
OpenFusion®

CORBA Services
Version 4.2

Notification Service
�������	

OpenFusion
CORBA Services
NOTIFICATION SERVICE GUIDE
Part Number: OFCOR42-NOTG Doc Issue 32, 15 October 2008
PRISMTECH

Copyright Notice
© 2008 PrismTech Limited. All rights reserved.

This document may be reproduced in whole but not in part.

The information contained in this document is subject to change without notice and
is made available in good faith without liability on the part of PrismTech Limited or
PrismTech Corporation.

All trademarks acknowledged.
ii
Notification Service Guide

�������	

CONTENTS

Table of Contents
List of Figures xi

Preface
About the Notification Service Guide . xiii
Contacts . xiv

Introduction

Notification Service
Chapter 1 Description 7

1.1 OMG Standard Features . 7
1.2 OpenFusion Enhancements . 8
1.3 Concepts and Architecture . 9
1.3.1 Dependencies on Other Services . 9
1.3.2 The Basic Concept . 9
1.3.3 The Architecture . 10
1.3.4 The Details. 14
1.3.4.1 Structured Events . 14
1.3.4.2 Event Type Repository . 15
1.3.4.3 Event Communication Models . 16
1.3.4.4 Event Channel. 16
1.3.4.5 Admin Objects . 17
1.3.4.6 Proxies . 17
1.3.4.7 Queues . 19
1.3.4.8 Quality of Service . 20
1.3.4.9 Filtering. 22
1.3.4.10 Sequencing . 22
1.3.4.11 Persistence . 24
1.3.4.12 Federation . 26

Chapter 2 Using the Service 29
2.1 Introduction. 29
2.1.1 Import Statements . 30
2.2 Compiling and Running Clients . 30
2.2.1 Compiling Client Applications . 30
2.2.2 Running Client Applications . 30
2.2.2.1 Initialising the ORB . 31
2.2.2.2 Starting the Notification Service . 31
2.2.2.3 Configuring the Notification Service . 31
v
Notification Service Guide

�������	

Table of Contents
2.2.2.4 Starting Clients . 31
2.3 Creating Clients . 32
2.3.1 Creating a Supplier . 32
2.3.1.1 Connecting to the Server . 32
2.3.1.2 Creating Events. 37
2.3.1.3 Sending Events . 38
2.3.2 Creating a Consumer . 39
2.3.2.1 Connecting to the Server . 39
2.3.2.2 Receiving Events . 43
2.3.2.3 Suspending and Resuming Connections. 44
2.3.3 Removing Inactive Proxies . 44
2.3.3.1 Proxy Push Consumers. 45
2.3.3.2 Proxy Push Suppliers . 45
2.3.3.3 Alternative Method. 46
2.4 Using Quality of Service Properties . 46
2.4.1 Creating an Event Channel with QoS . 46
2.4.2 Managing QoS. 47
2.4.2.1 Adding New QoS to a Channel . 47
2.4.2.2 Accessing the QoS . 48
2.4.2.3 Validating Event QoS. 48
2.5 Using Filters . 49
2.5.1 Filter Objects . 49
2.5.1.1 Creating a Filter Object . 50
2.5.1.2 Adding a Filter Object to an Admin Object . 50
2.5.1.3 Listing Filter Objects . 50
2.5.1.4 Removing Filter Objects. 51
2.5.2 Event Filters. 51
2.5.2.1 Constructing Constraints . 52
2.5.2.2 Managing Constraints. 53
2.5.3 Writing Constraint Expressions. 53
2.5.3.1 Extended TCL Grammar . 54
2.5.3.2 Basic Elements . 54
2.5.3.3 Operators . 55
2.5.3.4 Constraint Examples. 57
2.6 Using Persistence . 58

Chapter 3 API Definitions 59
3.1 OMG Standard API Definitions . 59
3.1.0.1 Event Channel Factory Interface . 62
3.1.0.2 Event Channel Interface . 63
3.1.0.3 Administration Interfaces . 64
3.1.0.4 Filter Interfaces. 64
vi
Notification Service Guide �������	

Table of Contents
Chapter 4 Supplemental Information 67
4.1 Quality of Service Properties . 67
4.1.1 Standard OMG Properties.. 67
4.1.2 OpenFusion QoS Extensions . 73
4.1.2.1 Memory Management Properties . 78
4.1.3 Administrative Properties . 80
4.2 Errors and Exceptions . 81
4.2.1 Errors . 81
4.2.2 Exceptions . 82
4.2.2.1 Implementation Limit Exception . 83

Event Type Repository
Chapter 5 Description 87

5.1 Concepts and Architecture . 87
5.1.1 Event Types . 88
5.1.2 Inheritance . 89
5.1.3 Importing . 89
5.1.4 Contains . 89
5.1.5 Interfaces . 89

Chapter 6 Using Specific Features 91
6.1 Adding an Event Type . 92
6.2 Properties. 94
6.3 Event Types . 96
6.4 Composition. 98
6.5 Inheritance. 104
6.6 Import . 107
6.7 Event Type Repository Description . 110
6.8 Containment . 112
6.9 Repository Package . 115

Chapter 7 API Definitions 117

Chapter 8 Supplemental Information 119
8.1 Exceptions . 119

Event Domain Service
Chapter 9 Description 123

9.1 Features . 123
9.2 Architecture and Concepts . 124
9.2.1 Federating Channels . 125
vii
Notification Service Guide

�������	

Table of Contents
9.2.2 Domain Topology . 126

Chapter 10 Using Specific Features 129
10.1 Setting up a Domain . 129
10.1.1 Creating an Event Domain . 130
10.1.2 Connecting a Push Supplier. 134
10.1.3 Connecting a Push Consumer . 137
10.2 Managing Untyped Event Domains . 139
10.2.1 Using a Domain Factory . 139
10.2.2 Listing the Quality of Service Properties . 139
10.2.3 Destroying a Domain. 140
10.2.4 Managing Channels . 140
10.2.5 Managing Connections . 141
10.2.6 Connecting Clients . 142
10.2.7 Topology Management . 143
10.2.7.1 Cycles . 143
10.2.7.2 Diamonds . 144
10.2.7.3 Channels . 145
10.2.8 Disabling Event Type Propagation . 146
10.3 Managing Typed Event Domains . 146
10.3.1 Using a Typed Event Domain Factory . 146
10.3.2 Managing Typed Channels . 147
10.3.3 Managing Typed Connections. 147
10.3.4 Connecting Typed Clients . 148
10.4 Log Domains . 149

Chapter 11 API Definitions 151
11.1 Interfaces . 151
11.1.0.1 EventDomain . 153
11.1.0.2 EventDomainFactory . 157
11.1.0.3 EventLogDomain . 157
11.1.0.4 EventLogDomainFactory . 158
11.1.0.5 TypedEventDomain . 158
11.1.0.6 TypedEventDomainFactory . 160

Chapter 12 Supplemental Information 163
12.1 Quality of Service Properties. 163
12.2 Administration Properties . 164
12.3 Exceptions . 164
viii
Notification Service Guide �������	

Table of Contents
Configuration and Management
Chapter 13 Notification Service Configuration 169

13.1 Common Properties . 169
13.2 NotificationSingleton Configuration. 170
13.2.1 Persistence Properties . 170
13.2.2 CORBA Properties . 171
13.2.3 Messaging Loggers . 173
13.2.4 Instrumentation Properties. 179
13.2.5 General Properties . 189
13.2.6 Messaging . 189
13.3 ProcessSingleton Configuration . 192

Chapter 14 Notification Service Manager 195
14.1 Using the Notification Service Manager . 195
14.1.1 The Notification Service Manager. 195
14.1.1.1 Notification Service Hierarchy . 196
14.1.1.2 Notification Service Details . 197
14.1.2 Setting up an Event Channel . 197
14.1.2.1 Creating an Event Channel . 197
14.1.2.2 Setting Properties on an Event Channel . 198
14.1.2.3 Admin Property Settings. 198
14.1.2.4 QoS Property Settings. 198
14.1.3 Setting up a Supplier or Consumer Admin . 199
14.1.3.1 QoS Settings . 199
14.1.4 Admin Filters . 200
14.1.4.1 Filter Settings . 200
14.1.5 Setting Proxy Instances . 205
14.1.5.1 QoS Settings . 206
14.1.5.2 Creating a New Proxy Object . 207
14.1.5.3 Proxy Filters . 207
14.1.6 Testing Event Delivery . 207
14.1.6.1 Creating the Test Clients . 208
14.1.6.2 Configuring the Test Clients. 208
14.1.6.3 Destroying Proxy Objects. 214

Chapter 15 ChannelConfigurator Tool 215
15.1 ChannelConfiguratorObject Configuration . 215
15.2 Using the ChannelConfigurator Tool . 216
15.2.1 Saving a Channel Configuration . 218
15.3 Running from the Command Line . 218
ix
Notification Service Guide

�������	

Table of Contents
Index 223
x
Notification Service Guide �������	

List of Figures
Figure 1 Basic OpenFusion v.4 Implementation . 11
Figure 2 Main Components . 13
Figure 3 Structured Event . 14
Figure 4 Proxy States . 18
Figure 5 Event Queues . 20
Figure 6 Sequencing Architecture . 23
Figure 7 Passivating Persistent Clients . 26
Figure 8 Federation of Channels Architecture . 28
Figure 9 Local Host . 28
Figure 10 Event Type Repository Model . 88
Figure 11 An Event Domain . 124
Figure 12 Federated Notification Service Example . 125
Figure 13 Different Types of Event Domains . 127
Figure 14 Event Domain and Connected Clients . 130
Figure 15 Domain Containing Three Cycles . 143
Figure 16 Domain Containing Three Diamonds . 145
Figure 17 CosEventDomainAdmin Module Interfaces 152
Figure 18 CosTypedEventDomainAdmin Module Interfaces 152
Figure 19 DsLogDomainAdmin Module Interfaces . 153
Figure 20 Notification Service Manager . 196
Figure 21 Supplier and Consumer Admins . 199
Figure 22 Filters . 201
Figure 23 Add Filter . 202
Figure 24 Filter Details . 203
Figure 25 Add Constraint . 204
Figure 26 Proxy Objects . 206
Figure 27 Structured Supplier Manager . 208
Figure 28 Structured Consumer Manager . 209
Figure 29 Configure Events Dialog Box . 210
Figure 30 Configure Event Dialog Box . 212
Figure 31 Saving Channel Configuration . 218
xi
Notification Service Guide�������	

List of Figures
xii
Notification Service Guide

�������	

Preface
About the Notification Service Guide

The Notification Service Guide is included with the OpenFusion CORBA Services’
Documentation Set. The Notification Service Guide explains how to use the
OpenFusion Notification Service, as well as associated extensions to the service,
including the OpenFusion Typed Notification Service, OpenFusion Event Domains,
and the Event Type Repository.

The Notification Service Guide is intended to be used with the System Guide and
other OpenFusion CORBA Services documents included with the product
distribution: refer to the Product Guide for a complete list of documents.

Intended Audience
The Notification Service Guide is intended to be used by users and developers who
wish to integrate the OpenFusion CORBA Services into products which comply
with OMG or J2EE standards for object services. Readers who use this guide should
have a good understanding of the relevant programming languages (e.g. Java, IDL)
and of the relevant underlying technologies (e.g. J2EE, CORBA).

Organisation
The Notification Service Guide is organised into five main sections. The first three
sections describe each of the OpenFusion Notification Service components in order
(Notification Service, Event Type Repository, and the Event Domain Service). Each
of these sections provides

• a high level description and list of main features

• explanation of the component’s architecture and concepts

• how to use specific features

• detailed explanations of the main interfaces and how to use them

• other information which is needed to use the component

The last section of the Notification Service Guide, Configuration and Management
provides information on configuring and managing the OpenFusion Notification
Service’s components using the OpenFusion Administration Manager. Detailed
descriptions of properties specific to the component are included. It is intended that
this section be read in conjunction with the System Guide.

Conventions
The conventions listed below are used to guide and assist the reader in
understanding the Notification Service Guide.
xiii
Notification Service Guide

�������	

Preface
Item of special significance or where caution needs to be taken.
Item contains helpful hint or special information.
Information applies to Windows (e.g. NT, 2000, XP) only.
Information applies to Unix based systems (e.g. Solaris) only.
Hypertext links are shown as blue italic underlined.
On-Line (PDF) versions of this document: Items shown as cross references, e.g.
Contacts on page xiv, are as hypertext links: click on the reference to go to the item.

Courier fonts indicate programming code and file names.
Extended code fragments are shown in shaded boxes:

Italics and Italic Bold are used to indicate new terms, or emphasise an item.
Arial Bold is used to indicate user related actions, e.g. File | Save from a menu.

Step 1: One of several steps required to complete a task.

Contacts
PrismTech can be reached at the following contact points for information and
technical support.

Web: http://www.prismtech.com
General Enquiries: info@prismtech.com

% Commands or input which the user enters on the
command line of their computer terminal

 NameComponent newName[] = new NameComponent[1];

 // set id field to “example” and kind field to an empty string
 newName[0] = new NameComponent (“example”, ““);

i
WIN

UNIX

Corporate Headquarters European Head Office
PrismTech Corporation
6 Lincoln Knoll Lane
Suite 100
Burlington, MA
01803
USA

Tel: +1 781 270 1177
Fax: +1 781 238 1700

PrismTech Limited
PrismTech House
5th Avenue Business Park
Gateshead
NE11 0NG
UK

Tel: +44 (0)191 497 9900
Fax: +44 (0)191 497 9901
xiv
Notification Service Guide

�������	

http://www.prismtech.com
mailto: info@prismtech.com

INTRODUCTION

Introduction
The OpenFusion Notification Service is one of a range of services and interfaces
included with the OpenFusion CORBA Services product range.
The Notification Service component of the OpenFusion Notification Service
product can be used stand-alone or with other OpenFusion CORBA Services
interfaces and services. It is standards based, compliant with recognised industry
standards and specifications, and supports portability and interoperability.
3
Notification Service Guide�������	

Introduction
4
Notification Service Guide

�������	

NOTIFICATION SERVICE

CHAPTER

1 Description
The OMG Notification Service is a greatly enhanced extension of the OMG Event
Service and is backwards compatible with it. Both of these services enable data,
referred to as events, to be sent and received between distributed software objects in
a decoupled fashion via an event channel. This decoupling enables events to be
transmitted more efficiently and flexibly than when events are sent directly between
objects (i.e., tightly coupled).
Some of the benefits of using these services include:
ease of maintenance when adding or removing suppliers and consumers of events in
a system
more efficient use of network bandwidth between the suppliers and consumers
performance increasingly improves over tight coupling as the number of suppliers
and consumers increases (through the use of concurrency)
The OMG Notification Service provides additional benefits, including:
the ability to control the flow of events in order to maximise performance
the provision of and ability to control, event reliability within the service
the management of the events and how their flow through the service is buffered or
queued

The OpenFusion version 4 implementation of the Notification Service provides the
majority of the features and benefits provided in the OMG Notification Service
Specification, which includes those features which are most used. The OpenFusion
Notification Service also provides additional benefits for improved administration
of the service plus improved flexibility and control over the flow, buffering and
reliability of events sent through the service.
The OpenFusion Notification Service is widely used in the telecommunications,
finance, transport/travel and energy industries for applications ranging from
propagating alarms on equipment, providing share dealing services, to booking
hotels and planes.

1.1 OMG Standard Features
The OpenFusion Notification Service includes the standard OMG features, such as:
7
 Notification Service�������	

 1.2 OpenFusion Enhancements

• decoupling the event transmission from suppliers to consumers by using event
channels and proxies. The events may be structured (containing details about the
event), or sequences of events (events sent in batches for improved performance)

• avoidance of poor performance due to polling by using the push style event
transmission model for event notification

• enabling clients to receive only those events they are specifically interested in by
using filters attached to the client’s proxy

• the provision of filters and the Extended Trader Constraint Language for
controlling or limiting events being sent through the service in order to improve
performance, flexibility and manageability of event transmission

• enabling reliability, e.g. guaranteed event delivery, queues (event flow buffers)
and events to be managed at the channel, proxy or event level through the use of
Quality of Service (QoS) settings

• facilitating the creation of filtering constraints by end-users through the provision
of an event type repository, thus enabling information about the structure of events
to be readily accessible

• enabling certain types of events to be transmitted in batches in order to increase
performance

• additional administrative operations

1.2 OpenFusion Enhancements
The OpenFusion Notification Service provides many enhancements over the
standard OMG specification. These enhancements include:
• provision of external graphical user interfaces, as part of the OpenFusion

Graphical Tools, for run-time administration of the service
• rich administrative interface
• an extensive Quality of Service framework incorporating additional settings for

improved controllability, performance tuning and flexibility
• provisions for improved performance and scalability, such as

 - multi-threading
 - ability to federate channels (connect event channels together)
 - provision of persistence for events, channels and connections to commercial

databases through the use of optimized stored procedures
 - automatic service activation on demand

• support for custom Java filters which may perform substantially better than the
standard OMG constraint filter
8
Notification Service

�������	

 1.3 Concepts and Architecture

• ability to federate channels across multiple platforms and interoperate with native
notification services

Limitations
This version of the OpenFusion Notification Service does not support the
OMG-defined pull model since the pull model is rarely used. Removing this model
has enabled the OpenFusion Notification Service to be smaller and have better
performance.

1.3 Concepts and Architecture
Although the OpenFusion Notification Service is generally compliant with the
OMG Notification Service specification, it has many additional features and
enhancements.
The OMG Notification Service is an extension of the OMG Event Service and is
backwards compatible with it. However, this release of the OpenFusion Notification
Service only supports the semantics specified for Notification Service clients, since
a vast majority of users only use this client type.

1.3.1 Dependencies on Other Services
The Notification Service does not require other services in order to run. However,
the Notification Service IDL includes IDL from these services:
• Notification Service inherits from the Event Service.
• Time Service definitions are used to support start time and timeout values.
The Time Service can be used to provide a central source of time within a
distributed system when a client wishes to time-stamp events. The Timer Event
Service can be used to generate events at timed intervals.

1.3.2 The Basic Concept
There are many situations when an object needs to receive notification that an event
has been generated or produced by another object, such as when an alarm control
panel of a security system needs to know if a remote alarm has been activated. The
object may also need to know details about the event itself so that it can take
appropriate action. Using the security system example, the alarm panel may need to
know which alarm was activated, its location, the reason for the alarm (break-in,
fire, etc.) in order to provide appropriate information to security officers.
Obviously, the objects producing and using the event need to be connected to each
other in some fashion so that communication of the event can occur. A simple
solution would be to connect the objects together directly: notification of an event
occurrence and information about it being communicated directly between the two
9
Notification Service�������	

 1.3 Concepts and Architecture

objects. Importantly, these objects would then be tightly coupled to each other:
changes effecting the communication of the event by one object will directly affect
the other object.
Tight coupling performs well when one object is connected to only one other object.
If, however, many objects are connected to many others, especially when the
number of objects changes, then maintainability, performance and scalability
become serious issues. For example, each time an event producer object (e.g. a new
alarm) is added, then all event user, or consumer, objects (e.g. the alarm panels in the
building, at the security firm, in the police or fire stations) will need to be changed,
too. In software terms, code for all consumer objects, i.e. the consumers, will need
to be altered, re-compiled, tested, etc., whenever supplier objects, i.e. the suppliers,
are added.
Also, communication between tightly coupled objects is synchronous, that is before
the supplier can send an event, the consumer must be ready to receive it. If a
supplier is connected to several consumers, then it must wait for the slowest
consumer to receive (or consume) the event before it can proceed.
Decoupling suppliers and consumers through an intermediary can overcome these
issues. If new suppliers or consumers are added to the system, then only the
intermediary needs to be altered, not each consumer or supplier, respectively.
Further, the intermediary can provide event buffers, or queues and multi-threading
capabilities in order to enable asynchronous communication: events can be sent and
received without waiting for the slowest “member of the pack”.
An intermediary can therefore take over the task of communicating events between
suppliers and consumers: it can provide a service for them, who become its clients.
The Event Service was the first service that the OMG specified for the decoupled,
asynchronous communication of events between event producer and consumer
client objects. By decoupling the objects, through the use of an event channel and
proxies, the Event Service provided improved maintainability, performance and
scalability over systems which rely on tightly coupled objects.
Like the Event Service, the Notification Service provides decoupled, asynchronous
communication between supplier and consumer client objects. However, the
Notification Service provides additional features, such as Quality of Service and
filtering, to dramatically improve reliability and help control event transmission.

1.3.3 The Architecture
The Notification Service can be looked at from two perspectives:
1. from the journey that an event takes from supplier to consumer, i.e. its

transmission path
10
Notification Service

�������	

 1.3 Concepts and Architecture

2. how the Notification Service components are conceptually connected and
created

1.3.3.0.1 Event Transmission
A supplier generates events.
1. The supplier sends the events to a proxy representing the consumer, the

consumer proxy. If needed, the event can be translated to a type that is expected
by the consumer.

2. Unwanted events can be filtered out before transmission to the next stage of the
journey, the supplier admin object.

3. Numerous consumer proxies can be connected to a single supplier admin object:
filtering and quality of service settings can be applied by the admin object to all
of the events being supplied by the proxies, as a group, before they are sent to
the event channel.

4. The event channel transmits the events, which have not been filtered out, to a
consumer admin object. The consumer admin object then forwards those events
to its individual supplier proxies: additional filtering and quality of service
adjustments can be by defined the admin object prior to forwarding.

5. Each supplier proxy sends their events to their respective event consumers (one
proxy per consumer). Final filtering and quality of service settings can be
applied at the proxy for each event before it is sent on to the consumer.

Figure 1, Basic OpenFusion v.4 Implementation, shows that only the push model of
event transmission is used in the OpenFusion v.4 implementation of the basic
architecture.

Figure 1 Basic OpenFusion v.4 Implementation

Direction of Event Flow

Consumer
Admin
Object

Supplier
Admin
Object

Event
Channel

Supplier
Proxy

Supplier
Proxy

Proxy Push
Consumer

Event
Consumer

Push
Supplier

Event
Consumer
11
Notification Service�������	

 1.3 Concepts and Architecture

1.3.3.0.2 Component Connection and Creation
The components of the service are organised hierarchically. The main component is
the event channel. Event channels are created by the service’s event channel factory:
multiple event channels can be created by the event channel factory for operation
within the service.
Admin objects are created by event channels; proxies are created from the admin
objects. Finally, each proxy is connected to a client supplier object or client
consumer object.
Each object within the hierarchy is given a unique identifier when it is created. The
combination of the hierarchical organisation and the unique identifiers enables all
components to be found or referenced from any other component in the hierarchy.

1.3.3.0.3 Main Components and Features
The main components of the OpenFusion Notification Service are:
• event channels, admin objects, proxies, filter objects, queues and an Event Type

Repository
The types of event are:
• structured events (the OpenFusion Notification Service does not support Event

Style events or typed events, although they may be supported in future releases)
The transmission model used by the OpenFusion Notification Service is the push
model.

Note: the OMG-defined pull model is rarely used and was removed from the
OpenFusion Notification Service in order to reduce size and complexity as well as
improving performance. This version of the OpenFusion Notification Service does
not support the pull model.

Figure 2, Main Components, shows the service’s main components, including
filters, queues, translation and the Event Type Repository.

i

12
Notification Service

�������	

 1.3 Concepts and Architecture

Figure 2 Main Components

Features
The Notification Service provides various management, reliability and performance
enhancing operations and features, including:
• standard OMG features

 - Quality of Service (QoS), for providing and controlling reliability, queue
management and event management

 - sequencing, enabling events to be sent in batches in order to enhance
performance

• OpenFusion enhancements:
 - Quality of Service extensions, additional QoS properties for improving

controllability and flexibility of event transmission
 - federation, where event channels can be connected or federated together for

performance, reliability and flexibility
 - transparent fail-over, which takes advantage of ORB vendor features (when

provided) for keeping the service operating when a server host fails; enables
another host to transparently, without loss of events, support the service

 - persistence, which enables events and connections to be made persistent
 - event storage plugins, enables database storage of persistent events, including

the use of JDBC and stored procedures

Direction of Event Flow

Consumer
Admin
Object

Supplier
Admin
Object

Event
Channel

Supplier
Proxy

Consumer
Proxy

Supplier
Proxy

Consumer
Proxy

Master
Event
Queue

Proxy
Queues

Admin
Filters

Proxy
Filters

Proxy
Filters

Admin
Filters

Proxy
Filters

Proxy
Filters

Event
Consumer

Event
Supplier

Event Type
Repository

Event
Supplier

Event
Consumer

Proxy
Queues
13
Notification Service�������	

 1.3 Concepts and Architecture

 - administration tools, including Graphical User Interfaces (as part of the
OpenFusion product) and additional programming interfaces (as part of the
service itself)

These components, event types, transmission models, methods and features will be
described in detail below.

1.3.4 The Details

1.3.4.1 Structured Events
Untyped events encapsulate basic data types transmitted and received by client
objects. Structured events are untyped events with attached headers containing id,
QoS and filtering information.
A structured event consists of two main parts:
• an event header containing identification and Quality of Service information and
• an event body containing information used to filter the event, plus the event itself,

an Any

Figure 3 Structured Event

Event Header
The event header contains a fixed header and variable header.
The fixed header holds information identifying the particular event and includes:

domain_name

event_name

type_name

name1

...

value1

name2 value2

namen valuen

name1

...

value1

name2 value2

namen valuen

remainder_of_body Remaining body

Variable header

Fixed header

Filterable body fields

Event header

Event body
14
Notification Service

�������	

 1.3 Concepts and Architecture

• an event domain (domain_name) - the domain of a particular vertical industry
where the event type is defined, such as telecommunications, finance,
transportation, etc.

• an event type (type_name) - the type of particular event within the domain, for
example StockQuote within the finance domain

• an event name (event_name) - a unique name for the particular event instance
being transmitted

The event domain and event type can be used in combination as an index into the
Event Type Repository (see Event Type Repository below).
The variable header contains QoS property settings for a specific event. These
settings consist of a sequence of zero or more name-value pairs. The name
component of the pair is a string variable which identifies a particular QoS property;
the value component is an Any which contains the value of the QoS property.
For example, a name could be set to the QoS property EventReliability with its
corresponding value set to 1 (a short defined as persistent). Refer to Quality of
Service on page 20 for a list of available QoS properties.

Event Body
The event body contains a filterable body and a remaining body.
The filterable body contains another sequence of zero or more name-value pairs.
These pairs, predictably, are used for filtering the event. Each name-value pair
consists of the name of a property (a string variable) and its value (an Any).
The filterable body is intended to be used for filterable properties which have been
defined within an application domain. In order to filter the event, a client constructs
filter constraints which are applied, using the Notification Service’s filters, to the
properties contained in the structured event’s filterable body. (See Filtering on page
22.)
The remaining body (remainder_of_body) contains the actual event data, which
is an Any. As with the original Event Service, this part of the structured event can
contain any data that a user wants to send along with the event.

1.3.4.2 Event Type Repository
The OMG specifies that the Event Type Repository is an optional feature of the
Notification Service; this feature is provided in the OpenFusion implementation of
the service.
The Event Type Repository is a facility for making it easier for clients to create
event filters by making information about the structure of events available to clients.
15
Notification Service�������	

 1.3 Concepts and Architecture

The Event Type Repository stores information about the kinds of filterable data that
specified events can provide to consumers. The repository only contains
information about the properties contained in the filterable body of a structured
event (see Structured Events on page 14).
The repository can be queried by event suppliers to discover the names and types of
the properties that an event of a certain type contains. The supplier can use this
information to send events which conform to that type.
The repository can also be used by event consumers in order to determine which
properties are expected by events of a certain type; the consumer must create the
expression to match the event they are interested in.
Importantly, the Event Type Repository has the ability to modify event types and the
relationship between event types at run time. This allows applications to evolve over
time. For example, an application can create a new event type, with additional
properties, that inherits from an existing event type. New applications can take
advantage of the additional information, while existing applications can process the
event according to the old set of properties.

1.3.4.3 Event Communication Models
The OpenFusion Notification Service uses the push communication model, whereby
suppliers actively send or push events to the event channel and consumers passively
receive them

1.3.4.4 Event Channel
The event channel (also referred to as the notification channel in the Notification
Service) is the component which provides the loosely-coupled communication
between client objects. It is the event channel which handles supplier registration
and the broadcasting of events to consumers.
The Notification Service allows any number of event channels to be active
concurrently.
Notification Service event channels, unlike those of the Event Service, possess
Quality of Service (QoS) properties and event filtering. QoS and filters set on a
channel affect all relevant events which pass through it. Further, QoS and filter
settings are inherited by any admin object created by the event channel.
Client objects can set various QoS and administrative properties on the event
channel when it is created. For example, some of the properties that can be set
include the maximum number of events the channel will buffer at a time, as well as
the maximum number of consumers and suppliers that can connect to the channel.
Event channels are created by an event channel factory. The channels, in turn, create
admin objects, which in turn create proxies. This creation process forms a channel -
admin - proxy hierarchy.
16
Notification Service

�������	

 1.3 Concepts and Architecture

Note that when a new channel is created, indeed when any object in the hierarchy is
created, it is given a unique numeric identifier. This identifier enables objects within
the hierarchy to find (i.e. find a reference to) their ‘parent’ or ‘child’ objects. This
ability enables objects to administer other objects within their hierarchy. Clients are
therefore able to discover all objects that comprise the hierarchy, starting from any
object within the channel.

1.3.4.5 Admin Objects
Admin objects perform various administrative and management functions, such as
creating proxies and acting as a mechanism for separating proxies into controllable
groups
Admin objects are associated with either suppliers or consumers (supplier admin
objects or consumer admin objects).
Note that supplier admin objects create consumer proxies and vice versa
(remembering that suppliers connect to consumer proxies, consumers connect to
supplier proxies). The Notification Service’s admin objects can create, in addition to
Notification Style proxies, Event Service style proxies.
Event channels may have multiple admin objects. This enables proxies to be
logically grouped and to optimise the handling of clients which have identical
requirements.
Admin objects manage or administer the proxies that they have created (as a group):
• QoS properties are assigned to an admin object’s proxies at the time the proxy is

created, although the QoS properties for these proxies can be changed for each
individual proxy as required

• an admin object’s filter properties (by assigning a filter object to it) affect all the
proxies connected to it, even though each proxy may have its own, additional
filter objects

1.3.4.6 Proxies
Proxies connect supplier and consumer client objects to the event channel of the
Notification Service. Importantly, proxies represent or stand-in for a client. For
example, a supplier behaves as if it is connected to an actual consumer, however it is
actually connected to a proxy for the consumer, i.e. a consumer proxy1: suppliers
connect to consumer proxies; consumers connect to supplier proxies.
Individual proxy types are specific to:
• the type of event being transmitted

i

1. Also called proxy consumer: both forms are used in the OMG specification

17

Notification Service�������	

 1.3 Concepts and Architecture

• whether the events are being sent singly or in batches when used with structured
events (referred to as sequenced structured events)

For example, a structured push supplier proxy connects a structured event consumer
to the event channel and uses the push model to receive events.
Each proxy has its own QoS object plus zero or more filter objects: this enables QoS
properties and filter properties to be set at the individual proxy level. Note, however,
that the QoS and filter object settings for the proxy’s admin object also affect the
events that the proxy receives or transmits. For example, a proxy consumer
(connected to a suppler) may allow Event A to be sent, but its admin object may still
filter it out.

1.3.4.6.1 Suspension, Resumption and Disconnection
Push-model event suppliers can temporarily suspend event communication. The
event channel buffers the events while a consumer connection is suspended: these
events are transmitted when the client resumes its connection (subject to the QoS
discard policy when the maximum number of events per consumer QoS policy is
exceeded).
Figure 4 illustrates the four states a proxy can have during creation, suspension,
resumption and disconnection.

Figure 4 Proxy States
For proxy push suppliers, the suspended state indicates that the Notification Service
will suspend the pushing of events onto the consumer. While suspended, events will
be queued at the proxy for later delivery.

not
connected connected

suspended

destroyed

disconnected

suspend

resume

connect
create

disconnect

disconnect

disconnect
18
Notification Service

�������	

 1.3 Concepts and Architecture

A proxy is a communication end point and disconnecting it implies that the proxy
object is destroyed. After being disconnected, the proxy can no longer be used to
send or receive events.
A push consumer can also disconnect a proxy by raising the Disconnected
exception in the push operation.
It is the client’s responsibility to disconnect (and destroy) the proxy when the client
terminates since the service has no means of knowing that the client no longer
exists. Accordingly, the client should call its associated proxy’s disconnect method.
For example, if the client is a push supplier connected to a ProxyPushConsumer
(suppliers connect to consumer proxies, consumers connect to supplier proxies),
then the disconnect_push_consumer() method for its ProxyPushConsumer
object should be called prior to termination.

1.3.4.7 Queues
Queues are buffers for storing events until consumers are ready to receive the
events. Queues free suppliers from the need to wait for consumers to consume their
events before continuing.
Each event channel has a master event queue and each supplier proxy has a proxy
queue, one proxy queue per consumer object (see Figure 5).
Incoming events enter the master event queue: if event reliability is set to persistent,
the event will be written to persistent storage before the event is sent on. The
behaviour of the master event queue is affected by the event channel’s order and
discard QoS policies. The queue’s maximum length is set by the MaxQueueLength
property.
Events are then dispatched into proxy queues. Each proxy queue has its own order
and discard policies for the proxy object it is connected to, i.e. each proxy queue
may have different policies than the others. The maximum queue size for a proxy
queue is limited by the MaxEventsPerConsumer QoS property.
The proxy queues potentially contain very different sets of events, depending on
filtering, ordering, queue size and the “speed” of the consumer. When an event is
delivered, it is removed from the master queue.
The proxy queue keeps track of the events which have been delivered. If the
Notification Service fails for any reason (e.g. host crash, lost connection, etc.), then
the contents of the master queue will be recovered, provided that the events have
been set as persistent beforehand. Note that when recovery takes place only those
events which have not yet been delivered to a consumer will be allowed to re-enter
the proxy queue.
19
Notification Service�������	

 1.3 Concepts and Architecture

Figure 5 Event Queues

1.3.4.7.1 OpenFusion Queue Extensions
The OpenFusion implementation of the Notification Service provides a number of
queue management extensions in addition to the standard OMG interfaces. These
additional extensions can be used to access useful information or functionality that
is not provided otherwise.

1.3.4.8 Quality of Service
There is no direct communication between suppliers and consumers when using the
Notification Service (a decoupled communication model). Consequently, when an
event is sent from a supplier to a consumer, there are three points where the event is
(conceptually) transmitted:
1. when the event is delivered by the supplier to the event channel
2. when it is forwarded by the channel
3. when the event is delivered by the channel to the consumer
An application may wish to set QoS at each of these points. Accordingly, the
Notification Service enables each channel, connection and message (the
transmission points) to possess relevant, configurable QoS settings. These settings
cover the delivery guarantee, aging characteristics and prioritisation for the
transmitted events.

Direction of Event Flow

Consumer
Admin
Object

Supplier
Admin
Object

Event
Channel

Supplier
Proxy

Proxy
Consumer

Supplier
Proxy

Proxy
Consumer

Event
ConsumerSupplier

Supplier
Event

Consumer

Proxy
Queue

Proxy
Queue

Master
Event
Queue
20
Notification Service

�������	

 1.3 Concepts and Architecture

1.3.4.8.1 Standard OMG Properties
Quality of Service settings are defined as properties; each property has an
associated value. A particular property may have a range of values that indicate
different requirements or delivery characteristics to support a wide variety of
application needs: precise QoS requirements, at any particular level, can be
expressed as a set of properties.
Quality of Service properties cover three main areas: reliability, queue management
and event management. Note that not all QoS properties can be applied at all levels
of the Notification Service.
Detailed descriptions of these properties are given under Supplemental Information,
Standard OMG Properties. on page 67.

1.3.4.8.2 OpenFusion QoS Extensions
The OpenFusion Notification Service supports the QoS properties described in the
OMG specification which are listed above. Further, the OpenFusion Notification
Service supports a comprehensive, extensible QoS framework that allows clients to
configure the run-time behaviour of event channels, admin and proxy objects: in
other words, their QoS properties can be set at run-time.
The OpenFusion Notification Service’s QoS also:
• enforces portability, especially with regard to reliability
• supports ORB vendor features
• addresses the Event Service’s deficiencies
• provides additional queuing policies
The extended OpenFusion Notification Service QoS properties are listed and
described under Supplemental Information, OpenFusion QoS Extensions on page
73.
The QoS framework supports logical grouping, whereby a channel treats its admin
objects as a group and an admin object treats its proxies as a group.
A group is a collection of objects that have been created by a particular factory, the
group object. For example, a channel, the group object (or group for short) groups
the admin objects it has created; an admin object is the group object for its proxies.
The value of a QoS property that has been applied to a group automatically becomes
the default value for all new objects created by that group. Note that existing
objects, those previously created by the group object, are not affected. Also note that
a client may override existing QoS group properties for any object within the group.
21
Notification Service�������	

 1.3 Concepts and Architecture

1.3.4.9 Filtering
Filtering allows the transmission of events to be selectively stopped or filtered out.
Filtering is performed using filter objects which are attached to admin and proxy
objects (see Figure 2, Main Components on page 13). A single filter object can be
added to more than one of these objects at a time: for example a single filter can be
used by several proxies, or by a proxy and an admin. However, this can lead to
unmanageable deployment situations (see warning note shown immediately below).
Filter objects should be destroyed when the objects that use them are destroyed,
otherwise they will become a source of leakage. However, care must be taken when
destroying filter objects that are used by multiple objects in order to avoid
inadvertently destroying a filter which is still in use.
Filter objects use a constraint language to describe which events should be filtered,
i.e. they constrain which events are allowed and may be referred to as forward filters
since they forward filtered events. Also, all constraints added to a filter are assigned
a unique identifier which enables constraints to be modified or deleted at run-time.

1.3.4.9.1 Constraint Language
Any conformant implementation of the Notification Service specification must
support the Extended Trader Constraint Language (Extended TCL), an extension of
the constraint language used for the Trading Service.
The Extended TCL grammar fixes a few problems with the basic Trader Constraint
Language, while adding suitable constructs for filtering events.
This grammar is intuitive for programmers because it mimics how data structures
are normally accessed and is based on the Java style dot notation.
For example, a simple query string could be:

$type_name == ’Alarm’ and $Priority > 4
which forwards events of type Alarm which have a priority greater than four.
A description of the Extended TCL grammar and how to use filter constraints with
the Notification Service is given under Writing Constraint Expressions on page 53.

1.3.4.10 Sequencing
The Notification Service supports the transmission of sequences of Structured
Events (event sequencing for short). Event sequencing is a process or technique
whereby one or more events are transmitted at a time as a single IIOP package.
Event sequencing boosts the event transmission performance of the service: sending
an IIOP package with one event and sending an IIOP package with 100 events takes
approximately the same amount of time.
There are separate sequence clients and proxies which are used for transmitting
sequences of Structured Events (see Figure 6).
22
Notification Service

�������	

 1.3 Concepts and Architecture

Event sequencing uses the MaximumBatchSize and PacingInterval QoS
properties. These properties can only be applied on the consumer side:
• MaximumBatchSize - The maximum number of events that a consumer wishes

to receive at a time. Consumers should always set this QoS since the default value
is one.

• PacingInterval - The maximum time the consumer is willing to wait for the
batch to fill. At the end of the pacing interface, the Notification Service will
deliver whatever events it has. The default value is zero (indefinite wait).

The Notification Service will wait at least until one event is available before
delivering any events to the consumer. If no events are available, the Notification
Service will therefore wait longer than the pacing interval.

Figure 6 Sequencing Architecture
All events delivered by all connected suppliers will be included in the event
sequences arriving on the consumer side.
Event sequencing does not influence the order of events transmitted through the
channel (notice the order of the events as received by the consumers in Figure 6).
However, ordering can be controlled by using QoS properties and filters.

1.3.4.10.1 Auto-sequencing
Auto-sequencing provides a significant performance improvement for structured
proxies without changing how the proxies function externally. When
auto-sequencing is used, a proxy uses internal batching to send multiple structured
events in one CORBA call: this provides the performance increase usually

Direction of Event Flow

Consumer
Admin
Object

Supplier
Admin
Object

Event
Channel

Sequence
Proxy Push

Supplier

Sequence
Proxy Push
Consumer

Sequence
Proxy Push

Supplier

Sequence
Proxy Push
Consumer

Sequence
Push

Supplier

Sequence
Push

Consumer

Consumer
Admin
Object

Structured
Proxy Push

Supplier

Structured
Push

Consumer

Sequence
Push

Consumer

Filter

{a,b,c}

{d,e,f}

a,d,e,b,c,f

d,b

{a,e}
{c,f}

{a,d,e}
{b,c,f}

Sequence
Push

Supplier

i

23
Notification Service�������	

 1.3 Concepts and Architecture

associated with a sequence proxy. Externally, however, a structured proxy push
supplier still sends structured events individually to the consumer and a structured
proxy push consumer still receives structured events individually from the supplier.
Auto-sequence functionality is used exclusively by structured proxies, not by the
sequence proxies described in the previous section.
There are characteristics of auto-sequencing which make it unsuitable for some
situations:
• A failure of the service can result in a loss of a number of events up to the

maximum batch size.
• If a supplier process terminates (by invoking System.exit() or returning from

its main() method, for example), events up to the maximum batch size may be
lost. To avoid this situation in a controlled shutdown, suppliers should call
disconnect() before the process ends. This will cause any pending events to be
delivered to the channel.

• Exceptions cannot be sent back to a caller. For example, a structured proxy push
supplier will not be able to report to the event channel when it has failed to push
events onto a structured consumer.

Auto-sequencing should not be used if persistence or error detection are important
issues.
Two QoS properties, AutoSequenceBatchSize and AutoSequenceTimeout,
are used to control auto-sequence functionality.

By default, auto-sequence functionality is switched on in an OpenFusion
installation. If it is not required, it should be switched off using the appropriate QoS
settings (as described on page 75).

1.3.4.11 Persistence
The OpenFusion implementation of the Notification Service provides the ability to
make events and connections persistent.
The OpenFusion Framework and by association the OpenFusion Notification
Service, provides the facility to add components as plugin modules for supporting
different application requirements. The event persistence is enabled and managed
through:
• event database plugins which connect the service to a selected database, such as

Oracle and
• additional QoS properties which are provided in the Notification Service
24
Notification Service

�������	

 1.3 Concepts and Architecture

1.3.4.11.1 Features
The persistence feature of the OpenFusion Notification Service provides improved
reliability by enabling the use of a recovery strategy

1.3.4.11.2 Requirements
There are a number of factors to be aware of when using persistence:
• event reliability can only be set to persistent if the connection reliability is also set

to persistent
• the client must be a persistent CORBA object
• its proxy must only be connected once
• the proxy is disconnected when the OBJECT_NOT_EXIST ORB system exception

is thrown
• the proxy must be suspended when the client object is passivated
• QoS properties must be set for:

 - maximum queue size(s)
 - reconnect interval

A persistent client is a persistent CORBA object. A persistent object can be
activated and passivated several times, but in terms of the ORB (and thus the
Notification Service) it is the same object.
When a server with persistent client objects is re-started (or the object is otherwise
activated), the client must not create a new proxy since it will continue to use the
proxy that was used prior to passivation.
The Notification Service will retry persistent clients until it encounters an
OBJECT_NOT_EXIST system exception. This exception is normally raised when the
object is de-registered from the BOA or POA.
Persistent clients should use a number of QoS properties to control resources. The
discard policy and maximum queue size should be used for consumers to limit the
number of events that are queued on their behalf.
The reconnect interval can be set to reduce the frequency at which the Notification
Service retries an unavailable object.
Push consumers can also suspend these proxies prior to passivation in order to avoid
interaction while the object is unavailable.

1.3.4.11.3 Passivating Persistent Clients
Persistent clients are automatically re-connected when they re-register with the
ORB. A persistent client would normally save the proxy IOR when it connects to the
Notification Service the first time.
25
Notification Service�������	

 1.3 Concepts and Architecture

When a persistent client is passivated, the ORB will raise standard NO_IMPLEMENT
system exceptions when the Notification Service attempts to deliver or retrieve
events, or do event type callbacks.

Figure 7 Passivating Persistent Clients
When the persistent client is later activated, the ORB will rebind the connection
between the Notification Service and the client. This happens automatically and the
client should not connect to a new proxy.
The client normally loads the proxy IOR from file or, for example, the Naming
Service upon restart. The proxy is needed for later connection manipulation
(suspend, resume), filter administration and ultimately disconnecting.
If a client de-registers from the ORB, the ORB will raise an OBJECT_NOT_EXIST
exception when the Notification Service tries to interact with the client. This will
disconnect the client.

1.3.4.12 Federation
Federation is a method of connecting separate Notification Service instances and
their event channels together (see Figure 8, Federation of Channels Architecture).
Federation effectively creates a composite system partitioned into any number of
subsystems. Partitioning an event system into multiple “event subsystems” can have
a number of advantages:
• Performance:

 - enabling multiple hosts to be used for utilising increased CPU resources
 - providing fan-out to consumers on the local machine

O RBO RB

Pro xy Pe rsiste nt
c lie nt

O RBO RB

Pro xy Pe rsiste nt
c lie nt

N
O
_
I
M
P
L
E
M
E
N
T

Passivated

Pro xy
IO R

O RBO RB

Pro xy Pe rsiste nt
c lie nt

Pro xy
IO R

O
R

B
re

bi
nd

Sa
m

e

26
Notification Service

�������	

 1.3 Concepts and Architecture

Sending events to a channel that in turn forwards them to a number of
consumers can result in great performance improvements. As an example, if the
consumers are all on the same machine the events can be sent using one network
invocation and a series of local invocations.

• Reliability:
 - avoiding single points of failure

By having multiple event channels it is possible to avoid single points of failure.
Although parts of the system may no longer receive events if an event channel
fails, this does not necessarily have to affect other consumers.

• Flexibility:
 - makes it easy to move event subsystems
 - can use filtering to control fan-in and fan-out

Grouping suppliers and consumers into logical units can simplify system
configuration and improve flexibility. For instance, instead of changing all
consumers in a group to use a new channel, only the suppliers that provide
events to the group would need to be altered.

Referring to Figure 8, the fact that a consumer proxy is a supplier and a proxy
supplier is a consumer allows channels to be federated without using special clients
that forward events from one channel to another. The inheritance structure described
allows a proxy supplier to be connected directly to a proxy consumer.

Direction of event flow

Channel

Proxy
Supplier

Supplier

Proxy
Consumer

Proxy
Consumer

Supplier

Consumer

Proxy
Supplier

Proxy
Supplier

Notification Service 1 Channel

Proxy
Supplier

Proxy
Consumer

Proxy
Supplier

Notification Service 2

Channel

Proxy
Supplier

Proxy
Consumer

Proxy
Supplier

Notification Service 3

Consumer

Consumer

Consumer

Consumer
27
Notification Service�������	

 1.3 Concepts and Architecture

Figure 8 Federation of Channels Architecture

1.3.4.12.1 Local Channel
The local channel concept (Figure 9) provides failure support for dumb clients
which assume that the Notification Service is always available.

Local channel protection is only intended to recover from node failures and not
process failures.

Suppliers and consumers may always create a proxy, connect and just start sending
or receiving events: connection reliability would be set to best effort on the client
side of the channel.
The federation connections would be persistent to ensure they are re-established
after a node crash. It is possible to use a separate Notification Service as the
intermediator, or use direct connections.
Referring to Figure 9, if Host C becomes unavailable, the proxy supplier on Host A
(or Host B) will queue all incoming events until the receiving Notification Service
becomes available again.
In order to be certain that the consumer doesn’t lose events, it may be necessary to
make the consumer persistent. This would avoid a situation where the proxy
consumer starts receiving persistent events before the consumer has connected.

Figure 9 Local Host

Pro xy
c on sum e r

Pro xy
c on su m e r

Local N otification Service

Host A

Client Process

Su p p lie rSup p lie r

Notification Service

Local N otification Service

Host C

Client Process

C o n sum erC o nsum e r

Pro xy
su p p lie r
Pro xy

sup p lie r......

Pro xy
c o n su m e r

Pro xy
c o n su m e r

Pro xy
sup p lie r
Pro xy

su p p lie r......

Pro xy
c o n sum e r

Pro xy
c on sum e r

Pro xy
su p p lie r
Pro xy

sup p lie r......

Host B
28
Notification Service

�������	

CHAPTER

2 Using the Service
2.1 Introduction

The main tasks which are performed when using the Notification Service include:
• initialising the ORB and the Notification Service
• creating event suppliers, which requires

 - connecting to the Notification Service event channel
 - creating events
 - sending events

• creating event consumers, which requires
 - connecting to the Notification Service event channel
 - receiving events

• setting QoS properties
• creating and applying event filters
This section describes how the specific features of the Notification Service can be
used to achieve the tasks listed above. The section is organised into a sequence of
topics which
• give general instructions for compiling and running Notification Service clients
• describe basic aspects of creating Notification Service clients
• describe advanced features of Notification Service clients such as QoS and event

filtering
Each topic uses examples to illustrate how the tasks can be accomplished.
Additional examples, complete with source code and descriptions of how to compile
and run them, are supplied separately as part of the OpenFusion product
distribution.

Note
• All of the example code used in this section requires that the OpenFusion

Notification Service is installed and running.

i

29
 Notification Service�������	

 2.2 Compiling and Running Clients

• There is little or no error-checking in the examples shown here. Code to deal with
exceptions has generally been omitted for the sake of clarity and brevity. These
exceptions must of course be properly caught and handled in a working system.

2.1.1 Import Statements
The following packages are required to be imported into classes which are
Notification Service clients. This list is not exhaustive: additional packages may be
required depending on the specific features of the client.

Standard Notification Service Features
The following packages support OMG standard Notification Service features

org.omg.CosNotification.*
org.omg.CosNotifyComm.*
org.omg.CosNotifyFilter.*
org.omg.CosNotifyChannelAdmin.*
org.omg.CosTypedNotifyComm.*
org.omg.CosTypedNotifyChannelAdmin.*

OpenFusion Extensions
The following package is needed when using the OpenFusion Notification Service
extensions:

com.prismt.cos.CosNotification.NotificationExtensions.*

2.2 Compiling and Running Clients
This section describes the general principles to follow when compiling and running
Notification Service clients.

2.2.1 Compiling Client Applications
Clients written for the OpenFusion Notification Service must be compiled with a
supported Java compiler. See the OpenFusion release notes for supported Java
versions.
For further instructions, consult the documentation supplied with your Java
compiler. The are no specific compiler options needed in order to compile
Notification Service clients.

2.2.2 Running Client Applications
Before running any Notification Service client applications, the Notification Service
must be running on one of the supported ORBs.
30
Notification Service

�������	

 2.2 Compiling and Running Clients

2.2.2.1 Initialising the ORB
The appropriate ORB daemon should be running before the Notification Service is
started. Full instructions for how to run your ORB will be given in your ORB
documentation. For example, when running JacORB use the following command:

The OpenFusion Product Guide lists supported ORBs and their start-up/run
commands.

2.2.2.2 Starting the Notification Service
Step 1: Ensure your PATH contains the bin directory of the JDK and the bin directory of

the OpenFusion distribution. The UNIX scripts (or Windows .bat files) that start
the Notification Service are located in the bin directory.

Step 2: Ensure the appropriate ORB daemon is running (see above).
Step 3: Start the Notification Service from a command prompt using the following

command:

The same command can be used at either a UNIX or Windows command prompt.
Alternatively, start the OpenFusion Administration Manager and use the GUI tools
to start and configure the Notification Service. The System Guide gives details of
using the Administration Manager and other options for running OpenFusion
services.

2.2.2.3 Configuring the Notification Service
The OpenFusion Notification Service can be installed and run “out of the box” with
no additional configuration. It is strongly recommended, however, that you
configure the service to optimise performance and reliability for your specific
environment. Section 13, Notification Service Configuration, on page 169 describes
every configurable service property. All properties can be set programatically, or see
the System Guide for details of how to set properties through the GUI
Administration Manager.
All of the example code given in this section can be run using the default (out of the
box) Notification Service configuration.

2.2.2.4 Starting Clients
Once the Notification service is running and suitably configured, client applications
can be started.

% imr

% server -start NotificationService
31
Notification Service�������	

 2.3 Creating Clients

The Notification Service must be running before any clients are started, otherwise
clients will be unable to create or resolve event channels and thus unable to
function.
Also note that in most cases consumers should be started before suppliers are
started, otherwise events may be lost as suppliers begin pushing them onto the event
channel before there is a consumer available to receive them.

2.3 Creating Clients
Notification Service clients include both suppliers and consumers. This section
provides a simple example of each, showing how the key features that every client
must possess can be implemented. Advanced client features, such as filtering and
setting QoS, are covered in subsequent sections.

2.3.1 Creating a Supplier
The first task a Notification Service supplier must perform is to locate the
Notification Service server instance and connect to it. Connections are made to an
event channel, via proxy and admin objects.

2.3.1.1 Connecting to the Server
Step 1: Obtain an object reference to the event channel factory.

Event channels are created by the Notification Service’s event channel factory.
Before an event channel can be created, an object reference to the factory must be
obtained. The ORB’s resolve_initial_references method is passed the
name NotificationService and this is used to resolve initial references to
locate the object

At this point, the type of the object referenced by object is an undefined of type
org.omg.CORBA.Object . Th e narrow m e t h o d o f t h e
EventChannelFactoryHelper helper class is used to narrow the returned object
reference to a specific EventChannelFactory object.

i

org.omg.CORBA.Object object = null;
org.omg.CORBA.ORB orb = null;

try
{
 object = orb.resolve_initial_references (“NotificationService”);
}
catch (org.omg.CORBA.ORBPackage.InvalidName ex)
{
 System.err.println (“Failed to resolve Notification Service”);
 System.exit (1);
}

EventChannelFactory factory = null;

factory = EventChannelFactoryHelper.narrow (object);
32
Notification Service

�������	

 2.3 Creating Clients

Step 2: Create an event channel or obtain a reference to an existing channel.
New event channels can be created once the reference to the factory has been
ob ta ined (s t ep 1) . The example be low uses t he factory ob j ec t ’s
create_channel method to create a new channel with default Quality of Service
settings.

Further details of setting QoS properties when the channel is created are given in
Creating an Event Channel with QoS on page 46.

2.3.1.1.1 Managing Event Channels
Once the event channel has been created, the supplier may need to perform other
actions upon it. To this end, the following example shows how the supplier might
obtain a reference to a specific event channel.
First, the get_all_channels operation returns a sequence of channel identifiers:

Next, the get_event_channel operation is used to obtain an EventChannel
object from an identifier:

Property[] qos = new Property[0];
Property[] adm = new Property[0];
org.omg.CORBA.IntHolder id = new org.omg.CORBA.IntHolder ();
EventChannel channel = null;

try
{
 channel = factory.create_channel (qos, adm, id);
}
catch (UnsupportedQoS ex) {}
catch (UnsupportedAdmin ex) {}

int ids[] = factory.get_all_channels ();

Vector vector = new Vector ();

for (int i = 0; i < ids.length; i++)
{
 try
 {
 vector.addElement (factory.get_event_channel (ids[i]));
 }
 catch (ChannelNotFound ex) {} // ignore
}

EventChannel all[] = new EventChannel [vector.size ()];
for (int i = 0; i < all.length; i++)
{
 all[i] = (EventChannel) vector.elementAt (i);
}

33
Notification Service�������	

 2.3 Creating Clients

The event channel objects are collected in a vector in order to account for the
situation when other interactions are happening with the event channel factory at the
same time. This strategy illustrates general practice when dealing with distributed
systems.

2.3.1.1.2 Destroying an Event Channel
The supplier might also be responsible for destroying the event channel once it is no
longer needed.
Event channels are destroyed using the destroy operation:

All administration objects and all proxy objects created by the administration
objects are destroyed along with the channel. Also, all suppliers and consumers
connected to this channel are disconnected and any events which have yet to be
delivered are discarded. Note that the object reference to a channel is invalidated
when it is destroyed

Step 3: Get the SupplierAdmin object reference.
Supplier administration objects in the Notification Service are created using the
new_for_suppliers operation. This operation takes a filter operator in
parameter and a unique identifier out parameter and returns a newly created
administration object:

The InterFilterGroupOperator object specifies how filters attached to an
administration object are combined with filters attached to the proxies created by the
administration object. The Notification Service supports the following settings for
the filter operator:
• AND: Both an administration filter and a proxy filter must pass an event in order

for the event to be forwarded.
• OR: The event is forwarded when either an administration filter or a proxy filter

passes an event.

2.3.1.1.3 Managing Administration Objects
Administration objects are managed via an array in a similar manner to the event
channels described in Step 2. The following code shows how to create a list of all
SupplierAdmin objects in an event channel:

channel.destroy ();

InterFilterGroupOperator sop = InterFilterGroupOperator.AND_OP;

org.omg.CORBA.IntHolder sid = new org.omg.CORBA.IntHolder ();

SupplierAdmin sadm = channel.new_for_suppliers (sop, sid);

int ids[] = channel.get_all_supplieradmins ();
Vector vector = new Vector ();
34
Notification Service

�������	

 2.3 Creating Clients

Step 4: Obtain a structured push consumer proxy object.
The supplier admin object supports operations for creating proxy consumers. In the
example code below, the SupplierAdmin object admin, obtained in Step 3, is used
to produce proxy consumers (in other words, proxies which represent consumers).
The example shows the creation of three types of consumer.
First, create holders which will hold the IDs of the proxies for each of the three
types:

The client types which will be used are then specified and saved to ClientType
variables:

The ProxyPushConsumer variables for each of the three types are declared. This
is followed by the declaration of three ProxyConsumer variables:

The supplier admin object’s obtain_notification_push_consumer method is
called to obtain a reference to the correct proxy object. For each proxy, the identity
and type parameters are passed. The re turn for th is cal l i s a lways a
ProxyConsumer:

for (int i = 0; i < ids.length; i++)
{
 try
 {
 vector.addElement (channel.get_supplieradmin (ids[i]));
 }
 catch (AdminNotFound ex) {} // ignore
}

SupplierAdmin all[] = new SupplierAdmin [vector.size ()];
for (int i = 0; i < all.length; i++)
{
 all[i] = (SupplierAdmin) vector.elementAt (i);
}

org.omg.CORBA.IntHolder anyID = new org.omg.CORBA.IntHolder ();
org.omg.CORBA.IntHolder strID = new org.omg.CORBA.IntHolder ();
org.omg.CORBA.IntHolder seqID = new org.omg.CORBA.IntHolder ();

ClientType anyType = ClientType.ANY_EVENT;
ClientType strType = ClientType.STRUCTURED_EVENT;
ClientType seqType = ClientType.SEQUENCE_EVENT;

ProxyPushConsumer anyProxy;
StructuredProxyPushConsumer strProxy;
SequenceProxyPushConsumer seqProxy;

ProxyConsumer pc1 = null;
ProxyConsumer pc2 = null;
ProxyConsumer pc3 = null;

try
{
 pc1 = admin.obtain_notification_push_consumer (anyType, anyID);
35
Notification Service�������	

 2.3 Creating Clients

The final stage uses helper classes to cast the objects into their correctly typed
proxies:

2.3.1.1.4 Managing Proxies
The administration interfaces support a number of operations for managing the
created proxies. The following code:
1. Obtains the unique identifier, the channel and the filter operation
2. Lists the total number of proxies
3. Examines whether or not the proxy with identifier 42 exists for a

SupplierAdmin object called admin

Step 5: Connect to the proxy.
To connect to a proxy use the connect_structured_push_supplier method.
In the following code, strProxy is the reference to the structured push consumer
proxy obtained in step 4. The connect_structured_push_supplier method is
used to connect a structured push supplier object to it.

 pc2 = admin.obtain_notification_push_consumer (strType, strID);
 pc3 = admin.obtain_notification_push_consumer (seqType, seqID);
}
catch (AdminLimitExceeded ex)
{
 System.err.println (“Admin limit exceeded!”);
 System.exit (1);
}

anyProxy = ProxyPushConsumerHelper.narrow (pc1);
strProxy = StructuredProxyPushConsumerHelper.narrow (pc2);
seqProxy = SequenceProxyPushConsumerHelper.narrow (pc3);

int id = admin.MyID ();
EventChannel ec = admin.MyChannel ();
InterFilterGroupOperator op = admin.MyOperator ();

int[] pushProxies = admin.push_consumers ();

int total = pushProxies.length;

System.out.println (“Total proxies: “ + total);

try
{
 ProxyConsumer proxy = admin.get_proxy_consumer (42);
 System.out.println (“Proxy with id 42 exists!”);
}
catch (ProxyNotFound ex)
{
 System.out.println (“Proxy with id 42 doesn’t exist!”);
}

try
{
 strProxy.connect_structured_push_supplier
36
Notification Service

�������	

 2.3 Creating Clients

Step 6: Disconnect from the proxy.
To d i s c on nec t t he su pp l i e r f r o m the p ro xy con sum er, u s e t h e
disconnect_structured_push_consumer method:

The proxy object is invalidated and cannot be used when it has been disconnected.

Further options for proxy management can be found in Removing Inactive Proxies
on page 44.

2.3.1.2 Creating Events
Structured events consist of header and body components. The header consists of
properties added to the event as an array. The body consists of data in the form of a
CORBA Any. These components are created using the methods illustrated in the
following example:

 (
 StructuredPushSupplierHelper.narrow
 (ObjectAdapter.getObject (this))
);
}
catch (org.omg.CosEventChannelAdmin.AlreadyConnected ex)
{
 System.err.println (“Already connected!”);
 // Handle exception
 return;
}

strProxy.disconnect_structured_push_consumer ();

i

StructuredEvent event = new StructuredEvent ();

Property qos[] = new Property [2];
qos[0] = new Property ();
qos[0].name = Priority.value;
qos[0].value = orb.create_any ();
qos[0].value.insert_short ((short) 4);
qos[1] = new Property ();
qos[1].name = Timeout.value;
qos[1].value = orb.create_any ();
qos[1].value.insert_ulonglong ((long) 4*10*1000*1000); // 4 seconds

Property filterable[] = new Property [2];
filterable[0] = new Property ();
filterable[0].name = “packets”;
filterable[0].value = orb.create_any ();
filterable[0].value.insert_long (2000);
filterable[1] = new Property ();
filterable[1].name = “username”;
filterable[1].value = orb.create_any ();
filterable[1].value.insert_string (“client 1”);

EventType type = new EventType (“Telecom”, “Info”);
FixedEventHeader fixed = new FixedEventHeader (type, “event”);

org.omg.CORBA.Any data = orb.create_any ();
37
Notification Service�������	

 2.3 Creating Clients

This example creates a structured event with the following components:
 - QoS settings priority (short) and timeout (unsigned long) in the variable

header
 - filterable properties packets (long) and username (string) in the filterable

body
 - domain name Telecom (string)
 - type name Info (string)
 - some data (long)

2.3.1.3 Sending Events
Events in the Notification Service are transmitted by client objects implementing
one of the following Supplier interfaces:
• PushSupplier
• StructuredPushSupplier
• SequencePushSupplier
A supplier can begin sending events as soon as it has obtained a proxy of the
corresponding type and has connected to it. The event supplier typically obtains its
events from some external source or produces events when some external event has
occurred. See Creating Events on page 37 for an example of how to create a
structured event.
A typical event supplier must perform each of the steps listed below.

Step 1: Resolve an event channel factory. Code for this is given in Connecting to the Server,
step 1 on page 32.

Step 2: Obtain a reference to an event channel. Code for this is given in Connecting to the
Server, step 2 on page 33.

Step 3: Obtain a reference to a supplier admin object. Code for this is given in Connecting
to the Server, step 3 on page 34.

Step 4: Obtain a reference to a proxy consumer object. Code for this is given in Connecting
to the Server, step 4 on page 35.

Step 5: Connect to the proxy consumer. Code for this operation is given in Connecting to
the Server, step 5 on page 36.

Step 6: After the supplier has established a connection to the proxy consumer, it can begin
pushing events onto the event channel.

data.insert_long (42);

event.header = new EventHeader (fixed, qos);
event.filterable_data = filterable;
event.remainder_of_body = data;
38
Notification Service

�������	

 2.3 Creating Clients

The following code uses an infinite loop to send a continuous stream of simple
events. (This is suitable for test purposes; in reality, events would normally be sent
when created by some triggering mechanism.)

In this example, the data of the structured event is obtained by invoking the
obtain_data method, which gets the data from an external source. The proxy’s
push_structured_event method is used to push the event onto the event
channel.

2.3.2 Creating a Consumer
The first task a Notification Service consumer must perform is locate the
Notification Service and connect to it. Connections are made to an event channel,
via proxy and admin objects.

2.3.2.1 Connecting to the Server
Step 1: Obtain an object reference to the event channel factory. The method is identical to

that used in suppliers, as described in Creating a Supplier on page 32:

while (true)
{
 org.omg.CORBA.Any data = orb.create_any ();
 obtain_data (data); // obtain data from external source

 StructuredEvent event = new StructuredEvent ();

 EventType etype = new EventType (“example”, “test”);
 FixedEventHeader fixed = new FixedEventHeader (etype, “event”);

 Property variable[] = new Property[0];

 event.header = new EventHeader (fixed, variable);
 event.filterable_data = new Property[0];
 event.remainder_of_body = data;

 try
 {
 proxy.push_structured_event (event);
 }
 catch (org.omg.CosEventComm.Disconnected ex) {}
}

org.omg.CORBA.Object object = null;
org.omg.CORBA.ORB orb = null;

try
{
 object = orb.resolve_initial_references (“NotificationService”);
}
catch (org.omg.CORBA.ORBPackage.InvalidName ex)
{
 System.err.println (“Failed to resolve Notification Service”);
 System.exit (1);
}

39
Notification Service�������	

 2.3 Creating Clients

Step 2: Create an event channel or obtain a reference to an existing channel. The method is
identical to that used in suppliers, as described in Creating a Supplier on page 32:

Step 3: Get the ConsumerAdmin object reference.
Consumer administration objects in the Notification Service are created using the
new_for_consumers operation. This operation takes a filter operator in
parameter and a unique identifier out3...== parameter and returns a newly
created administration object:

The InterFilterGroupOperator object specifies how filters attached to an
administration object are combined with filters attached to the proxies created by the
administration object. The Notification Service supports the following settings for
the filter operator:
• AND: Both an administration filter and a proxy filter must pass an event in order

for the event to be forwarded.
• OR: The event is forwarded when either an administration filter or a proxy filter

passes an event.

2.3.2.1.1 Managing Administration Objects
Administration objects are managed via an array in the same manner as suppliers
manage admin objects. The following code shows how to create a list of all
ConsumerAdmin objects in an event channel:

EventChannelFactory factory = null;

factory = EventChannelFactoryHelper.narrow (object);

org.omg.CORBA.IntHolder cid = new org.omg.CORBA.IntHolder ();
Property[] qos = new Property[0];
Property[] adm = new Property[0];
EventChannel channel = null;
try
{
 channel = factory.create_channel (qos, adm, cid);
}
catch (UnsupportedQoS ex) {}
catch (UnsupportedAdmin ex) {}

InterFilterGroupOperator cop = InterFilterGroupOperator.AND_OP;

org.omg.CORBA.IntHolder cid = new org.omg.CORBA.IntHolder ();

ConsumerAdmin cadm = channel.new_for_consumers (cop, cid);

int ids[] = channel.get_all_consumeradmins ();
Vector vector = new Vector ();

for (int i = 0; i < ids.length; i++)
{
 try
 {
40
Notification Service

�������	

 2.3 Creating Clients

Step 4: Obtain a structured push supplier proxy object.
The consumer admin object supports operations for creating proxy suppliers. In the
example code below, the ConsumerAdmin object admin, obtained in step 3, is used
to produce proxy suppliers (in other words, proxies which represent suppliers). The
example shows the creation of three types of supplier.
First, create holders which will hold the IDs of the proxies for each of the three
types:

The client types which will be used are then specified and saved to ClientType
variables:

The ProxyPushSupplier variables for each of the three types are declared. This
is followed by the declaration of three ProxySupplier variables:

To in i t ia l ly obta in a reference to the correc t proxy objec t , the ca l l
obtain_notification_push_supplier is made on the consumer admin
object. For each proxy, the parameters for identity and type are passed. The return
for this call is always a ProxySupplier:

 vector.addElement (channel.get_consumeradmin (ids[i]));
 }
 catch (AdminNotFound ex) {} // ignore
}

ConsumerAdmin all[] = new ConsumerAdmin [vector.size ()];
for (int i = 0; i < all.length; i++)
{
 all[i] = (ConsumerAdmin) vector.elementAt (i);
}

org.omg.CORBA.IntHolder anyID = new org.omg.CORBA.IntHolder ();
org.omg.CORBA.IntHolder strID = new org.omg.CORBA.IntHolder ();
org.omg.CORBA.IntHolder seqID = new org.omg.CORBA.IntHolder ();

ClientType anyType = ClientType.ANY_EVENT;
ClientType strType = ClientType.STRUCTURED_EVENT;
ClientType seqType = ClientType.SEQUENCE_EVENT;

ProxyPushSupplier anyProxy;
StructuredProxyPushSupplier strProxy;
SequenceProxyPushSupplier seqProxy;

ProxySupplier ps1 = null;
ProxySupplier ps2 = null;
ProxySupplier ps3 = null;

try
{
 ps1 = admin.obtain_notification_push_supplier (anyType, anyID);
 ps2 = admin.obtain_notification_push_supplier (strType, strID);
 ps3 = admin.obtain_notification_push_supplier (seqType, seqID);
}
catch (AdminLimitExceeded ex)
{

41
Notification Service�������	

 2.3 Creating Clients

The final stage uses helper classes to cast the objects into their correctly typed
proxies:

2.3.2.1.2 Managing Proxies
The administration interfaces support a number of operations for managing the
created proxies. The following code:
1. Obtains the unique identifier, the channel and the filter operation.
2. Lists the total number of proxies.
3. Examines whether or not the proxy with identifier 42 exists for a

ConsumerAdmin object called admin.

Step 5: Connect to the proxy.
Use the connect_structured_push_consumer method to connect to a proxy.
In the following code, proxy is the reference to structured push consumer proxy
obtained in Step 4. The connect_structured_push_consumer method is used
to connect a structured push consumer object to it.

 System.err.println (“Admin limit exceeded!”);
 System.exit (1);
}

anyProxy = ProxyPushSupplierHelper.narrow (ps1);
strProxy = StructuredProxyPushSupplierHelper.narrow (ps2);
seqProxy = SequenceProxyPushSupplierHelper.narrow (ps3);

int id = admin.MyID ();
EventChannel ec = admin.MyChannel ();
InterFilterGroupOperator op = admin.MyOperator ();

int[] pushProxies = admin.push_suppliers ();

int total = pushProxies.length;

System.out.println (“Total proxies: “ + total);

try
{
 ProxySupplier proxy = admin.get_proxy_supplier (42);
 System.out.println (“Proxy with id 42 exists!”);
}
catch (ProxyNotFound ex)
{
 System.out.println (“Proxy with id 42 doesn’t exist!”);
}

try
{
 strProxy.connect_structured_push_consumer
 (
 StructuredPushConsumerHelper.narrow
 (ObjectAdapter.getObject (this))
);
}

42
Notification Service

�������	

 2.3 Creating Clients

Step 6: Disconnect from the proxy.
To d i s c on nec t t he c on sum er f ro m the p ro xy s up p l i e r, u s e t h e
disconnect_structured_push_supplier method, as follows:

The proxy object is invalidated and cannot be used when it has been disconnected.

Further options for proxy management can be found in Removing Inactive Proxies
on page 44.

2.3.2.2 Receiving Events
Events in the Notification Service can be received by client objects implementing
one of the following Consumer interfaces.
• PushConsumer

• StructuredPushConsumer

• SequencePushConsumer
Push consumers receive events by implementing a push operation that corresponds
to the consumer type. Note that responsive push consumers should return from the
push operation as quickly as possible. One way to achieve this would be to provide
event processing within a separate thread.
The following code shows a simple implementation of the push operation used by
structured push consumers:

The extract_long method extracts the data from the incoming event. In this
example, we assume that the data is an integer value. If the supplier had formed the
event in a different way, putting a string in the event body, for example, a different
extraction method would be required.

catch (org.omg.CosEventChannelAdmin.AlreadyConnected ex)
{
 System.err.println (“Already connected!”);
 // Handle exception
 return;
}
catch (org.omg.CosEventChannelAdmin.TypeError ex)
{
 System.err.println (“Type error!”);
 // Handle exception
 return;
}

strProxy.disconnect_structured_push_supplier ();

i

public void push_structured_event (StructuredEvent event)
{
 org.omg.CORBA.Any data = event.remainder_of_body;
 int value = data.extract_long ();
 System.out.println (“Received event: “ + value);
}

43
Notification Service�������	

 2.3 Creating Clients

2.3.2.3 Suspending and Resuming Connections
Event consumers of the push type can temporarily suspend event communication.
To prevent event loss when a consumer connection is suspended, the event channel
buffers the events sent by the supplier. When the connection is re-established, event
transmission to the consumer resumes with potentially no loss of events.
In practice, the event loss on reconnection is controlled by Quality of Service
properties. The MaxEventsPerConsumer QoS property determines how many
events will be held for a disconnected consumer. See Section 4.1, Quality of Service
Properties on page 67 for a description of the MaxEventsPerConsumer property.
To suspend a connection, the client should call the proxy’s suspend_connection
operation as shown in the following example:

To resume a suspended connection, the client should call the proxy’s
resume_connection method as shown in the following example:

2.3.3 Removing Inactive Proxies
A common requirement in the Notification Service is to remove inactive supplier
and consumer proxies when they are no longer needed (because they are connected
to suppliers or consumers that no longer exist).
This section gives guidance on how this is handled for different types of proxy.

try
{
 strProxy.suspend_connection ();
}
catch (ConnectionAlreadyInactive ex)
{
 System.err.println (“Already suspended!”);
 // handle exception
}
catch (NotConnected ex)
{
 System.err.println (“Not connected!”);
 // handle exception
}

try
{
 strProxy.resume_connection ();
}
catch (ConnectionAlreadyActive ex)
{
 System.err.println (“Already resumed!”);
 // handle exception
}
catch (NotConnected ex)
{
 System.err.println (“Not connected!”);
 // handle exception
}

44
Notification Service

�������	

 2.3 Creating Clients

2.3.3.1 Proxy Push Consumers
When the proxy has been idle for a specified period of time, the proxy is
disconnected. The amount of idle time required before disconnection should be
specified with the MaxInactivityInterval Quality of Service property,
described on page 75.

2.3.3.2 Proxy Push Suppliers
The way that proxy push suppliers are handled depends on the setting of the
ConnectionReliability Quality of Service property.

2.3.3.2.1 With Connection Reliability Set to Best Effort
If the ConnectionReliability QoS on the proxy is set to BestEffort, the
Notification Service will always destroy a proxy push supplier when it fails to
deliver an event to its attached consumer.

2.3.3.2.2 With Connection Reliability Set to Persistent
If the ConnectionReliability QoS is set to Persistent, the Notification
Service will keep resending events until an OBJECT_NOT_EXIST system exception
is encountered. The conditions that raise this exception are ORB-specific. Most
ORBs raise the exception only when the object no longer exists; in this case, the
proxy can be safely removed. The following ORBs throw OBJECT_NOT_EXIST
correctly:
• VisiBroker 3.4
• VisiBroker 5.0
• OrbixWeb 3.2
• Orbix 2000 v1.2
• Orbix 2000 v2.0
• JacORB 1.3
• JacORB 1.4
However, a number of ORBs raise the exception if the object is merely inactive, in
which case it is not always safe to remove the proxy. The following ORBs have this
behaviour:
• VisiBroker 4.1
• VisiBroker 4.5
• Orbacus 4.0
• Orbacus 4.1
45
Notification Service�������	

 2.4 Using Quality of Service Properties

When OBJECT_NOT_EXIST cannot be used reliably, the MaxReconnectAttempts
and ReconnectInterval QoS properties can be used. MaxReconnectAttempts
defines the maximum number of times the Notification Service will attempt to
reconnect to a failed push consumer. The Notification Service disconnects the client
(as though the disconnect operation had been invoked on the proxy) if the client is
still unavailable after the maximum number of attempts have been made.
ReconnectInterval determines the interval the Notification Service will wait
between reconnect attempts.

2.3.3.3 Alternative Method
To determine whether a given proxies (of any type) is inact ive , the
ConnectedClient QoS property can be used. This property is set on all proxies
and gives the object reference of the connected client. Use get_qos() on the proxy
to obtain the property array and loop through the array to locate the
ConnectedClient property (see Accessing the QoS on page 48 for an example of
this). The value of the ConnectedClient property contains the object reference of
the client associated with that proxy. From this, it is possible to determine if the
client exists and whether the proxy can therefore be safely destroyed.

2.4 Using Quality of Service Properties
Quality of Service settings may be applied to event channels, admin objects and
proxy objects on either the supplier or the consumer side. The following example
demonstrates how to apply QoS to an event channel.

2.4.1 Creating an Event Channel with QoS
QoS properties and administrative properties are applied to an event channel when it
is created by passing an array of properties as a parameter of the create_channel
operation. The following example illustrates this. The example code given here can
be part of a either a supplier or a consumer.

Step 1: Create an array to hold the QoS properties. In this example, the array is sized to hold
two properties.

Step 2: Add the QoS properties to the array. Each array element holds a property name and
a property value. The following code adds the EventReliability property to the
array and sets its value to persistent.

Property[] qosProp = new Property[2];

qosProp[0] = new Property ();
qosProp[0].name = EventReliability.value;
qosProp[0].value = orb.create_any ();
qosProp[0].value.insert_short
(org.omg.CosNotification.Persistent.value);
46
Notification Service

�������	

 2.4 Using Quality of Service Properties

Similarly, the following code adds the ConnectionReliability property to the
array and sets its value to persistent.

Step 3: Repeat the above steps to create an array of administrative properties. Although the
procedure is the same as for QoS properties, a separate array is required as the
create_channel method takes two separate array parameters. The following code
creates an array of one element and populates it with the MaxQueueLength
property, setting the property’s value to 100.

Step 4: Use the event channel factory’s create_channel operation to create the channel,
passing the Qos and administrative property arrays as parameters, as illustrated by
the following code:

The Notification Service throws exceptions with detailed information when the code
attempts to set illegal QoS or administrative properties.

2.4.2 Managing QoS
QoS and administrative properties do not have to be set when the event channel is
created. Properties can be altered programatically at any time and new properties
can be added to the channel.

2.4.2.1 Adding New QoS to a Channel
Adding a new QoS or administrative property to an existing channel requires the
channel’s set_qos or set_admin operations. These operations take an array of
properties as a parameter. The array of properties is constructed exactly as in
Creating an Event Channel with QoS on page 46.

qosProp[1] = new Property ();
qosProp[1].name = ConnectionReliability.value;
qosProp[1].value = orb.create_any ();
qosProp[1].value.insert_short
(org.omg.CosNotification.Persistent.value);

Property[] admProp = new Property[1];
admProp[0] = new Property ();
admProp[0].name = MaxQueueLength.value;
admProp[0].value = orb.create_any ();
admProp[0].value.insert_long (100);

org.omg.CORBA.IntHolder id = new org.omg.CORBA.IntHolder ();
EventChannel channel = null;

try
{
 channel = factory.create_channel (qosProp, admProp, id);
}
catch (UnsupportedQoS ex) {}
catch (UnsupportedAdmin ex) {}

i

47
Notification Service�������	

 2.4 Using Quality of Service Properties

The following code illustrates how to use set_qos to add the MaximumBatchSize
QoS property:

The following code illustrates how to use set_admin to add the MaxQueueLength
administrative property:

2.4.2.2 Accessing the QoS
The QoS and administrative settings for a channel can be accessed using the
channel’s get_qos and get_admin operations. The following code illustrates a
way of simply listing the current value of each property:

2.4.2.3 Validating Event QoS
Supplier and consumer proxies provide an operation for validating the QoS setting
of an event. The operation is validate_event_qos and is defined in the
ProxyConsumer and ProxySupplier interfaces.

Property newQoS[] = new Property[1];

newQoS[0] = new Property ();
newQoS[0].name = MaximumBatchSize.value;
newQoS[0].value = orb.create_any ();
newQoS[0].value.insert_long (100);

try
{
 channel.set_qos (newQoS);
}
catch (UnsupportedQoS ex) {}

Property newAdm[] = new Property[1];
newAdm[0] = new Property ();
newAdm[0].name = MaxQueueLength.value;
newAdm[0].value = orb.create_any ();
newAdm[0].value.insert_long (10);

try
{
 channel.set_admin (newAdm);
}
catch (UnsupportedAdmin ex) {}

Property qosP[] = channel.get_qos ();
Property admP[] = channel.get_admin ();

for (int i = 0; i < qosP.length; i++)
{
 System.out.println (“Name : “ + qosP[i].name);
 System.out.println (“Value: “ + qosP[i].value);
}

for (int i = 0; i < admP.length; i++)
{
 System.out.println (“Name : “ + admP[i].name);
 System.out.println (“Value: “ + admP[i].value);
}

48
Notification Service

�������	

 2.5 Using Filters

It is good practice for all suppliers that use QoS settings in the header of a structured
event to use this operation to validate the settings before sending an event.

2.5 Using Filters
Filters can be attached to both admin objects and proxies on both the supplier and
the consumer side. Filters that are attached to admin objects apply to all the proxies
created by that admin object.
An object with attached filters will only forward an event when one or more of the
filters passes the event.

2.5.1 Filter Objects
Filters are objects in their own right and must be treated as distinct from the admin
or proxy objects they are attached to. An individual filter object can be used by more
than one admin or proxy object.
There are two important points to keep in mind when managing filters:
• A filter exists independently of the proxies that is associated with: if an associated

proxy is destroyed or the proxy’s reference to the filter is removed, then the filter
will still exist. Accordingly, it is recommended that the filter’s reference is stored
so that it can still be referenced or destroyed after its associated proxies are
removed.

• A filter should be destroyed only after all proxies referencing the filter have
removed their references to it, otherwise the proxies may contain hanging
references (which may subsequently throw an exception).

Property[] qos = new Property[2];
NamedPropertyRangeSeqHolder available;

qos[0] = new Property ();
qos[0].name = Priority.value;
qos[0].value = orb.create_any ();
qos[0].value.insert_short ((short) 4);
qos[1] = new Property ();
qos[1].name = Timeout.value;
qos[1].value = orb.create_any ();
qos[1].value.insert_ulonglong ((long) 4*10*1000*1000); // 4 seconds

available = new NamedPropertyRangeSeqHolder ();

try
{
 proxy.validate_event_qos (qos, available);
}
catch (UnsupportedQoS ex)
{
 System.err.println (“Unsupported QoS settings!”);
 // Handle exception.
}

49
Notification Service�������	

 2.5 Using Filters

Take care to avoid leaving references to non-existent filters or creating orphaned
filter objects which have no references to them.

2.5.1.1 Creating a Filter Object
The recommended way to create a filter is by using the event channel’s filter factory,
as this creates the filter in the same process as the admin and proxy objects which
will use it.

Step 1: Obtain a reference to a filter factory by invoking the channel’s
default_filter_factory object, as in the following code:

Step 2: Use the factory’s create_filter operation to create the filter object.
The create_filter operation takes the name of the filter grammar as a
parameter. Currently, the only grammar supported by the Notification Service is
Extended TCL, so the s t r ing EXTENDED_TCL must be passed to the
create_filter operation. The following code illustrates this.

2.5.1.2 Adding a Filter Object to an Admin Object
Use the admin object’s add_filter operation to add a filter to the object, as
follows:

2.5.1.3 Listing Filter Objects
The following example shows how to obtain a list of filters attached to an admin
object and then use that list to perform management operations on each item in the
list (in this case, to verify that the correct filter grammar is being used).

FilterFactory filterFactory = channel.default_filter_factory ();

Filter filter = null;
String grammar = “EXTENDED_TCL”;

try
{
 filter = filterFactory.create_filter (grammar);
}
catch (InvalidGrammar ex)
{
 System.err.println (“Grammar “ + grammar + “ is invalid!”);
 // Handle exception
}

int id = admin.add_filter (filter);

int[] all = admin.get_all_filters ();
Vector vector = new Vector ();

for (int i = 0; i < all.length; i++)
{
 try
 {
 Filter f = admin.get_filter (all[i]);
 vector.addElement (f);
50
Notification Service

�������	

 2.5 Using Filters

2.5.1.4 Removing Filter Objects
To remove a single, specified filter from an admin object, use the following:

To remove all filters from an admin object, use the following:

Note that neither of these operations destroys the filter object, they simply remove
references to the object.

2.5.2 Event Filters
The filter object itself will not carry out any filtering activities. To create a working
event filter, filter constraints must be added to the object. A filter can be composed
of one or more constraints.
OR semantics are applied between multiple constraints and between multiple filters.
If any one constraint in any filter matches the event, the proxy or administration
object will forward the event.
Either AND or OR semantics may be applied between administration object filters
and proxy object filters. For OR semantics, an event will be forwarded if it matches
either the administration object filters or the proxy object filters. For AND
semantics, both must match.
A constraint must be explicitly associated with one or more event types. A
constraint will only be evaluated if the event type matches one or more of the event
types associated with the constraint. To optimise performance, if no constraints
attached to a particular filter match an event’s event type the filter will not be
invoked at all.

 }
 catch (FilterNotFound ex) {}
}

for (int i = 0; i < vector.size(); i++)
{
 Filter f = (Filter) vector.elementAt (i);
 if (! f.constraint_grammar().equals (“EXTENDED_TCL”))
 {
 System.err.println (“Filter has unknown grammar!”);
 // Handle exception
 }
}

try
{
 admin.remove_filter (id);
}
catch (FilterNotFound ex) {} // somebody else removed it!

admin.remove_all_filters ();
51
Notification Service�������	

 2.5 Using Filters

Certain constraints are only applicable to certain types of event. For example,
“alarm” events may have “Origin” and “Category” fields in the filterable body while
other event types may not. Constraints which filter on Origin and Category fields
will only be applicable to “alarm” events.

2.5.2.1 Constructing Constraints
The following example creates a filter constraint which will pass only events of type
Alarm from the Telecom domain which have a priority greater than 5.

Step 1: Create an EventType array and add the type and domain which will be filtered:

The wildcard character, *, can be used in the domain or event type fields if the
constraint is to match all event types or domains, as shown in the following code:

Step 2: The expression which will filter on priority greater than 5 is a string written using
Extended TCL grammar:

Extended TCL is described in Extended TCL Grammar on page 54.
Step 3: Create a ConstraintExp array to hold the filter constraints created in Steps 1 and

2:

Step 4: Use the filter object’s add_constraints operation to attach the constraint to the
filter. Each filter object can consist of multiple constraint expressions.

EventType types[] = new EventType[1];
types[0] = new EventType (“Telecom”, “Alarm”);

EventType types1[] = new EventType[1];
types1[0] = new EventType (“*”, “*”);

String expr = “$Priority > 5”;

ConstraintExp exp[] = new ConstraintExp[1];
exp[0] = new ConstraintExp (types, expr);

try
{
 ConstraintInfo info[] = filter.add_constraints (exp);
 int id = info[0].constraint_id;
 System.out.println (“Added constraint has id “ + id);
}
catch (InvalidConstraint ex)
{
 System.err.print (“The constraint with the expression “);
 System.err.print (ex.constr.constraint_expr);
 System.err.println (“ is invalid!”);
 // Handle exception.
}

52
Notification Service

�������	

 2.5 Using Filters

2.5.2.2 Managing Constraints
Each constraint added to a filter is assigned a unique identifier (unique within the
scope of that filter object). This provides a means to access specific constraints at
run time, allowing them to be modified or deleted.
A filter’s modify_constraints operation is used to both modify and delete
constraints. The following code demonstrates this. In the example, constraints with
identifiers 1, 2, 3, and 5 are deleted and the constraints with identifiers 4 and 6 are
modified.

The modify_constraints operation can throw an InvalidConstraint
exception when one of the modified constraints contains invalid syntax. Also, the
ConstraintNotFound exception is thrown when any of the unique identifiers
specified in either of the input sequences cannot be found.
Filters also have a remove_all_constraints operation, which removes every
constraint added to the filter.

2.5.3 Writing Constraint Expressions
This section describes the syntax and conventions of Extended TCL grammar,
which is used for creating filtering constraint expressions.
The following points should be noted if filter performance is an issue:

int del_list[] = { 1, 2, 3, 5 };
EventType etypes1[] = new EventType[1];
ConstraintExp cexp[] = new ConstraintExp[2];
ConstraintInfo modify_list[] = new ConstraintInfo[2];

etypes1[0] = new EventType (“Telecom”, “Powerfailure”);
cexp[0] = new ConstraintExp (etypes1, “$.voltage < 210”);
modify_list[0] = new ConstraintInfo (cexp[0], 4);

EventType etypes2[] = new EventType[1];
etypes2[0] = new EventType (“Telecom”, “Alarm”);
cexp[1] = new ConstraintExp (etypes2, “$Priority == 3”);
modify_list[1] = new ConstraintInfo (cexp[0], 6);

try
{
 filter.modify_constraints (del_list, modify_list);
}
catch (InvalidConstraint ex)
{
 System.err.print (“The constraint with the expression “);
 System.err.print (ex.constr.constraint_expr);
 System.err.println (“ is invalid!”);
 // Handle exception.
}
catch (ConstraintNotFound ex)
{
 System.err.println (“Constraint with id “ + ex.id + “ not found!”);
 // Handle exception.
}

53
Notification Service�������	

 2.5 Using Filters

• Filtering simple data types is faster than filtering complex data types.
• The filter parser uses the DynAny interface to process complex data types: this is

relatively slow and should be avoided if possible.
• More complex constraint expressions take longer to process.

2.5.3.1 Extended TCL Grammar
Extended TCL is based on Java-style ‘dot’ notation and syntax. A typical constraint
is constructed as follows:

$.header.fixed_header.event_type.type_name == ’Info’

Keywords are case sensitive in TCL.
The elements used in this expression are individually explained in the following
sections.

2.5.3.2 Basic Elements

2.5.3.2.1 $ Token
The $ token is used to denote the current event. For example, the expression
$domain_name refers to the value of the current event’s domain_name variable, as
in the following constraint expression:

$domain_name == ’Telecom’

The $ token may refer to either a variable of type Any or a variable of type
StructuredEvent, depending on whether Event Service style or Notification
Service style event communication is used.

2.5.3.2.2 ‘dot’ Operator
The dot operator is used to access an element within a structure. For example, the
expression event_type.type_name refers to the value of the type_name
e l e m e n t w i t h i n t h e event_type s t r u c t u r e . T h e e x p r e s s i o n
$.remainder_of_body refers to a field called remainder_of_body within the
current event.
A full example of a constraint using this operator is:

$.header.fixed_header.event_type.type_name == ’Info’

2.5.3.2.3 Literals
The following literal expressions are allowed within a constraint.
• Integers: sequences of digits with optional leading + or -

$.header.variable_header(Priority) == 3

• Floats: sequences of digits with a decimal point and optional exponent notation
$.remainder_of_body == 10.5
54
Notification Service

�������	

 2.5 Using Filters

• Strings: strings of one or more characters enclosed by single quotation marks: ’
’. To include a single quotation mark in a string, prefix it with a backslash
character: \’. To include a backslash, use a double backslash: \\.
$.filterable_data(username) == ’joe’

2.5.3.2.4 Runtime Variables
Runtime variables are used as shorthand for common components within a
s t r u c t u r e d e v e n t . F o r e x a m p l e , t h e e x p r e s s i o n
$.header.fixed_header.event_type.type_name can be shortened to
$type_name. Note that there is no dot between the $ and the variable name in a
shortened runtime variable expression.
Runtime variables can be used for any component in the fixed header, variable
header, or filterable body of an event. If the runtime variable cannot be found, the
expression which uses it defaults to $.runtime. This allows generic filters, which
can be used for different types of event, to be written.
There is a special runtime variable, $curtime, which refers to the current time. Its
type is UtcT from the TimeBase module.

2.5.3.3 Operators

2.5.3.3.1 Comparative Functions
The following comparative operations can be used:

The result of applying a comparative function is a boolean value (true or false).

Example 1
$.Cost < 5

If the value of the Cost property is less than 5, the expression evaluates to true.

Example 2
‘UK’ in $.Country_Name

== equality
!= inequality
> greater than
>= greater than or equal
< less than
<= less than or equal
~ substring match
in element in sequence
55
Notification Service�������	

 2.5 Using Filters

If the Country_Name property, which consists of a sequence of strings,
includes the string “UK”, then the expression evaluates to true.

2.5.3.3.2 Boolean Operators
TCL supports the standard boolean operators and, or, and not. Boolean
expressions evaluate to a weakly-typed long. This allows complex expressions
which evaluate whether a number of boolean expressions are satisfied. For example:

$type_name == ‘COUNTRY’ and ((‘UK’ in $.Country_Name) +
(‘France’ in $.Country_Name) +
(‘Germany’ in $.Country_Name) +
(‘Italy’ in $.Country_Name) +
(‘Spain’ in $.Country_Name)) > 2

2.5.3.3.3 Special Operators
• The bracket operator, [], is used when the component is an array. For example,
$[3] refers to the fourth element in an event which contains an array.

• A member called _length is available when the component is an array or
sequence. For example, the expression $._length > 3 evaluates to true for all
events that are either arrays or sequences of length four or more.

• The parenthesis operator, (), is used to reference, by name, a particular value
within a component that is a list of name-value pairs. For example,
$.header.variable_header (Priority) == 3 evaluates to true if the
Priority QoS in the variable header of a structured event equals 3.

• The _type_id member which refers to the unscoped IDL type name. For
example, when a component is an IDL struct called MyEvent, the _type_id
field is MyEvent.

• The _repos_id member which refers to the RepositoryId. For example, when a
component is an IDL struct called MyEvent, the _repos_id field is
IDL:module/MyEvent:1.0.

• The default operator is used when a component is a union, in order to examine
whether the union has an active default member or not. For example, the
expression default $ evaluates to true when the event is a union with an
active default member.

• The exists operator is used to determine whether a field exists within a component
or not. For example, exists $.packets evaluates to true if the event has a
field called packets.

2.5.3.3.4 Mathematical Operators
TCL supports the following mathematical operators:

+ - * /
56
Notification Service

�������	

 2.5 Using Filters

2.5.3.3.5 Operator Precedence
TCL has the following operator precedence (highest to lowest):

() exist unary-minus
not
* /
+ - ~
in
== != < <= > >=
and
or

Parentheses, (), can be used to over-ride operator precedence.

2.5.3.4 Constraint Examples
The following examples show constraints that can be used to filter out events based
on the values of the event’s properties.
These examples assume that structured events of the type created in the example in
Creating Events on page 37 are being sent.
In each case, the example will pass events for which the constraint expression
evaluates to true.
• events that have a priority equal to 3:

$.header.variable_header(Priority) == 3

• events that have a data value of 42:
$.remainder_of_body == 42

• events that have exactly three QoS settings:
$.header.variable_header._length == 3

• events with data type long:
$.remainder_of_body._type_id == ’long’

• events that time out in less than or equal to three seconds:
$.header.variable_header(timeout) <=
$curtime + (3*10*1000*1000)

• events which are in the Telecom domain and have the Info event type:
$.header.fixed_header.event_type.domain_name == ’Telecom’
and $.header.fixed_header.event_type.type_name == ’Info’

The expression can be simplified using runtime variables (page 55) to give:
$domain_name == ’Telecom’ and $type_name == ’Info’

• all events that do not belong to the Telecom domain:
not $domain_name == ’Telecom’
57
Notification Service�������	

 2.6 Using Persistence

• events that have more than 200 packets or a username called joe:
$.filterable_data(packets) > 200 or
$.filterable_data(username) == ’joe’

2.6 Using Persistence
The Notification Service supports persistent storage via JDBC access to a relational
database. Oracle, Sybase, Informix, and hsqldb are supported on both Unix and
Windows platforms. Microsoft SQL Server is supported on Windows.
For detailed information on how to configure persistent storage, see the OpenFusion
CORBA Services System Guide.
58
Notification Service

�������	

CHAPTER

3 API Definitions
This section describes selected interfaces and related aspects of the service: the
complete IDL API is provided elsewhere as part of the product distribution.

The OMG IDL for version 4 of the OpenFusion Notification Service is the same in
as in previous versions, however features which are not supported in version 4
throw a NO_IMPLEMENT system exception.

3.1 OMG Standard API Definitions
The CosNotification module contains common data types and interfaces used
throughout the Notification Service. The interfaces in this module are summarized
in Table 1.

The CosNotifyComm module contains the client interfaces for the Notification
Service. These are the interfaces from which different types of suppliers and
consumers need to inherit in order to connect to and communicate with the
Notification Service. Note that clients that support interfaces from the
CosEventComm module can also be connected to the Notification Service. The
Notification Service client interfaces are summarized in Table 2.

Table 1 CosNotification Interfaces

Interface Purpose
AdminPropertiesAdmin A base interface for the EventChannel interface

which supports operations for setting and getting
various administrative properties on an event
channel object.

QoSAdmin A base interface for the EventChannel interface,
both administration interfaces, and all of the
different proxy interfaces. It supports operations for
setting and getting various QoS properties on an
event channel and proxy objects. There is also an
operation for negotiating the QoS supported by the
Notification Service.
59
 Notification Service�������	

 3.1 OMG Standard API Definitions

The CosNotifyFilter module contains data types and interfaces used for
filtering. The Notification Service supports normal forward filters and so-called
mapping filters that can manipulate the priority or timeout values associated with
events. The filter interfaces are summarized in Table 3.

Table 2 CosNotifyComm Interfaces

Interface Purpose
PushConsumer An interface for untyped push consumers. The

Notification Service version of this interface
supports the PushConsumer interface from the
Event Service as well as the NotifyPublish
interface.

PushSupplier An interface for untyped push suppliers. The
Notification Service version of this interface
supports the PushSupplier interface from the
Event Service as well as the NotifySubscribe
interface.

SequencePushConsumer An interface for sequence style push consumers.
SequencePushSupplier An interface for sequence style push suppliers. It

supports operations for receiving batches of
structured events.

StructuredPushConsumer An interface for structured push consumers.
StructuredPushSupplier An interface for structured push suppliers. It

supports an operation for receiving a structured
event.

Table 3 CosNotifyFilter Interfaces

Interface Purpose
Filter Interface for a filter. The filter supports match

operations for the three different event types as well
as operations for managing filter constraints.

FilterAdmin Interface for filter administrators. This is a base
interface for the administration interface and all the
proxy interfaces. It supports operations for the
management of filter objects.

FilterFactory Interface for a filter factory. This interface supports
operations for creating filter and mapping filter
objects.
60
Notification Service

�������	

 3.1 OMG Standard API Definitions

The CosNotifyChannelAdmin module contains the server interfaces for the
Notification Service. In particular, there are interfaces for the channel,
administration objects and proxy objects. Most of these interfaces extend the
corresponding interfaces from the CosEventChannelAdmin module in order to
make the Notification Service backwards compatible with the Event Service. The
interfaces in this module are summarized in Table 4.

Table 4 CosNotifyChannelAdmin Interfaces

Interface Purpose
ConsumerAdmin An interface for consumer administration

objects. The Notification Service version of
this interface supports the ConsumerAdmin
interface from the Event Service as well as
the QoSAdmin, NotifySubscribe and
FilterAdmin interfaces.

EventChannel An interface for the event channel. The
Notification Service version of this interface
supports the EventChannel interface from
the Event Service as well as the QoSAdmin
and AdminPropertiesAdmin interfaces.

EventChannelFactory An interface for the event channel factory.
The factory supports creation and collection
management of event channel objects.

ProxyConsumer A common base interface for proxy
consumers. It extends the QoSAdmin and
FilterAdmin interfaces to ensure that all
proxy consumers support QoS and filter
management.

ProxyPushConsumer An interface for untyped proxy push
consumers. The Notification Service version
of this interface is derived from the Event
Service ProxyPushConsumer and
ProxyConsumer interfaces.

ProxyPushSupplier An interface for untyped proxy push
suppliers. The Notification Service version
of this interface is derived from the Event
Service ProxyPushSupplier and
ProxySupplier interfaces.
61
Notification Service�������	

 3.1 OMG Standard API Definitions

3.1.0.1 Event Channel Factory Interface
The CosNotifyChannelAdmin::EventChannelFactory provides
functionality for creating new event channels and for getting and listing channels
already created by means of the following operations:
• create_channel - Creates a new event channel with default Quality of Service

and administrative settings. The new channel has a unique identifier.
• get_all_channels - Returns an array of unique identifiers for all channels

created by the factory.
• get_event_channel - Obtains an EventChannel object for a given identifier.

ProxySupplier A common base interface for proxy
suppliers. It extends the QoSAdmin and
FilterAdmin interfaces to ensure that all
proxy suppliers support QoS and filter
management.

SequenceProxyPushConsumer An interface for sequence proxy push
consumers. It supports operations for
retrieving sequences of structured events.

SequenceProxyPushSupplier An interface for sequence proxy push
suppliers.

StructuredProxyPushConsumer An interface for structured proxy push
consumers. It supports an operation for
sending a structured event.

StructuredProxyPushSupplier An interface for structured proxy push
suppliers.

SupplierAdmin An interface for supplier administration
objects. The Notification Service version of
this interface supports the SupplierAdmin
interface from the Event Service as well as
the QoSAdmin, NotifyPublish and
FilterAdmin interfaces.

Table 4 CosNotifyChannelAdmin Interfaces (Continued)

Interface Purpose
62
Notification Service

�������	

 3.1 OMG Standard API Definitions

3.1.0.2 Event Channel Interface
The CosNotifyChannelAdmin::EventChannel interface extends the
corresponding interface from the Event Service as well as the QoSAdmin and
AdminPropertiesAdmin interfaces. In summary, the event channel provides the
following operations:
• default_consumer_admin - This operation returns the default consumer

administration object. This object has the unique identification number zero.
• default_filter_factory - This operation returns the default filter factory.
• default_supplier_admin - This operation returns the default supplier

administration object. This object has the unique identification number zero.
• MyFactory - This operation returns the factory object that created this event

channel object.
• for_consumers - Event Service style operation for obtaining a
ConsumerAdmin object. This operation provides backward compatibility with
the Event Service and the administration object obtained with this operation does
not have a unique identifier.

• for_suppliers - Event Service style operation for obtaining a
SupplierAdmin object. This operation provides backward compatibility with
the Event Service and the administration object obtained with this operation does
not have a unique identifier.

• new_for_consumers - Preferred way to obtain a ConsumerAdmin object with a
unique identifier assigned to it.

• new_for_suppliers - Preferred way to obtain a SupplierAdmin object with a
unique identifier assigned to it.

• get_consumeradmin - Obtains a ConsumerAdmin object for a given identifier.
Note that administration objects created with for_consumers cannot be
retrieved with this operation.

• get_supplieradmin - Obtains a SupplierAdmin object for a given identifier.
Note that administration objects created with for_suppliers cannot be
retrieved with this operation.

• get_all_consumeradmins - Returns a list of unique identifiers for all
ConsumerAdmin objects created by this event channel, i.e. by using the
new_for_consumers operation.

• get_all_supplieradmins - Returns a list of unique identifiers for all
SupplierAdmin objects created by this event channel, i.e. by using the
new_for_suppliers operation.

• destroy - Destroys an event channel.
63
Notification Service�������	

 3.1 OMG Standard API Definitions

• set_qos - Modifies the quality of service settings of an event channel.
• get_qos - Returns the quality of service settings of an event channel.
• set_admin - Modifies the administrative settings of an event channel.
• get_admin - Returns the administrative settings of an event channel.
The first six of these operations are not described further in this guide as they are
either simple get operations or else part of the Event Service.

3.1.0.3 Administration Interfaces
The administration objects, CosNotifyChannelAdmin::ConsumerAdmin and
CosNotifyChannelAdmin::SupplierAdmin, are used by both event suppliers
and event consumers and serve two distinct purposes:
1. Creating and managing the various proxy objects.
2. Grouping proxies. Both QoS settings and filters set on an administration object

are shared by all proxies created by that administration object.

The ConsumerAdmin interface supports additional mapping filter objects that can
be used by a client to supersede the priority and timeout QoS settings that an event
supplier has defined. This is a useful feature since consumers may have a different
view of the relative importance of an event’s timeout value from that of the supplier.
The most important functionality of administration objects is to create proxies. Both
of the administration interfaces support equivalent operations for creating proxies.
The ConsumerAdmin interface operations are listed below. Note that the
SupplierAdmin interface operations are the same, except that consumer proxies
are created instead of supplier proxies:
• obtain_push_supplier - Event Service style operation for creating a push

proxy. Proxies created with this operation are not assigned a unique identifier.
• obtain_notification_push_supplier - Preferred way to create a push

proxy. This operation can create Any type, structured type or sequence type
proxies, all of which are assigned a unique identifier.

3.1.0.4 Filter Interfaces
Filters are objects which can be attached to administration objects and proxy
objects. The preferred way to create a filter is by using the filter factory because
filters created in this manner are then in the same process as the administration and
p r o x y o b j e c t s u s i n g t h e m . F i l t e r i n t e r f a c e s a r e d e f i n e d i n t h e
CosNotifyFilter::Filter.
The operations for defining filters are located in the FilterAdmin interface. These
operations are summarised below:
64
Notification Service

�������	

 3.1 OMG Standard API Definitions

• add_filter - Attaches a filter to an administration or proxy object. This newly
added filter enters the list of filters which are evaluated when the object decides
whether or not to forward an event.

• remove_filter - Removes a filter, with a given identifier, from an
administration or proxy object.

• get_filter - Obtains a filter object for a given identifier.
• get_all_filters - Returns a list of the unique identifiers for all filters attached

to this administration or proxy object.
• remove_all_filters: Removes all filters attached to this administration or

proxy object.
65
Notification Service�������	

 3.1 OMG Standard API Definitions

66
Notification Service

�������	

CHAPTER

4 Supplemental Information
4.1 Quality of Service Properties

The standard OMG, OpenFusion extended QoS properties, and Administrative
Properties are described in detail below.

4.1.1 Standard OMG Properties.
Table 5 lists each of the standard OMG QoS properties, including their associated
data types or possible values The four right-hand columns indicate the level (of the
channel hierarchy) to which the QoS property may be applied. For example, the
EventReliability QoS may be applied only at the event channel level or to
(structured) events, but not to admin or proxy objects.

Table 5 Standard Quality of Service Properties

Property Channel Admin Proxy Event
ConnectionReliability
(BestEffort/Persistent)

× × ×

DiscardPolicy1 (Any, FIFO,
Priority, Deadline, LIFO)

× × ×

EventReliability
(BestEffort/Persistent)

× ×

MaxEventsPerConsumer1 (long) × × ×
MaximumBatchSize2 (long) × × ×
OrderPolicy (Any, FIFO,
Priority, Deadline)

× × ×

PacingInterval2 (TimeT) × × ×
Priority (short) × × × ×
StartTime (UtcT) ×
StartTimeSupported (boolean) × × ×
StopTime (UtcT) ×
StopTimeSupported (boolean) × × ×
Timeout (TimeT) × × × ×
67
 Notification Service�������	

 4.1 Quality of Service Properties

1 This QoS property has no meaning when set per supplier admin or per proxy consumer.
2 At the proxy level, this property only applies to sequence style proxies.

Detailed descriptions of these properties are given below.

EventReliability
The EventReliability QoS property controls whether events are delivered using
a persistent or a best effort strategy. Setting this property to Persistent means
that the channel will store events persistently and events are guaranteed to be
delivered even when the Notification Service or any of its clients crashes. The
default value is BestEffort, which means that the Notification Service may lose
events during a crash. However, persistent events will be re-delivered to their proxy
queues after the crash (proxy queues ignore events that have already been delivered
to the connected consumer).
The persistence of events is managed by the event database plugin. The Notification
Service supports different plugin modules to support different application
requirements. Please consult the System Guide for details on configuring the
persistent plugin.

ConnectionReliability
The ConnectionReliability QoS property controls whether connections are
handled using a persistent or a best effort strategy.
Note that setting event reliability to persistent and connection reliability to best
effort is a combination that has no meaning and is not supported. The default value
is BestEffort, which means that connections will be lost when the Notification
Service fails to deliver or receive events from a client.
All clients should also be implemented as persistent objects when the
ConnectionReliability QoS property is to be set to Persistent. The reason
for this is that client objects need to assume the same identity when recovered after a
crash. This is the only way that the Notification Service can logically reconnect to
the client. The Notification Service will never be able to reconnect to a transient
client object.
The Notification Service will keep retrying persistent client objects until an
OBJECT_NOT_EXIST system exception is encountered. This exception is raised by
a n o b je c t a c t i v a to r w h e n t h e c l i e n t o b j e c t n o lo n g e r e x i s t s . T h e
MaxReconnectAttempts QoS property, described later, may be used to limit the
durability of persistent clients.
68
Notification Service

�������	

 4.1 Quality of Service Properties

Priority
The Priority QoS property defines the relative priority of an event: the higher the
number, the higher the priority. It is normally set in the variable header of a
structured event. The priority may also be set on a per-channel, per-admin or
per-proxy basis. Applying the priority to an event channel object means that all
events that pass through the channel will receive that priority unless another value is
set in the variable header. The default priority of an event is zero. The event
priority QoS applies only when the OrderPolicy and DiscardPolicy QoS
properties have a value of PriorityOrder.

StartTime
The StartTime QoS property can only be set in the header of a structured event. It
defines the point in time after which the Notification Service is allowed to deliver
the event. The start time is an absolute value, where the units are 100 nanoseconds
since base time. Base time is defined as 00:00:00 local time, October 15, 1582.
Proxy objects may be configured to ignore event start times by setting the
StartTimeSupport QoS property to FALSE.

StopTime
The StopTime QoS property can only be set in the header of a structured event. It
defines the absolute timeout of an event. The Notification Service deletes this event
from all queues when timeout occurs. An event that expires from a proxy queue is
treated as though it had never been received by the Notification Service. The unit is
100 nanoseconds since base time, where base time is defined as 00:00:00 local time,
October 15, 1582.
The event stop time QoS is always applicable. It may be further used when the
OrderPolicy and DiscardPolicy QoS propert ies have a value of
DeadlineOrder.
The timeout may also be set on a per-channel, per-admin or per-proxy basis.
Applying the timeout to an event channel object means that all events that pass
through the channel will receive the said timeout value unless a value is set in the
variable header.

StartTimeSupported
The StartTimeSupported QoS property controls whether or not event headers
with a start t ime sett ing will be processed. The default value for the
StartTimeSupported QoS is TRUE. This QoS can be applied at different levels,
e.g. one proxy object may have start time values supported whereas another proxy
has the start times disabled. It is possible to use the StartTimeSupported QoS to
allow certain privileged consumers to receive events immediately.

i

69
Notification Service�������	

 4.1 Quality of Service Properties

StopTimeSupported
The StopTimeSupported QoS property controls whether or not event headers
with a stop t ime sett ing wil l be processed. The default value for the
StopTimeSupported QoS is TRUE. This QoS applies to both events with a
StopTimeSupported QoS value and events with a Timeout QoS value. It is
possible to use the StopTimeSupported QoS to allow certain consumers to
receive all events, e.g. for data collection purposes.

Timeout
The Timeout QoS property defines a relative timeout for an event. It is normally
set in the variable header of a structured event. The Notification Service deletes this
event from all queues when this timeout occurs. A consumer views an expired event
in the same way as it does an event that was never delivered to the Notification
Service.
The unit for the Timeout QoS is 100 nanoseconds and the default value is zero,
which means that no timeout is applied. A value in the range of 1-9999 is not
supported, i.e. the smallest value for the event timeout is one millisecond. The
lowest value is used when both the Timeout and the StopTime QoS are defined
for an event.
The event timeout QoS is always applicable. It can be used further when the
OrderPolicy and DiscardPolicy QoS propert ies have a value of
DeadlineOrder.
The timeout may also be set on a per-channel, per-admin or per-proxy basis.
Applying the timeout to an event channel object means that all events that pass
through the channel will receive the said timeout value unless a value is set in the
variable header.

MaxEventsPerConsumer
The MaxEventsPerConsumer QoS property defines the maximum number of
events that a proxy will queue on behalf of the connected consumer. This setting can
be used to prevent a single consumer from exhausting the master queue. The default
queue size for MaxEventsPerConsumer is unlimited (its property value is set to
zero).
The MaxEventsPerConsumer QoS property applies to the proxy queues. QoS
properties may be fine grained or coarse grained so each proxy queue may have
different maximum queue length, or all proxies that are created by one consumer
administration object may have the same maximum queue lengths.
70
Notification Service

�������	

 4.1 Quality of Service Properties

The MaxEventsPerConsumer QoS property is typically used when the incoming
event rate exceeds the capabilities of the Notification Service for extended periods
of time. It is also used when the proxy queue represents periodic updates that will be
available in the shape of a new event at a later time. Limiting the queue size also
reduces the resources required by the Notification Service.

OrderPolicy
The OrderPolicy QoS property defines the order in which events are delivered.
The default value is PriorityOrder, which means that events are delivered
according to their priority. The Notification Service applies a FifoOrder policy for
delivering events with the same priority. The other settings for this QoS are
DeadlineOrder and AnyOrder. The DeadlineOrder policy means that events
with the shortest timeout value will be delivered first.
OrderPolicy has no meaning when applied to supplier admins or proxy
consumers. Attempting to set this QoS on a supplier admin or proxy consumer will
have no effect (but will produce a warning in the service log).

MaximumBatchSize
The MaximumBatchSize QoS property controls the maximum number of events a
sequenced event consumer will receive for each event delivery. The default value is
one, i.e. a sequence type consumer will receive one event at a time. A sequence
consumer would normally always increase this value since having a batch size of
one defeats the performance advantage of using sequencing.

PacingInterval
The PacingInterval QoS property defines the maximum time a sequence type
client will wait between subsequent event deliveries. A value set to zero means that
the consumer is willing to wait until such time as MaximumBatchSize events are
available. The unit for this QoS is 100 nanoseconds and the default value is zero. A
value in the range 1-9999 is not supported, i.e. the smallest value for the pacing
interval is one millisecond. Note that the consumer will always wait until at least
one event is available.

DiscardPolicy
The DiscardPolicy QoS property defines the order in which events are discarded
from event queues. The following values determine the order that events are
discarded.
• AnyOrder - any event may be discarded when the queue becomes full.
• FifoOrder - the first event received will be the first discarded.
71
Notification Service�������	

 4.1 Quality of Service Properties

• PriorityOrder - events will be discarded in priority order such that the lower
priority events will be discarded before the higher priority events. The order in
which events of the same priority are discarded is determined by the
PriorityDiscardPolicy setting.

• DeadlineOrder - events will be discarded in the order of the shortest expiry
deadline will be discarded first.

The default value for DiscardPolicy is AnyOrder.
The discard policy is not used by the master queue when the RejectNewEvents
administrative property is set to TRUE.
Events a re d iscarded f rom the mas ter queue when the va lue of the
MaxQueueLength administrative property is reached. An event that is discarded
from the master queue will never reach any consumer and appears to the consumer
as though the event was never delivered to the event channel.
E v e n t s a r e d i s c a r d e d f r o m p r o x y q u e u e s o n c e t h e v a l u e o f t h e
MaxEventsPerConsumer QoS is reached. The other settings for this QoS are
PriorityOrder, DeadlineOrder, FifoOrder, and LifoOrder.
Events spend relatively little time in the event channel before being delivered to the
proxy suppliers due to the Notification Service’s architecture. In order It is better to
use MaxEventsPerConsumers on the proxy supp l ie r s ra ther than
MaxQueueLength on the event channel in order to effectively apply a discard
order.
In general, it is not common for sufficient events to accumulate in the channel to
reach MaxQueueLength, but setting MaxQueueLength is still useful (when used
in conjunction with MaxEventsPerConsumers) to impose an overall limit on the
number of events within the service.
The Notification Service is able to optimise queues when they:
• use the same order and discard policies
• when the order policy is the same and the discard policy is set to AnyOrder
The service must maintain separate orderings when different order and discard
policies are used.
72
Notification Service

�������	

 4.1 Quality of Service Properties

4.1.2 OpenFusion QoS Extensions
Table 6 lists the QoS properties provided in the OpenFusion Notification Service to
extend the OMG Notification Service standard QoS properties.

1This QoS property applies only to proxy push suppliers.
2This QoS property is read only.
3This QoS property applies only to proxy push consumers.

Detailed descriptions of these properties are given below.

MaxReconnectAttempts
The MaxReconnectAttempts QoS property defines the maximum number of
times the Notification Service will attempt to reconnect to a failed push consumer.
The Notification Service disconnects the client as though the disconnect operation
had been invoked on the proxy when the client is still unavailable after the
maximum number of attempts have been made.

Table 6 Extended Quality of Service Properties

Property Channel Admin Proxy Event
MaxReconnectAttempts1(long) × × ×
ReconnectInterval2 (TimeT) × × ×
ConnectedClient2 (Object) ×
MaxInactivityInterval3(TimeT) × × ×
AutoSequenceBatchSize (long) × × ×
AutoSequenceTimeout
(ulonglong)

× × ×

DisconnectCallback × × ×
MaxMemoryUsage ×
MaxMemoryUsagePolicy ×
MemoryCheckInterval ×
MemoryEscalationExponent ×
MemoryMaxRecoveryAttempts ×
MemoryTargetMargin ×
PropagateQoS × ×
DiscardedEvents ×
DiscardedEventCount ×
73
Notification Service�������	

 4.1 Quality of Service Properties

Theoretically, the absolute timeout value for push consumers is the product of the
MaxReconnectAttempts property value and the ReconnectInterval property
value. However, the actual time taken for the entire timeout period can take longer
than the absolute timeout value:
1. The ReconnectInterval property is the interval of time the Notification

Service will wait before making another connection attempt. This interval is
measured from the time that it becomes aware that a connection attempt failed
(e.g. by receiving an exception from the ORB).

2. The absolute timeout value cannot account for the length of time taken from
when a client disconnection occurs until the time that the Notification Service
becomes aware of the disconnection. Normally, this is not an issue, but under
certain circumstances (such as when the orb daemon is not running on particular
ORBs) the effect of this delay can be dramatic.
For example, if an ORB takes 20 seconds to pass an exception indicating client
disconnection, then the ReconnectInterval will effectively be increased by
20 seconds. Assuming that the ReconnectInterval is set to 1 second and the
number MaxReconnectAttempts is set to 120, then the actual absolute
timeout will be 120 * (20+1) = 2520 seconds = 42 minutes, instead of the
expected 120 seconds (2 minutes).

ReconnectInterval
The ReconnectInterval QoS property defines the interval of time that the
Notification Service will wait before retrying persistent push consumers that are
unavailable. This interval is measured from the time that it determines that a
connection attempt failed (see MaxReconnectAttempts above).
This QoS property has no meaning when ConnectionReliability is set to
BestEffort. Also note that this QoS has no meaning for push suppliers.
The Notification Service waits for the reconnect interval before resuming event
reception or delivery after event communication has failed. The unit for this QoS is
100 nanoseconds and the default value is one second, i.e. 10,000,000 nanoseconds.
A value in the range 1-9999 is not supported, i.e. the smallest value for the
reconnect interval is one millisecond.
The Notification Service considers an event consumer or supplier to be unavailable
when the operation that retrieves or delivers events raises a system exception. The
only system exception is the OBJECT_NOT_EXIST exception and this is handled
differently to other system exceptions by the Notification Service, i.e. the proxy
object is disconnected when a client raises this exception.

i

74
Notification Service

�������	

 4.1 Quality of Service Properties

ConnectedClient
The ConnectedClient QoS property is a read-only property that applies only to
proxy objects. The value associated with this QoS is the object reference of the
client associated with the proxy. For example, the ConnectedClient QoS
property contains a structured push consumer object for structured push supplier
proxies.

MaxInactivityInterval
The MaxInactivityInterval QoS property is the connection timeout for push
suppliers. This is a relative timeout value and is reset whenever a supplier calls
push on its consumer regardless of whether the operator is successful or not; in
other words, the timeout is reset when the proxy detects any activity from its client.
When the proxy has been idle for the maximum inactivity interval, then the
Notification Service disconnects the client as though the disconnect operation had
been invoked on the proxy.
The unit for MaxInactivityInterval is 100 nanoseconds. The default value is 0
(zero), which disables this QoS and allows idle push suppliers to never timeout. The
minimum supported timeout value (other than the zero default value) is one
millisecond, i.e. values of 10000 or greater.

AutoSequenceBatchSize
The maximum batch size that will be sent by a structured proxy (consumer or
supplier) when auto-sequencing is being used. When the proxy has received this
number of events, they will be sent as a single batch. The default value is 200
events. If the AutoSequenceTimeout interval is exceeded while the proxy is
waiting for sufficient events to complete a batch, the batch will be sent even if it is
incomplete.
To disable auto-sequencing, set this QoS to 0 or 1, or set AutoSequenceTimeout
to a value less than 10.
See Auto-sequencing on page 23 for more information about auto-sequencing.

AutoSequenceTimeout
This is the maximum amount of time that will be allowed to elapse before an
auto-sequence batch is sent. If this interval elapses before the batch reaches the
required size (specified by the AutoSequenceBatchSize property), the
incomplete batch is sent regardless.
The unit for this property is milliseconds. The default value is 200 milliseconds.
To disable auto-sequencing, set this QoS to a value less than 10 or set
AutoSequenceBatchSize to 0 or 1.
75
Notification Service�������	

 4.1 Quality of Service Properties

See Auto-sequencing on page 23 for more information about auto-sequencing.

DisconnectCallback
This property affects all proxies. If set to true (the default) then when a proxy's
disconnect method is called, then the disconnect method on its connected client will
also be called. This behaviour is in accordance with the behaviour specified in the
OMG Notification Service Specification v1.3.
If set to false, then a proxy's connected client will not have its disconnect operation
invoked when that of the proxy is invoked. This behaviour is in accordance with the
behaviour specified in the OMG Notification Service Specification v1.0.

MaxMemoryUsage
Affects the memory size of event channels. MaxMemoryUsage is similar in purpose
to the property MaxQueueLength, except that the size of memory is controlled,
rather than the number of events. MaxMemoryUsage takes a value of type
ulonglong. The units for this property are bytes. When this value is exceeded then
attempts will be made to limit memory usage according to the current usage policy.
The current usage policy is controlled using the MaxMemoryUsagePolicy
property.

MaxMemoryUsagePolicy
Affects event channels. MaxMemoryUsagePolicy is the policy by which memory
usage is controlled when MaxMemoryUsage is exceeded. It can take one of three
values:
• PurgeEvents - If this value is set, then MaxMemoryUsage is treated as a soft

limit. Whenever an event is received that pushes memory usage above the
MaxMemoryUsage level, that event will be added to the internal queue of the
appropriate event channel as normal. Then, in a manner that mirrors discard
behaviour, the event at the back of the queue will have its data purged from
memory. If the event is set to best effort delivery, then it is effectively discarded
and the memory it used will be available for recovery by the garbage collector.
However, in the case of a persistent event a place holder will remain in memory so
that the data can be reloaded from its persistent store, when required. Therefore, in
the case of a persistent event, not all of the memory used will freed and the total
memory usage will continue to increase. Nonetheless, the rate of increase will be
greatly reduced making this an appropriate policy for dealing with bursts of event
delivery.

• Note that if events contain very small amounts of data then very little memory will
be recovered by purging them, as it is the event data that is purged from memory.
PurgeEvents will produce better results with larger event sizes.
76
Notification Service

�������	

 4.1 Quality of Service Properties

• DiscardEvents - If this value is set, then MaxMemoryUsage is treated as a
limit. Whenever an event is received that takes memory usage above
MaxMemoryUsage, an event is discarded according to the current discard policy.
Note that since events vary in size, the memory usage may still grow since the
new event may be larger than that which is discarded.

• RejectEvents - If this value is set, then MaxMemoryUsage is treated as a hard
limit. Whenever an event is received that takes memory usage above
MaxMemoryUsage, an org.omg.CORBA.IMP_LIMIT exception is thrown.

The default value of this property is PurgeEvents.

PropagateQoS
Controls how changes to a QoS on an event channel are propagated to admins and
proxies.
When PropagateQoS is set to false (the default), changes made to a QoS after it
has been set on a channel will not affect the QoS settings on an admin or proxy.
When it is set to true, changes made to the QoS on the channel will carry through
to the admins and proxies, even over-riding any QoS that has been set individually
on the admin or proxy.
For example, the Timeout QoS is set to 10000 on the event channel. This setting is
applied to all admins and proxies created on that channel. If Timeout is then
changed to 20000 on the channel while PropagateQoS is set to false, the admins
and proxies retain their setting of 10000. Any new admins and proxies, however,
will take on the new value of 20000.
If Timeout is changed to 20000 on the channel while PropagateQoS is set to
true, the admins and proxies also take on the new setting of 20000.

DiscardedEvents
The DiscardedEvents QoS property provides a mechanism for detecting when a
proxy supplier has discarded one or more events: proxy suppliers can set this
property to true in order to indicate that at least one event has been discarded.
Setting this property to false indicates that no events have been discarded. The
DiscardedEvents property can be re-set (to the false value) either by using the
supplier proxy’s set_qos() method or by using the Notification Service
Manager’s GUI.
Clients are not allowed to set DiscardedEvent to true: attempts by a client to do
so will be ignored by the QoS (note that the server will not throw an exception if an
attempt is made). The DiscardedEvents property value is a type boolean.
77
Notification Service�������	

 4.1 Quality of Service Properties

DiscardedEventCount
The DiscardedEventCount is complimentary to the DiscardedEvents QoS
property. The DiscardedEventCount property value is a long type (a CORBA
ulonglong) showing the total number of events which have been discarded. The
value cannot be reset: attempts to modify the value will be ignored.

4.1.2.1 Memory Management Properties
Each event channel has a memory manager. The manager periodically monitors and
controls the channel’s memory usage. The QoS properties described below are used
to set the memory management control parameters and behaviour. Generally, the
memory manager keeps memory usage at or below a maximum memory usage
level. If this level is exceeded, then it will attempt to return the memory usage to a
level at or below the desired maximum. Please note that if it may not be possible,
under extreme situations, for the system to be kept under the desired maximum
memory level.

MemoryCheckInterval
The memory manager checks memory usage at discrete intervals. The
MemoryCheckInterval property value sets the interval, in milliseconds, between
checks. The default value is 5000 milliseconds (five seconds). The property value
type is a CORBA ulonglong (Java long).
A value of 0 milliseconds will cause the memory manager to halt the checking of
memory usage. Setting the MemoryCheckInterval to a value greater than 0 will
cause memory checking to be resumed.

MemoryEscalationExponent
Memory recovery is a t tempted whenever memory usage exceeds the
MaxMemoryUsage property value. The memory manager instructs channel
components to release memory in this situation, using appropriate methods.
If the component fails to free a sufficient amount of memory using its chosen
method, then the manager make another attempt to recover memory by directing the
component to free memory by using a more severe method. The manager
successively directs a more severe memory recover method each time the
component fails to release sufficient memory.
The MemoryEscalationExponent property controls the rate of increase of the
level of the memory recover method used. The rate of increase is applied
exponentially using:

n ^ EXPONENT

where
78
Notification Service

�������	

 4.1 Quality of Service Properties

n is the current attempt number (the first attempt is 1, second is 2, etc)
EXPONENT is the exponential value.
The MemoryEscalationExponent property sets the value of the EXPONENT.

For example, if MemoryEscalationExponent is set to 2, the escalation levels
will be increased as follows:

The default value is two (2). The property value type is a CORBA long (Java int).

MemoryMaxRecoveryAttempts
The memory manager can repeatedly direct channel components to free memory
whenever the maximum allowed memory usage is reached, as described above
under MemoryEscalationExponent: the severity of the memory recovery
method increases on each attempt.
However, overall system performance can degrade after the severity level increases
beyond a sufficiently high level. There will not be any benefits if memory recovery
e f fo r t s i nc r ea se o r con t i nue wh e n t h i s s i t u a t i o n o c c u r s . Th e
MemoryMaxRecoveryAttempts property is provided to stop memory recovery
efforts when extreme memory usage situations are reached: CPU resources, which
are being used to recover memory, can be returned to the system for processing
events.1

This property helps to tune the system for the best balance between performance and
memory usage control, as well as protecting the system from dangerous or pointless
severity escalation during extreme conditions.
The MemoryMaxRecoveryAttempts is disabled if it is set to zero (0), in other
words, memory recovery attempts will not be stopped. The default value is ten (10),
in other words, memory recover will be escalated up to ten times. The property
value type is a CORBA long (Java int).

first attempt 1^2 = 2
second attempt 2^2 = 4
third attempt 3^2 = 8

1. The term extreme in this context indicates a situation where, for example, supplier clients
are sending such high numbers of events that the physical limits of the service and system
are breached. If extreme conditions are reached more than occasionally, then additional
Notification Service resources should be provided, such as providing additional CPUs,
federating Notification Service servers across CPUs or hosts, etc. for the number of
clients being served
79
Notification Service�������	

 4.1 Quality of Service Properties

MemoryTargetMargin
The memory manager attempts to maintain memory usage at or below level set by
the MaxMemoryUsage value. When this level is exceeded, the manager directs
components to free memory in order to return the memory usage to a level at or
below the MaxMemoryUsage value.
If usage level is simply returned to the MaxMemoryUsage level, but no lower, then
it is likely that the maximum will be quickly exceeded again, requiring the manager
to release memory again, reducing performance.
The MemoryTargetMargin p roper ty p rov ides a marg in be low the
MaxMemoryUsage value, in bytes, which the memory usage should be freed to
when memory is released by the manager. This can prevent calls being immediately
made on the manager to release memory and thereby giving the system some
breathing space.
No memory margin is provided when the MemoryTargetMargin property value is
set to zero (0). The default value is 204800 bytes (200K). The property value type is
a CORBA ulonglong (Java long).

4.1.3 Administrative Properties
Administrative properties refer to property settings that may be applied only to event
channel objects. These properties are usually set when an event channel is first
created. These settings are typically static in nature although they may be changed
during the lifetime of the channel object. The standard administrative properties are
described below.

MaxQueueLength
The MaxQueueLength administrative property defines the maximum size of the
master queue for an event channel. The value of the MaxQueueLength property
should normally be greater than any value of a MaxEventsPerConsumer QoS
property.
This prevents any badly-behaved consumer (for example a consumer that consumes
events very slowly or a consumer that remains suspended for an extended period of
time) from causing events to be rejected from the master queue. The maximum
possible size of the master queue is the accumulative size of all proxy queues.
Normally, the size of the master queue is smaller than the accumulative size of all
proxy queues because there is typically an overlap in the events received by
different consumers.
80
Notification Service

�������	

 4.2 Errors and Exceptions

MaxConsumers
The MaxConsumers administrative property defines the maximum number of
consumers that can be concurrently connected to an event channel. The consumers
are counted as all the proxy suppliers of all the consumer administration objects
managed by the event channel.

MaxSuppliers
The MaxSuppliers administrative property defines the maximum number of
suppliers that can be connected concurrently to an event channel. The suppliers are
counted as all the proxy consumers of all the supplier administration objects
managed by the event channel.

RejectNewEvents
The RejectNewEvents administrative property indicates whether events should
be rejected or discarded, according to the DiscardPolicy setting, when the
MaxQueueLength for the master queue is exceeded. The RejectNewEvents
property can have the following values:
• TRUE - New events received by the event channel are rejected when the
MaxQueueLength is exceeded. A push supplier encounters an IMP_LIMIT
system exception when it attempts to deliver an event to the channel.

• FALSE - New events received by the event channel are discarded according to the
DiscardPolicy QoS setting when the maximum queue length is exhausted.
Push suppliers can keep delivering events to the channel, but this may cause some
events to be discarded.

The RejectNewEvents administrative property, when set to true, guarantees that
the Notification Service will never drop any events.

4.2 Errors and Exceptions
4.2.1 Errors

The Notification Service improves on the Event Service by providing QoS settings
that define how to deal with most runtime errors. Events are stored persistently
when the EventReliability QoS setting is set to persistent and the service fails.
All persistent events are recovered and re-delivered to all registered clients once the
Notification Service is restarted after the service has crashed.
Also, the Notification Service keeps trying i ts connections when the
ConnectionReliability QoS setting is set to persistent until it encounters an
OBJECT_NOT_EXISTS exception. The Notification Service just starts delivering all
queued events when a client crashes but is later restored with the same object
reference as it had when first connecting to the Notification Service.
81
Notification Service�������	

 4.2 Errors and Exceptions

How events are removed from the internal queues of the Notification Service is
defined by the DiscardPolicy QoS setting. Events are discarded when either the
MaxQueueLength or MaxEventsPerConsumer values are exceeded. Note that
the service keeps storing un-delivered events until the system resources are
exhausted when there is no limit on the queue length.

4.2.2 Exceptions
The Notification Service supports a number of exceptions which are summarised in
Table 7.

Table 7 Notification Service Exceptions

Exception Description
AdminLimitExceeded Indicates that the limit for the number of

concurrently connected proxies has been
exceeded.

AdminNotFound Indicates that the administration object with
the specified unique identifier was not found
in an event channel.

AlreadyConnected Indicates that a consumer or supplier was
already connected.

CallbackNotFound Indicates that a callback object with the
specified unique identifier was not found in a
filter.

ChannelNotFound Indicates that the channel with the specified
unique identifier was not found in an event
channel factory.

ConnectionAlreadyActive Indicates that a connection was already active
and an attempt was made to resume it.

ConnectionAlreadyInactive Indicates that a connection was already
inactive when an attempt was made to suspend
it.

ConstraintNotFound Indicates that a constraint with the specified
unique identifier was not found in a filter.

Disconnected Indicates that a disconnected client is trying to
send or receive the event.

DuplicateConstraintID Indicates that a sequence of constraints contain
duplicate unique constraint identifiers.
82
Notification Service

�������	

 4.2 Errors and Exceptions

4.2.2.1 Implementation Limit Exception
The CO RB A spe c i f i c a t i on p rov ide s a gene ra l excep t i on ,
org.omg.CORBA.IMP_LIMIT, for indicating when a limit has been reached or
exceeded. This exception is raised by the Notification Service, specifically, when an
event is pushed to a proxy push consumer and either:
1. The value of the QoS property MaxQueueLength has been reached and the

QoS property RejectNewEvents is set to true.

FilterNotFound Indicates that the filter object with the
specified unique identifier was not found in an
administration or proxy object.

InvalidConstraint Indicates that a constraint set on a filter object
was invalid.

InvalidEventType Indicates that an event type is not supported or
is invalid.This exception is not thrown by the
OpenFusion Notification Service.

InvalidGrammar The grammar specified was not
EXTENDED_TCL, SQL92, or the name of a
valid Filter class name.

InvalidValue Indicates that a constraint value is invalid, e.g.
when a priority value is not of type short or
when a timeout value is not of type TimeT.

ProxyNotFound Indicates that the proxy object with the
specified unique identifier was not found in an
administration object.

TypeError Indicates a type error.
UnsupportedAdmin Indicates that an administrative setting on an

event channel was not supported.
UnsupportedFilterableData Indicates that an event contains data which

could not be processed by a filter object. This
exception is normally not propagated back to
clients.

UnsupportedQoS Indicates that a quality of service setting on an
event channel, administration or proxy object
was not supported.

Table 7 Notification Service Exceptions (Continued)

Exception Description
83
Notification Service�������	

 4.2 Errors and Exceptions

2. Any resource, such as threads or memory, which is insufficient, exhausted, or
unavailable.

The org.omg.CORBA.IMP_LIMIT exception includes important information in its
exception message. For example, in the case of sequence proxy push consumers, the
exception message contains the number of events that were accepted by the
Notification Service (from the sequence) before the exception was raised. This
information is important, since it can be used to ensure that the same events are not
unnecessarily supplied more than once to the Notification Service. In addition to the
number of events accepted, the message also contains other information, such as the
limit exceeded and the length of the supplied sequence.
The org.omg.CORBA.IMP_LIMIT exception stores the number of accepted events
in the last three hexadecimal digits of its minor code provided that the length of the
supplied sequence is less than or equal to 0xFFF (4096): the number may be
extracted from the minor code by subtracting the base PrismTech minor code of
0x50540000 from its value.
This feature can be used to avoid the overhead of string manipulation which is
otherwise needed to obtain the information from the exception message.

i

84
Notification Service

�������	

EVENT TYPE REPOSITORY

CHAPTER

5 Description
The OpenFusion implementation of the Notification Services includes the Event
Type Repository, which is an optional feature specified by the OMG.
The Event Type Repository contains meta-data about event types. The repository
contains information about the properties of an event for each event type. The
repository contains information only about the properties in the filterable body of a
structured event because it was specifically designed to fulfil the requirement of
verifying filter constraints.
An important property of the Event Type Repository is the ability to modify the event
types and the relationship between event types at runtime. This allows applications
to evolve over time, e.g. an application can create a new event type, with additional
properties, that inherits from an existing event type. New applications can take
advantage of the additional information, while existing applications process the
event according to the old set of properties.

5.1 Concepts and Architecture
Figure 10 shows the UML model for the Event Type Repository. The repository is a
singleton that supports a number of event domains and contains a number of event
types. An event type in turn has a domain, a name and a number of properties. Event
types can inherit or import other event types.
87
 Event Type Repository�������	

 5.1 Concepts and Architecture

Figure 10 Event Type Repository Model
The Event Type Repository model shown in Figure 10 is mapped to IDL using the
guidelines set out in the Meta Object Facility (MOF). The most important thing to
realise about the mapping is that links are transformed into interfaces rather than
operations. In addition to this, each class has a meta class with some standard
operations. Finally, the mapping automatically adds a package class and a meta class
for the package class.

5.1.1 Event Types
An event type is defined by three components (refer to Figure 10):
• a domain name - a high level categorisation of the event, for example Telecom and

Transport are domain names
• a type name - categorises events within a domain
• a sequence of properties - a sequence of name-value pairs where name states the

property’s name, and value states the type of property it is when associated with
an event type

Property
name : string
type : TypeCode

EventTypeRepository
DomainNameSeq : supported_domains

lookup(name : string, domain : string) : EventType
events_in_domain(domain : string) : EventTypeSeq

EventType
domain : string
name : string

full_name() : string
0..*0..*

composes

0..*0..*

contains

0..*

0..*

0..*imports

0..*

0..*

1..1

0..*

inherits

1..1
88
Event Type Repository

�������	

 5.1 Concepts and Architecture

5.1.2 Inheritance
An event type can inherit the properties of another event type. This means that all
the properties in the super type will also be present in the sub type. Also, the
creation of inheritance cycles is not allowed.

5.1.3 Importing
One event type can be imported into another in addition to inheritance. This does
not create an inheritance relationship but all the properties of the imported type will
be present in the importer type. Property names may overlap but only when the type
associated with the property is the same in both the imported and importer event
types.

5.1.4 Contains
The Event Type Repository is populated with event types using the Contains
interface. It is possible for clients to look up event types and investigate what
properties are available for filtering once populated. Thus, clients can use the
repository to create meaningful constraint expressions for event filtering.

5.1.5 Interfaces
The Event Type Repository consists of twelve interfaces. Section 7, API Definitions,
on page 117. The operations from these interfaces provide a generic way to reflect
on an object or association.
89
Event Type Repository�������	

 5.1 Concepts and Architecture

90
Event Type Repository

�������	

CHAPTER

6 Using Specific Features
This section describes how to use the following specific features of the Event Type
Repository:
• Adding an Event Type: describes how to add a new event to the repository.
• Properties: demonstrates the management of event type properties.
• Event Types: demonstrates the management of event types.
• Composition: demonstrates how to associate and disassociate properties

with/from event types.
• Inheritance: demonstrates how to create inheritance relationships between event

types.
• Import: demonstrates how to create import relationships between event types.
• Event Type Repository description: explains how to use the event type repository.
• Containment: demonstrates how to add and remove event types from the event

type repository.
• Repository package: explains how to use the package interfaces.

Note:
• All interfaces in the Event Type Repository inherit other interfaces from the Meta

Object Facility (MOF). This section is not intended to a reference to MOF
operations. Accordingly, the MOF RefObject and RefAssociation interface
operations are not described here.

• Most operations in the Event Type Repository do not accept arguments containing
a null value. The OpenFusion implementation checks the input arguments and
raises a BAD_PARAM exception when a null argument is encountered. The
examples used below assume that input values are not null, and therefore, this
exception is not checked.

Import Statements
The following packages must be imported into any application which use the Event
Type Repository:

org.omg.Reflective.*
org.omg.NotificationTypes.*

i

91
 Event Type Repository�������	

 6.1 Adding an Event Type

The Reflective and NotificationTypes packages include exception
definitions from the MOF plus all of the interfaces and data types from the Event
Type Repository.

6.1 Adding an Event Type
This topic briefly introduces some of the Event Type Repository interfaces.
Common tasks when using the repository are to create an event type, add some
properties to it and then add the event type to the repository. The first task in using
the repository is to resolve and create it. This task is shown in the listing below:

The Event Type Repository in this code is resolved and used to obtain a specific
package object. The package object has a reference to the following objects:
• An object that implements the EventTypeRepositoryClass interface. This

can be used to create a new event type repository.
• An object that implements the EventTypeClass interface. This object can be

used to create new EventType objects.
• An object that implements the PropertyClass interface. This object can be used

to create new Property objects.
• Four objects that can be used to manipulate the different aggregations in the event

type repository model. The objects implement the Contains, Inherits,
Imports, and Composes interfaces, respectively.

The variables pack and repos are class variables that are used in the following to
obtain the link interfaces and manipulate the repository. The listing below shows
how to create a property and an event type. Once these have been created, the
property is added to the event type and the event type is finally added to the event
type repository.

org.omg.CORBA.Object object = null;
RefBaseObject ref = null;
_NotificationTypesPackage pack = null;
EventTypeRepository repos = null;

try
{
 object = orb.resolve_initial_references (“NotificationTypes”);
}
catch (org.omg.CORBA.ORBPackage.InvalidName ex)
{
 System.err.println (“Failed to resolve Event Type Repository”);
 ex.printStackTrace ();
 System.exit (1);
}

repos = EventTypeRepositoryHelper.narrow (object);
ref = repos.repository_container ();
pack = _NotificationTypesPackageHelper.narrow (ref);

// Get relevant object references.
92
Event Type Repository

�������	

 6.1 Adding an Event Type

PropertyClass property = pack.property_class_ref ();
EventTypeClass eventType = pack.event_type_class_ref ();
Composes composes = pack.composes_ref ();
Contains contains = pack.contains_ref ();

Property p1 = null;
EventType type = null;

org.omg.CORBA.TypeCode tc;

// Create a property.

try
{
 tc = orb.get_primitive_tc (org.omg.CORBA.TCKind.tk_string);
 p1 = property.create_property (“Operator”, tc);
}
catch (SemanticError ex)
{
 System.err.println (“Failed to create property!”);
 ex.printStackTrace ();
 System.exit (1);
}

// Create a new event type.

try
{
 type = eventType.create_event_type (“telecom”, “alarm”);
}
catch (SemanticError ex)
{
 System.err.println (“Failed to create event type!”);
 ex.printStackTrace ();
 System.exit (1);
}

// Add property to event type.

try
{
 composes.add (type, p1);
}
catch (StructuralError ex)
{
 System.err.println (“Can’t add property to event type!”);
 ex.printStackTrace ();
 System.exit (1);
}
catch (SemanticError ex)
{
 System.err.println (“Never raised!”);
 ex.printStackTrace ();
 System.exit (1);
}

// Add event type to repository.

try
{
 contains.add (repos, type);
93
Event Type Repository�������	

 6.2 Properties

The above code is relatively straightforward. Relevant objects are first obtained
from the package object. The code then performs the following steps:

Step 1: Creates a property using an object that implements the PropertyClass interface.
Step 2: Creates an event type in the telecom domain with type alarm using an object that

implements the EventTypeClass interface.
Step 3: Adds the property to the event type using the Composes interface.
Step 4: Adds the event type to the repository using the Contains interface.

6.2 Properties
A property is an object that encapsulates a name and a type code. The name of a
property is linked to the name of a property in the filterable body of a structured
event and the type code determines the value type (but not the actual value) of the
property.
Properties are created using the factory meta class PropertyClass. See Adding an
Event Type on page 92 for obtaining a reference to an object that implements the
PropertyClass interface by means of the package object.
The PropertyClass interface has two additional operations besides the factory
operation for creating property objects. These are a result of the MOF mapping from
the meta model to IDL:
• all_of_kind_property: This operation returns all properties, excluding any

subtypes of the Property class. This operation returns just the properties that
have been created by the factory as the repository meta model does not have any
subtypes of the Property class.

• all_of_type_property: This operation returns all properties, including any
subtypes of the Property class. This operation returns all the properties that have
been created by the factory in a similar manner to the all_of_kind_property
operation.

}
catch (StructuralError ex)
{
 System.err.println (“Can’t add event type to repository!”);
 ex.printStackTrace ();
 System.exit (1);
}
catch (SemanticError ex)
{
 System.err.println (“Never raised!”);
 ex.printStackTrace ();
 System.exit (1);
}

94
Event Type Repository

�������	

 6.2 Properties

The example below shows how to use the create_property operation to create a
new property:

The name and type code of a property can be obtained and set once created. Note
that any property can be used as a factory for creating other properties since the
Property interface inherits from the PropertyClass interface. The example
below shows how to print the name and type code of a property:

Note that the get operations on the Property interface are allowed to raise both the
StructuralError and SemanticError exceptions. The OpenFusion
implementation of the Event Type Repository does not raise any exceptions on the
get operations.
It is also possible to set a new name for a property and to change the type code.
However, a few restrictions apply:
• The new property name must not be used by an existing property for the event

type or any super type of the event type when the property has already been added
to an event type.

• The new property name must only be present in the import graph of the event type
when the type code is the same when the property is added to an event type.
Import graph means the event type itself or any event type imported by the event
type. Note that the super types of that event type are also part of the import graph
when an event type is imported.

PropertyClass factory = pack.property_class_ref ();
Property p1 = null;
org.omg.CORBA.TypeCode type;

try
{
 type = orb.get_primitive_tc (org.omg.CORBA.TCKind.tk_string);
 p1 = factory.create_property (“User”, type);
}
catch (SemanticError ex)
{
 System.err.println (“Failed to create property!”);
 ex.printStackTrace ();
 System.exit (1);
}

try
{
 String name = p1.name ();
 org.omg.CORBA.TypeCode tc = p1.type_code ();
 System.out.println (“name=” + name + “, type=” + tc);
}
catch (Exception ex)
{
 System.err.println (“Never raised!”);
 ex.printStackTrace ();
 System.exit (1);
}

95
Event Type Repository�������	

 6.3 Event Types

The example below shows how to set the name and type code of a property:

The SemanticError exception is raised when the new name or the new type code
conflicts with another property in the event type inheritance and import hierarchy.
This exception is not raised when the property has yet to be added to an event type.

6.3 Event Types
An event type is an object that can be added to the event type repository. It describes
the expected contents of the filterable body field of a structured event. This
description is divided into three components:
• The properties of the event type itself.
• The properties in the super types of the event type. This includes all the event

types imported by any super type.
• The properties in any type imported by the event type. This includes all the event

types in any super types of an imported event type.
The inheritance and import hierarchies defined above are referred to as the complete
graph. The complete graph for an event type defines all the properties that are
expected in the filterable body of a structured event of that event type.
Event types are created using the EventTypeClass. See Adding an Event Type on
page 92 for obta in ing a reference to an objec t tha t implements the
EventTypeClass interface. The event type factory contains two operations to list
all objects created as does the PropertyClass interface. These are not described
any further here.

try
{
 p1.set_name (“Data”);
}
catch (SemanticError ex)
{
 System.err.println (“Name already used!”);
 ex.printStackTrace ();
 System.exit (1);
}

try
{
 org.omg.CORBA.TypeCode tc;
 tc = orb.get_primitive_tc (org.omg.CORBA.TCKind.tk_long);
 p1.set_type_code (tc);
}
catch (SemanticError ex)
{
 System.err.println (“Illegal type code!”);
 ex.printStackTrace ();
 System.exit (1);
}

96
Event Type Repository

�������	

 6.3 Event Types

An EventType object can be created as follows:

Note that the factory operation raises a SemanticError exception when the event
type name has a length of zero . The EventType interface inherits the
EventTypeClass interface in a similar manner to the Property interface. This
means that all event type objects can be used as factories as well.
The EventType interface has five operations. There are three get operations to
obtain the domain name, the type name, and the full name. The full name of an
event type is composed of the names of all super types and the usual name separated
by dots. In addition, there are two set operations to set the domain and type. An
example of using the get operations is shown below:

The get opera t ions are a l l a l lowed to ra ise StructuralError and
SemanticError exceptions according to the interface, but these exceptions are
never raised by the OpenFusion implementation.
As for the Property interface, there are a few restrictions related to using the set
operations:
• The SemanticError exception is raised by the set_domain operation when the

repository does not support the new domain and the event type has been added to
an event type repository.

• The set_name operation raises a SemanticError exception when an event type
with that name already exists and the event type has already been added to a
repository.

EventTypeClass factory = pack.event_type_class_ref ();
EventType type = null;

try
{
 type = factory.create_event_type (“telecom”, “ring”);
}
catch (SemanticError ex)
{
 System.err.println (“Illegal type name!”);
 ex.printStackTrace ();
 System.exit (1);
}

try
{
 System.out.println (“Domain = “ + type.domain ());
 System.out.println (“Name = “ + type.name ());
 System.out.println (“Full name = “ + type.get_full_name ());
}
catch (Exception ex)
{
 System.err.println (“Never raised!”);
 ex.printStackTrace ();
 System.exit (1);
}

97
Event Type Repository�������	

 6.4 Composition

The example below shows how to use the set operations of the EventType
interface:

6.4 Composition
Creating properties or event types in isolation is not very useful. This section
describes how to create associations between event types and properties using the
Composes interface. An object that implements the Composes interface can be
obtained by means of the package interface.
The Composes interface has a number of operations for adding, removing and
modifying the properties associated with an event type. The interface also has
operations for obtaining information about which properties and event types are
associated with the event type. The query operations are summarised below:
• all_Composes_links: This operation returns all the links that are currently

established between properties and event types. Two elements in the sequence are
returned by this operation: a property and an event type.

• exists: This operation simply checks that an association between an event type
and a property exists.

• with_composition: This operation returns all the properties that have been
associated with a particular event type.

• with_component: This operation returns the event type that is associated with a
particular property.

try
{
 type.set_domain (“transport”);
}
catch (SemanticError ex)
{
 System.err.println (“Domain not allowed in repository!”);
 ex.printStackTrace ();
 System.exit (1);
}

try
{
 type.set_name (“alarm”);
}
catch (SemanticError ex)
{
 System.err.println (“Event type already exists!”);
 ex.printStackTrace ();
 System.exit (1);
}

98
Event Type Repository

�������	

 6.4 Composition

Note that these operations are present in all the link interfaces (with slightly
different names) due to the MOF mapping. The following example code listings
illustrate how to use these operations. Code examples are provided for only the
Composes interface since these operations are similar for all the link interfaces.

The all_Composes_links operation is more likely to be used by a browser tool
than by an application, but it may be useful, for example, for getting a full listing of
all the associations of a Composes object. Using the exists operation is very
straightforward:

In the above example, it is assumed that the variables type and prop are event type
and property objects created elsewhere in the code. Next, the with_composition
operation is called to get all the properties associated with an event type:

Composes composes = pack.composes_ref ();
ComposesLink[] cl = composes.all_Composes_links ();
EventType type = null;
Property prop = null;

try
{
 for (int i = 0; i < cl.length; i++)
 {
 type = cl[i].composition;
 prop = cl[i].component;

 System.out.println (“Link #” + i + “:”);
 System.out.println (“Event domain :” + type.domain ());
 System.out.println (“Event name :” + type.name ());
 System.out.println (“Property name:” + prop.name ());
 System.out.println (“Property type:” + prop.type_code ());
 }
}
catch (Exception ex)
{
 System.err.println (“Never raised!”);
 ex.printStackTrace ();
 System.exit (1);
}

if (composes.exists (type, prop))
{
 System.out.println (“Property is added to event type”);
}
else
{
 System.out.println (“Property isn’t added to event type”);
}

Property[] props = composes.with_composition (type);

try
{
 System.out.println (“Event domain :” + type.domain ());
 System.out.println (“Event name :” + type.name ());
 System.out.println (“Properties:”);
 for (int i = 0; i < props.length; i++)
99
Event Type Repository�������	

 6.4 Composition

Again, the type variable is assumed to be an event type defined elsewhere in the
code. Finally, the with_component operation can be used to find the event type
that has a particular property associated with it:

The remaining operations of the Composes interface deal with associations between
properties and event types and are summarised below:
• add - Adds a property to an event type.
• add_before_component - Adds a property to an event type at a particular

position.
• modify_composition - Moves a property from one event type to another event

type.
• modify_component - Replaces one property in an event type with another

property.
• remove - Removes a property from an event type.
The following shows an example of using the add operation:

 {
 System.out.println (“Property name:” + props[i].name ());
 System.out.println (“Property type:” + props[i].type_code ());
 }
}
catch (Exception ex)
{
 System.err.println (“Never raised!”);
 ex.printStackTrace ();
 System.exit (1);
}

EventType et = composes.with_component (prop);

try
{
 System.out.println (“Property name:” + prop.name ());
 System.out.println (“Property type:” + prop.type_code ());
 System.out.println (“Is associated with the event type:”);
 System.out.println (“Event domain :” + type.domain ());
 System.out.println (“Event name :” + type.name ());
}
catch (Exception ex)
{
 System.err.println (“Never raised!”);
 ex.printStackTrace ();
 System.exit (1);
}

try
{
 composes.add (type, prop);
}
catch (StructuralError ex)
{
 System.err.println (“Failed to add property to event type!”);
100
Event Type Repository

�������	

 6.4 Composition

The add operation adds the property at the end of the list of properties of an event
type since properties are ordered. The StructuralError exception is raised in the
following circumstances:
• when the property is already added to this event type
• when any super type has a property with this name added
• when the property has a different type code in any event type in the import graph
The add_before_component operation is used when you wish to place a new
property at a particular position in the ordered list of properties. An example is
given below:

This code is very similar to the plain add example. Note that the NotFound
exception is raised when the before property is not associated with type. As with
the previous examples, it is assumed that the type variable is an event type,
whereas prop and before are properties that have been created or obtained
previously in the program.

 ex.printStackTrace ();
 System.exit (1);
}
catch (SemanticError ex)
{
 System.err.println (“Never raised!”);
 ex.printStackTrace ();
 System.exit (1);
}

try
{
 composes.add_before_component (type, prop, before);
}
catch (NotFound ex)
{
 System.err.println (“Could’t find before property!”);
 ex.printStackTrace ();
 System.exit (1);
}
catch (StructuralError ex)
{
 System.err.println (“Failed to add property to event type!”);
 ex.printStackTrace ();
 System.exit (1);
}
catch (SemanticError ex)
{
 System.err.println (“Never raised!”);
 ex.printStackTrace ();
 System.exit (1);
}

101
Event Type Repository�������	

 6.4 Composition

The modify_composition operation is used to move a property from one event
type to another event type. This operation essentially deletes the property from one
event type and adds it to another. Here is an example of how the operation is used:

The NotFound exception is raised when the property is not associated with the
event type in a similar manner to the add_before_component operation. The
StructuralError exception is raised in the following circumstances:
• when the property is already added to the new event type
• when any super type of the new event type has the property added or
• when the property has a different type in any event type in the import graph of the

new event type.
A property can also be replaced with another using the modify_component
operation rather than by moving a property from one event type to another. This
operation removes one property from an event type and adds another as shown
below:

try
{
 composes.modify_composition (type, prop, new_type);
}
catch (NotFound ex)
{
 System.err.println (“Property was not added to event type!”);
 ex.printStackTrace ();
 System.exit (1);
}
catch (StructuralError ex)
{
 System.err.println (“Failed to add property to new event type!”);
 ex.printStackTrace ();
 System.exit (1);
}
catch (SemanticError ex)
{
 System.err.println (“Never raised!”);
 ex.printStackTrace ();
 System.exit (1);
}

try
{
 composes.modify_component (type, prop, new_prop);
}
catch (NotFound ex)
{
 System.err.println (“Property was not added to event type!”);
 ex.printStackTrace ();
 System.exit (1);
}
catch (StructuralError ex)
{
 System.err.println (“Failed to add property to event type!”);
 ex.printStackTrace ();
 System.exit (1);
102
Event Type Repository

�������	

 6.4 Composition

Again, NotFound is raised when the property is not associated with the event type.
The usual causes for the StructuralError exception apply:
• the new property is already added to the event type
• any super type of the event type has this property added
• the property has a different type in any event type in the import graph of the event

type
Finally, the remove operation can be used to delete, i.e. disassociate, a property
from an event type. The use of this operation is fairly straightforward as with most
operations in the Composes interface:

Note that this implementation of the Composes interface never checks that an event
type has subtypes or that any other event types import the event type. This means
that the property is also deleted from any subtype of the event type, and from any
importer type when a property is deleted from an event type.
Adding a property to an event type automatically adds the property to any subtype
and any importer type of the event type in a similar manner to the above. The
operations in the Composes interface should therefore be used with caution when
modifying the properties in an existing event type hierarchy.

}
catch (SemanticError ex)
{
 System.err.println (“Never raised!”);
 ex.printStackTrace ();
 System.exit (1);
}

try
{
 composes.remove (type, prop);
}
catch (NotFound ex)
{
 System.err.println (“Property was not added to event type!”);
 ex.printStackTrace ();
 System.exit (1);
}
catch (StructuralError ex)
{
 System.err.println (“Never raised!”);
 ex.printStackTrace ();
 System.exit (1);
}
catch (SemanticError ex)
{
 System.err.println (“Never raised!”);
 ex.printStackTrace ();
 System.exit (1);
}

103
Event Type Repository�������	

 6.5 Inheritance

6.5 Inheritance
This section describes how to use the operations in the Inherits interface to create
or modify inheritance hierarchies of event types.
The Inherits interface contains the same query operations as the Composes
interface because it represents an aggregation (or a link) in the repository meta
model:
• all_Inherits_links - This operation returns all the inheritance relationships

that are currently established between event types. The elements in the sequence
that are returned by this operation contain two elements: a subtype and a
supertype.

• exists - This operation simply checks whether one event type inherits from
another.

• with_sub_type - This operation returns the event type with a particular subtype.
• with_super_type - This operation returns all the event types that inherit from a

particular supertype.
These query type operations are not described any further here because code
examples have previously been provided.
The remainder of this section provides examples using the rest of the operations in
the Inherits interface. Note that the operations themselves are rather similar to
those in the Composes interface. The reason for this is that they are both links
mapped to IDL using the MOF.
This section therefore emphasises the circumstances that cause an exception to be
raised, rather than the operations themselves. Below is a summary of the operations
for manipulating inheritance hierarchies between event types:
• add - Creates an inheritance relationship between two event types.
• modify_sub_type - Replaces one subtype with another.
• modify_super_type - Replaces one supertype with another.
• remove - Deletes an inheritance relationship between two event types.
There is no operation for adding one object before another since the inheritance
between event types is not ordered. Note that only single inheritance between event
types is allowed in the Event Type Repository.
The add operation creates an inheritance relationship between two event types. An
example is shown below:
EventTypeClass factory = pack.event_type_class_ref ();
EventType sub_type = null;
EventType super_type = null;

try
{

104
Event Type Repository

�������	

 6.5 Inheritance

In the above, two event types are created in the usual fashion. An object that
implements the Inherits interface is resolved using the package as described
earlier. An inheritance relationship is created between the two event types using this
interface. The StructuralError exception is raised in these circumstances:
• When the subtype is already added to another supertype. This is due to the fact

that the Event Type Repository supports only single inheritance between event
types when:

• any property in the subtype is defined in the supertype event type
• any property type in the subtype is defined in any type in the import graph of

supertype
• adding this event type creates a cycle in the inheritance hierarchy
The modify_sub_type operation is used to replace one subtype with another. It is
a shorthand for first deleting one event type from a supertype and then adding
another event type to the supertype. An example is shown below:

 sub_type = factory.create_event_type (“telecom”, “alarm”);
 super_type = factory.create_event_type (“telecom”, “location”);
}
catch (SemanticError ex)
{
 System.err.println (“Illegal type name!”);
 ex.printStackTrace ();
 System.exit (1);
}

Inherits inherits = pack.inherits_ref ();

try
{
 inherits.add (sub_type, super_type);
}
catch (StructuralError ex)
{
 System.err.println (“Couldn’t add subtype to supertype!”);
 ex.printStackTrace ();
 System.exit (1);
}
catch (SemanticError ex)
{
 System.err.println (“Never raised!”);
 ex.printStackTrace ();
 System.exit (1);
}

try
{
 inherits.modify_sub_type (sub_type, super_type, new_sub_type);
}
catch (NotFound ex)
{
 System.err.println (“Subtype wasn’t added to supertype!”);
 ex.printStackTrace ();
 System.exit (1);
105
Event Type Repository�������	

 6.5 Inheritance

The StructuralError exception is raised in the same circumstances as noted
above because the modify_sub_type operation creates an inheritance relationship
between two event types, i.e. adds an event type to another. The NotFound
exception is raised when the subtype has not been added to the supertype.
The supertype can also be modified using the modify_super_type operation.
Again, this is a shorthand method for first removing an inheritance relationship
between two event types and then creating another. This is illustrated below:

The NotFound exception is raised when an inheritance relationship does not exist
between the subtype and supertype. The StructuralError exception is raised in
the following circumstances:
• when a subtype has any properties that are defined in the new super type or any of

its supertypes
• when a subtype has any properties that are defined in the import graph of the new

supertype

}
catch (StructuralError ex)
{
 System.err.println (“Couldn’t replace subtype!”);
 ex.printStackTrace ();
 System.exit (1);
}
catch (SemanticError ex)
{
 System.err.println (“Never raised!”);
 ex.printStackTrace ();
 System.exit (1);
}

try
{
 inherits.modify_super_type (sub_type, super_type, new_super_type);
}
catch (NotFound ex)
{
 System.err.println (“Subtype wasn’t added to supertype!”);
 ex.printStackTrace ();
 System.exit (1);
}
catch (StructuralError ex)
{
 System.err.println (“Couldn’t replace supertype!”);
 ex.printStackTrace ();
 System.exit (1);
}
catch (SemanticError ex)
{
 System.err.println (“Never raised!”);
 ex.printStackTrace ();
 System.exit (1);
}

106
Event Type Repository

�������	

 6.6 Import

• when adding this event type creates a cycle in the inheritance hierarchy
Finally, the remove operation is used to delete an inheritance relationship between
two event types. Its use is straightforward:

The NotFound exception is again raised when the subtype does not inherit from the
supertype. Both the StructuralError and SemanticError exceptions are not
raised by this implementation of the Inherits interface.
The same note of caution stated for composition applies to inheritance. The
implementation of the Inherits interface does not check for existing relationships
when the inheritance hierarchy is modified. As an example, an entire branch of the
tree may be moved by invoking the modify_sub_type operation.

6.6 Import
Event types can import rather than inherit properties from other event types. An
import relationship between two event types just means that one event type obtains
the properties of another event type. There is no semantic relationship. This section
shows how to use the operations in the Imports interface.
The query operations of the Imports interface are summarised as follows:
• all_Imports_links - This operation returns all the import relationships that

are currently established between event types. The elements in the sequence that
are returned by this operation contain two elements: importer type and imported
type.

• exists - This operation simply checks whether one event type imports another.

try
{
 inherits.remove (sub_type, super_type);
}
catch (NotFound ex)
{
 System.err.println (“Subtype wasn’t added to supertype!”);
 ex.printStackTrace ();
 System.exit (1);
}
catch (StructuralError ex)
{
 System.err.println (“Never raised!”);
 ex.printStackTrace ();
 System.exit (1);
}
catch (SemanticError ex)
{
 System.err.println (“Never raised!”);
 ex.printStackTrace ();
 System.exit (1);
}

107
Event Type Repository�������	

 6.6 Import

• with_importer - This operation returns all the event types that import a
particular event type.

• with_imported - This operation returns all the event types that are imported by
a particular event type.

The remaining operations of the Imports interface are summarised below:
• add - Creates an import relationship between two event types.
• modify_importer - Moves an imported event type from one importer event

type to another.
• modify_imported - Replaces an imported event type with another.
• remove - Deletes an import relationship between two event types.
The add operation is used to create an import relationship. The two sides of the
relationship are called the importer event type and the imported event type
respectively. An imported event type may have overlapping property names as long
as the type codes of the properties are the same, unlike with inheritance.
EventTypeClass factory = pack.event_type_class_ref ();
EventType importer = null;
EventType imported = null;

try
{
 importer = factory.create_event_type (“telecom”, “alarm”);
 imported = factory.create_event_type (“telecom”, “location”);
}
catch (SemanticError ex)
{
 System.err.println (“Illegal type name!”);
 ex.printStackTrace ();
 System.exit (1);
}

Imports imports = pack.imports_ref ();

try
{
 imports.add (importer, imported);
}
catch (StructuralError ex)
{
 System.err.println (“Failed to import event type!”);
 ex.printStackTrace ();
 System.exit (1);
}
catch (SemanticError ex)
{
 System.err.println (“Never raised!”);
 ex.printStackTrace ();
 System.exit (1);
}

108
Event Type Repository

�������	

 6.6 Import

The Imports object reference is resolved from the package object in the usual
manner. The StructuralError exception is raised in the following
circumstances:
• any property in the event type graph of the imported event type has a different

type code than the corresponding property in the importer event type
• the addition of the event type creates a cycle in the import graph.
An example of using the modify_importer is shown below. This operation is a
shorthand method for first removing the imported type from one event type and
subsequently adding it to another event type.

The NotFound operation is raised when an import relationship between the two
event types does not exist as has been the case for many of the previous link
manipulating operations. The StructuralError exception is raised in the same
circumstance as stated above because the imported event type is added to a new
importer.
The modify_imported operation replaces an imported event type with another.
The operation is a shorthand method for first removing an event type from an
importer and then adding a new event type to the same importer. An example is
shown below:

try
{
 imports.modify_importer (importer, imported, new_importer);
}
catch (NotFound ex)
{
 System.err.println (“Event type wasn’t imported!”);
 ex.printStackTrace ();
 System.exit (1);
}
catch (StructuralError ex)
{
 System.err.println (“Failed to import event type!”);
 ex.printStackTrace ();
 System.exit (1);
}
catch (SemanticError ex)
{
 System.err.println (“Never raised!”);
 ex.printStackTrace ();
 System.exit (1);
}

try
{
 imports.modify_imported (importer, imported, new_imported);
}
catch (NotFound ex)
{
 System.err.println (“Event type wasn’t imported!”);
 ex.printStackTrace ();
 System.exit (1);
109
Event Type Repository�������	

 6.7 Event Type Repository Description

The NotFound and StructuralError exceptions are raised in the same
circumstances as for the modify_importer operation.
Finally, the remove operation destroys an import relationship between two event
types. Again, the NotFound exception is raised when no import relationship exists
between the two types:

6.7 Event Type Repository Description
An Event Type Repository is an object that contains a number of event type objects.
The repository supports a number of domains that constrain the domain names of
the events that are added to the repository.
An Event Type Repository is a singleton object within each server. The repository
object is typically created by the OpenFusion server process but can alternatively be
created using the factory meta class EventTypeRepositoryClass. The
EventTypeRepositoryClass interface has two additional operations besides the
factory operation for creating property objects:

}
catch (StructuralError ex)
{
 System.err.println (“Failed to import event type!”);
 ex.printStackTrace ();
 System.exit (1);
}
catch (SemanticError ex)
{
 System.err.println (“Never raised!”);
 ex.printStackTrace ();
 System.exit (1);
}

try
{
 imports.remove (importer, imported);
}
catch (NotFound ex)
{
 System.err.println (“Event type wasn’t imported!”);
 ex.printStackTrace ();
 System.exit (1);
}
catch (StructuralError ex)
{
 System.err.println (“Never raised!”);
 ex.printStackTrace ();
 System.exit (1);
}
catch (SemanticError ex)
{
 System.err.println (“Never raised!”);
 ex.printStackTrace ();
 System.exit (1);
}

110
Event Type Repository

�������	

 6.7 Event Type Repository Description

• all_of_kind_event_type_repository - This operation returns either the
event type repository singleton or a sequence of length zero since only one
repository is allowed within each package.

• all_of_type_event_type_repository - As above, this operation returns
one or zero event type repositories.

The example below shows how to use the create_event_type_repository
operation to create a new repository:

The AlreadyCreated exception is raised when an attempt is made to create
multiple repositories within the same server. The EventTypeRepository
in ter face has two addi t ional opera t ions to those inher i ted f rom the
EventTypeRepositoryClass interface:
• supported_domains - This returns a list of strings describing the domains that

are supported by the repository.
• lookup - This operation locates an event type with a particular type name and

domain.
As the supported_domains operation is very simple, this section includes
example code for only the lookup operation:

EventTypeRepositoryClass etc;
EventTypeRepository repos = null;
String domains[] = { “oil”, “banking”, ““, “finance” };

etc = pack.event_type_repository_class_ref ();

try
{
 repos = etc.create_event_type_repository (domains);
}
catch (AlreadyCreated ex)
{
 System.err.println (“Repository already created!”);
 ex.printStackTrace ();
 System.exit (1);
}
catch (SemanticError ex)
{
 System.err.println (“Failed to create repository!”);
 ex.printStackTrace ();
 System.exit (1);
}

EventType type = null;

try
{
 type = repos.lookup (“alarm”, “telecom”);
}
catch (InvalidName ex)
{
 System.err.println (“Invalid type name!”);
 ex.printStackTrace ();
111
Event Type Repository�������	

 6.8 Containment

6.8 Containment
The last step in configuring the Event Type Repository is the Contains interface. It
allows event types to be added to and removed from the repository. As with the
other link interfaces, there are four query operations:
• all_Contains_links - This operation returns all the containment relationships

that are currently established between the event type repository and the event
types. The elements in the sequence returned by this operation contain two
elements: the repository and an event type.

• exists - This operation simply checks that an event type has been added to the
repository.

• with_container - This operation returns all the event types in the repository.
• with_contained - This operation returns the repository where an event type is

defined. This will always be the singleton event type repository of the package.
The Contains interface also has the following additional operations for
manipulating relationships between event types and the repository:
• add: Adds an event type to the repository.
• modify_container - Moves an event type from one repository to another.

 System.exit (1);
}
catch (TypeNotFound ex)
{
 System.err.println (“Event type not found!”);
 ex.printStackTrace ();
 System.exit (1);
}
catch (UnknownDomain ex)
{
 System.err.println (“Domain not supported by repository!”);
 ex.printStackTrace ();
 System.exit (1);
}
catch (SemanticError ex)
{
 System.err.println (“Never raised!”);
 ex.printStackTrace ();
 System.exit (1);
}

try
{
 System.out.println (“Full name = “ + type.get_full_name());
}
catch (Exception ex)
{
 System.err.println (“Never raised!”);
 ex.printStackTrace ();
 System.exit (1);
}

112
Event Type Repository

�������	

 6.8 Containment

• modify_contained - Replaces an event type in the repository with another.
• remove - Removes an event type from the repository.
An example of using add is shown below:

In the above example, it is assumed that type is an event type created or obtained
previously in the program. The StructuralError exception is raised when the
event type has already been added to the repository or when the domain of the event
is not supported. The SemanticError is not raised by this implementation of the
event type repository.
It is possible to have multiple repositories by creating multiple packages although
the even t t ype repos i to ry i s a s ing le ton wi th in each package . The
modify_container operation is not needed when your application uses only a
single repository. However, below is an example of how to move an event type from
one repository to another:

Contains contains = pack.contains_ref ();

try
{
 contains.add (repos, type);
}
catch (StructuralError ex)
{
 System.err.println (“Can’t add event type to repository!”);
 ex.printStackTrace ();
 System.exit (1);
}
catch (SemanticError ex)
{
 System.err.println (“Never raised!”);
 ex.printStackTrace ();
 System.exit (1);
}

try
{
 contains.modify_container (repos, type, new_repos);
}
catch (NotFound ex)
{
 System.err.println (“Event type wasn’t in repository!”);
 ex.printStackTrace ();
 System.exit (1);
}
catch (StructuralError ex)
{
 System.err.println (“Failed to add event type to repository!”);
 ex.printStackTrace ();
 System.exit (1);
}
catch (SemanticError ex)
{
 System.err.println (“Never raised!”);
 ex.printStackTrace ();
113
Event Type Repository�������	

 6.8 Containment

The NotFound exception is raised when the event type is not added to the
repository. The StructuralError exception is raised when the event type could
not be added to the new repository, i.e. when the domain is not supported or when it
is already added.
The modify_contained operation replaces one event type in the repository with
another. It is a shorthand method for first deleting one event type and subsequently
adding another. An example of usage is listed below:

Finally, the remove operation deletes an event type from the repository. The code
below is straightforward:

 System.exit (1);
}

try
{
 contains.modify_contained (repos, type, new_type);
}
catch (NotFound ex)
{
 System.err.println (“Event type wasn’t in repository!”);
 ex.printStackTrace ();
 System.exit (1);
}
catch (StructuralError ex)
{
 System.err.println (“Failed to add new event type to repository!”);
 ex.printStackTrace ();
 System.exit (1);
}
catch (SemanticError ex)
{
 System.err.println (“Never raised!”);
 ex.printStackTrace ();
 System.exit (1);
}

try
{
 contains.remove (repos, type);
}
catch (NotFound ex)
{
 System.err.println (“Event type wasn’t in repository!”);
 ex.printStackTrace ();
 System.exit (1);
}
catch (StructuralError ex)
{
 System.err.println (“Never raised!”);
 ex.printStackTrace ();
 System.exit (1);
}
catch (SemanticError ex)
{
 System.err.println (“Never raised!”);
114
Event Type Repository

�������	

 6.9 Repository Package

The remove operation raises only the NotFound exception when no containment
relationship exists between the event type and the event type repository.

6.9 Repository Package
The Package interfaces section provides only a brief overview of the operations for
similar reasons as before.
There is a NotificationTypesPackageFactory interface for creating package
instances. The package factory is used to create a local instance of an event type
repository. Note that there can still be only a single repository per server even when
used in this way:

The factory interface has just a single operation for creating packages:
create_notification_types_package. A package is an object that
implements the NotificationTypesPackage interface. This interface has
operations to obtain references to all the objects described previously:

 ex.printStackTrace ();
 System.exit (1);
}

_NotificationTypesPackage pack;
EventTypeRepositoryClass etc;
EventTypeRepository repos;
NotificationTypesPackageFactoryImpl impl;
NotificationTypesPackageFactory factory;
org.omg.CORBA.Object object;

String[] domains = { “Telecom”, “Transport”, “News” };

impl = new NotificationTypesPackageFactoryImpl ();
object = ObjectAdapter.getObject (impl);
factory = NotificationTypesPackageFactoryHelper.narrow (object);

try
{
 pack = factory.create_notification_types_package ();
 etc = pack.event_type_repository_class_ref ();
 repos = etc.create_event_type_repository (domains);
}
catch (org.omg.Reflective.SemanticError ex)
{
 System.err.println (“Semantic error occurred!”);
 ex.printStackTrace ();
 System.exit (1);
}
catch (org.omg.Reflective.AlreadyCreated ex)
{
 System.err.println (“Local repository already created!”);
 ex.printStackTrace ();
 System.exit (1);
}

115
Event Type Repository�������	

 6.9 Repository Package

• property_class_ref - Returns a PropertyClass factory object for this
package.

• event_type_class_ref - Returns an EventTypeClass factory object for this
package.

• event_type_repository_class_ref - Returns a factory object of type
EventTypeRepositoryClass for this package.

• contains_ref - Returns the Contains object.
• inherits_ref - Returns the Inherits objects.
• imports_ref - Returns the Imports object.
• composes_re -: Returns the Composes object.
Previous topic have already describe how to use these simple get operations.
116
Event Type Repository

�������	

CHAPTER

7 API Definitions
The Event Type Repository consists of the 12 interfaces, described in this section.
The operations from these interfaces provide a generic way to reflect on an object or
association.
The Event Type Repository interfaces provide specific operations in order to access
the functionality of the repository so the generic, reflective operations are not
needed. As an example, the Composes interface has an add operation that adds a
property to an event type. There is also an add_link operation that is inherited
from the RefAssociation interface. These operations perform the same action,
one in a domain-specific way and one in a generic way.
Classes in the UML model inherit operations from the RefObject interface. Table
8 shows the Event Type Repository interfaces that deal with classes.

Table 8 Event Type Repository Classes

Interface Purpose
NotificationTypesPackageClass A package level interface that can be

used to create event type repository
packages.

NotificationTypesPackage Instances of the event type repository
package that are created by the factory
class.

EventTypeRepositoryClass A meta class and factory for objects that
implement the EventTypeRepository
interface.

EventTypeRepository An interface for event type repositories.
EventTypeClass A meta class and factory for objects that

implement the EventType interface.
117
 Event Type Repository�������	

Links (aggregat ions in the UML model) inher i t operat ions f rom the
RefAssociation interface. Table 9 shows the Event Type Repository interfaces
that deal with links.

EventType An interface for the event type objects
contained in the repository.

PropertyClass A meta class and factory for objects that
implement the Property interface.

Property An interface for property objects. Event
type objects are composed of property
objects.

Table 9 Event Type Repository Aggregations

Interface Purpose
Contains An interface for manipulating the

contents of an event type repository. The
interface represents the aggregation
between the repository and the event
type classes in Figure 10.

Inherits An interface for manipulating
inheritance between event types. The
interface represents the self-aggregation
on the event type class in Figure 10.

Imports An interface for manipulating imports
between event types. The interface
represents the self-aggregation on the
event type class in Figure 10.

Composes An interface for manipulating
compositions between event types and
properties. The interface represents the
aggregation between the event type and
property classes in Figure 10.

Table 8 Event Type Repository Classes (Continued)

Interface Purpose
118
Event Type Repository

�������	

CHAPTER

8 Supplemental Information
8.1 Exceptions

The Event Type Repository supports a number of exceptions as summarised in
Table 10 below:

A number of exceptions from the MOF are used in addition to the Event Type
Repository exceptions. These are summarised in Table 11 below:

Table 10 Event Type Repository Exceptions

Exception Description
InvalidName Indicates that an event name was invalid.
UnknownDomain Indicates that the event type repository does not

know a domain.
TypeNotFound This exception is only raised by the lookup

operation of the EventTypeRepository class to
indicate that an event type could not be found.

Table 11 MOF Exceptions Used by the Event Type Repository

Exception Description
StructuralError Raised when an operation could not complete

because it would result in a structural error, e.g. the
repository would be inconsistent.

SemanticError Indicates a semantic error. This is raised when a
check of the input parameters shows that the
operation cannot be performed.

NotFound Indicates that an object could not be found in a
container.

AlreadyCreated Indicates that an Event Type Repository has already
been created. This exception is raised because the
repository is a singleton.
119
 Event Type Repository�������	

 8.1 Exceptions

120
Event Type Repository

�������	

EVENT DOMAIN SERVICE

CHAPTER

9 Description
The Event Domain Service simplifies the federation and management of Notification
Service event channels.
The Management of Event Domains specification was developed by the OMG
Telecom Task Force. It describes standard interfaces for federating and managing a
set of Notification Service Event Channel objects, or a set of Log Service Log
objects. The OpenFusion implementation of the Event Domain Service is wholly
compliant with the OMG specification.
The federation of event channels using the Notification Service can be cumbersome
and involve several steps. The same operation using the Event Domain Service can
be performed in a single step.
The Event Domain Service can manage the following types of objects:
• Notification-style event channels
• Notification-style typed event channels
• Log Service logs
• Log Service typed logs
Although the Event Domain Service can manage notification channels and logs, it is
independent of these other services. It is a stand-alone service that can be used to
manage objects from any OMG-compliant Notification or Log Service.

9.1 Features
The Event Domain Service provides the following features:
• Networking of event channels:

 - facilitates channel federation
 - no need for an intermediary client to forward events from one channel to

another
 - also supports typed events and log domains

• Simplified programming:
 - federate channels in one operation
 - connect a client in one operation
123
 Event Domain Service�������	

 9.2 Architecture and Concepts

• Ability to detect and (if necessary) prevent the creation of cycles and diamonds —
which helps in topology management.

9.2 Architecture and Concepts
An event domain is a group of one or more channels. (The term channel is used here
to denote any managed object, including Notification Service event channels and
Log Service logs.) The channels within a domain may or may not be connected to
one another (federated).
Note that the channels need not belong to the same Notification Service instance.
Channels from different Notification Services can be federated into a single domain.
Similarly, logs from different Log Service instances can be federated into a single
log domain.
Event suppliers and consumers can connect to any channel in the event domain,
using the operations provided by the Event Domain Service interfaces. Events flow
through the domain, from supplier to consumer, and may pass through any number
of federated channels in the process.
Each event domain may optionally have default supplier and consumer channels
specified. An event supplier will connect to the default supplier channel unless a
specific target channel is identified when the connection is established. An event
consumer will connect to the default consumer channel unless a specific target
channel is identified when the connection is established.
Figure 11 illustrates events flowing through one possible configuration of an event
domain with four event channels.

Figure 11 An Event Domain

Event
Channel

3

Event
Consumer

Event
Supplier

Event
Supplier

Event
Consumer

Event
Channel

1

Event
Channel

2

Event
Channel

4

Event Domain
124
Event Domain Service

�������	

 9.2 Architecture and Concepts

The Event Domain Service does not interfere with the events that flow inside a
domain. It is merely a management service that facilitates the administrative tasks
associated with federating and managing channels.
It is possible to have any mixture of connection types and event propagation models
within a single domain. For example, the connection between one set of channels
may be structured, while the connection between another set of channels may be
untyped.

9.2.1 Federating Channels
A powerful feature of the Event Domain Service is the ability to federate channels
without the use of an intermediary. In other words, it is possible to connect two
channels without creating a special client that forwards events from one channel to
the other.
An example of federated Notification Services is shown in Figure 12. The ability to
federate event channels in this manner provides improved flexibility (alternative
paths can be made available), scalability (the system can be easily extended), and
better performance.

Figure 12 Federated Notification Service Example

Direction of event flow

Channel

Proxy
Supplier

Supplier

Proxy
Consumer

Proxy
Consumer

Supplier

Consumer

Proxy
Supplier

Proxy
Supplier

Notification Service 1 Channel

Proxy
Supplier

Proxy
Consumer

Proxy
Supplier

Notification Service 2

Channel

Proxy
Supplier

Proxy
Consumer

Proxy
Supplier

Notification Service 3

Consumer

Consumer

Consumer

Consumer
125
Event Domain Service�������	

 9.2 Architecture and Concepts

The Event Domains Service provides interfaces and operations that allow the
federation of an event channel in a single operation. Consider the connection
between Notification Service 1 and Notification Service 2 in Figure 12. When using
the interfaces of the Notification Service, the following steps are needed to establish
this connection:
1. Get a reference to the source event channel in Notification Service 1.
2. Get or create a consumer admin object for this channel.
3. Obtain a proxy supplier from the consumer admin object.
4. Get a reference to the target event channel in Notification Service 2.
5. Get or create a supplier admin object for this channel.
6. Obtain a proxy consumer from the supplier admin object.
7. Connect the proxy supplier by passing in the proxy consumer object.
8. Connect the proxy consumer by passing in the proxy supplier object.
Using the interfaces of the Event Domain Service, this procedure can be replaced by
a single operation.

9.2.1.0.1 Event Type Propagation
The OpenFusion implementation of the Event Domain Service supports a QoS
setting for enabling or disabling event type propagation in a domain. An event type
change can cause a large number of callbacks in a network of many channels, so
some applications may want to disable event type propagation for performance
reasons.

9.2.2 Domain Topology
The topology of an event domain describes the way in which event channels are
connected together within the domain. These connections can be illustrated as a
channel graph (see Figure 11 on page 124 and Figure 13 on page 127 for examples
of channel graphs).
The nature of the Notification Service implies that a connection is always directed.
Thus, for any channel in the domain, it is possible to define upstream and
downstream directions of event flow. For example, in Figure 11 on page 124 event
channel 1 is upsteam from event channel 3, while event channel 3 is downstream
from event channel 1.
The Event Domain Service does not enforce any restrictions on how channels
should be connected. Channels may be connected to multiple other channels in the
domain. Some channels may be part of an event domain and yet not be connected to
any other channel in the domain.
Figure 13 shows four different types of event domain that can be created:
126
Event Domain Service

�������	

 9.2 Architecture and Concepts

1. a domain where the channels are connected as a directed acyclic graph
2. a domain that contains a diamond
3. a domain that contains a cycle
4. a domain where only some of the channels are connected

Figure 13 Different Types of Event Domains
Elaborate domain topologies can be constructed which contain combinations of
these features. For example, a domain could contain both a cycle and a diamond, or
diamonds with multiple paths. Such complex topologies might be required to
provide redundancy in the case of a channel failure, for example. But the presence
of diamonds and cycles can cause effects which the developer must be aware of and
possibly take steps to avoid when the event domain is designed:
• A cycle may cause an event to propagate endlessly within the domain. To avoid

this, appropriate filters can be set up in the Notification Service or an event
timeout can be set.

c 11
c 11

c 12
c 12

c 13
c 13 c 14

c 14 c 21
c 21

c 22
c 22

c 23
c 23

c 24
c 24

c 31
c 31

c 32
c 32

c 33
c 33 c 34

c 34

c 41
c 41

c 42
c 42

c 43
c 43 c 44

c 44

Event Domain #4

Event Domain #1 Event Domain #2

Event Domain #3
127
Event Domain Service�������	

 9.2 Architecture and Concepts

• A diamond may cause an event to be delivered more than once to an end
consumer (the number of times being equal to the number of alternative paths by
which the event may arrive at the consumer). To avoid redundant event deliveries,
appropriate filters can be set up in the Notification Service.

The Event Domain Service supports two standard Quality of Service (QoS)
properties which can be used to prevent the creation of diamonds or cycles:
• Cycle detection rejects any attempt to create a connection between two channels

when the resulting channel graph would contain a cycle.
• Diamond detection rejects any attempt to create a connection between two

channels when the resulting channel graph would contain a diamond.

9.2.2.0.1 Gathering Topology Information
The Event Domain Service supports two operations for obtaining information about
cycles and diamonds that may exist in a domain:
• get_cycles returns a sequence of cycles in a specified domain.
• get_diamonds returns a sequence of diamonds in a specified domain.
Two additional operations can be used to obtain information about the topology of
an event domain:
• get_offer_channels returns an array of channel identifiers for all channels

upstream from a specified channel.
• get_subscription_channels returns an array of channel identifiers for all channels

downstream from a specified channel.
128
Event Domain Service

�������	

CHAPTER

10 Using Specific Features
This section uses simple examples that work through the interfaces and describe
how to use the individual operations of the Event Domain. Related operations are
grouped together for clarity. Additional examples for using the service, complete
with source code and descriptions of how to compile and run them, are supplied
elsewhere as part of the product distribution.
Section 10.1 is a simple end-to-end example which sets up an event domain and
connects it to an event supplier and an event consumer. Sections 10.2 and 10.3
expand on this and describe domain management operations for untyped and typed
event domains, respectively. Section 10.4 describes how these features can be
applied to log domains.

Note
• There is little or no error-checking in the examples shown here. Code to deal with

exceptions has generally been omitted for the sake of clarity and brevity. These
exceptions must be properly caught and handled in a working system.

• These examples use features of the OpenFusion Naming Service to register and
resolve object names. This is purely for convenience: it is not necessary to use the
Naming Service with the Event Domain Service.

Import Statements
The examples provided below use the following packages:

org.omg.CosNotifyComm.*
org.omg.CosNotification.*
org.omg.CosNotifyChannelAdmin.*
org.omg.CosEventDomainAdmin.*
org.omg.CosTypedEventDomainAdmin.*

10.1 Setting up a Domain
The following examples will set up the event domain shown in Figure 14. This
simple domain consists of three Notification Service event channels, labelled A, B,
and C in the diagram.

i

129
 Event Domain Service�������	

 10.1 Setting up a Domain

The setup client is responsible for creating the domain, creating the channels and
adding them to the domain, and creating the connections between the channels.
References to all created objects will be placed in the root context of the
OpenFusion Naming Service.

Figure 14 Event Domain and Connected Clients

10.1.1 Creating an Event Domain
Step 1: Create a new (empty) event domain. This requires the following operations:

1. Obtain a reference to the event domain factory. The factory is registered in the
Naming Service with the name EventDomainFactory.

2. Use the factory’s create_event_domain method to create the domain.
Quality of Service (QoS) and Administrative properties can be specified at this
time. (Note, however, that this example does not specify any QoS or Admin
property values. See Using a Domain Factory on page 139 for an example
which sets QoS properties for the domain.)

AA BB CC

Event Domain

Push
supp lier
Push

supp lier
Push

c onsumer
Push

c onsumer

public EventDomain create ()
{
 org.omg.CORBA.Object obj = null;

 try
 {
 obj = orb.resolve_initial_references (“EventDomainFactory”);
 }
 catch (org.omg.CORBA.ORBPackage.InvalidName ex)
 {
 System.err.println (“Failed to resolve Event Domain Factory”);
 System.exit (1);
 }

 EventDomainFactory factory = EventDomainFactoryHelper.narrow
(obj);

 Property[] qos = new Property[0];
 Property[] adm = new Property[0];
 org.omg.CORBA.IntHolder id = new org.omg.CORBA.IntHolder ();
 EventDomain domain = null;

 try
 {
 domain = factory.create_event_domain (qos, adm, id);
130
Event Domain Service

�������	

 10.1 Setting up a Domain

Step 2: Register the newly-created domain in the root context of the Naming Service. This
requires the following operations:
1. Obtain a reference to the Naming Service.
2. Bind the domain into the root context of the Naming Service.
Note that the register function is used at several points in the domain creation
procedure. It takes an object and the name that the object is to be registered under as
parameters. To register the domain, we will pass in the domain object (created in
Step 1) and the name MyDomain.

Step 3: Create three Notification Service event channels and add them to the domain. To do
this, we use the setup function, which performs the following operations:

 }
 catch (UnsupportedQoS ex)
 {
 System.err.println (“UnsupportedQoS”);
 System.exit (1);
 }
 catch (UnsupportedAdmin ex)
 {
 System.err.println (“UnsupportedAdmin”);
 System.exit (1);
 }

public static void register (org.omg.CORBA.Object object, String
name)
{
 org.omg.CORBA.Object obj = null;

 try
 {
 obj = orb.resolve_initial_references (“NameService”);
 }
 catch (org.omg.CORBA.ORBPackage.InvalidName ex)
 {
 System.err.println (“Failed to resolve Name Service”);
 System.exit (1);
 }

 NamingContext root = NamingContextHelper.narrow (obj);

 NameComponent nc[] = new NameComponent[1];
 nc[0] = new NameComponent (name, “Object”);

 try
 {
 root.rebind (nc, object);
 System.out.println (“Placed “ + name + “ in naming context”);
 }
 catch (Exception ex)
 {
 System.err.println (“Failed to bind domain: “ + ex);
 System.exit (1);
 }
}

131
Event Domain Service�������	

 10.1 Setting up a Domain

1. Obtain a reference to the Notification Service event channel factory.
2. Create three new event channels using the factory’s create_channel method.
3. Register the event channels in the root context of the Naming Service, using the

register function described in Step 2. In this example, we will register the
channels under the names ChannelA, ChannelB, and ChannelC.

4. Add the channels to the domain, using the domain’s add_channel method.
public void setup (EventDomain domain)
{
 org.omg.CORBA.Object obj = null;

 try
 {
 obj = orb.resolve_initial_references (“NotificationService”);
 }
 catch (org.omg.CORBA.ORBPackage.InvalidName ex)
 {
 System.err.println (“Failed to resolve Notification Service”);
 System.exit (1);
 }

 EventChannelFactory factory = EventChannelFactoryHelper.narrow
(obj);
 EventChannel a = null, b = null, c = null;

 try
 {
 Property[] qos = new Property[0];
 Property[] adm = new Property[0];
 org.omg.CORBA.IntHolder id = new org.omg.CORBA.IntHolder ();

 a = factory.create_channel (qos, adm, id);
 b = factory.create_channel (qos, adm, id);
 c = factory.create_channel (qos, adm, id);

 register (a, “ChannelA”);
 register (b, “ChannelB”);
 register (c, “ChannelC”);
 }
 catch (UnsupportedQoS ex)
 {
 System.err.println (“UnsupportedQoS”);
 System.exit (1);
 }
 catch (UnsupportedAdmin ex)
 {
 System.err.println (“UnsupportedAdmin”);
 System.exit (1);
 }

 int idA = domain.add_channel (a);
 int idB = domain.add_channel (b);
 int idC = domain.add_channel (c);
132
Event Domain Service

�������	

 10.1 Setting up a Domain

Step 4: Set up connections in the new domain, connecting ChannelA to ChannelB and
ChannelB to ChannelC as shown in Figure 14 on page 130. This involves two
operations:
1. Create the connections. Two individual connections are required, as each

connection links two specific channels. Note that the order in which the
channels are specified in the creation operation is significant, as connections are
directed from the first identified channel to the second. The type and style of the
connection must also be specified. In this example, the connections are for
structured event channels using the push model.

2. Add the new connections to the domain, using the domain’s add_connection
method.

Step 5: Set ChannelA as the default supplier channel and ChannelC as the default consumer
channel. This ensures that suppliers, by default, will be connected to ChannelA
whilst consumers, by default, will be connected to ChannelC.

Step 6: Print out some information about the channels, connections, and QoS properties of
the newly-created domain. (For further examples of these operations, see page 139 -
page 141.) This step is not required, but it allows us to verify that our setup example
has worked correctly.

ClientType type = ClientType.STRUCTURED_EVENT;
NotificationStyle style = NotificationStyle.Push;

Connection c1 = new Connection (idA, idB, type, style);
Connection c2 = new Connection (idB, idC, type, style);

try
{
 domain.add_connection (c1);
 domain.add_connection (c2);
}
catch (Exception ex)
{
 System.err.println (“Failed to created connection: “ + ex);
 System.exit (1);
}

try
{
 domain.set_default_supplier_channel (idA);
 domain.set_default_consumer_channel (idC);
}
catch (Exception ex)
{
 System.err.println (“Failed to set default channel: “ + ex);
 System.exit (1);
}

int[] chID = myDomain.get_all_channels ();
int[] coID = myDomain.get_all_connections ();

System.out.println (“MyDomain has “ + chID.length + “ channels”);
133
Event Domain Service�������	

 10.1 Setting up a Domain

10.1.2 Connecting a Push Supplier
The following example creates a push supplier and connects it to a channel in the
event domain, as shown on the left of Figure 14 on page 130. Using the Event
Domain Service interfaces, the supplier can connect to any of the channels in the
domain with a single operation.
The supplier in this example contains methods for publishing events and for
disconnecting from the domain. The publish method will send 10 events to verify
that the domain connections are working correctly.

Step 1: Obtain a reference to the domain, which was registered in the root context of the
OpenFusion Naming Service under the name MyDomain (see Creating an Event
Domain on page 130). To do this:
1. Obtain a reference to the root context of the Naming Service.
2. Resolve the name MyDomain, which is the name we used to register the domain

in the Naming Service (as described previously).

System.out.println (“Connection information:”);

for (int i = 0; i < coID.length; i++)
{
 try
 {
 Connection c = myDomain.get_connection (coID[i]);
 System.out.print (“ between channel #” + c.supplier_id);
 System.out.println (“ and channel #” + c.consumer_id);
 }
 catch (ConnectionNotFound ex) { }
}

System.out.println (“MyDomain QoS:”);

Property[] qos = myDomain.get_qos ();
for (int i = 0; i < qos.length; i++)
{
 System.out.println (“ name = “ + qos[i].name);
 System.out.println (“ value = “ + qos[i].value);
}

public static EventDomain resolve ()
{
 org.omg.CORBA.Object obj = null;

 try
 {
 obj = orb.resolve_initial_references (“NameService”);
 }
 catch (org.omg.CORBA.ORBPackage.InvalidName ex)
 {
 System.err.println (“Failed to resolve Name Service”);
 System.exit (1);
 }

 NamingContext root = NamingContextHelper.narrow (obj);
134
Event Domain Service

�������	

 10.1 Setting up a Domain

Step 2: Connect the supplier to the domain. The supplier’s constructor connects the supplier
using the domain’s connect_structured_push_supplier method. In this
example, we will connect to the domain’s default supplier channel.

 NameComponent name[] = new NameComponent[1];
 name[0] = new NameComponent (“MyDomain”, “Object”);

 try
 {
 obj = root.resolve (name);
 }
 catch (NotFound ex)
 {
 return null;
 }
 catch (Exception ex)
 {
 System.err.println (“Failed to resolve MyDomain: “ + ex);
 System.exit (1);
 }

 return EventDomainHelper.narrow (obj);
}

public class Supplier implements StructuredPushSupplierOperations
{
 public static void main (String[] args)
 {
 //In order to make examples easier to run, for Orbacus-40 set
a POAName
 if (com.prismt.openfusion.Version.getORB().
 toUpperCase().startsWith(“ORBACUS-4”))
 {
 ObjectAdapter.setPOAName(“OpenFusion.EventDomainSupplier”);
 }

 orb = ObjectAdapter.init (args);
 Setup.orb = orb;

 System.out.println (“Connecting”);
 Supplier supplier = new Supplier ();

 System.out.println (“Supplying”);
 supplier.publish ();

 System.out.println (“Disconnecting”);
 supplier.disconnect ();

 System.out.println (“Success”);

 ObjectAdapter.shutdown();
 }

 public Supplier ()
 {
 org.omg.CORBA.Object ref = ObjectAdapter.createTransient
(this);
 EventDomain domain = Setup.resolve ();
135
Event Domain Service�������	

 10.1 Setting up a Domain

 if (domain == null)
 {
 System.err.println (“MyDomain not found”);
 System.exit (1);
 }

 try
 {
 StructuredPushSupplier supplier;
 supplier = StructuredPushSupplierHelper.narrow (ref);
 proxy = domain.connect_structured_push_supplier (supplier);
 ObjectAdapter.ready (false);
 }
 catch (ChannelNotFound ex)
 {
 System.err.println (“ChannelNotFound”);
 System.exit (1);
 }
 }

 public void disconnect_structured_push_supplier ()
 {
 }

 public void subscription_change (EventType[] added, EventType[]
removed)
 throws InvalidEventType
 {
 System.out.println (“Added types:”);
 for (int i = 0; i < added.length; i++)
 {
 System.out.println (added[i]);
 }
 System.out.println (“Removed types:”);
 for (int i = 0; i < removed.length; i++)
 {
 System.out.println (removed[i]);
 }
 }

 public void publish ()
 {
 StructuredEvent event = new StructuredEvent ();
 event.header = new EventHeader ();
 event.header.fixed_header = new FixedEventHeader ();
 event.header.fixed_header.event_type = new EventType (““, ““);
 event.header.fixed_header.event_name = ““;
 event.header.variable_header = new Property[0];
 event.filterable_data = new Property[0];

 for (int i = 0; i < 10; i++)
 {
 try
 {
 event.remainder_of_body = orb.create_any ();
 event.remainder_of_body.insert_long (i);
 proxy.push_structured_event (event);
 }
 catch (org.omg.CosEventComm.Disconnected ex)
136
Event Domain Service

�������	

 10.1 Setting up a Domain

10.1.3 Connecting a Push Consumer
The following example creates a push consumer and connects it to a channel in the
event domain, as shown on the right of Figure 14 on page 130. Using the Event
Domain Service interfaces, the consumer can connect to any of the channels in the
domain with a single operation.
The consumer prints out the 10 events sent by the supplier created in Connecting a
Push Supplier on page 134. The events have passed through channels A, B, and C as
shown in Figure 14, Event Domain and Connected Clients, on page 130.

Step 1: Obtain a reference to the domain. This is as described in Step 1 of Connecting a
Push Supplier on page 134.

Step 2: Connect the consumer to the domain. The consumer’s constructor connects the
consumer using the domain’s connect_structured_push_consumer method.
In this example, we will connect to the domain’s default consumer channel.

 {
 System.out.println (“Disconnected”);
 System.exit (0);
 }
 }
 }

 public void disconnect ()
 {
 proxy.disconnect_structured_push_consumer ();
 }

 private static org.omg.CORBA.ORB orb = null;
 private StructuredProxyPushConsumer proxy = null;
}

public class Consumer implements StructuredPushConsumerOperations
{
 public static void main (String[] args)
 throws java.io.IOException
 {
 //In order to make examples easier to run, for Orbacus-40 set
a POAName
 if (com.prismt.openfusion.Version.getORB().
 toUpperCase().startsWith(“ORBACUS-4”))
 {
 ObjectAdapter.setPOAName(“OpenFusion.EventDomainConsumer”);
 }

 orb = ObjectAdapter.init (args);
 Setup.orb = orb;

 Consumer consumer = new Consumer ();

 com.prismt.orb.ObjectAdapter.ready (false);

 System.out.println (“Consumer Ready. Press Return to quit”);

 System.in.read();
137
Event Domain Service�������	

 10.1 Setting up a Domain

 ObjectAdapter.shutdown();
 }

 public Consumer ()
 {
 org.omg.CORBA.Object ref = ObjectAdapter.createTransient
(this);
 EventDomain domain = Setup.resolve ();

 if (domain == null)
 {
 System.err.println (“MyDomain not found”);
 System.exit (1);
 }

 try
 {
 StructuredPushConsumer consumer;
 consumer = StructuredPushConsumerHelper.narrow (ref);
 proxy = domain.connect_structured_push_consumer (consumer);
 }
 catch (ChannelNotFound ex)
 {
 System.err.println (“ChannelNotFound”);
 System.exit (1);
 }
 }

 public void disconnect_structured_push_consumer ()
 {
 System.out.println (“disconnect_structured_push_consumer”);
 System.exit (0); // stop
 }

 public void offer_change (EventType[] added, EventType[] removed)
 throws InvalidEventType
 {
 System.out.println (“Added types:”);
 for (int i = 0; i < added.length; i++)
 {
 System.out.println (added[i]);
 }
 System.out.println (“Removed types:”);
 for (int i = 0; i < removed.length; i++)
 {
 System.out.println (removed[i]);
 }
 }

 public void push_structured_event (StructuredEvent event)
 {
 System.out.println (event.remainder_of_body);
 }

 private static org.omg.CORBA.ORB orb = null;
 private StructuredProxyPushSupplier proxy = null;
}

138
Event Domain Service

�������	

 10.2 Managing Untyped Event Domains

10.2 Managing Untyped Event Domains
An event domain is a collection manager for the channels and connections that make
up the domain. The untyped event domain interfaces are defined in the
org.omg.CosEventDomainAdmin package. These interfaces can be used to
manage untyped event channels, as shown in the following examples. See Section
10.3, Managing Typed Event Domains on page 146, for examples of managing
typed event channels.

10.2.1 Using a Domain Factory
A domain factory is used to create new event domains. Each domain created by a
domain factory is identified by an integer, which is unique within the scope of that
factory. The factory can manage the collection of the domains it has created.
The example below shows how to create an event domain with QoS properties set,
as follows:
1. Create an array of properties and populate it with any required QoS properties.
2. Use the create_event_domain method of the event domain factory to create

the domain.

10.2.2 Listing the Quality of Service Properties
This example below prints the QoS properties of all domains that have been created
by a factory, as follows:

Property[] qos = new Property[2];

qos[0] = new Property (CycleDetection.value, orb.create_any ());
qos[1] = new Property (DiamondDetection.value, orb.create_any ());
qos[0].value.insert_short (ForbidCycles.value);
qos[1].value.insert_short (ForbidDiamonds.value);

Property[] adm = new Property[0];
org.omg.CORBA.IntHolder id = new org.omg.CORBA.IntHolder ();
EventDomain domain = null;

try
{
 domain = factory.create_event_domain (qos, adm, id);
}
catch (UnsupportedQoS ex)
{
 System.err.println (“UnsupportedQoS”);
 System.exit (1);
}
catch (UnsupportedAdmin ex)
{
 System.err.println (“UnsupportedAdmin”);
 System.exit (1);
}

139
Event Domain Service�������	

 10.2 Managing Untyped Event Domains

1. The domain factory’s get_all_domains method returns the identifiers of the
domains in the collection.

2. The factory’s get_event_domain method returns a specific domain from the
collection.

3. The domain’s get_qos method returns the collection of QoS properties for the
domain.

10.2.3 Destroying a Domain
The destroy operation removes a domain from a factory collection. In addition, all
existing connections between the channels in the domain are also removed.
Destroying a domain has the same effect as invoking the remove_connection
operation on each individual connection in the domain.

10.2.4 Managing Channels
The following channel-management operations are provided:
• add_channel

• get_all_channels

• get_channel

• remove_channel

The add_channel operation is illustrated in Step 3 of Creating an Event Domain
on page 131. The other three operations are illustrated in the following example.
This example removes all channels in a domain that have event reliability set to best
effort. Note that removing a channel automatically removes all existing connections
to it.

int[] ids = factory.get_all_domains ();
for (int i = 0; i < ids.length; i++)
{
 try
 {
 EventDomain domain = factory.get_event_domain (ids[i]);
 Property[] qos = domain.get_qos ();
 System.out.println (“QoS for domain #” + ids[i]);
 for (int j = 0; j < qos.length; j++)
 {
 System.out.println (“ name = “ + qos[j].name);
 System.out.println (“ value = “ + qos[j].value);
 }
 }
 catch (DomainNotFound ex) { } // ignore
}

int[] ids = domain.get_all_channels ();
for (int i = 0; i < ids.length ; i++)
{
 try
 {
 EventChannel channel = domain.get_channel (ids[i]);
 Property[] qos = channel.get_qos ();
140
Event Domain Service

�������	

 10.2 Managing Untyped Event Domains

10.2.5 Managing Connections
The following operations are provided to allow connection management:
• add_connection

• get_all_connections

• get_connection

• remove_connection

The Event Domain Service uses the Connection data structure shown in Table 12
to describe the connections in an event domain.

A connection is directed so that the SupplierChannel is the source of events
while the ConsumerChannel is the target. The ClientType may be untyped
(ANY_EVENT) , structured (STRUCTURED_EVENT) , or a sequence
(SEQUENCE_EVENT).
The add_connection operation is illustrated in Step 4 of 10.1.1 Creating an Event
Domain on page 133. The other three operations are illustrated in the following
example. This example removes all connections with a client type of sequence
from the domain.

 for (int j = 0; j < qos.length; j++)
 {
 if (qos[j].name.equals(EventReliability.value))
 {
 if (qos[j].value.extract_short() == BestEffort.value)
 {
 domain.remove_channel (ids[i]);
 }
 }
 }
 }
 catch (ChannelNotFound ex) { } // ignore
}

Table 12 Connection Data Structure

SupplierChannel

ConsumerChannel

ClientType

NotificationStyle

int[] ids = domain.get_all_connections ();
for (int i = 0; i < ids.length ; i++)
{
 try
 {
 Connection c = domain.get_connection (ids[i]);
 if (c.ctype == ClientType.SEQUENCE_EVENT)
 {
 domain.remove_connection (ids[i]);
 }
141
Event Domain Service�������	

 10.2 Managing Untyped Event Domains

The following situations can cause problems in domain management and should be
avoided:
• Connections may be made between channels without using the
add_connection operation of the Event Domain Service. Applications could
manually add such connections using the standard operations of the Notification
Service. Such connections will not be visible to the Event Domain Service.

• It is possible to add the same event channel to a domain more than once. Event
channels are identified only by number, since it is not generally possible to
reliably compare CORBA object references.

10.2.6 Connecting Clients
An untyped event domain supports operations for connecting consumers and
suppliers to event channels. These operations can connect to the default supplier and
consumer channels, or to a specific channel by explicitly specifying the channel’s
unique identifier in the connect operation.
T h e d e f a u l t s u p p l i e r c h a n n e l i s d e f i n e d w i t h t h e d o m a i n ’s
set_default_supplier_channel operation. The default consumer channel is
defined with the set_default_consumer_channel operation. Step 5 of 10.1.1
Creating an Event Domain on page 133 has an example of using these methods.
Note that if a default supplier or consumer channel is not defined, then the first
channel added to the domain is used as the default.
There are different operations for connecting suppliers and consumers for each
client type (untyped, structured, and sequence) and the push communication
model. For example:
• connect_push_supplier

• connect_push_consumer

• connect_structured_push_supplier

• connect_structured_push_consumer

The full list of operations is given in Section 11.1, Interfaces, on page 151.
Each connect operation performs the following steps:

Step 1: Obtains the supplier or consumer admin object from the target channel. A
ChannelNotFound exception is raised if the target channel does not exist.

Step 2: Obtains a proxy from the admin object according to the client type (untyped,
structured or sequence) and communication model (push). An IMP_LIMIT
system exception is raised if the admin object raises an AdminLimitExceeded
exception.

 }
 catch (ConnectionNotFound ex) { } // ignore
}

142
Event Domain Service

�������	

 10.2 Managing Untyped Event Domains

Step 3: Connects the client to the newly created proxy object. An INTERNAL system
exception is raised when the proxy raises an AlreadyConnected or a TypeError
exception, since this is not supposed to happen.
All of this is accomplished by a single line of code, as illustrated by the examples in
Connecting a Push Supplier on page 134 and Connecting a Push Consumer on page
137.

10.2.7 Topology Management
The Event Domain Service supports several operations for topology management.
The key operations provide information about two key topographical features which
may occur in the domain: cycles and diamonds.

10.2.7.1 Cycles
If the CycleDetection QoS property has a value of AuthorizeCycles, a
domain may contain cycles.
Consider the event domain shown in Figure 15. This domain has three cycles. The
get_cycles operation returns a sequence, which in turn contains a sequence of
channel identifiers. The return value is therefore an array of arrays as illustrated to
the right of Figure 15.

Figure 15 Domain Containing Three Cycles
Note that channels 4 and 9 are not part of any cycles, and therefore do not appear in
the returned sequence.

c0
c0 c1

c1 c2
c2

Event Domain

c3
c3

c4
c4

c5
c5 c6

c6

c8
c8

c10
c10

c9
c9

c12
c12

c7
c7

c11
c11

0 1 2 3 5 6 7 8 10 11 12
143
Event Domain Service�������	

 10.2 Managing Untyped Event Domains

The following example uses the get_cycles operation to print out all the cycles in
a domain:

The output from running this example on the domain shown in Figure 15 is:

The order of channel identifiers in the return sequences may not be precisely as
indicated in the above graph for the get_cycles operation. Although the sequence
will be ordered correctly, it may start with any channel in the cycle.

10.2.7.2 Diamonds
If the DiamondDetection QoS property has a value of AuthorizeDiamonds, a
domain may contain diamonds.
Consider the event domain shown in Figure 16. This domain has three diamonds,
where one of the diamonds has three edges. The get_diamonds operation returns a
sequence of diamonds. Each diamond is a sequence of routes. A route is a sequence
with the identifiers of all channels that participate in a diamond path. The return
value is thus an array of integer arrays as illustrated to the right of Figure 16.

int[][] cycles = domain.get_cycles ();
for (int i = 0; i < cycles.length; i++)
{
 System.out.print (“Cycle: “);
 for (int j = 0; j < cycles[i].length; j++)
 {
 System.out.print (cycles[i][j] + “ “);
 }
 System.out.println ();
}

 Cycle: 0 1 2
 Cycle: 3 5 6
 Cycle: 7 8 10 11 12

i

c 0
c 0

c 3
c 3

c 1
c 1

c 4
c 4

Event Domain

c 5
c 5

c 6
c 6

c 7
c 7

c 8
c 8c 2

c 2

c 10
c 10

c 11
c 11

c 12
c 12

c 15
c 15c 9

c 9

c 13
c 13

c 14
c 14

0 1 4 0 2 4 0 3 4

5 6 8 5 7 8

10 11 13 15 10 12 14 15
144
Event Domain Service

�������	

 10.2 Managing Untyped Event Domains

Figure 16 Domain Containing Three Diamonds
Note that channel 9 is not a part of any diamonds, and therefore does not appear in
the returned sequence.
The following example uses the get_diamonds operation to print out all the
diamonds in a domain:

The output from running this example on the domain shown in Figure 16 is:

10.2.7.3 Channels
The Event Domain Service supports the following additional operations for
obtaining information about the topology of an event domain:
• get_offer_channels - Returns an array of channel identifiers for all channels

upstream from the specified target channel
• get_subscription_channels - returns an array of channel identifiers for all channels

downstream from the specified target channel

int[][][] diamonds = domain.get_diamonds ();
for (int i = 0; i < diamonds.length; i++)
{
 System.out.println (“Paths in diamond #” + i);
 for (int j = 0; j < diamonds[i].length; j++)
 {
 System.out.print (“ path #” + j + “: “);
 for (int k = 0; k < diamonds[i][j].length; k++)
 {
 System.out.print (diamonds[i][j][k] + “ “);
 }
 System.out.println ();
 }
}

 Paths in diamond #0:
 path #0: 0 1 4
 path #1: 0 2 4
 path #2: 0 3 4

 Paths in diamond #1:
 path #0: 5 6 8
 path #1: 5 7 8

 Paths in diamond #2:
 path #0: 10 11 13 15
 path #1: 10 12 14 15
145
Event Domain Service�������	

 10.3 Managing Typed Event Domains

10.2.8 Disabling Event Type Propagation
The Event Domain Service also supports an addi t ional QoS set t ing,
EventTypesEnabled, to control event type propagation in an event domain. An
event type change can cause a large number of callbacks in a network of many
channels, so applications may disable event type propagation for performance
reasons. The default is for event type propagation to be enabled.
Event type subscription changes will affect all channels upstream from the initiating
consumer, and event type offer changes will affect all channels downstream from
the initiating supplier.
Event type information will propagate through a domain as follows:
1. A consumer connected to an event channel changes its subscribed types, either

by calling the proxy’s subscription_change operation or by manipulating
the event types associated with a Notification Service filter constraint.

2. The proxy notifies the channel about this change.
3. The channel informs all connected suppliers (by invoking their

subscription_change operation) when the newly added or removed event
type modifies the event type aggregate at the channel.

4. The event type information is propagated back through the event channels in the
domain.

Event type callbacks will never endlessly propagate through the event system when
there is a cycle, because a channel will only issue event type callbacks when the
aggregate of subscribed or offered types changes.

10.3 Managing Typed Event Domains
Typed event domains are collections of typed event channels and connections.
Typ e d e v e n t d o m a i n i n t e r f a c e s a r e d e f i n e d i n t h e
org.omg.CosTypedEventDomainAdmin package. The basic functionality is the
same as that of the untyped event domain, described in 10.2, Managing Untyped
Event Domains, on page 139. Additional operations for connecting typed clients are
described below.

10.3.1 Using a Typed Event Domain Factory
The Typed Event Domain Factory supports the same operations as the untyped
even t doma in f ac to ry. The f ac to ry i s r e so lved by u s ing t he name
TypedEventDomainFactory, as shown in the example below:

i

org.omg.CORBA.Object obj = null;

try
{
 obj = orb.resolve_initial_references (“TypedEventDomainFactory”);
}

146
Event Domain Service

�������	

 10.3 Managing Typed Event Domains

10.3.2 Managing Typed Channels
Typed event channels a re added to a typed event domain us ing the
add_typed_channel operation.
It is possible to add untyped event channels to a typed event domain, since the
TypedEventDomain interface inherits from the EventDomain interface. Untyped
event channels are added using the add_channel operation.

10.3.3 Managing Typed Connections
The TypedConnection data structure shown in Table 13 describes the connections
in a typed event domain. Compare this structure with Table 12, Connection Data
Structure: the typed event model does not support client type and instead uses a
repository identifier (the Key field).

The following example shows how to create a typed connection between two
channels. The channels have the identifiers idA and idB (assumed to be initialized
elsewhere in the code).

catch (org.omg.CORBA.ORBPackage.InvalidName ex)
{
 System.err.println (“Failed to resolve Typed Event Domain
Factory”);
 System.exit (1);
}

TypedEventDomainFactory factory;
factory = TypedEventDomainFactoryHelper.narrow (obj);

Table 13 TypedConnection Data Structure

SupplierChannel

ConsumerChannel

Key

NotificationStyle

try
{
 NotificationStyle style = NotificationStyle.Push;
 String id = AccountObserverHelper.id();
 TypedConnection c = new TypedConnection (idA, idB, id, style);
 domain.add_typed_connection (c);
}
catch (ChannelNotFound ex)
{
 System.err.println (“ChannelNotFound”);
 System.exit (1);
}
catch (org.omg.CosEventChannelAdmin.TypeError ex)
{
 System.err.println (“TypeError”);
 System.exit (1);
147
Event Domain Service�������	

 10.3 Managing Typed Event Domains

Refer to the Typed Notification Service documentation for information about the
AccountObserver interface.
The Event Domain Service contains a significant limitation, caused by an error in
the OMG Event and Notification Service specifications. An inheritance flaw in the
specifications makes it impossible to use the Event Domain Service to create a
connection between a typed event channel and an untyped event channel. This also
means that the get_channel operation of the untyped event domain cannot return
a typed event channel. Clients should use the get_typed_channel operation to
retrieve a typed event channel.

10.3.4 Connecting Typed Clients
A typed event domain supports operations for connecting typed suppliers and
consumers to typed event channels. These operations can connect to the default
supplier and consumer channels, or to a specific channel by explicitly specifying the
channel’s unique identifier in the connect operation.
The d e fau l t t y pe d su pp l i e r eve n t c h a n n e l i s d e f i n e d w i t h t h e
set_default_typed_consumer_channel operation. The default typed
consumer channel is defined with the set_default_typed_supplier_channel
operation. These operations are used identically to the equivalent operations
provided for untyped domains (see Step 5 of 10.1.1 Creating an Event Domain on
page 133 for an example.)
Note that if a default supplier or consumer channel is not defined, then the first
channel added to the domain is used as the default.
There are different operations for connecting suppliers and consumers for each
communication model (push). For example:
• connect_typed_push_supplier

The full list of operations is given in Section 11.1, Interfaces on page 151.

}
catch (AlreadyExists ex)
{
 System.err.println (“AlreadyExists”);
 System.exit (1);
}
catch (CycleCreationForbidden ex)
{
 System.err.println (“CycleCreationForbidden”);
 System.exit (1);
}
catch (DiamondCreationForbidden ex)
{
 System.err.println (“DiamondCreationForbidden”);
 System.exit (1);
}

148
Event Domain Service

�������	

 10.4 Log Domains

The client application must specify the repository identifier of the interface to be
used for typed event communication (in addition to the arguments supplied with the
connect operations as with an untyped event domain). The format of this string is
the same as that used for the Key field in the TypedConnection data structure.

10.4 Log Domains
A log domain is functionally similar to an event domain, except that it supports the
management of log objects and typed log objects. The EventLogDomain interface
inherits from the TypedEventDomain interface, so a log domain supports all the
operations described in the previous sections.
The log domain factory is functionally identical to the event domain factory and
typed event domain factory, previously described. This factory is resolved using the
name EventLogDomainFactory. It supports the creation and collection
management of log domains.
Log domains support the type-safe addition and retrieval of logs and typed logs
through the following operations:
• add_log

• add_typed_log

• get_log

• get_typed_log.
Note: typed and untyped logs both are handled by the same classes
(EventLogDomain and EventLogDomainFactory). There are no separate
classes for typed logs.

i

149
Event Domain Service�������	

 10.4 Log Domains

150
Event Domain Service

�������	

CHAPTER

11 API Definitions
This chapter describes the main Event Domain interfaces. The complete IDL API is
provided elsewhere as part of the product distribution.

11.1 Interfaces
The Event Domain Service interfaces are listed in Table 14:

The EventDomain interfaces, as shown in Figure 17, support operations for
managing untyped event channels and connections within a domain, as well as for
connecting consumers and suppliers to an event channel within the domain. In
addition, the interfaces have operations for domain topography management: for
obtaining upstream and downstream channel information, and for listing the cycles
and diamonds within a domain.

Table 14 Event Domain Service Interfaces

Interface Description
EventDomain An event domain for federating and managing

untyped event channels, and for connecting event
suppliers and consumers to event channels.

EventDomainFactory A factory for creating and managing untyped
event domains.

EventLogDomain An event domain for managing logs and typed
logs.

EventLogDomainFactory A factory for managing logs and typed logs.
TypedEventDomain An event domain for managing typed event

channels.
TypedEventDomainFactory A factory for creating and managing typed event

channels.
151
 Event Domain Service�������	

 11.1 Interfaces

Figure 17 CosEventDomainAdmin Module Interfaces
The TypedEventDomain interfaces, as shown in Figure 18, inherit from the
EventDomain interfaces and include additional operations for the connection of
typed clients to a typed event channel. These operations have an additional
argument to those of the corresponding untyped operations: the repository identifier
that specifies the interface to be used for typed event communication.

Figure 18 CosTypedEventDomainAdmin Module Interfaces

QoSAdmin
(from org.omg.CosNotification)

AdminPropertiesAdmin
(from org.omg.CosNotification)

EventDomainEventDomainFactory
domains

EventDomain
(from org.omg.CosEventDomainAdmin)

TypedEventDomainTypedEventDomainFactory
domains
152
Event Domain Service

�������	

 11.1 Interfaces

A log domain is very similar to an event domain, since a log is functionally
equivalent to an event channel. Inheritance means that Log domains require very
few additional operations to support their management. The EventLogDomain
interfaces are shown in Figure 19. A log domain, like an event domain, supports
only not i f icat ion s tyle log objects . The only other operat ions in the
EventLogDomain interfaces are used for the type-safe addition and retrieval of
typed log objects.

Figure 19 DsLogDomainAdmin Module Interfaces

11.1.0.1 EventDomain
This is the main interface for federating untyped event channels, and for connecting
suppliers and consumers to an event channel.

11.1.0.1.1 Operations

add_channel
Adds an untyped event channel to a domain.

EventDomain
(from org.omg.CosEventDomainAdmin)

EventLogDomainFactory
domains

EventLogDomain

TypedEventDomain
(from org.omg.CosTypedEventDomainAdmin)
153
Event Domain Service�������	

 11.1 Interfaces

add_connection
Connects two event channels in a domain. If either channel does not exist, a
ChannelNotFound exception is raised
If the two channels are already connected, an AlreadyExists exception is raised.
This exception is also raised if a channel is being connected to itself (that is, the
same channel is specified at both ends of the connection).
If the CycleDetection QoS property is set to ForbidCycle, and the creation of
the r eques ted connec t ion would r e su l t i n a cyc le conf igura t ion , a
CycleCreationForbidden exception is raised.
If the DiamondDetection QoS property is set to ForbidDiamond, and the
creation of the requested connection would result in a diamond configuration, a
DiamondCreationForbidden exception is raised.

connect_push_consumer
Connects a push consumer to the default consumer channel of a target domain. If no
channels are found, a ChannelNotFound exception will be raised.

connect_push_consumer_with_id
Connects a push consumer to a specified channel of a target domain. A
ChannelNotFound exception will be raised if the channel does not exist.

connect_push_supplier
Connects a push supplier to the default supplier channel of a target domain. If no
channels are found, a ChannelNotFound exception will be raised.

connect_push_supplier_with_id
Connects a push supplier to a specified channel of a target domain. A
ChannelNotFound exception will be raised if the channel does not exist.

connect_sequence_push_consumer
Connects a sequence push consumer to the default consumer channel of a target
domain. If no channels are found, a ChannelNotFound exception will be raised.

connect_sequence_push_consumer_with_id
Connects a sequence push consumer to a specified channel of a target domain. A
ChannelNotFound exception will be raised if the channel does not exist.

connect_sequence_push_supplier
Connects a sequence push supplier to the default supplier channel of a target
domain. If no channels are found, a ChannelNotFound exception will be raised.
154
Event Domain Service

�������	

 11.1 Interfaces

connect_sequence_push_supplier_with_id
Connects a sequence push supplier to a specified channel of a target domain. A
ChannelNotFound exception will be raised if the channel does not exist.

connect_structured_push_consumer
Connects a structured push consumer to the default consumer channel of a target
domain. If no channels are found, a ChannelNotFound exception will be raised.

connect_structured_push_consumer_with_id
Connects a structured push consumer to a specified channel of a target domain. A
ChannelNotFound exception will be raised if the channel does not exist.

connect_structured_push_supplier
Connects a structured push supplier to the default supplier channel of a target
domain. If no channels are found, a ChannelNotFound exception will be raised.

connect_structured_push_supplier_with_id
Connects a structured push supplier to a specified channel of a target domain. A
ChannelNotFound exception will be raised if the channel does not exist.

destroy
Removes a domain from a factory collection. This will also remove any existing
connections between channels in the domain.

get_all_channels
Returns a sequence of all the unique identifiers corresponding to all the existing
channels in a domain.

get_all_connections
Returns a sequence of the unique identifiers corresponding to all the existing
connections in a domain.

get_channel
Uses the unique channel identifier to return an object reference to a specific channel
in a domain. A ChannelNotFound exception will be raised if no channel
corresponding to the specified identifier exists.
155
Event Domain Service�������	

 11.1 Interfaces

get_connection
Uses a connection’s unique identifier to return the Connection data structure for
that connection (described in Managing Connections on page 141). A
ConnectionNotFound exception will be raised if no connection corresponding to
the identifier exists or if the connection is a typed connection.

get_cycles
Returns a sequence of all the cycles in a domain.

get_diamonds
Returns a sequence of all the diamonds in a domain.

get_offer_channels
Returns a list of all channels that exist upstream of a specified channel in a domain.
A ChannelNotFound exception will be raised if the specified channel does not
exist.

get_subscription_channels
Returns a list of all channels that exist downstream of a specified channel in a
domain. A ChannelNotFound exception will be raised if the specified channel
does not exist.

remove_channel
Removes a channel from a domain. This also removes all existing connections to the
channel. A ChannelNotFound exception will be raised if the specified channel
does not exist.

remove_connection
Removes a connection between two specified channels in a domain. A
ConnectionNotFound exception will be raised if the specified connection does
not exist.

set_default_consumer_channel
Used to define the default consumer channel for a domain. A ChannelNotFound
exception will be raised if the specified channel does not exist.

set_default_supplier_channel
Used to define the default supplier channel for a domain. A ChannelNotFound
exception will be raised if the specified channel does not exist.
156
Event Domain Service

�������	

 11.1 Interfaces

11.1.0.2 EventDomainFactory
A factory interface for creating and managing event domains.

11.1.0.2.1 Operations

create_event_domain
Creates a new instance of an event domain. Takes the following parameters:
• A list of name-value pairs that specify the initial QoS properties for the new

domain. If no implementation of the EventDomain interface exists that can
support all of the requested QoS property settings, an UnsupportedQoS
exception is raised.

• A list of name-value pairs that specify the initial administration properties for the
new domain. If no implementation of the EventDomain interface exists that can
support the requested administration properties, an UnsupportedAdmin
exception is raised.

get_all_domains
Returns a list of all the domains that have been created by the factory.

get_event_domain
Uses the unique domain identifier to return an object reference to a specific domain
that has been created by this factory. A DomainNotFound exception will be raised
if no domain corresponding to the specified identifier exists.

11.1.0.3 EventLogDomain
An event domain interface for managing logs and typed logs.

11.1.0.3.1 Operations

add_log
Adds an untyped Notification log channel to the domain.

add_typed_log
Adds a typed Notification log channel to the domain.

get_log
Uses the unique log channel identifier to return an object reference to a specific
untyped log channel in the domain. A ChannelNotFound exception will be raised
if no log corresponding to the specified identifier exists.
157
Event Domain Service�������	

 11.1 Interfaces

get_typed_log
Uses the unique log channel identifier to return an object reference to a specific
typed log in the domain. A ChannelNotFound exception will be raised if no log
corresponding to the specified identifier exists.

11.1.0.4 EventLogDomainFactory
A factory interface for managing logs and typed logs.

11.1.0.4.1 Operations

create_event_log_domain
Creates a new instance of an event log domain. Takes the following parameters:
• A list of name-value pairs that specify the initial QoS properties for the new

domain. If no implementation of the EventLogDomain interface exists that can
support all of the requested QoS property settings, an UnsupportedQoS
exception is raised.

• A list of name-value pairs that specify the initial administration properties for the
new domain. If no implementation of the EventLogDomain interface exists that
can support the requested administration properties, an UnsupportedAdmin
exception is raised.

get_all_event_log_domains
Returns a list of all the event log domains that have been created by the factory.

get_event_log_domain
Uses the unique domain identifier to return an object reference to an event log
domain that has been created by this factory. A DomainNotFound exception will be
raised if no domain corresponding to the specified identifier exists.

11.1.0.5 TypedEventDomain
An interface for managing typed event channels.

11.1.0.5.1 Operations

add_typed_channel
Adds a typed event channel to a domain.

add_typed_connection
Forms a typed connection between two typed event channels in the domain. If either
channel does not exist, a ChannelNotFound exception is raised.
158
Event Domain Service

�������	

 11.1 Interfaces

If the two channels are already connected, an AlreadyExists exception is raised.
This exception is also raised if a channel is being connected to itself (that is, the
same channel is specified at both ends of the connection).
If either of the two channels is not a typed event channel, a TypeError exception is
raised.
If the CycleDetection QoS property is set to ForbidCycle, and the creation of
the requested connection would result in a cycle, a CycleCreationForbidden
exception is raised.
If the DiamondDetection QoS property is set to ForbidDiamond, and the
crea t ion o f the reques ted connec t ion would resu l t in a d iamond, a
DiamondCreationForbidden exception is raised.

connect_typed_push_consumer
Connects a typed push consumer to the domain’s default typed consumer channel. If
the target domain contains no typed channels, a ChannelNotFound exception is
raised.
If the default channel for typed consumers does not support the ability to push typed
events, a NoSuchImplementation exception is raised.

connect_typed_push_consumer_with_id
Connects a typed push consumer to a specified channel in the target domain. If the
specified channel does not exist, a ChannelNotFound exception is raised.
If the specified channel does not support the ability to push typed events, a
NoSuchImplementation exception is raised.
If the typed consumer does not support the specified interface, then the TypeError
exception is raised.

connect_typed_push_supplier
Connects a typed push supplier to the domain’s default typed supplier channel. If the
target domain contains no typed channels, a ChannelNotFound exception is
raised.
If the default channel for typed suppliers is not capable of creating a typed proxy
consumer that supports the specified interface, an InterfaceNotSupported
exception is raised.

connect_typed_push_supplier_with_id
Connects a typed push supplier to a specified channel in the target domain. If the
specified channel does not exist, a ChannelNotFound exception is raised.
159
Event Domain Service�������	

 11.1 Interfaces

If the specified channel is not capable of creating a typed proxy consumer that
supports the specified interface, an InterfaceNotSupported exception is raised.

get_typed_channel
Uses a unique identifier to return the object reference of a typed channel in the target
domain. A ChannelNotFound exception will be raised if no channel
corresponding to the specified identifier exists.

get_typed_connection
Uses a unique identifier to return the object reference of a typed connection in the
target domain. A ConnectionNotFound exception will be raised if no connection
corresponding to the specified identifier exists, or if the connection is not a typed
connection.

set_default_typed_consumer_channel
Used to def ine the defaul t typed consumer channel for a domain. A
ChannelNotFound exception will be raised if the specified channel does not exist.

set_default_typed_supplier_channel
Used to def ine the defau l t typed suppl ie r channel for a domain . A
ChannelNotFound exception will be raised if the specified channel does not exist.

11.1.0.6 TypedEventDomainFactory
A factory interface for creating and managing typed event domains.

11.1.0.6.1 Operations

create_typed_event_domain
Creates a new instance of a typed event domain. Takes the following parameters:
• A list of name-value pairs that specify the initial QoS properties for the new

domain. If no implementation of the TypedEventDomain interface exists that
can support all of the requested QoS property settings, an UnsupportedQoS
exception is raised.

• A list of name-value pairs that specify the initial administration properties for the
new domain. If no implementation of the TypedEventDomain interface exists
that can support the requested administration properties, an UnsupportedAdmin
exception is raised.

get_all_typed_domains
Returns a list of all the typed event domains that have been created by the factory.
160
Event Domain Service

�������	

 11.1 Interfaces

get_typed_event_domain
Uses a unique identifier to return the object reference to a typed event domain that
has been created by this factory. A DomainNotFound exception will be raised if no
typed event domain corresponding to the specified identifier exists.
161
Event Domain Service�������	

 11.1 Interfaces

162
Event Domain Service

�������	

CHAPTER

12 Supplemental Information
12.1 Quality of Service Properties

The OpenFusion implementation of the Event Domain Service currently supports
three different QoS properties, as described in Table 15.

Table 15 Event Domain Service QoS Properties

Property Description
CycleDetection When this is set to ForbidCycles, the domain raises a

CycleCreationForbidden exception when attempting
to add a connection that will form a cycle.
When this is set to AuthorizeCycles, the creation of
cycles will be allowed and will not be flagged in any way.
The default is AuthorizeCycles.

DiamondDetection When this is set to ForbidDiamonds, the domain raises
a DiamondCreationForbidden exception when
attempting to add a connection that will form a diamond.
When this is set to AuthorizeDiamonds, the creation of
diamonds will be allowed and will not be flagged in any
way.
The default is AuthorizeDiamonds.

EventTypesEnabled When this is set to true, the domain will enable
propagation of event type information. This means that
get_offered_types and get_subscription_types
operations of the proxies involved in a connection will be
invoked with the NONE_NOW_UPDATES_ON obtain mode.
When this is set to false, event type callbacks will be
disabled by using the NONE_NOW_UPDATES_OFF obtain
mode.
The default value is true.
163
 Event Domain Service�������	

 12.2 Administration Properties

12.2 Administration Properties
The OpenFusion implementation of the Event Domain Service supports a single
administration property, as described in Table 16.

12.3 Exceptions
The exceptions raised by the Event Domain Service are described in Table 17.

Table 16 Event Domain Service Administration Setting

Property Description
DomainName The name of a domain. This name must be unique within the

domain collection of a single factory. A domain name may be
useful in some applications as an alternative to an integer domain
identifier.

Table 17 Event Domain Service Exceptions

Exception Description
AlreadyExists Raised when trying to add a connection that

already exists in the target domain. Also raised
when trying to create a connection where the
source and target channel are the same.

ChannelNotFound Raised when specifying a channel identifier
that does not correspond to a channel contained
in the target domain. Also raised when trying
to get a typed channel using the get_channel
operation on an untyped event domain.

ConnectionNotFound Raised when trying to get or remove a
connection that does not exist in the target
domain. Also raised when trying to get a typed
connection using the get_connection
operation on an untyped event domain.

CycleCreationForbidden Raised when the specified connection would
form a cycle in the target domain. This
exception can only be raised when the
CycleDetection QoS has been set to
ForbidCycles.
164
Event Domain Service

�������	

 12.3 Exceptions

DiamondCreationForbidden Raised when the specified connection would
form a diamond in the target domain. This
exception can only be raised when the
DiamondDetection QoS is set to
ForbidDiamonds.

DomainNotFound Raised when specifying a domain identifier
that does not correspond to a domain in a
factory collection.

InterfaceNotSupported Raised when a typed connection is formed
between two channels and the specified
interface could not be supported by either the
source or target channel.

NoSuchImplementation Raised when a typed connection is formed
between two channels and neither channel
could find an implementation to support the
specified interface.

UnsupportedAdmin Raised when trying to create a new domain and
a specified administration property could not
be supported by the Event Domain Service.

UnsupportedQoS Raised when trying to create a new domain and
a specified QoS property could not be
supported by the Event Domain Service.

Table 17 Event Domain Service Exceptions (Continued)

Exception Description
165
Event Domain Service�������	

 12.3 Exceptions

166
Event Domain Service

�������	

CONFIGURATION AND

MANAGEMENT

CHAPTER

13 Notification Service
Configuration

The configuration of Singleton properties specific to the Notification Service is
described in this section. These properties appear in the Administration Manager, a
graphical user interface (GUI) based administration tool included with the
OpenFusion Graphical Tools.
The Administration Manager can be used to set the Singleton properties. These
properties can also be set programatically, generally as described in the service
description sections.
Also, the configuration settings enable the Quality of Service and administration
properties to be customised when needed.
Details for configuring Persistence, Logging, CORBA, Java and System properties
for the Notification Service are described in the System Guide.

Some properties which are not implemented in the initial version 4 release of the
Notification Service are shown in the Administration Manager, but are read-only or
locked. These properties are not documented in this guide.

13.1 Common Properties
Instances of some common properties are used by a number of different OpenFusion
CORBA Services interfaces and services. Settings for these property instances
appear in the Administration Manager’s Object Hierarchy for the service’s
Singleton node. This small group of properties are included in this section in order
to facilitate configuration of the service while using the Administration Manager.
These properties include:
• IOR Name Service Entry
• IOR URL
• IOR File Name
• Resolve Name
• IOR Name Service

i

169
 Configuration and Management�������	

 13.2 NotificationSingleton Configuration

13.2 NotificationSingleton Configuration
The Notification Singleton exists as a single object within a given instance of the
Notification Service providing the core service functionality

13.2.1 Persistence Properties

13.2.1.0.1 Enable Write Ahead Log
When the write-ahead log is enabled, information that is normally written to the
underlying database is written to a log file instead. When the log file reaches a
specific size (defined by the Write Ahead Log Maximum Size property), the database
is updated and the log file is reused. The location of the log file is defined by the
Write Ahead Log Directory property.
The write-ahead log may increase performance when persistent events are required,
particularly when events are being delivered quickly (when consumers are available
and responding quickly).
The write-ahead log is enabled when this property is set TRUE (checked).

13.2.1.0.2 Write Ahead Log Directory
The directory used to contain write-ahead log files. This directory must be local to
the host running the service. The default location is:
<INSTALL>/domains/<domain>/<node>/NotificationService/data

where <INSTALL> is the OpenFusion installation path. See the System Guide for
details of the domains directory structure.

Property Name DB.WAL

Property Type FIXED

Data Type BOOLEAN

Accessibility READ/WRITE

Mandatory NO

Property Name DB.WAL.Dir

Property Type FIXED

Data Type DIRECTORY

Accessibility READ/WRITE

Mandatory YES
170
Configuration and Management

�������	

 13.2 NotificationSingleton Configuration

13.2.1.0.3 Write Ahead Log Maximum Size
The maximum number of entries that can be stored in the write-ahead log before
flushing (writing to the underlying database) takes place.

13.2.1.0.4 Database Plugin Class
This property is used when a database plugin is available to OpenFusion to enhance
the event persistence mechanism. Leave this field blank when the plugin is not
available.

13.2.2 CORBA Properties
The General properties are useful for setting the start-up parameters of a
Notification Service Singleton object. These properties are all static and mainly read
-write. All these properties are optional, but can only be set prior to starting the
Notification Service Singleton.

13.2.2.0.1 IOR Name Service Entry
The Naming Service entry for the Singleton.

Property Name DB.WAL.MaxSize

Property Type STATIC

Data Type INTEGER

Accessibility READ/WRITE

Mandatory NO

Property Name DB.Plugin

Property Type STATIC

Data Type STRING

Accessibility READ/WRITE

Mandatory NO

Property Name Object.Name

Property Type FIXED

Data Type STRING

Accessibility READ/WRITE

Mandatory NO
171
Configuration and Management�������	

 13.2 NotificationSingleton Configuration

13.2.2.0.2 IOR URL
The IOR URL property specifies the location of an Interoperable Object Reference
(IOR) for the Service, using the Universal Resource Locator (URL) format. This
information is used when a client attempts to resolve a reference to the Service.
Some examples are:
file:/usr/users/openfusion/servers/NotificationService.ior
http://www.prismtech.com/of/servers/NotificationService.ior
corbaloc::server.prismtech.com/NotificationService

OpenFusion supports URLs in Corbaloc, Corbaname, file, FTP and HTTP
URL formats, although some ORBs do not support all of these
mechanisms. Consult your ORB documentation for specific details.

13.2.2.0.3 IOR File Name
The IOR File Name option specifies the name and location of the IOR file for the
Singleton. If this property is not set, the IOR file name will be:
<INSTALL>/domains/<domain>/<node>/<service>/<singleton>/<singleton>.
ior

where <INSTALL> is the OpenFusion installation path. See the System Guide for
details of the domains directory structure.

13.2.2.0.4 IOR Name Service
The name of the Naming Service which will be used to resolve the Singleton object.

Property Name IOR.URL

Property Type FIXED

Data Type URL

Accessibility READ/WRITE

Mandatory NO

Property Name IOR.File

Property Type FIXED

Data Type FILE

Accessibility READ/WRITE

Mandatory NO

Property Name IOR.Server

Property Type FIXED

Data Type STRING

Accessibility READ/WRITE

Mandatory NO
172
Configuration and Management

�������	

 13.2 NotificationSingleton Configuration

13.2.2.0.5 Resolve Name
The ORB Service resolution name used to resolve calls to the Singleton.

13.2.3 Messaging Loggers

13.2.3.0.1 Service Log File Location
The location of the service log file. Each individual component logger (the
scheduler logger, the transaction manager logger, and so on) writes to the same
service log file. By default, this is the same log file used at the Service level.
The default location of the service log file is:
<INSTALL>/domains/OpenFusion/localhost/NotificationService/
log/NotificationService.log

13.2.3.0.2 Service Log File Format
The format for entries in the service log file. The default format is:
%{priority} [%{category}] %{time:yyyy-MM-dd' 'HH:mm:ss.SSS}
%{message}\n%{throwable}

The same format is used by each component logger. This format overrides the
format specified in the Log Pattern property at the Service level.

Property Name ResolveName

Property Type FIXED

Data Type STRING

Accessibility READ/WRITE

Mandatory YES

Property Name logkit/targets/file/filename

Property Type FIXED

Data Type FILE

Accessibility READ/WRITE

Mandatory NO

Property Name logkit/targets/file/format

Property Type FIXED

Data Type STRING

Accessibility READ/WRITE

Mandatory NO
173
Configuration and Management�������	

 13.2 NotificationSingleton Configuration

13.2.3.0.3 Set All Loggers To
Each component of the Notification Service (the scheduler, the transaction manager,
and so on) has its own individual logger. For convenience, every component logger
can be set to the same level using this property. Options are:
• Set all to Disable
• Set all to Error
• Set all to Warning
• Set all to Information
• Set all to Debug
• Set Individually
The default level is Set Individually.
For fine-grained control over logging, set this property to Set Individually. This
allows each individual logger to be configured using the individual properties on
this tab (described below).

13.2.3.0.4 Scheduler Logger Level
The logger level for the scheduler. Options are:
• Disable (0)
• Error (1)
• Warning (2)
• Information (3)
• Debug (4)
The default level is Warning.

13.2.3.0.5 Role Manager Logger Level
The logger level for the role manager. Options are:

Property Name GlobalSetting

Property Type FIXED

Data Type ENUM

Accessibility READ/WRITE

Mandatory NO

Property Name logcategory/scheduler

Property Type FIXED

Data Type ENUM

Accessibility READ/WRITE

Mandatory NO
174
Configuration and Management

�������	

 13.2 NotificationSingleton Configuration

• Disable (0)
• Error (1)
• Warning (2)
• Information (3)
• Debug (4)
The default level is Warning.

13.2.3.0.6 JTO Logger Level
The logger level for JTO. Options are:
• Disable (0)
• Error (1)
• Warning (2)
• Information (3)
• Debug (4)
The default level is Warning.

13.2.3.0.7 Messenger Logger Level
The logger level for the messenger. Options are:
• Disable (0)
• Error (1)
• Warning (2)
• Information (3)
• Debug (4)

Property Name logcategory/rolemanager

Property Type FIXED

Data Type ENUM

Accessibility READ/WRITE

Mandatory NO

Property Name logcategory/jto

Property Type FIXED

Data Type ENUM

Accessibility READ/WRITE

Mandatory NO
175
Configuration and Management�������	

 13.2 NotificationSingleton Configuration

The default level is Warning.

13.2.3.0.8 ORB Logger Level
The logger level for the ORB. Options are:
• Disable (0)
• Error (1)
• Warning (2)
• Information (3)
• Debug (4)
The default level is Warning.

13.2.3.0.9 Transaction Manager Logger Level
The logger level for the transaction manager. Options are:
• Disable (0)
• Error (1)
• Warning (2)
• Information (3)
• Debug (4)
The default level is Warning.

Property Name logcategory/messenger

Property Type FIXED

Data Type ENUM

Accessibility READ/WRITE

Mandatory NO

Property Name logcategory/orb

Property Type FIXED

Data Type ENUM

Accessibility READ/WRITE

Mandatory NO

Property Name logcategory/transactionmanager

Property Type FIXED

Data Type ENUM

Accessibility READ/WRITE

Mandatory NO
176
Configuration and Management

�������	

 13.2 NotificationSingleton Configuration

13.2.3.0.10 Blobstore Logger Level
The logger level for the blobstore. Options are:
• Disable (0)
• Error (1)
• Warning (2)
• Information (3)
• Debug (4)
The default level is Warning.

13.2.3.0.11 State Factory Logger Level
The logger level for the state factory. Options are:
• Disable (0)
• Error (1)
• Warning (2)
• Information (3)
• Debug (4)
The default level is Warning.

13.2.3.0.12 State Machine Factory Logger Level
The logger level for the state machine factory. Options are:
• Disable (0)
• Error (1)
• Warning (2)
• Information (3)
• Debug (4)

Property Name logcategory/blobstore

Property Type FIXED

Data Type ENUM

Accessibility READ/WRITE

Mandatory NO

Property Name logcategory/statefactory

Property Type FIXED

Data Type ENUM

Accessibility READ/WRITE

Mandatory NO
177
Configuration and Management�������	

 13.2 NotificationSingleton Configuration

The default level is Warning.

13.2.3.0.13 Thread Pool Logger Level
The logger level for the thread pool. Options are:
• Disable (0)
• Error (1)
• Warning (2)
• Information (3)
• Debug (4)
The default level is Warning.

13.2.3.0.14 Notification Service Logger Level
The logger level for the event channel factory (which is the root object of the
Notification Service). Options are:
• Disable (0)
• Error (1)
• Warning (2)
• Information (3)
• Debug (4)
The default level is Warning.

Property Name logcategory/statemachinefactory

Property Type FIXED

Data Type ENUM

Accessibility READ/WRITE

Mandatory NO

Property Name logcategory/threadpool

Property Type FIXED

Data Type ENUM

Accessibility READ/WRITE

Mandatory NO

Property Name logcategory/ecfc

Property Type FIXED

Data Type ENUM

Accessibility READ/WRITE

Mandatory NO
178
Configuration and Management

�������	

 13.2 NotificationSingleton Configuration

13.2.3.0.15 Component Manager Logger Level
The logger level for the component manager. Options are:
• Disable (0)
• Error (1)
• Warning (2)
• Information (3)
• Debug (4)
The default level is Warning.

13.2.3.0.16 Lock Set Factory Logger Level
The logger level for the lock set factory. Options are:
• Disable (0)
• Error (1)
• Warning (2)
• Information (3)
• Debug (4)
The default level is Warning.

13.2.4 Instrumentation Properties
The interfaces for setting the instrumentation properties, as well as the datatypes for
values returned by the Process.getValue() method of the CORBA Process
interface, are given below.
For information on managing instrumentation, including how to obtain the
associated property values using the Process.getValue() method, please refer
to the System Guide.

Property Name logcategory/ecm

Property Type FIXED

Data Type ENUM

Accessibility READ/WRITE

Mandatory NO

Property Name logcategory/locksetfactory

Property Type FIXED

Data Type ENUM

Accessibility READ/WRITE

Mandatory NO
179
Configuration and Management�������	

 13.2 NotificationSingleton Configuration

13.2.4.0.1 Events Received
This property monitors the total number of all push events received by the
Notification Service during execution of the service. In other words, the count of
events sent by push suppliers via proxy push consumers.

13.2.4.0.2 Number of Proxy Push Consumers
This property monitors the current number of structured proxy push consumers in
existence on the service.

13.2.4.0.3 Number of Structured Proxy Push Consumers
This property monitors the current number of structured proxy push consumers in
existence on the service.

Property Name EventsReceived

Property Type DYNAMIC

Data Type COUNTER

Accessibility READ ONLY

Mandatory NO

getValue() Return Type longlong

Property Name ProxyPushConsumers

Property Type DYNAMIC

Data Type COUNTER

Accessibility READ ONLY

Mandatory NO

getValue() Return Type longlong

Property Name StructuredProxyPushConsumers

Property Type DYNAMIC

Data Type COUNTER

Accessibility READ ONLY

Mandatory NO

getValue() Return Type longlong
180
Configuration and Management

�������	

 13.2 NotificationSingleton Configuration

13.2.4.0.4 Number of Sequence Proxy Push Consumers
This property monitors the current number of sequence proxy push consumers in
existence on the service.

13.2.4.0.5 Events Delivered
This property monitors the total number of all push events delivered by the
Notification Service during execution of the service. In other words, the count of
events received by push consumers via proxy push suppliers.

13.2.4.0.6 Number of Consumer Admins
This property monitors the current number of consumer admins in existence on the
service.

Property Name SequenceProxyPushConsumers

Property Type DYNAMIC

Data Type COUNTER

Accessibility READ ONLY

Mandatory NO

getValue() Return Type longlong

Property Name EventsDelivered

Property Type DYNAMIC

Data Type COUNTER

Accessibility READ ONLY

Mandatory NO

getValue() Return Type longlong

Property Name ConsumerAdmins

Property Type DYNAMIC

Data Type COUNTER

Accessibility READ ONLY

Mandatory NO

getValue() Return Type longlong
181
Configuration and Management�������	

 13.2 NotificationSingleton Configuration

13.2.4.0.7 Current Total of Events in Channels
This property monitors the total number of events in channels.

13.2.4.0.8 Current Total of Events Awaiting Delivery
This property monitors the total number of events awaiting delivery. This count
gives the current load on the Service.
This figure is calculated as follows:

Events in queues + (Events in channel * Number of proxies)
Where:
• Events in queues is the number of events in the queues of all proxy suppliers

(events which the proxy suppliers have yet to send to their consumer clients).
• Events in channel is the number of events in the channel (events which are waiting

to be sent to proxy suppliers). This is the count returned by the Current Total of
Events in Channel property.

• Number of Proxies is the number of proxy suppliers.

13.2.4.0.9 Number of Proxy Push Suppliers
This property monitors the current number of proxy push supplier objects in
existence on the service.

Property Name CurrentEvents

Property Type DYNAMIC

Data Type COUNTER

Accessibility READ ONLY

Mandatory NO

getValue() Return Type longlong

Property Name EventsAwaitingDelivery

Property Type DYNAMIC

Data Type COUNTER

Accessibility READ ONLY

Mandatory NO

getValue() Return Type longlong

Property Name ProxyPushSuppliers

Property Type DYNAMIC

Data Type COUNTER
182
Configuration and Management

�������	

 13.2 NotificationSingleton Configuration

13.2.4.0.10 Number of Structured Proxy Push Suppliers
This property monitors the current number of structured proxy push supplier objects
in existence on the service.

13.2.4.0.11 Number of Sequence Proxy Push Suppliers
This property monitors the current number of sequence proxy push supplier objects
in existence on the service.

13.2.4.0.12 Reconnecting Consumers
This property monitors the current number of unavailable push consumer objects in
existence on the service.

Accessibility READ ONLY

Mandatory NO

getValue() Return Type longlong

Property Name StructuredProxyPushSuppliers

Property Type DYNAMIC

Data Type COUNTER

Accessibility READ ONLY

Mandatory NO

getValue() Return Type longlong

Property Name SequenceProxyPushSuppliers

Property Type DYNAMIC

Data Type COUNTER

Accessibility READ ONLY

Mandatory NO

getValue() Return Type longlong

Property Name ReconnectingConsumers

Property Type DYNAMIC

Data Type COUNTER

Accessibility READ ONLY

Mandatory NO

getValue() Return Type longlong
183
Configuration and Management�������	

 13.2 NotificationSingleton Configuration

13.2.4.0.13 Number of Supplier Admins
This property monitors the current number of Supplier Admin objects in existence
on the service.

13.2.4.0.14 Number of Event Channels
This property monitors the current number of Event Channel objects in existence on
the service.

13.2.4.0.15 Number of Custom Filters Created
The number of custom filters that have been created using the filter factory since the
service was last started.

13.2.4.0.16 Number of Attached Filters
The number of filters attached to the admins and proxies.

Property Name SupplierAdmins

Property Type DYNAMC

Data Type COUNTER

Accessibility READ ONLY

Mandatory NO

getValue() Return Type longlong

Property Name Channels

Property Type DYNAMIC

Data Type COUNTER

Accessibility READ ONLY

Mandatory NO

getValue() Return Type longlong

Property Name CustomFiltersCreated

Property Type DYNAMIC

Data Type COUNTER

Accessibility READ ONLY

Mandatory NO

getValue() Return Type longlong

Property Name AttachedFilters

Property Type DYNAMIC

Data Type COUNTER
184
Configuration and Management

�������	

 13.2 NotificationSingleton Configuration

13.2.4.0.17 Number of Filters Added
The number of times a filter has been added to an admin or proxy.

13.2.4.0.18 Number of Standard Filters Destroyed
The number of standard filters (that were created using the filter factory) that have
been destroyed since the service was last started.

13.2.4.0.19 Number of Standard Filters Created
The number of standard filters that have been created using the filter factory since
the service was last started.

Accessibility READ ONLY

Mandatory NO

getValue() Return Type longlong

Property Name FiltersAdded

Property Type DYNAMIC

Data Type COUNTER

Accessibility READ ONLY

Mandatory NO

getValue() Return Type longlong

Property Name StandardFiltersDestroyed

Property Type DYNAMIC

Data Type COUNTER

Accessibility READ ONLY

Mandatory NO

getValue() Return Type longlong

Property Name StandardFiltersCreated

Property Type DYNAMIC

Data Type COUNTER

Accessibility READ ONLY

Mandatory NO

getValue() Return Type longlong
185
Configuration and Management�������	

 13.2 NotificationSingleton Configuration

13.2.4.0.20 Number of Events Rejected by Filters
The number of events rejected by filters.

13.2.4.0.21 Number of Filters Removed
The number of times a filter has been removed from an admin or proxy.

13.2.4.0.22 Number of Buffered Events
The total number of event buffered in the sequence proxy push suppliers.

13.2.4.0.23 Number of Events Received
The running total of events received from suppliers.

Property Name EventsFiltered

Property Type DYNAMIC

Data Type COUNTER

Accessibility READ ONLY

Mandatory NO

getValue() Return Type longlong

Property Name FiltersRemoved

Property Type DYNAMIC

Data Type COUNTER

Accessibility READ ONLY

Mandatory NO

getValue() Return Type longlong

Property Name BufferedEvents

Property Type DYNAMIC

Data Type COUNTER

Accessibility READ ONLY

Mandatory NO

getValue() Return Type longlong

Property Name EventsReceived

Property Type DYNAMIC

Data Type COUNTER

Accessibility READ ONLY

Mandatory NO

getValue() Return Type longlong
186
Configuration and Management

�������	

 13.2 NotificationSingleton Configuration

13.2.4.0.24 Minimum Threadpool Size
The minimum number of threads in the thread pool.

13.2.4.0.25 Number of Free Threads in the Threadpool
The number of free threads in the thread pool

13.2.4.0.26 Number of Pending Jobs
The number of jobs that are pending execution.

Property Name MinThreads

Property Type DYNAMIC

Data Type COUNTER

Accessibility READ ONLY

Mandatory NO

getValue() Return Type longlong

Property Name FreeThreads

Property Type DYNAMIC

Data Type COUNTER

Accessibility READ ONLY

Mandatory NO

getValue() Return Type longlong

Property Name PendingJobs

Property Type DYNAMIC

Data Type COUNTER

Accessibility READ ONLY

Mandatory NO

getValue() Return Type longlong
187
Configuration and Management�������	

 13.2 NotificationSingleton Configuration

13.2.4.0.27 Maximum Threadpool Size
The maximum number of threads in the thread pool.

13.2.4.0.28 The Number of Working Threads
The number of threads in the thread pool that are executing jobs.

13.2.4.0.29 The Number of Current Threads
The number of threads currently in the thread pool.

Property Name MaxThreads

Property Type DYNAMIC

Data Type COUNTER

Accessibility READ ONLY

Mandatory NO

getValue() Return Type longlong

Property Name WorkingThreads

Property Type DYNAMIC

Data Type COUNTER

Accessibility READ ONLY

Mandatory NO

getValue() Return Type longlong

Property Name CurrentThreads

Property Type DYNAMIC

Data Type COUNTER

Accessibility READ ONLY

Mandatory NO

getValue() Return Type longlong
188
Configuration and Management

�������	

 13.2 NotificationSingleton Configuration

13.2.5 General Properties

13.2.5.0.1 Maximum Queue Size
The maximum queue size of the event delivery manager. When the maximum queue
size is exceeded, events are removed from the queue, oldest first, if the
EventReliability QoS is set to BestEffort. In the case of Persistent, the events
are stored and re-sent when appropriate.

13.2.6 Messaging

13.2.6.0.1 JMX Instrumentation: Start SUN HTML Adapter
Checkbox. If this is true (checked), then the Sun HTML Adapter will be started
alongside the service. The Adapter runs for as long as the notification service does.
The Sun HTML Adapter is a utili ty provided by Sun that allows JMX
instrumentation values to be examined via a web browser. It is provided as an
alternative to the Instrumentation panel for the Notification Singleton. To use the
adapter, specify the port on which it will be run (JMX Instrumentation: Port for Sun
HTML Adapter) and ensure it is started with the service (JMX Instrumentation: Start
SUN HTML Adapter). The adapter can be accessed by entering http://server:port in
a web browser, where
• server is the server on which the notification service is running and
• port is the port selected for the adapter.

13.2.6.0.2 JMX Instrumentation: Port for Sun HTML Adapter
A numeric value which specifies which port the Sun HTML Adapter will run on.

13.2.6.0.3 JMX Instrumentation: Register Individual Objects
This is a checkbox: if set then the JMX instrumentation will be available on
individual objects (channels, admins and proxies). The Instrumentation panel for the
Notification Singleton will always display the total figures for the entire
Notification Service. However, these figures are derived from the objects within the
service: this control allows those objects to be registered individually when
examining using the Sun HTML Adapter, for example.

Property Name MaxQueueSize

Property Type STATIC

Data Type INTEGER

Accessibility READ/WRITE

Mandatory NO
189
Configuration and Management�������	

 13.2 NotificationSingleton Configuration

13.2.6.0.4 Lock Set Factory: Fairness Policy
The fairness policy for the lock set factory. Options are:
• FIFO
• JVM
Although JVM is shown as an option, it is not implemented in the initial version 4
release. FIFO will be used, regardless of which option is selected for this property.

13.2.6.0.5 Thread Pool: Minimum Pool Size
The minimum pool size for the thread pool. The default is 0 (zero).

13.2.6.0.6 Thread Pool: Maximum Pool Size
The maximum size of the thread pool. The default is 20.

13.2.6.0.7 Thread Pool: Initial Pool Size
The initial size for the thread pool. The default is 0 (zero).

Property Name components/LockSetFactory/fairness

Property Type FIXED

Data Type ENUM

Accessibility READ/WRITE

Mandatory NO

i

Property Name components/ThreadPool/pool-min

Property Type FIXED

Data Type INTEGER

Accessibility READ/WRITE

Mandatory NO

Property Name components/ThreadPool/pool-max

Property Type FIXED

Data Type INTEGER

Accessibility READ/WRITE

Mandatory NO

Property Name components/ThreadPool/pool-initial

Property Type FIXED

Data Type INTEGER

Accessibility READ/WRITE

Mandatory NO
190
Configuration and Management

�������	

 13.2 NotificationSingleton Configuration

13.2.6.0.8 Thread Pool: Thread Timeout
How long, in milliseconds, an idle thread remains in the pool before being
discarded. This controls how long an The default timeout is 1000 milliseconds (1
second).

13.2.6.0.9 Transaction Manager: Domain Timeout
The maximum time is allowed before a transaction times out, in milliseconds. The
default timeout is set to 0, which is an unlimited timeout. It is recommended that
this value is changed to reflect the specific needs of the system. For example,
moderately loaded systems might use a value of 60000 (60 seconds); a heavily
loaded system needed a higher value or may even retain the default unlimited
timeout value.

13.2.6.0.10 Event Database: Purge Rate
The threshold for the number of Delete Event records that can be written to the
database before a purge attempt will be initiated. The default value is 1000.
The purge involves a scan of the database to determine if records are eligible for
deleting. An event will be deleted if it has been received and acknowledged by all
the consumers who were expected to receive it or if it was discarded by the service.

Property Name components/ThreadPool/thread-timeout

Property Type FIXED

Data Type INTEGER

Accessibility READ/WRITE

Mandatory NO

Property Name components/TransactionManager/domain/
timeout

Property Type FIXED

Data Type INTEGER

Accessibility READ/WRITE

Mandatory NO

Property Name components/EventDatabase/purgerate

Property Type STATIC

Data Type INTEGER

Accessibility READ/WRITE

Mandatory YES
191
Configuration and Management�������	

 13.3 ProcessSingleton Configuration

13.2.6.0.11 Event Database: Maximum Purge Memory
The maximum amount of memory the purge algorithm is allowed to use for storing
records in memory during processing, expressed in Kb. The default value is 5000.
The purge algorithm attempts to match Store records with Delete records for a
specific event and will continue to read records until a match is made or the size of
the temporary collection in memory reaches the size set by this property. When this
memory threshold is reached, all the records currently in memory are processed and
any outstanding records are written to the end of the data files for future processing.

13.2.6.0.12 Journal: Guaranteed Synchronisation
If set to true, this property forces the Journal to synchronize the disk file with the
Journal file stream when event records are written. If false, there is no guarantee
that event records will be written to disk (the synchronization will be determined by
the JVM).
The default value of this property is false.

13.3 ProcessSingleton Configuration
13.3.0.0.1 IOR Name Service Entry

The Naming Service entry for the Singleton.

Property Name components/EventDatabase/
maxpurgememory

Property Type STATIC

Data Type INTEGER

Accessibility READ/WRITE

Mandatory YES

Property Name components/Journal/guaranteedsyncing

Property Type STATIC

Data Type BOOLEAN

Accessibility READ/WRITE

Mandatory YES

Property Name Object.Name

Property Type FIXED

Data Type STRING

Accessibility READ/WRITE

Mandatory NO
192
Configuration and Management

�������	

 13.3 ProcessSingleton Configuration

13.3.0.0.2 IOR URL
The IOR URL property specifies the location of an Interoperable Object Reference
(IOR) for the Service, using the Universal Resource Locator (URL) format. This
information is used when a client attempts to resolve a reference to the Service.
Currently only http and file URLs are supported, for example:
file:/usr/users/openfusion/ProcessSingleton.ior
http://www.prismtech.com/openfusion/ProcessSingleton.ior

13.3.0.0.3 IOR File Name
The IOR File Name option specifies the name and location of the IOR file for the
Singleton. If this property is not set, the IOR file name will be:
<INSTALL>/domains/<domain>/<node>/<service>/<singleton>/<singleton>.
ior

where <INSTALL> is the OpenFusion installation path. See the System Guide for
details of the domains directory structure.

13.3.0.0.4 IOR Name Service
The name of the Naming Service which will be used to resolve the Singleton object.

Property Name IOR.URL

Property Type FIXED

Data Type URL

Accessibility READ/WRITE

Mandatory NO

Property Name IOR.File

Property Type FIXED

Data Type FILE

Accessibility READ/WRITE

Mandatory NO

Property Name IOR.Server

Property Type FIXED

Data Type STRING

Accessibility READ/WRITE

Mandatory NO
193
Configuration and Management�������	

 13.3 ProcessSingleton Configuration

194
Configuration and Management

�������	

CHAPTER

14 Notification Service Manager
The Notification Service browser acts as a window on to the functioning processes
of the service. The Notification Service Manager enables developers to create Event
Channels, Admin Objects, and Proxy Objects. A useful feature of the Notification
Service Manager is its use in verifying new Notification-Service-based clients.
The Notification Singleton object acts as the base process for a single instance of
the OpenFusion Notification Service. The Notification Service Manager is invoked
by right-clicking on the Notification Singleton of a running Notification Service in
the Administration Manager.

14.1 Using the Notification Service Manager
Start the Notification Service Manager from the command line with the following
command:

The Structured Consumer Manager can be started with the following command:

The Structured Supplier Manager can be started with the following command:

The Notification Service must be running before any of the Managers can be started.

14.1.1 The Notification Service Manager
The Notification Service Manager displays information about the channels that have
been created by an EventChannelFactory object. When the manager is first run,
and providing no developers have created Event Channels programmatically, the
manager will display the default service EventChannelFactory object, below the
Notification Service icon itself (Figure 20).

% run com.prismt.cos.treebrowser.notification.
NotificationServiceBrowser -name NotificationService

% run com.prismt.cos.CosNotification.util.Consumer
-name NotificationService

% run com.prismt.cos.CosNotification.util.Supplier
-name NotificationService
195
 Configuration and Management�������	

 14.1 Using the Notification Service Manager

If the ChannelConfigurator Object is present, a saved configuration may be loaded.

Figure 20 Notification Service Manager

14.1.1.1 Notification Service Hierarchy
The left-hand pane of the Notification Service browser displays the Notification
Service object hierarchy. The icons used in the Notification Service object hierarchy
are shown in Table 18.

Table 18 Notification Service Nodes

Icon Object
Event Channel Factory
The root node. Also used to show the Default Filter
Factory parent node and for Filter Factory objects.
Channel
Shows the unique identification number and the
name of the channel interface.
Supplier Admins
Parent node for all supplier admins.

Consumer Admins
Parent Node for all consumer admins.

Supplier Admin
Shows the unique identification number and the
name of the supplier admin interface.
196
Configuration and Management

�������	

 14.1 Using the Notification Service Manager

14.1.1.2 Notification Service Details
The right hand pane will display the details of the individual objects in the hierarchy
when they are selected. If no node is selected, or if a node which has no associated
details is selected, this box will be empty and contain the message There is no
information to display.

14.1.2 Setting up an Event Channel
The core component of the Notification Service is the Event Channel. The Event
Channel handles the transmission of events over the distributed network provided
by the ORB implementation being used.

14.1.2.1 Creating an Event Channel
Step 1: To create an Event channel, right-click on the Event Channel Factory node in the

hierarchy pane of the browser and select Create Channel.

Consumer Admin
Shows the unique identification number and the
name of the consumer admin interface.
Filters
Parent node for event filters.

Proxy Push Suppliers
Parent Node for Proxy Suppliers.

Proxy Push Consumers
Parent node for Proxy Consumers.

Proxy Push Supplier
Shows the unique identification number and the
name of the proxy interface.
Proxy Push Consumer
Shows the unique identification number and the
name of the proxy interface.

Table 18 Notification Service Nodes (Continued)

Icon Object
197
Configuration and Management�������	

 14.1 Using the Notification Service Manager

Step 2: A new Event Channel instance will be created. If the Event Channel is selected in
the hierarchy pane, the details about its ID and Class name are displayed at the top,
and a tabbed pane with the current Admin and QoS properties and their values are
shown. Details about Event Channel properties are described next.

14.1.2.2 Setting Properties on an Event Channel
Default properties can be set for an Event Channel. This enables the user to specify
how the channel will respond to the events it receives. There are two types of
property: Admin properties and QoS properties.

14.1.2.3 Admin Property Settings
Administrative properties refer to property settings that may be applied only to event
channel objects. These properties are usually set when an event channel is first
created. These settings are typically static in nature although they may be changed
during the lifetime of the channel object. The standard administrative properties
which can be set through the Notification Service Manager are:
• MaxQueueLength

• MaxConsumers
• MaxSuppliers
• RejectNewEvents
See Administrative Properties on page 137 for a description of these properties.

14.1.2.4 QoS Property Settings
The QoS properties which can be set on a event channel through the Notification
Service Manager are:
• ConnectionReliability
• EventReliability
• MaxEventsPerConsumer
• MaxReconnectAttempts
• MaximumBatchSize
• OrderPolicy
• PacingInterval
• Priority
• ReconnectInterval
• Timeout
• AutoSequenceBatchSize
• AutoSequenceTimeout
• PropagateQoS
198
Configuration and Management

�������	

 14.1 Using the Notification Service Manager

See Section 5.1, Quality of Service Properties, on page 117 for a description of these
properties.

14.1.3 Setting up a Supplier or Consumer Admin
A supplier admin is a representation of a SupplierAdmin object created by a
part icular event channel . A consumer admin is a representat ion of a
ConsumerAdmin object created by a particular event channel. Every channel is
created with a default SupplierAdmin and ConsumerAdmin object, which are
given IDs of zero. To view these, expand the tree in the left pane. You should see a
similar structure to that shown in Figure 21.

Figure 21 Supplier and Consumer Admins
If the user selects either of the default Supplier or Consumer Admin objects in the
hierarchy, then the right panel will display details about these. At the top of the pane
there is information about the object selected: its ID, Class, Channel and its default
filter operator OR. Beneath this is a tabbed panel. One tab displays the QoS Settings
associated with the object, and the other tab displays Subscribed Types (for a
Consumer Admin) or Offered Types (for a Supplier Admin).

14.1.3.1 QoS Settings
The following QoS properties can be set for SupplierAdmin and ConsumerAdmin
objects:
• ConnectionReliability (Consumer Admin only)
• MaxEventsPerConsumer (Consumer Admin only)
199
Configuration and Management�������	

 14.1 Using the Notification Service Manager

• MaxReconnectAttempts (Consumer Admin only)
• MaximumBatchSize (Consumer Admin only)
• OrderPolicy (Consumer Admin only)
• PacingInterval (Consumer Admin only)
• Priority
• ReconnectInterval (Consumer Admin only)
• Timeout
• AutoSequenceBatchSize
• AutoSequenceTimeout
See Section 5.1, Quality of Service Properties, on page 117 for a description of these
properties.

14.1.4 Admin Filters
Administration objects and all of the proxy objects in the Notification Service
inherit the FilterAdmin interface. This means that all of these objects can have
filters attached. Each object which can have filters attached contains a child node,
Filters. The Filters node contains children that represent the individual filters that
have been created for that object.

14.1.4.1 Filter Settings
One use of filters is to narrow the sorts of events received by Consumer objects.
This is done by applying constraints to Supplier and Consumer Admin objects.
These constraints can be specified by using the extended Trader Constraint
Language (TCL). To locate the Filter section beneath the Supplier and Consumer
Admin objects, expand the hierarchies below each. The Notification Browser should
look like that in Figure 22.
200
Configuration and Management

�������	

 14.1 Using the Notification Service Manager

Figure 22 Filters

14.1.4.1.1 Custom Filters
A custom filter is a filter which is not based on the standard grammar (TCL)
but is created via a custom filter implementation class. This class must
implement the FilterOperations interface and must be available on the
CLASSPATH. The class must be specified when the filter is created, as
described in the following section.

14.1.4.1.2 Creating a New Filter
Step 1: To create a new filter object, right-click on the Filters icon in the hierarchy tree

beneath either the Admin or Proxy object. Select the option Add Filter from the
pop-up menu. The Add Filter dialog is displayed, as shown in Figure 23.
201
Configuration and Management�������	

 14.1 Using the Notification Service Manager

Figure 23 Add Filter
Step 2: Select the required filter grammar from the drop-down list (currently,

EXTENDED_TCL is the only available option). Or, if a custom filter is required, type
the name of the custom filter implementation class into the text box.

Step 3: Click the OK button.
Step 4: A new filter object line will appear in the hierarchy. Select this line to view the filter

details in the right-hand pane. See Figure 24.
202
Configuration and Management

�������	

 14.1 Using the Notification Service Manager

Figure 24 Filter Details
At the top of this filter is a pane containing the filter ID, the IDL Class on which the
filter is based, and the Grammar with which it will be constructed. Below this is a
split panel. To the left is a pane where any number of filter constraints can be added
and removed. To the right is another pane with the details of the constraint currently
selected in the left pane.
If a filter is based on a custom filter implementation class which does not support
constraints, the constraint-related controls (Add, Remove) will be disabled.

14.1.4.1.3 Adding a Constraint
Step 1: Add a new constraint by clicking the Add button in the left pane. This displays the

Add Constraint dialog, as shown in Figure 25.

i

203
Configuration and Management�������	

 14.1 Using the Notification Service Manager

Figure 25 Add Constraint
Each constraint is automatically assigned an ID number. When the constraint is first
added, the ID text box will be blank.
Constraint expressions are added using the Expression field and the Event Types
table. Steps 2, 3, and 4 illustrate this using the following constraint expression as an
example:
(($domain_type == ’Telecommunications’ and
 $type_name == ’CommunicationsAlarm’) or
 $domain_type == ’Healthcare’ and
 $type_name == ’VitalSigns’)) and severity == 3

This expression could be added directly into the Expression text box. However it is
easier to add the domain and type names of the events into the Event Types table.

Step 2: Enter the expression severity == 3 into the Expression text box.
Step 3: Click the Add button below the Event Types table. A new row will now appear in

the table. Enter Telecommunications into the Domain Name column and
CommunicationsAlarm into the Type Name column.
204
Configuration and Management

�������	

 14.1 Using the Notification Service Manager

Step 4: Click the Add button below the Event Types table and enter Healthcare and
VitalSigns into the Domain Name and Type Name columns.

Step 5: Click the OK button once the full constraint expression has been entered.
Step 6: To complete the process of adding a constraint, click the Save button in the

Constraints panel. The constraint will now be stored.

14.1.4.1.4 Removing a Filter
To remove a filter object, right-click on the Filters icon in the hierarchy tree beneath
the required Supplier or Consumer Admin object. Select Destroy Filter from the
pop-up menu. A warning dialog will appear to confirm that the filter will now be
destroyed and removed from the hierarchy tree.

14.1.4.1.5 Removing a Constraint
Step 1: To remove a constraint, select the constraint in the Constraints list.
Step 2: Click the Remove button below it. The constraint will now disappear from the list.

Click the Remove All button to remove all constraints from the filter.

14.1.5 Setting Proxy Instances
Supplier and Consumer Proxy objects are shown in the Notification Service
Browser beneath Proxy Nodes in the hierarchy panel. See Figure 26. A Notification
Service may have one or more Proxy instances. These Proxy instances are created
using the Supplier or Consumer Admin interfaces.
Proxy instances are used to connect suppliers and consumers to the Event Channel.
A supplier connects via a Proxy Consumer, which is obtained from a Supplier
Admin. A consumer connects via a Proxy Supplier, which is obtained from a
Consumer Admin.
205
Configuration and Management�������	

 14.1 Using the Notification Service Manager

Figure 26 Proxy Objects

14.1.5.1 QoS Settings
The QoS properties which can be set on a Proxy object through the Notification
Service Manager are:
• ConnectionReliability
• DisconnectCallback
• MaxEventsPerConsumer
• MaxReconnectAttempts
• MaximumBatchSize
• PacingInterval
• Priority
• ReconnectInterval
• Timeout
• AutoSequenceBatchSize
• AutoSequenceTimeout
Some of these Qos properties are not available for all types of Proxy object.
See Section 4.1, Quality of Service Properties, on page 67 for a description of these
properties.
206
Configuration and Management

�������	

 14.1 Using the Notification Service Manager

14.1.5.2 Creating a New Proxy Object
Supplier Admin objects are used to create proxy consumer objects for Supplier
clients. Consumer Admin objects are used to create proxy supplier objects for
Consumer clients.

Step 1: To create a new Proxy Object, select the relevant node in the Notification browser
hierarchy pane:
• Proxy Push Supplier
• Proxy Push Consumer

Step 2: Right-click on the line in the hierarchy tree and select the Obtain New Proxy option
from the pop-up menu.

Step 3: Select the Client Type from the list box: Structured, or Sequence.
Step 4: Click the OK button to create the proxy. A new proxy instance will appear in the tree

below the node.

14.1.5.3 Proxy Filters
Proxy objects like Admin objects can have filter objects associated with them.
Applying filters to Proxy objects in the Notification Browser is essentially the same
process as applying them to Admin objects. Refer to the section Filter Settings on
page 200 for details.
Upon receipt of each event, the Proxy invokes the appropriate match operation on
each of its associated filter objects. The match operation takes the contents of the
event as input and returns a boolean result. A FALSE value is returned only when
none of the constraints in the filter objects are satisfied by the event, otherwise
TRUE is returned. Where the Proxy has multiple filter objects associated with it, it
will invoke match on each in turn until either one returns TRUE or all have returned
FALSE. Whenever the result of all match operations evaluates FALSE, then the
event is discarded.

14.1.6 Testing Event Delivery
The Notification Browser provides facilities for testing the communication between
objects in the Notification Service. Once Event Channels are available, the user can
configure and create events and send them using built-in Structured Supplier and
Consumer clients.
To use the event delivery test clients, the Notification Service requires the following
objects to be configured and available.
• An Event Channel object. Refer to Creating an Event Channel on page 197.
• Two Event Channel Admin objects. Default Supplier and Consumer Admin

objects will always be available when the Event Channel is created, so there is no
need to create any more unless the user wishes to do this.
207
Configuration and Management�������	

 14.1 Using the Notification Service Manager

14.1.6.1 Creating the Test Clients
Once the Notification Service is running and configured correctly, the clients can be
created.
• Right click on the NotificationSingleton in the Administration Manager’s Object

Hierarchy and select Notification Structured Supplier Manager from the pop-up
menu. A new Structured Supplier Manager will appear as a new tab in the
browser framework.

• Right click on the NotificationSingleton in the Administration Manager’s Object
Hierarchy and select Notification Structured Consumer Manager from the
pop-up menu. A new Structured Consumer Manager will appear as a new tab in
the browser framework.

14.1.6.2 Configuring the Test Clients

14.1.6.2.1 Configuring the Structured Supplier
Figure 27 shows the Structured Supplier Manager. The manager is split into two
panes; the Status pane and the Events pane. The Status pane displays information
about the current status of the supplier connection through its proxy and admin
objects. The Events pane shows the events being transmitted by the supplier.
The Events pane can be cleared by right clicking on the window and selecting the
Clear option from the pop-up menu.

Figure 27 Structured Supplier Manager
208
Configuration and Management

�������	

 14.1 Using the Notification Service Manager

14.1.6.2.2 Configuring the Structured Consumer
Figure 28 shows the Structured Consumer Manager. The manager is split into two
panes; the Status pane and the Events pane. The Status pane displays information
about the current status of the consumer connection through its proxy and admin
objects. The Events pane shows the events being received by the consumer.
The Events pane can be cleared by right clicking on the window and selecting the
Clear option from the pop-up menu.

Figure 28 Structured Consumer Manager
The textual representations of events sent and received by the Test Client GUIs will
take up space in memory while they are displayed (as all text does within any text
pane). The user should be aware that this could potentially cause memory
exhaustion in the Administration Manager process if messages are sent or received
over extended periods.

14.1.6.2.3 Connecting the Structured Supplier
When the Structured Supplier Manager is invoked, the Structured Supplier client
resolves the Notification Service.

Step 1: Connect the Structured Supplier to the Notification Service by clicking on the
Connect Supplier icon in the tool bar. You will then be prompted to select the
identifier of the Event Channel and Supplier Admin. If there is more than one Event
Channel or more than one Supplier Admin available then you can select the
appropriate identifiers from the drop-down lists.

Step 2: Select a Channel and Admin and click OK. The Structured Supplier client will now
be connected to the Notification Service and will create a proxy automatically.
209
Configuration and Management�������	

 14.1 Using the Notification Service Manager

14.1.6.2.4 Connecting the Structured Consumer
When the Structured Consumer Manager is invoked, the Structured Consumer client
resolves the Notification Service.

Step 1: Connect the Structured Consumer to the Notification Service by clicking on the
Connect Consumer icon in the tool bar. You will then be prompted to select the
identifier of the Event Channel and Consumer Admin. If there is more than one
Event Channel or more than one Consumer Admin available then you can select the
appropriate identifiers from the drop-down lists.

Step 2: Select a Channel and Admin and click on OK. The Structured Consumer client will
now be connected to the Notification Service and will create a proxy.

14.1.6.2.5 Creating Test Events
The final stage of configuration is to create events to transmit over the Notification
Service.

Step 1: Click on the Structured Supplier Manager tab in the browser, and click on the
Configure Events tool bar button. The Configure Events dialog box is displayed, as
shown in Figure 29.

Figure 29 Configure Events Dialog Box
The Configure Events dialog is separated into two panes. The Event Sequence
contains a list of the events to be transmitted. The Event Communication allows the
user to configure the event transmission mechanism. The Number of Loops field
210
Configuration and Management

�������	

 14.1 Using the Notification Service Manager

expects an integer for the number of times that the batch of events in the Event
Sequence table will be transmitted across the Event Channel. In normal
circumstances events are usually transmitted once only, but for testing purposes this
can be increased. The Event Interval field allows the user to specify, in milliseconds,
the interval between the transmission of the event batches listed in the Event
Sequence table.

Step 2: Enter the value of 10 into the Number of Loops field and 100 into the Event Interval
field. This will instruct the Notification Service to transmit the event sequence ten
times, at intervals of one every one tenth of a second.

Step 3: Click the Add button in the Event Sequence pane. This gives a dialog box for
creating structured events, shown in Figure 30.
211
Configuration and Management�������	

 14.1 Using the Notification Service Manager

Figure 30 Configure Event Dialog Box
Step 4: Enter Healthcare into the Domain field of the Fixed Header section, and

VitalSigns into the Type field. Enter an identifier for the Event instance (for
example, my_vital_signs_event_1).
212
Configuration and Management

�������	

 14.1 Using the Notification Service Manager

Step 5: Click the Add button in the Filterable Body section of the dialog. Enter the property
severity into the Name field and switch the data type to short in the Type field.
Finally set the value to 3 in the Value field. Click OK. The Filterable Body will now
contain the new property.

Step 6: Click OK to load the event into the Event Sequence table of the Configure Events
dialog.

Step 7: Repeat step 3 through step 6 as before, but give this event a different identifier and
set the severity to 4.

Step 8: To save a configured event sequence for use at a later date, click the Save button. To
load events select the Load button and load a previously saved file. For this exercise
click on OK.

14.1.6.2.6 Transmitting Test Events
Step 1: To begin transmitting the events, click the Send Events button on the tool bar.
Step 2: If you examine the Structured Supplier Manager you should notice the events being

transmitted in the Events pane.
Step 3: If you switch to the tab of the Structured Consumer Manager you will notice the

events being received in the Events window.

14.1.6.2.7 Filter Events
The next example will demonstrate the use of filters on event transmission.

Step 1: Select the Notification Service Manager window and create a new Filter object on
the Supplier Admin object.

Step 2: Create a new constraint.
Step 3: Add the expression $severity != 3, and add the domain Healthcare and type

VitalSigns to the Event Types table. This will create a filter to accept only
Healthcare/Vital Signs events whose severity is not equal (!=) to 3. Property
variables in constraint expressions must always be preceded by the $ sign.

Step 4: Clear the Events panes in the Structured Supplier and Consumer Manager windows
and click the Send Events button again.

Step 5: Examine the Events pane in the Structured Supplier Manager. Both events are
transmitted to the Event Channel.

Step 6: Now examine the Events pane in the Structured Consumer Manager. You should
notice that only the event with severity==4 is being received by the Consumer
client. The event with severity==3 is filtered out due to the constraint created on
the Supplier Admin in step 3.
213
Configuration and Management�������	

 14.1 Using the Notification Service Manager

14.1.6.3 Destroying Proxy Objects
Proxy objects are destroyed if the Disconnect button is clicked or if the browser is
closed.
214
Configuration and Management

�������	

CHAPTER

15 ChannelConfigurator Tool
The ChannelConfigurator tool is a Java Object which is used with the Notification
Service to help manage channel configurations. The configuration of Notification
Service channels can be saved and used to re-initialise the Notification Service
when it is restarted. The Service can therefore be stopped and started without the
added overhead of recreating all the channels.
The ChannelConfigurator can perform the following functions:
• Save the Notification Service channel configuration into an XML file.
• Load an existing channel configuration into the Notification Service from an XML

file.

15.1 ChannelConfiguratorObject Configuration
The ChannelConfigurationObject Java Object must be added to the Notification
Service before the ChannelConfigurator tool can be used. Adding Java Objects to a
Service is described in the System Guide.
Once the ChannelConfigurationObject has been added to the Service, the following
properties must be configured before the Notification Service is restarted.

15.1.0.0.1 NotificationServiceName
The name of the Notification Service that the ChannelConfigurator tool will
run on. The default value is NotificationService.
Property Name NotificationServiceName

Property Type DYNAMIC

Data Type STRING

Accessibility READ/WRITE

Mandatory YES
215
 Configuration and Management�������	

 15.2 Using the ChannelConfigurator Tool

15.1.0.0.2 NameServiceName
The name of the Naming Service that the ChannelConfigurator tool will bind
objects to.

15.1.0.0.3 Channel Configuration URL
The URL of the XML file containing the channel configuration information. This
property is mandatory but does not have a default value, so a value must be entered
before the Notification Service can be started.

15.2 Using the ChannelConfigurator Tool
When the Notification Service is started, the ChannelConfigurator tool will
automatically attempt to load channel configurations from the XML file pointed to
by the Channel Configuration URL property. If the file cannot be located, the Service
will start with no channels configured.
The tool will attempt to resolve each object described in the XML file, according to
the following rules:
1. If the XML file contains an ID number (ID element), the tool will load the

object described by the ID.
2. If the XML file contains an IOR string (IOR element), the tool will load the

object described by the string.
3. If the XML file contains an IOR URL (IOR_URL element), the tool will load the

object pointed to by the URL.
4. If the XML file contains a Naming Service entry (NS_Entry element) and the

object can be resolved in the Naming Service, the tool will load that object.

Property Name NameServiceName

Property Type DYNAMIC

Data Type STRING

Accessibility READ/WRITE

Mandatory NO

Property Name ChannelConfigurationURL

Property Type DYNAMIC

Data Type STRING

Accessibility READ/WRITE

Mandatory YES
216
Configuration and Management

�������	

 15.2 Using the ChannelConfigurator Tool

5. If the XML file contains a Naming Service entry (NS_Entry element) but the
object cannot be resolved, the tool will create a new object and register it in the
Naming Service with the name specified by the NS_Entry element.

These rules are evaluated in the order given. So if all three elements exist for an
object, the object will be resolved from the IOR string and the other elements will
not be evaluated.
If the tool cannot resolve an object from any of these elements, it will create a new
object.

From version 2.5.3 onwards, only the ID element is used. The other elements (IOR,
IOR_URL, and NS_Entry) are still checked, but this is only for compatibility with
files created by earlier versions (which did not have the ID element). It is suggested
that older XML files are re-saved in the current version in order to update their
structure.
When the channel configurator writes the time-related QoS property values
(MaxInactivityInterval, PacingInterval, ReconnectInterval,
ThreadIdleTime and Timeout) to the XML file, it changes the units from 100
nanoseconds to milliseconds. When the configurator reads in the XML file to
recreate the service configuration, it will convert the values back to 100ns units.

i

217
Configuration and Management�������	

 15.3 Running from the Command Line

15.2.1 Saving a Channel Configuration
To save the Notification Service’s current channel configuration, open the
Notification Service Manager. Right-click on the root node of the Notification
Service hierarchy and select Save Channel Configuration from the pop-up menu, as
shown in Figure 31.

Figure 31 Saving Channel Configuration
A Save dialog box is displayed. Select the directory and file name for the XML file.
The file should be given an .XML extension.
If the specified XML file already exists, it will be overwritten by the new file.
If the file name and location do not match that specified by the Channel
Configuration URL property, then the Notification Service will not be initialised with
the saved configuration the next time it is started.

15.3 Running from the Command Line
To load a saved channel configuration into the Notification Service:

To save the current channel configuration of the Notification Service to an XML
file:

% run com.prismt.cos.CosNotification.tools.config.ChannelConfigurator:
-load <URL> <NotificationService> <NamingService>

% run com.prismt.cos.CosNotification.tools.config.ChannelConfigurator:
-save <URL> <NotificationService>
218
Configuration and Management

�������	

 15.3 Running from the Command Line

Where:
<URL> is the URL of the XML configuration file.
<NotificationService> is the Notification Service resolve name.
<NamingService> is the Naming Service resolve name.
219
Configuration and Management�������	

 15.3 Running from the Command Line

220
Configuration and Management

�������	

INDEX

Index

A
Adding

an Event Type .92
Constraints . 203

Admin Objects . 17
Admin Properties . 198
Administration Interfaces 64
Administration Properties

DomainName . 164

AlreadyExists Exception 164
API Definitions . 151
AuthorizeCycles . 163
AuthorizeDiamonds . 163
AutoSequenceBatchSize (QoS property) . . 75, 198
AutoSequenceTimeout (QoS property) . . . 75, 198
Auto-sequencing. 23

B
Blobstore Logger Level (property). 177

C
Channel

Configuration . 215
Channel Configuration URL (property) 216
Channel graphs . 126
Channel Management

Typed Event Domain 140
Untyped Event Domain 140

ChannelConfigurationURL (property) 216
ChannelConfigurator 196, 215
ChannelNotFound Exception 164
Channels . 196
Channels (property) . 184
Client Connection

Typed Event Domain 148
Untyped Event Domain 142

Component
Connection . 12
Creation. 12

Component Manager Logger Level (property) 179
components/EventDatabase/maxpurgememory

(property). 192
components/Journal/guaranteedsyncing (property)

192
components/LockSetFactory/fairness (property) . .

190

components/ThreadPool/pool-initial (property). . .
190

components/ThreadPool/pool-max (property) . 190
components/ThreadPool/pool-min (property) . 190
components/ThreadPool/thread-timeout (property)

191
components/TransactionManager/domain/timeout

(property) . 191
Composition . 98
Configuring a Structured Supplier 208
ConnectedClient (QoS property) 75
Connecting

Push Consumers . 137
Push Suppliers . 134
Typed Clients . 148
Untyped Clients . 142

Connection Data Structure
Typed Event Domain 147
Untyped Event Domain 141

Connection Management
Typed Event Domain 147
Untyped Event Domain 141

ConnectionNotFound Exception 164
ConnectionReliability (property) 68
ConnectionReliability (QoS property) . . 198, 199,
223
Notification Service Guide�������	

 Index
206
Constraint Language . 22
Constraints

Adding . 203
Removing. 205

Consumer Admin . 197
Consumer Admins. 196

Setting up . 199
ConsumerAdmins (property). 181
Containment . 112
Contains Interface . 89
CosEventDomainAdmin Interfaces. 152
CosTypedEventDomainAdmin Interfaces . . . 152

create_channel Operation 62
Creating

a New Filter . 201
Test Events . 210

Current Total of Events Awaiting Delivery
(property) . 182

Current Total of Events in Channels (property) . .
182

CurrentEvents (property) 182
Cycle Detection. 128

QoS Property . 163
CycleCreationForbidden Exception 164
Cycles . 127, 143

D
Database Plugin Class (property)

Notification Service 171
DB.Plugin (property)

Notification Service 171
DB.WAL (property) . 170
DB.WAL.Dir (property) 170
DB.WAL.MaxSize (property). 171
default_consumer_admin Operation 63
default_filter_factory Operation 63
default_supplier_admin Operation 63
Dependencies (on Other Services) 9
Destroying a Domain 140
Detecting

Cycles . 128
Diamonds. 128

Diamond Detection . 128
QoS Property . 163

DiamondCreationForbidden Exception 165
Diamonds . 127, 144
Disabling Event Type Propagation 126, 146
DiscardPolicy (QoS property). 71
DisconnectCallback (QoS property) 76, 206
Domain Factory

Log. 149
Typed Event . 146
Untyped Event . 139

Domain Topology 126, 143
DomainName (administration property) 164
DomainNotFound Exception 165
Domains

Log. 149
Typed Event . 146

Downstream . 126
DsLogDomainAdmin Interfaces 153

E
Enable Write Ahead Log (property) 170
Errors . 81
Event

Body. 15
Communication Models. 16
Header . 14
Transmission . 11
Types . 88, 96

Event Channel . 16

Factory. 196
Properties. 198
Setting up. 197

Event Channel Factory
create_channel Operation 62

Event Channel Factory Interface. 62
Event Channel Interface

default_consumer_admin Operation 63
default_filter_factory Operation 63
224
Notification Service Guide

�������	

 Index
default_supplier_admin Operation 63
destroy Operation . 63
for_consumers Operation63
for_suppliers Operation 63
get_admin Operation. 64
get_all_consumeradmins Operation 63
get_all_supplieradmins Operation 63
get_consumeradmin Operation 63
get_qos Operation . 64
get_supplieradmin Operation 63
MyFactory Operation 63
new_for_consumers Operation 63
new_for_suppliers Operation 63
set_admin Operation . 64
set_qos Operation . 64

Event Database
Maximum Purge Memory (property) 192
Purge Rate (property) 191

Event Domain Service
Architecture . 124
Channel Management 140
Concepts . 124
Connection Management, Typed 147
Connection Management, Untyped 141
Cycle Detection. 143
Diamond Detection . 144
Disabling Event Type Propagation 126
Domain Factory, Typed 146
Exceptions. 164
Interfaces. 151
Log Domains. 149
Overview. 123
Push Consumer Example 137
Push Supplier Example 134
QoS Properties . 163
Supplemental Information 163
Topology Management 143
Typed Client Connection 148
Typed Event Domains 146
Untyped Client Connection 142
Untyped Domain Factory139
Using Service Features 129

Event Type Propagation
Disabling . 126, 146

Event Type Repository

Contains Interface. 89
Event Type . 88

Import . 89
Inheritance. 89

Example
Associations . 98
Event Type . 96
Event Type Repository Object 110
Event Type, Adding 92
Event Type, Removing 112
Import . 107
Inheritance. 104
Properties . 94
Repository Package. 115

Exceptions . 119
Interfaces . 89

Event Type Repository Description 110
EventChannelFactory Object 195
EventDomain Interface 151, 153
EventDomainFactory . 157
EventDomainFactory Interface 151, 157
EventLogDomain Interface 157
EventLogDomainFactory Interface 151, 158
EventReliability (QoS property) 68, 198
Events Delivered (property) 181
Events Received (property) 180
Events, Defined . 14
Events, Structured . 14
EventsAwaitingDelivery (property). 182
EventsDelivered (property) 181
EventsReceived (property). 180
EventTypesEnabled (QoS property) 163
Examples

Event Type Repository 115
Exceptions 81, 82, 119, 164

AlreadyExists . 164
ChannelNotFound. 164
ConnectionNotFound 164
CycleCreationForbidden. 164
DiamondCreationForbidden 165
DomainNotFound . 165
InterfaceNotSupported 165
NoSuchImplementation 165
UnsupportedAdmin 165
UnsupportedQoS . 165
225
Notification Service Guide�������	

 Index
F
Federating Channels . 125
Federation . 26
Filter . 197

Events . 213
Interfaces . 64
Removing. 205

Filtering. 22
for_consumers Operation 63
for_suppliers Operation. 63
ForbidCycles . 163
ForbidDiamonds . 163

G
get_admin Operation . 64
get_all_consumeradmins Operation 63
get_all_supplieradmins Operation. 63
get_consumeradmin Operation 63

get_qos Operation . 64
get_supplieradmin Operation 63
getValue() method. 179
GlobalSetting (property) 174

I
Import . 89, 107
Inheritance . 89, 104
Instrumentation

Notification Service Properties 179
Instrumentation Properties 179
InterfaceNotSupported Exception 165
Interfaces . 89, 151

CosEventDomainAdmin 152
CosTypedEventDomainAdmin 152
EventDomain . 151, 153
EventDomainFactory. 151, 157

EventLogDomain . 157
EventLogDomainFactory 151, 158
TypedEventDomain. 151, 158
TypedEventDomainFactory 151, 160

IOR File Name (property). 172, 193
IOR Name Service (property) 172, 193
IOR Name Service Entry (property) 171, 192
IOR URL (property) 172, 193
IOR.File (property) 172, 193
IOR.URL (property) 172, 193
IOR_URL Element . 216

J
JMX (Instrumentation) Properties. 179
Journal

Guaranteed Syncing (property) 192
JTO Logger Level (property) 175

L
Local Channel . 28
Lock Set Factory

Fairness Policy (property) 190
Lock Set Factory Logger Level (property) . . . 179
Log Domains . 149
logcategory/blobstore (property). 177
logcategory/ecfc (property) 178
logcategory/ecm (property) 179

logcategory/jto (property) 175
logcategory/locksetfactory (property). 179
logcategory/messenger (property). 176
logcategory/orb (property) 176
logcategory/rolemanager (property) 175
logcategory/scheduler (property) 174
logcategory/statefactory (property). 177
logcategory/statemachinefactory (property) . . 178
226
Notification Service Guide

�������	

 Index
logcategory/threadpool (property) 178
logcategory/transactionmanager (property) . . . 176

logkit/targets/file/filename (property) 173
logkit/targets/file/format (property) 173

M
Managing

Channels . 140
Connections . 141
Proxies . 36, 42
Typed Channels . 147
Typed Connections . 147

MaxConsumers (admin property). 81, 198
MaxEventsPerConsumer (QoS property). 70, 198,

199, . 206
Maximum Queue Size (property) 189
MaximumBatchSize (QoS property) 71, 198, 200,

206
MaxInactivityInterval (QoS property) 73, 75
MaxMemoryUsage (QoS property) 76
MaxMemoryUsagePolicy (QoS property) 76
MaxQueueLength (admin property). 80, 198
MaxQueueSize (property) 189
MaxReconnectAttempts (QoS property) . 73, 198,

200, . 206
MaxSuppliers (admin property) 81, 198
Messenger Logger Level (property). 175
MyFactory Operation . 63

N
NameServiceName (property) 216
new_for_consumers Operation. 63
new_for_suppliers Operation 63
NoSuchImplementation Exception. 165
Notification Service

Configuration . 169
Errors . 81
Event Channel Factory, create_channel

Operation .62
Event Channel Interface

default_consumer_admin Operation 63
default_filter_factory Operation63
default_supplier_admin Operation 63
destroy Operation . 63
for_consumers Operation 63
for_suppliers Operation. 63
get_admin Operation 64
get_all_consumeradmins Operation 63
get_all_supplieradmins Operation. 63
get_consumeradmin Operation 63
get_qos Operation . 64
get_supplieradmin Operation 63
MyFactory Operation 63
new_for_consumers Operation 63
new_for_suppliers Operation 63
set_admin Operation 64

set_qos Operation . 64
Exceptions . 82
Hierarchy . 196
Introduction 7, 29, 59, 67
Manager . 195
Proxy Management. 36, 42
Quality of Service Property

ConnectedClient . 75
ConnectionReliability 68
DiscardPolicy . 71
EventReliability . 68
MaxEventsPerConsumer. 70
MaximumBatchSize 71
MaxInactivityInterval 73, 75
MaxReconnectAttempts 73
OrderPolicy . 71
PacingInterval . 71
Priority . 69
ReconnectInterval . 74
StartTimeSupported 69
StopTime. 69
StopTimeSupported 70
Timeout . 70

Service Dependencies. 9
Notification Service Logger Level (property) . 178
NotificationServiceName (property) 215
227
Notification Service Guide�������	

 Index
NotificationSingleton Configuration. 170
NS_Entry Element. 216, 217
Number of Consumer Admins (property) 181
Number of Event Channels (property) 184
Number of Proxy Push Consumers (property) 180
Number of Proxy Push Suppliers (property). . 182
Number of Sequence Proxy Push Consumers

(property) . 181

Number of Sequence Proxy Push Suppliers
(property) . 183

Number of Structured Proxy Push Consumers
(property) . 180

Number of Structured Proxy Push Suppliers
(property) . 183

Number of Supplier Admins (property) 184

O
Object.Name (property) 171, 192
OMG

Standard API Definitions. 59
Standard Features. 7

OpenFusion

Enhancements . 8
QoS Extensions . 21, 73
Queue Extensions . 20

ORB Logger Level (property). 176
OrderPolicy (QoS property) 71, 198, 200

P
PacingInterval (QoS property) . 71, 198, 200, 206
Passivating Persistent Clients 25
Persistence . 24
Priority. 69
Priority (QoS property) 69, 198, 200, 206
Process.getValue(). 179
ProcessSingleton Configuration

Notification Service 192
PropagateQoS (QoS property) 77, 198
Proxy

Defined . 17
Instances . 205

Management . 36, 42
Push Consumers . 197
Push Suppliers . 197

Proxy Objects
Destroying . 214

Proxy Push Consumer. 197
Proxy Push Supplier . 197
ProxyPushConsumers (property) 180
ProxyPushSuppliers (property) 182
Push Consumer . 137
Push Supplier . 134

Q
QoS Properties

Cycle Detection . 163
Diamond Detection 163
EventTypesEnabled 163
Listing . 139

QoS Settings . 199
Proxy Objects. 206

Quality of Service Property
ConnectedClient . 75
ConnectionReliability 68
DiscardPolicy. 71

EventReliability. 68
MaxEventsPerConsumer 70
MaximumBatchSize 71
MaxInactivityInterval 73, 75
MaxReconnectAttempts 73
OrderPolicy . 71
PacingInterval . 71
Priority. 69
ReconnectInterval . 74
StartTimeSupported. 69
StopTime . 69
228
Notification Service Guide

�������	

 Index
StopTimeSupported . 70
Timeout . 70

Queues, Defined . 19

R
Reconnecting Consumers (property) 183
ReconnectingConsumers (property) 183
ReconnectInterval (QoS property) . . 74, 198, 200,

206
RejectNewEvents (admin property) 198

Notification Service . 81
Removing

Constraints . 205

Filters . 205
Repository Package . 115
Requirements . 25
Resolve Name (property) 173
ResolveName (property) 173
Resuming Connections. 18
Role Manager Logger Level (property) 174

S
SequenceProxyPushConsumers (property) . . . 181
SequenceProxyPushSuppliers (property) 183
Sequencing . 22
Service Log File Format (property) 173
Service Log File Location (property) 173
Set All Loggers To (property) 174
set_admin Operation. 64
set_qos Operation . 64
Singletons

NotificationSingleton 170
Standard

OMG Properties . 21, 67
Starting the Notification Service Manager 195
StartTime . 69
StartTimeSupported (QoS property) 69

State Factory Logger Level (property). 177
State Machine Factory Logger Level (property) . .

177
StopTime (property). 69
StopTimeSupported (QoS property) 70
Structured Consumer, Connecting 210
Structured Events . 14
Structured Supplier, Configuration 209
StructuredProxyPushConsumers (property). . . 180
StructuredProxyPushSuppliers (property) 183
Supplier Admin . 196
Supplier Admins. 196

Setting up . 199
SupplierAdmins (property) 184
Suspending Connections 18

T
Thread Pool

Initial Pool Size (property) 190
Maximum Pool Size (property) 190
Minimum Pool Size (property) 190
Thread Timeout (property) 191

Thread Pool Logger Level (property). 178
Timeout (QoS property) 70, 198, 200, 206
Topology Management. 126, 143

Transaction Manager
Domain Timeout (property) 191

Transaction Manager Logger Level (property) 176
Transmitting Test Events 213
Typed Event Domain . 146
TypedEventDomain Interface 151, 158
TypedEventDomainFactory Interface . . . 151, 160
229
Notification Service Guide�������	

 Index
U
UnsupportedAdmin Exception 165
UnsupportedQoS Exception 165
Untyped Event Domain. 139
Upstream . 126

Using
Domain Factory . 139
Typed Event Domain Factory 146

W
Write Ahead Log. 170
Write Ahead Log Directory (property) 170

Write Ahead Log Maximum Size (property) . 171
230
Notification Service Guide

�������	

	Notification Service
	Table of Contents
	List of Figures
	Preface
	About the Notification Service Guide
	Contacts

	Introduction
	Notification Service
	1 Description
	1.1 OMG Standard Features
	1.2 OpenFusion Enhancements
	1.3 Concepts and Architecture
	1.3.1 Dependencies on Other Services
	1.3.2 The Basic Concept
	1.3.3 The Architecture
	1.3.4 The Details
	1.3.4.1 Structured Events
	1.3.4.2 Event Type Repository
	1.3.4.3 Event Communication Models
	1.3.4.4 Event Channel
	1.3.4.5 Admin Objects
	1.3.4.6 Proxies
	1.3.4.7 Queues
	1.3.4.8 Quality of Service
	1.3.4.9 Filtering
	1.3.4.10 Sequencing
	1.3.4.11 Persistence
	1.3.4.12 Federation

	2 Using the Service
	2.1 Introduction
	2.1.1 Import Statements

	2.2 Compiling and Running Clients
	2.2.1 Compiling Client Applications
	2.2.2 Running Client Applications
	2.2.2.1 Initialising the ORB
	2.2.2.2 Starting the Notification Service
	2.2.2.3 Configuring the Notification Service
	2.2.2.4 Starting Clients

	2.3 Creating Clients
	2.3.1 Creating a Supplier
	2.3.1.1 Connecting to the Server
	2.3.1.2 Creating Events
	2.3.1.3 Sending Events

	2.3.2 Creating a Consumer
	2.3.2.1 Connecting to the Server
	2.3.2.2 Receiving Events
	2.3.2.3 Suspending and Resuming Connections

	2.3.3 Removing Inactive Proxies
	2.3.3.1 Proxy Push Consumers
	2.3.3.2 Proxy Push Suppliers
	2.3.3.3 Alternative Method

	2.4 Using Quality of Service Properties
	2.4.1 Creating an Event Channel with QoS
	2.4.2 Managing QoS
	2.4.2.1 Adding New QoS to a Channel
	2.4.2.2 Accessing the QoS
	2.4.2.3 Validating Event QoS

	2.5 Using Filters
	2.5.1 Filter Objects
	2.5.1.1 Creating a Filter Object
	2.5.1.2 Adding a Filter Object to an Admin Object
	2.5.1.3 Listing Filter Objects
	2.5.1.4 Removing Filter Objects

	2.5.2 Event Filters
	2.5.2.1 Constructing Constraints
	2.5.2.2 Managing Constraints

	2.5.3 Writing Constraint Expressions
	2.5.3.1 Extended TCL Grammar
	2.5.3.2 Basic Elements
	2.5.3.3 Operators
	2.5.3.4 Constraint Examples

	2.6 Using Persistence

	3 API Definitions
	3.1 OMG Standard API Definitions
	3.1.0.1 Event Channel Factory Interface
	3.1.0.2 Event Channel Interface
	3.1.0.3 Administration Interfaces
	3.1.0.4 Filter Interfaces

	4 Supplemental Information
	4.1 Quality of Service Properties
	4.1.1 Standard OMG Properties.
	4.1.2 OpenFusion QoS Extensions
	4.1.2.1 Memory Management Properties

	4.1.3 Administrative Properties

	4.2 Errors and Exceptions
	4.2.1 Errors
	4.2.2 Exceptions
	4.2.2.1 Implementation Limit Exception

	Event Type Repository
	5 Description
	5.1 Concepts and Architecture
	5.1.1 Event Types
	5.1.2 Inheritance
	5.1.3 Importing
	5.1.4 Contains
	5.1.5 Interfaces

	6 Using Specific Features
	6.1 Adding an Event Type
	6.2 Properties
	6.3 Event Types
	6.4 Composition
	6.5 Inheritance
	6.6 Import
	6.7 Event Type Repository Description
	6.8 Containment
	6.9 Repository Package

	7 API Definitions
	8 Supplemental Information
	8.1 Exceptions

	Event Domain Service
	9 Description
	9.1 Features
	9.2 Architecture and Concepts
	9.2.1 Federating Channels
	9.2.2 Domain Topology

	10 Using Specific Features
	10.1 Setting up a Domain
	10.1.1 Creating an Event Domain
	10.1.2 Connecting a Push Supplier
	10.1.3 Connecting a Push Consumer

	10.2 Managing Untyped Event Domains
	10.2.1 Using a Domain Factory
	10.2.2 Listing the Quality of Service Properties
	10.2.3 Destroying a Domain
	10.2.4 Managing Channels
	10.2.5 Managing Connections
	10.2.6 Connecting Clients
	10.2.7 Topology Management
	10.2.7.1 Cycles
	10.2.7.2 Diamonds
	10.2.7.3 Channels

	10.2.8 Disabling Event Type Propagation

	10.3 Managing Typed Event Domains
	10.3.1 Using a Typed Event Domain Factory
	10.3.2 Managing Typed Channels
	10.3.3 Managing Typed Connections
	10.3.4 Connecting Typed Clients

	10.4 Log Domains

	11 API Definitions
	11.1 Interfaces
	11.1.0.1 EventDomain
	11.1.0.2 EventDomainFactory
	11.1.0.3 EventLogDomain
	11.1.0.4 EventLogDomainFactory
	11.1.0.5 TypedEventDomain
	11.1.0.6 TypedEventDomainFactory

	12 Supplemental Information
	12.1 Quality of Service Properties
	12.2 Administration Properties
	12.3 Exceptions

	Configuration and Management
	13 Notification Service Configuration
	13.1 Common Properties
	13.2 NotificationSingleton Configuration
	13.2.1 Persistence Properties
	13.2.2 CORBA Properties
	13.2.3 Messaging Loggers
	13.2.4 Instrumentation Properties
	13.2.5 General Properties
	13.2.6 Messaging

	13.3 ProcessSingleton Configuration

	14 Notification Service Manager
	14.1 Using the Notification Service Manager
	14.1.1 The Notification Service Manager
	14.1.1.1 Notification Service Hierarchy
	14.1.1.2 Notification Service Details

	14.1.2 Setting up an Event Channel
	14.1.2.1 Creating an Event Channel
	14.1.2.2 Setting Properties on an Event Channel
	14.1.2.3 Admin Property Settings
	14.1.2.4 QoS Property Settings

	14.1.3 Setting up a Supplier or Consumer Admin
	14.1.3.1 QoS Settings

	14.1.4 Admin Filters
	14.1.4.1 Filter Settings

	14.1.5 Setting Proxy Instances
	14.1.5.1 QoS Settings
	14.1.5.2 Creating a New Proxy Object
	14.1.5.3 Proxy Filters

	14.1.6 Testing Event Delivery
	14.1.6.1 Creating the Test Clients
	14.1.6.2 Configuring the Test Clients
	14.1.6.3 Destroying Proxy Objects

	15 ChannelConfigurator Tool
	15.1 ChannelConfiguratorObject Configuration
	15.2 Using the ChannelConfigurator Tool
	15.2.1 Saving a Channel Configuration

	15.3 Running from the Command Line

	Index

