Sever.java c o d e i m p o r t s
org.omg.PortableServer.POA, org.omg.PortableServer.POAHelper
and the GreetingService implementation, GreetingServiceImpl. However,
the code also imports classes which are needed for hard real-time threading,
memory allocation and memory management. These additional classes are shown in
bold in the following code fragment.

The server code declares and defines class Server. Server extends
NoHeapRealtimeThread. Classes which run RealtimeThread threads must
inheri t NoHeapRealtimeThread . The server 's constructor cal ls the
NoHeapRealTimeThread superclass, passing a pointer to the singleton
ImmortalMemory object.

The class’ main() method performs some basic initialisation tasks (the remaining
initialisation tasks have been delegated to the class’ run() method) and starts a
real-time thread, NoHeapRealtimeThread, which indirectly runs the ORB’s
run() method (which listens for client requests).
The first initialisation tasks that main() performs is to allocate a server instance to
immortal memory, pass any command line arguments to the server instance and start
the server's real-time thread. Using immortal memory allows the server to be
available to all of the application’s threads the entire time its Java runtime
environment is running (see Section 6.1.2, Memory Management, on page 72).

import java.io.IOException;
import java.io.FileWriter;
import java.io.PrintWriter;

import javax.realtime.ImmortalMemory;
import javax.realtime.NoHeapRealtimeThread;
import javax.realtime.RealtimeThread;

import org.omg.PortableServer.ImplicitActivationPolicyValue;
import org.omg.PortableServer.POA;
import org.omg.PortableServer.POAHelper;

import com.prismtech.ofj.examples.corba.GreetingServiceImpl;

public class Server extends NoHeapRealtimeThread
{
 // Variable for holding arguments passed to the ORB
 private static String[] args;

 public Server ()
 {
 super (null, ImmortalMemory.instance());
 }

 public static void main (String[] args)
 {
103
Programming with RTOrb�������	

8 Creating Applications 8.4 A Simple Hard Real-time Application

The server’s real-time thread, NoHeapRealtimeThread, can be started after these
initialisation tasks are complete and if the real-time JVM is able to schedule the
thread to run.

Note that class Server has inherited the start() method from class
NoHeapRealtimeThread. NoHeapRealtimeThread.start() calls the
inherited class’ run() method, in this case, Server.run().
Server’s run() method performs tasks which initialise the ORB, acquire the
real-time ORB and POA, as well as doing the other tasks that are needed for making
the GreetingService servant available for processing requests from clients.

 try
 {
 // instantiate to immortal memory using class loader
 Server srv = Server) ImmortalMemory.instance ().newInstance
 (Class.forName(
"com.prismtech.ofj.examples.corba.productguide.hard.Server"));

 // Pass any command line arguments to this new instance
 srv.setargs(args);

 // Check that the JVM can schedule the server thread to run
 if (!srv.getScheduler().isFeasible())
 {
 System.out.println(
 "RTCORBA HelloServer cannot be scheduled to run.");
 }
 else
 {
 // start real-time thread
 srv.start();
 }

 // overrides RealtimeThread::run(), called by srv.start()
 public void run()
 {
 try
 {
 // Initialize the ORB and real-time ORB. Must be called
 // from RealtimeThread::run() or exception is thrown
 org.omg.CORBA.ORB m_orb =
 org.omg.CORBA.ORB.init (args, null);

 // Acquire Root POA
 POA rootPOA =
 POAHelper.narrow(
 m_orb.resolve_initial_references("RootPOA"));

 // Acquire RTORB
 org.omg.RTCORBA.RTORB rtORB =
 org.omg.RTCORBA.RTORBHelper.narrow (
 m_orb.resolve_initial_references("RTORB"));
104
Programming with RTOrb

�������	

8 Creating Applications 8.4 A Simple Hard Real-time Application

The first set of tasks, shown in the code fragment above, initialises the ORB and
obtains references to the POA and the real-time ORB.
The next set of tasks that run() performs is to establish a threadpool and priority
threadpool lane that the GreetingService servant can use for processing, since
this is a real-time server. Only one priority lane is created in this example, since the
example does not do very much. However, more powerful applications which
anticipate multiple, simultaneous client requests would likely use more than one
threadpool lane.
The comments shown in the code below describe the properties, being passed as
arguments , tha t a re used by the ThreadpoolLane cons t ruc tor and
rtORB.create_threadpool_with_lanes() method to configure the
threadpool and lane, respectively.
Threadpool lanes must be created before the threadpool since they are passed to
create_threadpool_with_lanes() as elements of an array of lanes.

The servant will be associated with a real-time POA, RTPOA, that has been
configured with appropriate policies. The real-time POA in this example has a
thread policy with a single threadpool, a client propagated priority model and an
implicit activation policy.
The following code fragment shows how the POA policies are set, real-time POA
created and activated, and servant instance associated with the POA.

 // Initialise a threadpool and one priority lane which
 // will be used for processing requests
 org.omg.RTCORBA.ThreadpoolLane[] lanes
 = new org.omg.RTCORBA.ThreadpoolLane[1];

 // Create priority lane
 lanes[0] = new org.omg.RTCORBA.ThreadpoolLane
 (
 (short) 15000, // Default CORBA Priority assigned
 1, // Number of static threads in lane
 0 // Number of dynamic threads
);

 // Create a threadpool for the ThreadpoolLane
 int pool_1 = rtORB.create_threadpool_with_lanes
 (
 32 * 1024, // stack size for threads in pool
 lanes, // the lanes
 true, // allow borrowing threads between pools
 true, // allow request buffering
 1000, // max number buffered requests allowed
 1000000 // max size of request_buffer (Bytes)
);

 // create policies for the RTPOA that will be
 // associated with the Hello servant, RTThreadpool
 // and the Lanes
105
Programming with RTOrb�������	

8 Creating Applications 8.4 A Simple Hard Real-time Application

The stringified IOR of the servant instance is published to a file (using the Server’s
utility, writeIOR() enabling clients to obtain the IOR and resolve the servant
object. After publishing the IOR, the ORB’s run() method is executed and begins
listening for client requests.

 // threadpool policy for RTPOA
 org.omg.RTCORBA.ThreadpoolPolicy tp_policy =
 rtORB.create_threadpool_policy (pool_1);

 // priority model for the real-time execution policy
 org.omg.RTCORBA.PriorityModelPolicy pm_policy =
 rtORB.create_priority_model_policy
 (
 org.omg.RTCORBA.PriorityModel.CLIENT_PROPAGATED,
 (short) 15000
);

 // implicit activation policy
 org.omg.CORBA.Policy ia_policy =
 rootPOA.create_implicit_activation_policy (
 ImplicitActivationPolicyValue.IMPLICIT_ACTIVATION);

 // CORBA Policies for instantiating the RTPOA
 org.omg.CORBA.Policy[] policies =
 {
 tp_policy, // threadpool policy
 pm_policy, // priority model policy
 ia_policy, // implicit activation policy
 };

 // create POA using policies defined above
 // acquire POAManager
 org.omg.PortableServer.POAManager manager =
 rootPOA.the_POAManager();

 // acquire the rootPOA
 org.omg.RTPortableServer.POA this_rootPOA =
 org.omg.RTPortableServer.POAHelper.narrow (rootPOA);

 // create RTPOA on the rootPOA using policies defined above
 POA my_RTPOA =
 this_rootPOA.create_POA("myRTPOA", manager, policies);

 // create the servant
 GreetingServiceImpl gs = new GreetingServiceImpl();

 // add to and activate the servant in the RTPOA
 my_RTPOA.activate_object (gs);

 // Get a reference to the servant (to enable clients
 // to obtain its IOR)
 org.omg.CORBA.Object obj =
 my_RTPOA.servant_to_reference (gs);

 // Activate the RTPOA
 my_RTPOA.the_POAManager().activate();

 // Publish servant’s stringified IOR to a file
 writeIOR (m_orb, obj, "hello.ior");
106
Programming with RTOrb

�������	

8 Creating Applications 8.4 A Simple Hard Real-time Application

The following code fragment shows the Server’s writeIOR() and setargs()
utility methods.

writeIOR()

setargs()
The input arguments to setargs() must be copied to immortal memory when
using hard real-time mode.

 System.out.println(
 "GreetingServer running in RT... awaiting calls");

 // start thread to listen for client requests
 m_orb.run ();
 }
 catch (Exception e)
 {
 e.printStackTrace();
 }
 }

 // Utility for writing stringified IOR to a file
 private static void writeIOR (
 org.omg.CORBA.ORB orb,
 org.omg.CORBA.Object objref,
 String filename)
 {
 try
 {
 PrintWriter pw = new PrintWriter (
 new FileWriter (filename));
 pw.println (orb.object_to_string(objref));
 pw.flush();
 pw.close();
 }
 catch (IOException ioe)
 {
 System.out.println (
 "Encountered exception writing " + filename);
 System.exit (0);
 }
 }

 // Utility for setting application arguments
 public void setargs (String[] args)
 {
 m_args = args;
 }

 // Utility for setting application arguments
 public void setargs (final String [] in_args)
 {
 RealtimeThread allocator = new RealtimeThread (
 (null, null, null, ImmortalMemory.instance (),
107
Programming with RTOrb�������	

8 Creating Applications 8.4 A Simple Hard Real-time Application

8.4.2 Client-side
The Hard Real-time Hello application’s client component, Client, performs the
same basic initialisation tasks that its non real-time Hello application counterpart
did, but it also performs additional initialisation tasks which are needed for hard
real-time operation and similarly as needed by the hard real-time Server
component.
The client code is implemented in the Client.java file located in the
<OFJ_DIR>/examples/java/com/prismtech/ofj/examples/corba/prod
uctguide/hard directory.
The hard real-time Client code imports the same classes as the non real-time
version, although it also imports the classes which are needed for hard real-time
operation. These additional classes are shown in bold in the code fragment below.

 null, new Runnable ())
 {
 public void run ()
 {
 String[] oldArgs = in_args;
 String[] newArgs = new String[oldArgs.length];
 for (int i = 0; i < oldArgs.length; i++)
 {
 newArgs[i] = oldArgs[i];
 }

 args = newArgs;
 }
 });

 allocator.start ();

 try
 {
 allocator.join ();
 }
 catch (InterruptedException ie)
 {
 }
 }

import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.FileInputStream;
import java.io.BufferedReader;
import java.io.IOException;

import javax.realtime.ImmortalMemory;
import javax.realtime.NoHeapRealtimeThread;
import javax.realtime.RealtimeThread;

import org.omg.RTCORBA.CurrentHelper;

import com.prismtech.ofj.examples.corba.GreetingService;
import com.prismtech.ofj.examples.corba.GreetingServiceHelper;
108
Programming with RTOrb

�������	

8 Creating Applications 8.4 A Simple Hard Real-time Application

The client code declares and defines class Client . Client extends
NoHeapRealtimeThread, the same as class Server in the server component.

The main() method preforms some basic initialisation tasks and checks to see it
can run in the real-time JVM: the tasks are similar to those performed by class
Server.
The first task is to initialise the client object and allocate it to immortal memory. The
clnt.setargs (args) call, shown in last line of the following code fragment,
uses the class’ setargs() utility method to forward any command line arguments
passed to the client on to the ORB when it is initialised.

The last two tasks that main() does, which are similar to the final tasks performed
by the Server.main() method, are to determine if the client instance can be
scheduled to be run by the JVM and if it can, then call the class’ start() method.

public class Client extends NoHeapRealtimeThread
{
 // variable to hold arguments
 private String[] args;

 org.omg.CORBA.ORB orb;

 // Variable to hold reference to GreetingService server
 public static GreetingService gsref;

 public Client()
 {
 super (null, ImmortalMemory.instance ());
 }

 public static void main (String[] args)
 {
 Client clnt = null;

 try
 {
 clnt = (Client) ImmortalMemory.instance ().newInstance
 (Class.forName (
"com.prismtech.ofj.examples.corba.productguide.hard.Client"));
 }
 catch (Exception e)
 {
 System.out.println ("exc caught" + e.toString());
 }

 clnt.setargs (args);

 if (!clnt.getScheduler().isFeasible())
 {
 // not possible to run at this time
 System.out.println(
 "Running RTCORBA GreetingService Client is not feasible");
 }
109
Programming with RTOrb�������	

8 Creating Applications 8.4 A Simple Hard Real-time Application

The client instance is then run using the class' start() method. Recall that
start() is inherited from NoHeapRealtimeThread and that it calls the class’ own
run() method.
If the client is able to be scheduled to run by the JVM, then run() is called and it
• initialises the ORB
• retrieves the IOR for the Server’s GreetingService servant (using the Client’s
readIOR() utility method)

• obtains a reference to the servant (using GreetingServiceHelper.narrow())
• makes a request on the servant (gsref.greeting (" rthello Client"))

 else
 {
 // can schedule to run
 clnt.start();
 }

 public void run()
 {
 try
 {
 org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init (args, null);
 String ior = readIOR ("hello.ior");
 gsref = GreetingServiceHelper.narrow (
 orb.string_to_object (ior));

 if (gsref == null)
 {
 System.out.println ("Unable to narrow server : " + ior);
 System.exit (1);
 }

 // get and set the priority using RTCORBA::Current
 org.omg.RTCORBA.Current rtc;
 rtc = CurrentHelper.narrow
 (orb.resolve_initial_references ("RTCurrent"));

 // set local current thread to low priority in client
 rtc.the_priority((short) 15000);

 // remotely call GreetingService’s greeting method
 System.out.println ("Response from server is "
 + gsref.greeting(" rthello Client"));
 }
 catch (Exception e)
 {
 e.printStackTrace();
 }
 }
110
Programming with RTOrb

�������	

8 Creating Applications 8.4 A Simple Hard Real-time Application

If the call to the Server is successful, then its servant, GreetingService, will
return:

GreetingService called by Client rthello Client
111
Programming with RTOrb�������	

8 Creating Applications 8.4 A Simple Hard Real-time Application

112
Programming with RTOrb

�������	

APPENDICES

Appendix

A API Enhancements
RTOrb provides enhancements to the OMG’s standard CORBA API. These
enhancements described below

Classes and Methods
InputStream Class

com.prismtech.ofj.orb.InputStream

InputStream ()
public InputStream (org.omg.CORBA.ORB, byte[])

This is the InputStream class constructor for creating InputStreams.

reset ()
public void reset ()

reset resets the stream to a pristine initial state. This should only be used with
non-allocator based objects. It will not remove or erase the internal contained byte
array. It will only reset the read and write pointers.

setBuffer ()
public void setBuffer (byte[])

setBuffer replaces the internal buffer with the supplied byte array. This also
implicitly resets the stream.

setLittleEndian ()
public void setLittleEndian (boolean endian)

setLittleEndian() sets the ordering of bytes in the buffer to have lower
significance at lower addresses or the little end.

OutputStream Class
com.prismtech.ofj.orb.OutputStream

Use t he s t anda rd OMG create_output_stream() m e t h o d o n
org.omg.CORBA.ORB to construct an OutputStream.

getBufferCopy()
public byte [] getBufferCopy()
115
Product Guide�������	

 Appendices
getBufferCopy returns the marshalled data by returning a copy of the byte array
data for this stream.
Only a copy of the stream’s used bytes are returned.

getWritePosition ()
public int getWritePosition ()

getWritePosition() gets the stream’s current write position.

reset ()
public void reset ()

reset() resets the stream to a pristine initial state. reset() should only be used
with non-allocator based objects. reset() will not remove or erase the internal
contained byte array: it only resets the write and used pointers.

setBuffer ()
public void setBuffer (byte[])

setBuffer() replaces the internal buffer with the supplied byte array.
setBuffer() also implicitly resets the stream. setBuffer() leaves the write
position at zero.

setWritePosition ()
public void setWritePosition (int)

setWritePosition() sets the current write position of the stream. A
org.omg.CORBA.MARSHAL exception will occur if setWritePosition() is set
outside the stream’s bounds.
setWritePosition() is intended to allow users to overwrite data that has already
been written into the stream. If a value of x is equal to size(), then calling
setWritePosition() and writing beyond x will produce undefined behaviour.

size ()
public int size ()

size() returns the current size of the stream (in other words, the amount of written
data.
The underlying byte buffer may be longer than size() or the value of writePos.

Valuetypes and Factories
It is possible to use a valuetype without providing a corresponding factory. This
feature can be used by supplying an implementation class which has a name of the
form:

<vt>Impl

i

i

116
Product Guide �������	

Appendices
where <vt> is the name of the valuetype defined in the IDL.
For example, if the valuetype is called Thing, then the implementation class must
be called ThingImpl.
The implementation class must be on the classpath so that the ORB can find it at run
time.

Examples
Example 1 Writing a valuetype to a stream
Using a valuetype called RetrievalResult, this examples shows how to write a
valuetype to a stream.
The RetrievalResult is defined in IDL as:

valuetype RetrievalResult
{
 private FloatSequence scores;
 private WStringValueSequence ids;
 private long size;

 FloatSequence getScores();
 WStringValueSequence getIds();
 long getSize();

 void setScores(in FloatSequence scores);
 void setIds(in WStringValueSequence ids);
 void setSize(in long size);

 factory init(in FloatSequence scores,
 in WStringValueSequence ids, ins long size);
};

The RetrievalResult valuetype is first retrieved from the server. A long
placeholder is written to later write the size into. Next the valuetype itself is written
to the stream.
As shown in the following code example, it is possible to get a copy of the written
bytes and create an inputstream for reading from those bytes.
Finally, by recording the final write position it is possible to calculate the size of the
RetrievalResult and record its size in the stream.

1 RetrievalResult rresult = server.search();

2 OutputStream os = (OutputStream)orb.create_output_stream ();
3 System.err.println ("Stream size " + os.size () +
4 " and write position " + os.getWritePosition ());
117
Product Guide�������	

 Appendices
Example 2 Reusing an OutputStream
This example shows how to set the buffer of an existing OutputStream. The
stream created in Example 1 is used. Additional information is then written into the
stream.
An IOR is written to a new byte buffer then, as in Example 1, RetrievalResult is
written to the buffer.
However, this time a new InputStream is created from the outputstream and the data
is read back again.

5
6 int offset = os.getWritePosition ();
7 // Placeholder for length
8 os.write_long (0);
9
10 os.write_value (rresult);
11 int offset2 = os.getWritePosition ();
12 System.err.println ("Offset2 = " + offset2 + " and " +
13 os.size ());
14
15 // Test the value has been written.
16 byte []lb = os.getBufferCopy ();
17 InputStream inputStr =
18 new com.prismtech.ofj.orb.InputStream (getOrb (), lb);
19 assertTrue (0 == inputStr.read_long ());
20 assertTrue
21 (Arrays.equals (rresult.getScores (),
22 (RetrievalResultHelper.read (inputStr)).getScores ()));
23
24 // Write the actual size of the RetrievalResult
25 os.setWritePosition (offset);
26 os.write_long (offset2 - offset);
27 // Reset the write position to the original.
28 os.setWritePosition (offset2);
29
30 System.err.println ("Stream size " + os.size () +
31 " and write position " + os.getWritePosition ());

1 // Dummy ior string
2 bytString ior =
"IOR000000000000100000000000000A0000102000000000931302E312E302E3400
00";
3 byte []iorB = new byte [4 + ior.getBytes ().length];
4
5 // Use a new byte array with an existing stream.
6 os.setBuffer (iorB);
7
8 // Write the ior bytes out.
9 os.write_long (ior.getBytes ().length);
10 os.write (ior.getBytes());
11
12 // Write the long and RetrievalResult as before.
13 offset = os.getWritePosition ();
14 os.write_long (0);
118
Product Guide �������	

Appendices
15 os.write_value (rresult);
16
17 System.err.println ("Stream size " + os.size () +
18 " and write position " + os.getWritePosition ());
19
20 os.setWritePosition (offset);
21 os.write_long (os.size() - offset);
22 os.setWritePosition (os.size ());
23
24 // Read the data.
25 InputStream is = os.create_input_stream ();
26 int strLength = is.read_long ();
27 System.err.println ("Read string length of " + strLength);
28 byte []str = new byte[strLength];
29 is.read_octet_array (str, 0, strLength);
30 System.err.println ("Read string of " + new String (str));
31 int valueSize = is.read_long ();
32 RetrievalResultHelper.read (is);
119
Product Guide�������	

 Appendices
120
Product Guide �������	

BIBLIOGRAPHY

Bibl iography
The documents and articles listed below are referred to in the text or are recommended reading.
[1] A Comprehensive Source of Information on Real-time Systems and Design,

Jensen D.,http://www.real-time.org.
[2] Concurrent and Real-Time Programming in Java, Andy Wellings, John Wiley & Sons Ltd.,

2004.
[3] Patterns for Concurrent and Networked Objects, Pattern Oriented Software Architecture -

Volume 2, Schmidt D., et. al.,. J Wiley, 2000.
[4] Predictable Scheduling Algorithms and Applications, Hard Real-time Computing Systems,

Buttazo G., Kluwer Academic Press, 1997.
[5] Programming for the Real World, Posix.4, Gallmeister B.O., O'Reilly and associates, 1995.
[6] Real-Time Java Programming, Peter C. Dibble, Sun Microsystems Press Java Series, 2002.
[7] Real-Time Specification for Java (RTSJ) v1.0.1, Rudy Belliardi, et. al., http://www.rtsj.org
[8] Real-Time Specification for Java, Bollella G., et. al., Addison Wesley, 2000.
[9] Real-Time Systems and Programming Languages, Alan Burns and Andy Wellings, Addison

Wesley, Third Edition, 2001.
[10]Real-Time Systems: Design Principles for Distributed Embedded Applications, Kopetz, H.,

Kluwer Academic Press, Fourth Edition, 1997.
[11]Sun Java Real-Time System, http://java.sun.com/j2se/realtime, Sun Microsystems.
[12]Synchronization in Real-time Systems: A Priority Inheritance Approach, Rajkumar R., Kluwer

Academic Press, 1991.
[13]What is Predictability for Real-time Systems, Stankovic J.A. and Ramamritham K., Journal of

Real-time Systems, Issue 2, 1990.
123
Product Guide�������	

http://www.real-time.org
http://java.sun.com/j2se/realtime

Bibliography
124
Product Guide �������	

INDEX

Index

A
abstraction, object reference. 42
adapters, object . 44
Advice Notes . 78
Application Creation Example 84
associate

priority . 52
priority inheritance protocol 69
thread pools, poa . 64

Asynchronous Event Handling. 73
asynchronous event handling 73
Asynchronous Thread Termination 73
asynchronous thread termination 73
Asynchronous Transfer Of Control 73
asynchronous transfer of control 73
avoidance techniques . 55

B
basic object adapter interface 44
Bibliography . 123
BOA interface. 44
bounded

execution times and predictability 53
priority inversion . 67
system call execution times 55

C
cache . 55
character strings . 42
Classes and Methods . 115
client . 38, 42

definition . 42
different terms. .42
processing context. 42
role . 38
stub . 38

Client and Server Protocol Configuration 61
client and server protocol configuration. 61
Client-side. 100
Common Requirements 81
Compiling Applications 81
Compliance. 4
compliance . 4
computing, distributed object 36

definition . 33
Configuration of the Hard Real-Time Mode . . . 19
Configuration of the Soft Real-Time Mode 18
Configuration Options and Properties 15
Configuration Properties 20

Configuring OpenFusion CORBA Services . . . 29
connections

non-multiplexed . 61
control, asynchronous transfer of 73
Conventions . 9, 79
corba

real-time mutex interface 70
corba model

location transparency 35
CORBA Mutex. 69
corba mutex . 69
CORBA Priority. 68
corba priority . 68
CORBA Priority Mapping 68
corba priority mapping . 68
corba specification . 36
corba to native priority . 68
CorbaServices. 36
Current . 62
current. 62
Current interface. 69
current interface . 69
127
Product Guide�������	

 Index
D
delivering requests. 39, 41
Deploying and Running Applications 82
Developing Real-time Systems with RTOS . . . 52
dispatching, threads . 71
distributed object . 36

distributed object computing. 33, 36
distributed object technology 34
distributed systems

important properties 53
predictability . 54

E
Enterprise Mode . 17
environment variables . 15
event handling, asynchronous 73

Examples. 117
Examples Information. 74
execution times, bounded 53

F
Features . 4, 54
first class object, righteous 43

first class objects . 43
Further Reading. 74

G
getBufferCopy() . 115 getWritePosition () . 116

H
Hard Real-time Application 102 Hard Real-Time Mode 19

I
IBM Websphere Real Time JVM 82, 83
IDL

mutex . 70
idl. 37

mutex . 70
rtcorba priority . 68

IDL Specification . 90
inheritance

mutex and resource contention 69
InputStream () . 115
InputStream Class . 115
Install the Licence File 12
Installation. 11
installation . 11
Installation Procedure . 10
installing

command line mode 11
gui mode . 11

Installing Using Command Line Mode. 11
Installing Using GUI Mode. 11
Intended Audience . xi
interface

client . 36
contract . 37
current . 69
definition . 36
implementation . 37
inheritance . 37
mapping priorities . 68
mutex . 70
object implementation 36

Interface Definition Language (IDL) 37
128
Product Guide

�������	

 Index
interface, base object adapter 44
interface, BOA . 44
interface, programming, orb pseudo object 43
interrupt triggering . 55

interrupts. 55
Introduction . 77
Invocation Timeouts. 61
invocation timeouts . 61

J
Java Compiler . 81
Java Implementation. 91

JVM Configuration . 28

L
Laned Threadpool. 64
laned threadpool .64
language mapping. 37

licence file, installing . 12
location transparency . 34
Logging . 28

M
mapping . 37
mapping priorities. 68
mediation by orb. .39
Memory Management 18, 19, 72
memory management . 72
Messaging Configuration 27
method invocation . 49
Multiple ORBs in a Single JVM 20
mutes. 69
mutex

IDL . 70
inheritance . 69
notifies in rt corba. 69
priority protocol . 69
specification requirement 69

mutex interface
real-time . 70

Mutex Notifies in RT CORBA 69
Mutex, priority protocol 69

N
native priority and priority mappings 58
Native Priority and PriorityMappings 58
network

controlling resources. 63

Non-Determinism. 54
non-determinism. 54
Non-Multiplexed Connections 61
non-multiplexed connections 61

O
object

adapters . 44
pseudo objects . 44

first class . 43
pseudo . 43
righteous . 43
services, fundamental, standard interfaces . . . 36

target . 34
object adapter interface 44
object computing, distributed. 33, 36
Object Key Map . 28
object reference . 42

abstraction. 42
character strings . 42
129
Product Guide�������	

 Index
definition . 42
object technology, distributed 34
object, pseudo . 43
object, righteous . 43
object, target . 34
omg

specifications . 36
Operating Systems. 10
operating systems . 10
orb

as an abstraction. 40

c++ polymorphism . 40
interface boundaries 40
location transparency. 35
mediation . 39
pseudo object . 43
role. 39
what constitutes . 39

ORB Modes. 17
orb, mediation by . 39
Organisation . xi
OutputStream Class. 115

P
Physical Memory Access 73
physical memory access 73
PIDL . 43
platform transparency . 35
POA

active object map . 45
arguments. 47
create . 47
functionality. 44
policies. 46
rootpoa . 45

POA Activation Methods with Priority. 62
POA activation methods with priority 62
Pools . 64
predictability

distributed applications 54
real-time terms . 51
rtos and. 53

Predictability in Distributed Applications. 54
predictability, distributed systems. 54
Preparation . 11
Prerequisites . 9
priority

associate. 52
associate inheritance protocol 69
corba to native . 68
data. 69
inversion . 65
model . 62
native to corba . 68
phenomena and protocols 65

protocol . 55
protocol, mutex implementation 69
rtcorba type id . 68
scheduling . 65
storage structure . 69

Priority Banded Connections 61, 64
priority banded connections 61, 64
priority inversion

defined . 54
priority inversion, bounded 67
Priority Machinery . 65
priority machinery. 65
priority mapping, corba. 68
priority mappings . 58
Priority Model . 62
Priority Models . 59
priority models . 59
Priority Phenomena and Protocols 65
priority, corba . 68
processing context, client 42
processing, request . 49
programming interface, orb pseudo object 43
programming language transparency 35
protocol configuration, client and server 61
proxies. 38
pseudo object. 43

object adapters . 44
orb . 43
PIDL . 43
pseudo-idl . 43

pseudo-idl . 43
130
Product Guide

�������	

 Index
Q
queue. 63, 64 queue, assign to thread pool 63

R
Real-time . 4
real-time . 3

corba configuration . 61
corba current . 59
corba modules .57
corba mutexes .60
corba priority. 58
defined . 51
extension to java . 71
hard . 51
orb . 58
portable object adapters 62
priority inheritance . 60
soft . 51
terminology. 51
triggers . 52

Real-time CORBA Configuration 61
Real-time CORBA Current 59
Real-time CORBA Modules. 57
Real-time CORBA Mutexes and Priority

Inheritance. 60
Real-time CORBA Priority 58
Real-time Extension to Java 71
real-time mutex interface 70
Real-time ORB . 58
Real-time Portable Object Adapters. 62
Real-time Specification 57
real-time specification . 57
Real-time Systems . 51
real-time systems . 51

real-time systems, developing 52
Real-time, What is . 3
reference, object . 42

character string . 42
definition. 42

representation transparency 35
request

assembling messages 39
request processing . 49
requests

delivering . 41
delivering to remote objects 39

requests, delivering. 41
to remote objects. 39

reset (). 115, 116
Resolving Servers. 84
resources, controlling . 63
righteous object . 43
role, client. 38
RTCORBA API Restrictions 18
RTCORBA Current Interface. 69
RTOrb Run Scripts. 82
RTOS

relevance in real-time 52
rtos, real-time systems . 52
RTPOA. 62, 64
RTPOA Current . 64
RTPOA current . 64
Running OpenFusion CORBA Services 87

S
scheduling. 58, 65
scheduling, threads . 71
Scope of this Guide for RTOrb 5
server . 38, 42

definition . 42
different terms. .42

role . 38
skeleton. 38

Server-side . 91, 95, 102
setargs() . 107
setBuffer () . 115, 116
setLittleEndian () . 115
131
Product Guide�������	

 Index
setWritePosition (). 116
size () . 116
skeleton . 38

definition . 38
implementation instance 38
implementation type 38
implementations. 38
server . 38
type . 38

sockets . 33
Soft Real-Time Mode . 17
specification

corba . 36
mutex implementation 69

stack. 55
Standards . 4
standards . 4
strings . 42

strings, character . 42
stub . 37

client . 38
definition . 37
invocations. 37
proxies . 38
surrogates. 38

stub, client . 38
Sun Java Real-time System. 83
Sun Java Real-Time System Requirements . . . 81
surrogates . 38
Synchronization . 73
synchronization . 52, 73
System and Environment Settings 81
system call execution times, bounded. 55
System Variables. 10
system variables . 10

T
target object . 34
terminology . 51
Testing the Installation 13
The Real-time CORBA Mutex Interface 70
thread pool

operation, basic mode 63
Thread Pool Operation Basic Mode 63
thread pool, queue assigned to 63, 64
thread pools

associate poa . 64
associations with rtpoa. 64

Thread Scheduling. 58
thread scheduling. 58
Thread Scheduling and Dispatching 71
thread scheduling and dispatching 71
thread termination, asynchronous 73
Threadpool Configuration 27

threadpool, laned. 64
threadpools . 60, 62
threads . 62

threadpools, and. 62
Time- and Event-Triggered Systems 52
time- and event-triggered systems 52
transparencies . 34
transparency, location . 34

corba model . 35
orb . 35

transparency, platform 35
transparency, programming language 35
transparency, representation 35
tuple. 53
type

skeleton . 38

U
unbounded delays

avoidance techniques 55
illustrated discussion of 65
interrupts . 55

language influence. 55
priority inversion . 54

Uninstalling. 13
uninstalling RTOrb . 13
132
Product Guide

�������	

 Index
Using the IDL Compiler. 79

V
Valuetypes and Factories 116
variables

system . 10
variables, environment . 15

W
writeIOR() . 107
133
Product Guide�������	

 Index
134
Product Guide

�������	

	Product Guide
	Table of Contents
	Preface
	About this Product Guide
	Contacts

	Introduction
	OpenFusion RTOrb Java(tm) Edition
	What is Real-time?
	How RTOrb Provides for Real-time
	Features, Standards and Compliance
	Scope of this Guide for RTOrb

	Installation and Configuration
	1 Installation
	1.0.1 Conventions
	1.1 Prerequisites
	1.1.1 Operating Systems
	1.1.2 System Variables

	1.2 Installation Procedure
	1.2.1 General
	1.2.2 Preparation
	1.2.3 Installation
	1.2.3.1 Installing Using GUI Mode
	1.2.3.2 Installing Using Command Line Mode

	1.2.4 Install the Licence File
	1.2.5 Testing the Installation

	1.3 Uninstalling

	2 Configuration
	2.1 Configuration Options and Properties
	2.1.1 ORB Modes
	2.1.1.1 Enterprise Mode
	2.1.1.2 Soft Real-Time Mode
	2.1.1.3 Hard Real-Time Mode
	2.1.1.4 Multiple ORBs in a Single JVM

	2.1.2 Configuration Properties
	2.1.3 Threadpool Configuration
	2.1.4 Messaging Configuration
	2.1.5 Object Key Map
	2.1.6 Logging

	2.2 Configuring OpenFusion CORBA Services

	Real-time Programming
	3 Reviewing CORBA Concepts
	3.1 Basic Concepts
	3.1.1 The ORB
	3.1.1.1 Distributed Object Computing
	3.1.1.2 Transparencies

	3.1.2 Distributed Object Computing and CORBA
	3.1.2.1 Interfaces
	3.1.2.2 Programming with CORBA Interfaces
	3.1.2.3 Delivering Requests Using an ORB

	3.1.3 ORB Components
	3.1.3.1 Abstraction

	3.1.4 Terminology Explained
	3.1.4.1 Clients and Servers
	3.1.4.2 Object References
	3.1.4.3 First Class Objects and Pseudo Objects

	3.2 Portable Object Adapter
	3.2.1 How the POA Works
	3.2.1.1 POA Configuration

	3.2.2 POA Policies
	3.2.2.1 Standard POA Policies
	3.2.2.2 POA Policy Summary

	3.2.3 POA Manager
	3.2.4 Object References, Keys, and IDs
	3.2.5 Servants
	3.2.6 Object Creation and Activation
	3.2.7 Request Processing

	4 Introduction to Real-time Systems
	4.1 Real-time Systems
	4.1.1 Time- and Event-Triggered Systems
	4.1.2 Developing Real-time Systems with RTOS
	4.1.3 Predictability in Distributed Applications
	4.1.4 Features and Non-Determinism

	5 Introduction to Real-time CORBA
	5.1 Real-time Specification
	5.1.1 Real-time CORBA Modules
	5.1.2 Real-time ORB
	5.1.3 Thread Scheduling
	5.1.4 Real-time CORBA Priority
	5.1.5 Native Priority and PriorityMappings
	5.1.5.1 User-defined PriorityMappings

	5.1.6 Real-time CORBA Current
	5.1.7 Priority Models
	5.1.8 Real-time CORBA Mutexes and Priority Inheritance
	5.1.9 Threadpools
	5.1.10 Priority Banded Connections
	5.1.11 Non-Multiplexed Connections
	5.1.12 Invocation Timeouts
	5.1.13 Client and Server Protocol Configuration
	5.1.14 Real-time CORBA Configuration

	5.2 Real-time Portable Object Adapters
	5.2.1 Priority Model
	5.2.2 RTPOA
	5.2.2.1 POA Activation Methods with Priority

	5.2.3 Threads and Threadpools
	5.2.3.1 Current
	5.2.3.2 Threadpools
	5.2.3.3 Thread Pool Operation Basic Mode
	5.2.3.4 Laned Threadpool
	5.2.3.5 Priority Banded Connections

	5.2.4 RTPOA Current
	5.2.5 Associations Between Pools and RTPOA

	5.3 Priority Machinery
	5.3.1 Priority Phenomena and Protocols
	5.3.1.1 CORBA Priority

	5.4 CORBA Mutex
	5.4.1 Mutex Notifies in RT CORBA
	5.4.2 Why Mutex Has a Priority Protocol
	5.4.3 The Real-time CORBA Mutex Interface

	6 Introduction to Real-time Java
	6.1 Real-time Extension to Java
	6.1.1 Thread Scheduling and Dispatching
	6.1.2 Memory Management
	6.1.3 Synchronization
	6.1.4 Asynchronous Event Handling
	6.1.5 Asynchronous Transfer Of Control
	6.1.6 Asynchronous Thread Termination
	6.1.7 Physical Memory Access

	6.2 Further Reading and Examples Information

	Programming with RTOrb
	7 Using the ORB
	7.1 Introduction
	7.1.1 Advice Notes
	7.1.2 Conventions

	7.2 Using the IDL Compiler
	7.3 Compiling Applications
	7.3.1 System and Environment Settings
	7.3.2 Java Compiler
	7.3.2.1 Common Requirements
	7.3.2.2 Sun Java Real-Time System Requirements
	7.3.2.3 IBM Websphere Real Time JVM

	7.4 Deploying and Running Applications
	7.4.1 RTOrb Run Scripts
	7.4.1.1 Sun Java Real-time System
	7.4.1.2 IBM Websphere Real Time JVM

	7.4.2 Resolving Servers

	7.5 Application Creation Example
	7.6 Running OpenFusion CORBA Services

	8 Creating Applications
	8.1 General
	8.2 A Simple Non Real-Time Application
	8.2.1 IDL Specification
	8.2.2 Java Implementation
	8.2.3 Server-side
	8.2.4 Client-side

	8.3 A Simple Soft Real-time Application
	8.3.1 Server-side
	8.3.2 Client-side

	8.4 A Simple Hard Real-time Application
	8.4.1 Server-side
	8.4.2 Client-side

	Appendices
	A API Enhancements
	Classes and Methods
	InputStream Class
	OutputStream Class

	Valuetypes and Factories
	Examples

	Bibliography
	Index

