OpenFusione
CORBA Services

Version 4.2

Notification Service

v PRISMTECH

OpenFusion
CORBA Services

NOTIFICATION SERVICE GUIDE

& PRISMTECH

Part Number: OFCOR42-NOTG Doc Issue 32, 15 October 2008

Copyright Notice
© 2008 PrismTech Limited. All rights reserved.
This document may be reproduced in whole but not in part.

The information contained in this document is subject to change without notice and

is made available in good faith without liability on the part of PrismTech Limited or
PrismTech Corporation.

All trademarks acknowledged.

i
L PrismTecH Notification Service Guide

CONTENTS

Table of Contents

Preface

I ntroduction

List of Figures Xi
About the Notification ServiceGuide Xiii
CONtACES . .ot Xiv

Notification Service

Chapter 1

Chapter 2

& PRISMTECH

Description 7
1.1 OMG Standard FEatUreS. oot et 7
1.2 OpenFusion Enhancements. i, 8
1.3 Conceptsand Architecturec i 9
1.3.1 Dependencieson Other SErviCes. 9
1.32 TheBasiC CoNCEPL.o vttt e 9
1.3.3 The ArchiteCctureo e e e 10
134 TheDetaills. . ..o 14
1341 Structured EVENtS oo 14
1.34.2 Event TYPEe REPOSIOIY . . . oo e e 15
1.3.4.3 Bvent CommunicationModels. 16
1344 Bvent Channel. e 16
1345 AdMINODJECESot 17
L3406 PrOXIBS .« vttt e ettt e 17
L 37 QUEBUES ..ottt e e e e 19
1.3.4.8 Quality Of SErviCe.o e 20
1349 FiEring. . ..o e 22
13410 SEQUENCING - -« & ottt ettt e e e e e e e e 22
L3400 PaISISENCE .« oo i vt ettt 24
13402 Federation.ot 26
Using the Service 29
2.0 INtroduction.o 29
2.0 Import StatementSo 30
2.2 Compilingand RunningClients 30
2.2.1 Compiling Client Applications i, 30
2.2.2 Running Client ApplicationS.ot 30
22271 Initidisingthe ORB 31
2.2.2.2 Startingthe Notification Service 31
2.2.2.3 Configuring the Notification Service. 31

\'

Notification Service Guide

Table of Contents

Starting Clients. e 31
Creating Clients 32
Creating aSupplier ... e 32
ConnectingtotheServer i 32
Creating EVENES.o 37
Sending EVeNtS. 38
Creating @aCOoNSUMIESottt et 39
ConnectingtotheServer it 39
ReCaIVINg EVENS e e e e 43
Suspending and Resuming Connections. 44
Removing Inactive ProxXies 44
Proxy PUSh CONSUMENS.o 45
Proxy Push SUppliers. e 45
AlternativeMethod. 46
Using Quality of ServiceProperties i, 46
Creating an Event Channel withQoS 46
Managing QoS.ot 47
AddingNew QoStoaChannel 47
Accessingthe QoS 48
Validating Event QOS. e 48
Using Filterso 49
Filter ObjectS. . . oo 49
CreatingaFilter Object e 50
Adding aFilter Objecttoan AdminObject 50
Liging Filter Objects 50
Removing Filter Objects. i 51
Bvent Filters.o 51
Constructing Constraintsttt 52
Managing Constraints.ttt 53
Writing Constraint EXpressions.o 53
Extended TCL Grammaroui i e 54
BasiCElements. 54
OPEIELOrS . . .ot 55
Constraint Examples. 57
USINg PErSIStENCEo 58
API Definitions 59
OMG Standard API Definitions. 59
Event Channel Factory Interface oL, 62
Event Channel Interface. 63
Administration Interfaces. 64
Filter Interfaces. 64

N & PRISMTECH

Notification Service Guide

Table of Contents

Chapter 4 Supplemental Information 67
4.1 Quality of Service Properties. 67
4.1.1 Standard OMG Properties..ovu it 67
4.1.2 OpenFusion QOS EXIENSIONS.ttt 73
4.1.2.1 Memory Management Properties. 78
4.1.3 Administrative Properties e 80
4.2 Errorsand EXCEptions oo 81
Nt 1 0] £ 8l
A.2.2 EXCEPUONS . . oottt e e 82
4.2.2.1 Implementation Limit Exception oo, 83

Event Type Repository

Chapter 5 Description 87
5.1 Conceptsand Architecture ...t 87
0. BVENt TYPES. o oottt 88
5.2 INNEMtANCE. . oot 89
5. L IMPOMtING . . ot 89
514 CONAINS. .« . ottt et e e e 89
5. It faces . . .o 89

Chapter 6 Using Specific Features 91
6.1 Addingan Event Typet e et 92
5.2 PropPErties. . .. 94
6.3 EVENt TYPES. . oottt e 96
6.4 COMPOSITION. . . ottt e e e e e e e 98
6.5 INNEritance.o 104
0.6 IMPOIt L 107
6.7 Event Type Repository Descriptioncoviiiiiiiiinnnn.. 110
6.8 CoNtainNment e 112
6.9 Repository Package 115

Chapter 7 API Definitions 117

Chapter 8 Supplemental Information 119
8.l EXCEPLIONS . . oot e 119

Event Domain Service

Chapter 9 Description 123
O FEAIUI S . o .t e 123
9.2 Architectureand CoNCEPLSttt 124
921 FederatingChannels i e 125
& PRISMTECH vi

Notification Service Guide

Table of Contents

Domain Topology ovo et e 126
Using Specific Features 129
SettingupabDomain. 129
Creatingan EventDomain ..., 130
ConnectingaPush Supplier. i i 134
ConnectingaPushConsumer 137
Managing Untyped Event Domains ciou... 139
UsingaDomain Factory 139

Listing the Quality of Service Propertiest 139
DestroyingaDomain. e 140
ManagingChannels. i 140
Managing Connections it e e e 141
Connecting Clientso e 142
Topology Management 143
CYCIBS . oo 143
DIamONdSot 144
Channels. 145
Disabling Event Type Propagation, 146
Managing Typed EventDomains, 146
Using aTyped Event DomainFactoryt 146
Managing Typed Channels i, 147
Managing Typed Connections.ot 147
Connecting Typed Clients. 148
LogDOmMainS. . ..ot 149

API Definitions 151
INterfaCeS. . .. 151
BEventDomain 153
EventDomainFactory e 157
EventLogDomaino o 157
EventLogDomainFactoryt e 158
TypedEventDomain e 158
TypedEventDomainFactory 160
Supplemental Information 163
Quality of ServiceProperties. ... 163
Administration Properties.t 164
EXCEPLIONSo 164

wi & PRISMTECH

Notification Service Guide

Table of Contents

Configuration and Management

Notification Service Configuration 169
CommMON Properties 169
NotificationSingleton Configuration. 170

Persistence Properties e 170
CORBA Propertiest e e e e e e 171
MeSSagiNg LOgOENS . - - . v v et e ettt 173
Instrumentation Properties. 179
General Properties.o 189
MESSAGING .« o v o vttt e 189
ProcessSingleton Configuration 192

Notification Service M anager 195

Using the Notification ServiceManager.......................... 195
The Notification ServiceManager., 195
Notification ServiceHierarchy i, 196
Notification ServiceDetails 197
SettingupanEventChannel 197
CreatinganEventChannel 197
Setting Propertiesonan EventChannel 198
Admin Property Settings.o 198
QOS Property Settings.o v v 198
Setting up a Supplier or Consumer Admin 199
QOS SELINGS . .« v v et e 199
Admin FIters. . ..o 200
Filter SEttingso e 200
Setting Proxy INStanCes oo 205
QOS SEtiNGS . . - o et 206
CreatingaNew Proxy Object. i 207
Proxy FIters 207
Testing Event Delivery e 207
Creatingthe TestClients ..., 208
ConfiguringtheTestClients.o i, 208
Destroying Proxy Objects.o 214

ChannelConfigurator Tool 215
ChannelConfigurator Object Configuration 215
Using the ChannelConfigurator Tool 216

Saving aChannel Configurationo on.. 218
RunningfromtheCommand Line............. 218
ix

L PrismTecH Notification Service Guide

Table of Contents

I ndex 223

X

Notification Service Guide & PRISMTECH

List of Figures

&4 PRISMTECH

Figurel Basic OpenFusion v.4 Implementation 11
Figure2 Main Componentsouuiueineiiin e, 13
Figure3 Structured Event 14
Figured ProxXy StateS. ... oot e et e e 18
Figureb Event QUEUES it e e 20
Figure6 Sequencing Architecture i, 23
Figure7 Passivating Persistent Clients 26
Figure 8 Federation of Channels Architecture 28
Figure9 Local HOSto e 28
Figure10 Event TypeRepositoryModel 88
Figurell AnEventDomaincciriiiiiiiniinennn. 124
Figure 12 Federated Notification ServiceExample 125
Figure 13 Different Typesof Event Domains 127
Figure 14 Event Domain and Connected Clients 130
Figure 15 Domain Containing ThreeCycles 143
Figure 16 Domain Containing ThreeDiamonds 145
Figure 17 CosEventDomainAdmin Modulelnterfaces 152
Figure 18 CosTypedEventDomainAdmin Modulelnterfaces 152
Figure 19 DsLogDomainAdmin ModulelInterfaces 153
Figure20 Notification ServiceManagercoiiiiinnn.. 196
Figure21 Supplier and Consumer Admins. ..o, 199
Figure22 Filterso e e e 201
Figure23 Add Filter e e e e 202
Figure24 Filter Details e 203
Figure25 Add Constraintt 204
Figure26 Proxy ODJectSot e 206
Figure27 Structured Supplier Manageroiiiiiinnnn.. 208
Figure28 Structured Consumer Managercovvinennn.. 209
Figure29 ConfigureEventsDialogBox 210
Figure30 ConfigureEvent DialogBoOX 212
Figure 31 Saving Channel Configuration 218

Xi

Notification Service Guide

List of Figures

Xii k4 PRISMTECH
Notification Service Guide

Preface

About the Notification Service Guide

The Notification Service Guide isincluded with the OpenFusion CORBA Services
Documentation Set. The Notification Service Guide explains how to use the
OpenFusion Notification Service, as well as associated extensions to the service,
including the OpenFusion Typed Notification Service, OpenFusion Event Domains,
and the Event Type Repository.

The Notification Service Guide is intended to be used with the System Guide and
other OpenFusion CORBA Services documents included with the product
distribution: refer to the Product Guide for a complete list of documents.

Intended Audience

The Notification Service Guide is intended to be used by users and devel opers who
wish to integrate the OpenFusion CORBA Services into products which comply
with OMG or J2EE standards for object services. Readers who use this guide should
have a good understanding of the relevant programming languages (e.g. Java, IDL)
and of the relevant underlying technologies (e.g. J2EE, CORBA).

Organisation

The Notification Service Guide is organised into five main sections. The first three
sections describe each of the OpenFusion Notification Service components in order
(Notification Service, Event Type Repository, and the Event Domain Service). Each
of these sections provides

« ahigh level description and list of main features
 explanation of the component’s architecture and concepts

* how to use specific features

detailed explanations of the main interfaces and how to use them
* other information which is needed to use the component

The last section of the Notification Service Guide, Configuration and Management
provides information on configuring and managing the OpenFusion Notification
Service's components using the OpenFusion Administration Manager. Detailed
descriptions of properties specific to the component are included. It is intended that
this section be read in conjunction with the System Guide.

Conventions

The conventions listed below are used to guide and assist the reader in
understanding the Notification Service Guide.
xiii

4 PrismTecH Notification Service Guide

Preface

CE_>

X

Item of special significance or where caution needs to be taken.
Item contains helpful hint or special information.

Information applies to Windows (e.g. NT, 2000, XP) only.
Information applies to Unix based systems (e.g. Solaris) only.
Hypertext links are shown as blue italic underlined.

On-Line (PDF) versions of this document: Items shown as cross references, e.g.
Contacts on page xiv, are as hypertext links: click on the reference to go to the item.

% Commands or input which the user enters on the
command line of their computer terminal

Courier fontsindicate programming code and file names.
Extended code fragments are shown in shaded boxes:

NameComponent newName [] = new NameComponent [1] ;

// set id field to “example” and kind field to an empty string
newName [0] = new NameComponent (“example”, ““);

Italics and I talic Bold are used to indicate new terms, or emphasise an item.
Arial Bold isused to indicate user related actions, e.g. File | Save from a menu.

Sep 1: Oneof several steps required to complete a task.
Contacts

Xiv

PrismTech can be reached at the following contact points for information and
technical support.

Corporate Headquarters
PrismTech Corporation

European Head Office
PrismTech Limited

6 Lincoln Knoll Lane PrismTech House

Suite 100 5th Avenue Business Park
Burlington, MA Gateshead

01803 NE11 ONG

USA UK

Tel: +1 781 270 1177
Fax: +1 781 238 1700

Tel: +44 (0)191 497 9900
Fax: +44 (0)191 497 9901

Web: http: //Amww.prismtech.com
General Enquiries: info@prismtech.com

& PRISMTECH

Notification Service Guide

http://www.prismtech.com
mailto: info@prismtech.com

INTRODUCTION

Introduction

& PRISMTECH

The OpenFusion Notification Service is one of arange of services and interfaces
included with the OpenFusion CORBA Services product range.

The Notification Service component of the OpenFusion Notification Service
product can be used stand-alone or with other OpenFusion CORBA Services
interfaces and services. It is standards based, compliant with recognised industry
standards and specifications, and supports portability and interoperability.

3
Notification Service Guide

Introduction

4

Notification Service Guide &4 PRISMTECH

NOTIFICATION SERVICE

CHAPTER

Description

The OMG Notification Service is a greatly enhanced extension of the OMG Event
Service and is backwards compatible with it. Both of these services enable data,
referred to as events, to be sent and received between distributed software objectsin
a decoupled fashion via an event channel. This decoupling enables events to be
transmitted more efficiently and flexibly than when events are sent directly between
objects (i.e., tightly coupled).

Some of the benefits of using these servicesinclude:

ease of maintenance when adding or removing suppliers and consumers of eventsin
a system

more efficient use of network bandwidth between the suppliers and consumers

performance increasingly improves over tight coupling as the number of suppliers
and consumer s increases (through the use of concurrency)

The OMG Noatification Service provides additional benefits, including:
the ability to control the flow of eventsin order to maximise performance
the provision of and ability to control, event reliability within the service

the management of the events and how their flow through the service is buffered or
queued

The OpenFusion version 4 implementation of the Notification Service provides the
majority of the features and benefits provided in the OMG Notification Service
Soecification, which includes those features which are most used. The OpenFusion
Notification Service also provides additional benefits for improved administration
of the service plus improved flexibility and control over the flow, buffering and
reliability of events sent through the service.

The OpenFusion Notification Service is widely used in the telecommunications,
finance, transport/travel and energy industries for applications ranging from
propagating alarms on equipment, providing share dealing services, to booking
hotels and planes.

OMG Sandard Features
The OpenFusion Natification Service includes the standard OMG features, such as:

7

& PRISMTECH Notification Service

1.2 OpenFusion Enhancements

decoupling the event transmission from suppliers to consumers by using event
channels and proxies. The events may be structured (containing details about the
event), or sequences of events (events sent in batches for improved performance)

» avoidance of poor performance due to polling by using the push style event
transmission model for event notification

« enabling clients to receive only those events they are specifically interested in by
using filters attached to the client’s proxy

 the provision of filters and the Extended Trader Constraint Language for
controlling or limiting events being sent through the service in order to improve
performance, flexibility and manageability of event transmission

 enabling reliability, e.g. guaranteed event delivery, queues (event flow buffers)
and events to be managed at the channel, proxy or event level through the use of
Quality of Service (QoS) settings

« facilitating the creation of filtering constraints by end-users through the provision
of an event type repository, thus enabling information about the structure of events
to be readily accessible

* enabling certain types of events to be transmitted in batches in order to increase
performance

* additional administrative operations

OpenFusion Enhancements

The OpenFusion Notification Service provides many enhancements over the
standard OM G specification. These enhancements include:

» provision of external graphical user interfaces, as part of the OpenFusion
Graphica Toals, for run-time administration of the service

* rich administrative interface

* an extensive Quality of Service framework incorporating additional settings for
improved controllability, performance tuning and flexibility

* provisions for improved performance and scalability, such as
- multi-threading
- ability to federate channels (connect event channels together)

- provision of persistence for events, channels and connections to commercial
databases through the use of optimized stored procedures

- automatic service activation on demand

* support for custom Java filters which may perform substantially better than the
standard OMG constraint filter

8

Notification Service & PRISMTECH

1.3 Conceptsand Architecture

« ability to federate channels across multiple platforms and interoperate with native
notification services

Limitations

This version of the OpenFusion Notification Service does not support the
OMG-defined pull model since the pull model is rarely used. Removing this model
has enabled the OpenFusion Notification Service to be smaller and have better
performance.

Conceptsand Architecture

Although the OpenFusion Notification Service is generally compliant with the
OMG Notification Service specification, it has many additional features and
enhancements.

The OMG Notification Service is an extension of the OMG Event Service and is
backwards compatible with it. However, this release of the OpenFusion Notification
Service only supports the semantics specified for Notification Service clients, since
avast mgjority of usersonly use this client type.

Dependencieson Other Services

The Notification Service does not require other services in order to run. However,
the Notification Service IDL includes IDL from these services:

 Notification Service inherits from the Event Service.
» Time Service definitions are used to support start time and timeout values.

The Time Service can be used to provide a central source of time within a
distributed system when a client wishes to time-stamp events. The Timer Event
Service can be used to generate events at timed intervals.

TheBasic Concept

&4 PRISMTECH

There are many situations when an object needs to receive notification that an event
has been generated or produced by another object, such as when an alarm control
panel of a security system needs to know if a remote alarm has been activated. The
object may also need to know details about the event itself so that it can take
appropriate action. Using the security system example, the alarm panel may need to
know which alarm was activated, its location, the reason for the alarm (break-in,
fire, etc.) in order to provide appropriate information to security officers.

Obviously, the objects producing and using the event need to be connected to each
other in some fashion so that communication of the event can occur. A simple
solution would be to connect the objects together directly: notification of an event
occurrence and information about it being communicated directly between the two

9
Notification Service

1.3 Conceptsand Architecture

objects. Importantly, these objects would then be tightly coupled to each other:
changes effecting the communication of the event by one object will directly affect
the other object.

Tight coupling performs well when one object is connected to only one other object.
If, however, many objects are connected to many others, especially when the
number of objects changes, then maintainability, performance and scalability
become serious issues. For example, each time an event producer object (e.g. anew
alarm) is added, then all event user, or consumer, abjects (e.g. the alarm panelsin the
building, at the security firm, in the police or fire stations) will need to be changed,
too. In software terms, code for all consumer objects, i.e. the consumers, will need
to be altered, re-compiled, tested, etc., whenever supplier objects, i.e. the suppliers,
are added.

Also, communication between tightly coupled objects is synchronous, that is before
the supplier can send an event, the consumer must be ready to receive it. If a
supplier is connected to several consumers, then it must wait for the slowest
consumer to receive (or consume) the event before it can proceed.

Decoupling suppliers and consumers through an intermediary can overcome these
issues. If new suppliers or consumers are added to the system, then only the
intermediary needs to be altered, not each consumer or supplier, respectively.
Further, the intermediary can provide event buffers, or queues and multi-threading
capabilitiesin order to enable asynchronous communication: events can be sent and
received without waiting for the slowest “member of the pack”.

Anintermediary can therefore take over the task of communicating events between
suppliers and consumers: it can provide a service for them, who become its clients.

The Event Service was the first service that the OMG specified for the decoupled,
asynchronous communication of events between event producer and consumer
client objects. By decoupling the objects, through the use of an event channel and
proxies, the Event Service provided improved maintainability, performance and
scalability over systems which rely on tightly coupled objects.

Like the Event Service, the Notification Service provides decoupled, asynchronous
communication between supplier and consumer client objects. However, the
Notification Service provides additional features, such as Quality of Service and
filtering, to dramatically improve reliability and help control event transmission.

TheArchitecture
The Notification Service can be looked at from two perspectives:

1. from the journey that an event takes from supplier to consumer, i.e. its
transmission path

10

Notification Service & PRISMTECH

&4 PRISMTECH

2.

1.3 Conceptsand Architecture

how the Notification Service components are conceptualy connected and
created

Event Transmission
A supplier generates events.

1

The supplier sends the events to a proxy representing the consumer, the
consumer proxy. If needed, the event can be trandated to atype that is expected
by the consumer.

Unwanted events can be filtered out before transmission to the next stage of the
journey, the supplier admin object.

Numerous consumer proxies can be connected to a single supplier admin object:
filtering and quality of service settings can be applied by the admin object to all
of the events being supplied by the proxies, as a group, before they are sent to
the event channel.

The event channel transmits the events, which have not been filtered out, to a
consumer admin object. The consumer admin object then forwards those events
to itsindividual supplier proxies: additional filtering and quality of service
adjustments can be by defined the admin object prior to forwarding.

Each supplier proxy sends their events to their respective event consumers (one
proxy per consumer). Final filtering and quality of service settings can be
applied at the proxy for each event beforeit is sent on to the consumer.

Figure 1, Basic OpenFusion v.4 Implementation, shows that only the push model of
event transmission is used in the OpenFusion v.4 implementation of the basic
architecture.

Supplier
Proxy
Proxy Push
Consumer
Supplier
Proxy

\ Direction of Event Flow >

Figure 1l Basic OpenFusion v.4 Implementation

Event
Consumer,

Consume
Admin
Object

Supplier
Admin
Object

Push
Supplier

11
Notification Service

12

1.3 Conceptsand Architecture

Component Connection and Cresation

The components of the service are organised hierarchically. The main component is
the event channel. Event channels are created by the service's event channel factory:
multiple event channels can be created by the event channel factory for operation
within the service.

Admin objects are created by event channels; proxies are created from the admin
objects. Finally, each proxy is connected to a client supplier object or client
consumer object.

Each object within the hierarchy is given a unique identifier when it is created. The
combination of the hierarchical organisation and the unique identifiers enables all
components to be found or referenced from any other component in the hierarchy.

Main Components and Features

The main components of the OpenFusion Notification Service are;

 event channels, admin objects, proxies, filter objects, queues and an Event Type
Repository

The types of event are:

* structured events (the OpenFusion Notification Service does not support Event
Syle events or typed events, although they may be supported in future rel eases)

The transmission model used by the OpenFusion Notification Service isthe push
model.

Note: the OMG-defined pull model is rarely used and was removed from the
OpenFusion Notification Service in order to reduce size and complexity as well as
improving performance. This version of the OpenFusion Notification Service does
not support the pull model.

Figure 2, Main Components, shows the service’s main components, including
filters, queues, translation and the Event Type Repository.

& PRISMTECH

Notification Service

1.3 Conceptsand Architecture

Supplier
Proxy
Supplier
Proxy

Proxy Proxy
Filters Filters

Consumer
Proxy

Proxy
Filters

Admin
Filters

Supplier onsume
Admin Admin
Object Object

Master
Event
Queue

Consumer
Proxy

| |
| |
I : D : I
Loy _ el ___ __1
Direction of Event Flow >
Figure2 Main Components
Features
The Notification Service provides various management, reliability and performance
enhancing operations and features, including:
 standard OMG features
- Quality of Service (QoS), for providing and controlling reliability, queue
management and event management
- sequencing, enabling events to be sent in batches in order to enhance
performance
¢ Openkusion enhancements:
- Quality of Service extensions, additional QoS properties for improving
controllability and flexibility of event transmission
- federation, where event channels can be connected or federated together for
performance, reliability and flexibility
- trangparent fail-over, which takes advantage of ORB vendor features (when
provided) for keeping the service operating when a server host fails; enables
another host to transparently, without |oss of events, support the service
- persistence, which enables events and connections to be made persistent
- event storage plugins, enables database storage of persistent events, including
the use of JDBC and stored procedures
& PRISMTECH 13

Notification Service

1.3 Conceptsand Architecture

- administration tools, including Graphica User Interfaces (as part of the
OpenFusion product) and additional programming interfaces (as part of the
service itself)

These components, event types, transmission models, methods and features will be
described in detail below.

The Details

Structured Events

Untyped events encapsul ate basic data types transmitted and received by client
objects. Structured events are untyped events with attached headers containing id,
QoS and filtering information.

A structured event consists of two main parts:
* an event header containing identification and Quality of Service information and

* an event body containing information used to filter the event, plus the event itself,
an Any

domain_name

type_name — Fixed header
event_name _
Event header — name, vaue, | |
name, value,
— Variable header
L name, value, | _|
[| name, value, | |
name, value,
— Filterable body

Event body —|

name, value,

L_ | remainder_of_body - Remaining body

Figure3 Structured Event

Event Header
The event header contains a fixed header and variable header.
The fixed header holds information identifying the particular event and includes:

14

Notification Service & PRISMTECH

1.3 Conceptsand Architecture

* an event domain (domain_name) - the domain of a particular vertical industry
where the event type is defined, such as telecommunications, finance,
transportation, etc.

* an event type (type name) - the type of particular event within the domain, for
example SockQuote within the finance domain

* an event name (event name) - a unique name for the particular event instance
being transmitted

The event domain and event type can be used in combination as an index into the
Event Type Repository (see Event Type Repository below).

The variable header contains QoS property settings for a specific event. These
settings consist of a sequence of zero or more name-value pairs. The name
component of the pair isastring variable which identifies a particular QoS property;
the value component is an Any which contains the value of the QoS property.

For example, a name could be set to the QoS property EventReliability with its
corresponding value set to 1 (a short defined as persistent). Refer to Quality of
Service on page 20 for alist of available QoS properties.

Event Body
The event body contains afilterable body and a remaining body.

The filterable body contains another sequence of zero or more name-value pairs.
These pairs, predictably, are used for filtering the event. Each name-value pair
consists of the name of a property (astring variable) and its value (an any).

The filterable body is intended to be used for filterable properties which have been
defined within an application domain. In order to filter the event, a client constructs
filter constraints which are applied, using the Notification Service's filters, to the
properties contained in the structured event’s filterable body. (See Filtering on page
22.)

The remaining body (remainder of body) contains the actua event data, which
isan Any. As with the original Event Service, this part of the structured event can
contain any data that a user wants to send along with the event.

Event Type Repository

&4 PRISMTECH

The OMG specifies that the Event Type Repository is an optional feature of the
Notification Service; this feature is provided in the OpenFusion implementation of
the service.

The Event Type Repository is a facility for making it easier for clients to create
event filters by making information about the structure of events available to clients.

15
Notification Service

16

1.3 Conceptsand Architecture

The Event Type Repository stores information about the kinds of filterable data that
specified events can provide to consumers. The repository only contains
information about the properties contained in the filterable body of a structured
event (see Sructured Events on page 14).

The repository can be queried by event suppliers to discover the names and types of
the properties that an event of a certain type contains. The supplier can use this
information to send events which conform to that type.

The repository can also be used by event consumers in order to determine which
properties are expected by events of a certain type; the consumer must create the
expression to match the event they are interested in.

Importantly, the Event Type Repository has the ability to modify event types and the
relationship between event types at run time. This allows applications to evolve over
time. For example, an application can create a new event type, with additional
properties, that inherits from an existing event type. New applications can take
advantage of the additional information, while existing applications can process the
event according to the old set of properties.

Event Communication Models

The OpenFusion Notification Service uses the push communication model, whereby
suppliers actively send or push events to the event channel and consumers passively
receive them

Event Channe€l

The event channel (also referred to as the notification channel in the Notification
Service) is the component which provides the loosely-coupled communication
between client objects. It is the event channel which handles supplier registration
and the broadcasting of eventsto consumers.

The Notification Service allows any number of event channels to be active
concurrently.

Notification Service event channels, unlike those of the Event Service, possess
Quality of Service (Qo0S) properties and event filtering. QoS and filters set on a
channel affect all relevant events which pass through it. Further, QoS and filter
settings are inherited by any admin object created by the event channel.

Client objects can set various QoS and administrative properties on the event
channel when it is created. For example, some of the properties that can be set
include the maximum number of events the channel will buffer at atime, aswell as
the maximum number of consumers and suppliers that can connect to the channel.

Event channels are created by an event channel factory. The channels, in turn, create
admin objects, which in turn create proxies. This creation process forms a channel -
admin - proxy hierarchy.

& PRISMTECH

Notification Service

1.3 Conceptsand Architecture

Note that when a new channél is created, indeed when any object in the hierarchy is
created, it is given aunique numeric identifier. Thisidentifier enables objects within
the hierarchy to find (i.e. find a reference to) their ‘parent’ or ‘child’ objects. This
ability enables objects to administer other objects within their hierarchy. Clients are
therefore able to discover al objects that comprise the hierarchy, starting from any
object within the channel.

Admin Objects

Admin objects perform various administrative and management functions, such as
creating proxies and acting as a mechanism for separating proxies into controllable
groups

Admin objects are associated with either suppliers or consumers (supplier admin
objects or consumer admin objects).

Note that supplier admin objects create consumer proxies and vice versa
(remembering that suppliers connect to consumer proxies, consumers connect to
supplier proxies). The Notification Service's admin objects can create, in addition to
Notification Style proxies, Event Service style proxies.

Event channels may have multiple admin objects. This enables proxies to be
logically grouped and to optimise the handling of clients which have identical
requirements.

Admin objects manage or administer the proxies that they have created (as a group):

» QoS properties are assigned to an admin object’s proxies at the time the proxy is
created, although the QoS properties for these proxies can be changed for each
individual proxy as required

« an admin object’s filter properties (by assigning a filter object to it) affect all the
proxies connected to it, even though each proxy may have its own, additional
filter objects

Proxies

&4 PRISMTECH

Proxies connect supplier and consumer client objects to the event channel of the
Notification Service. Importantly, proxies represent or stand-in for a client. For
example, asupplier behaves asif it is connected to an actual consumer, however it is
actually connected to a proxy for the consumer, i.e. a consumer proxylz suppliers
connect to consumer proxies, consumers connect to supplier proxies.

Individual proxy types are specific to:
« thetype of event being transmitted

1. Also called proxy consumer: both forms are used in the OMG specification

17
Notification Service

18

Notification Service

1.3 Conceptsand Architecture

» whether the events are being sent singly or in batches when used with structured
events (referred to as sequenced structured events)

For example, a structured push supplier proxy connects a structured event consumer
to the event channel and uses the push model to receive events.

Each proxy hasits own QoS object plus zero or more filter objects: this enables QoS
properties and filter properties to be set at the individual proxy level. Note, however,
that the QoS and filter object settings for the proxy’s admin object also affect the
events that the proxy receives or transmits. For example, a proxy consumer
(connected to a suppler) may allow Event A to be sent, but its admin object may till
filter it out.

Suspension, Resumption and Disconnection

Push-model event suppliers can temporarily suspend event communication. The
event channel buffers the events while a consumer connection is suspended: these
events are transmitted when the client resumes its connection (subject to the QoS
discard policy when the maximum number of events per consumer QoS policy is
exceeded).

Figure 4 illustrates the four states a proxy can have during creation, suspension,
resumption and disconnection.

disconnect
destroyed

disce

connect gonnected

connected

connected .
disconnect

suspend

resume

Figure4 Proxy Sates

For proxy push suppliers, the suspended state indicates that the Notification Service
will suspend the pushing of events onto the consumer. While suspended, events will
be queued at the proxy for later delivery.

& PRISMTECH

1.3 Conceptsand Architecture

A proxy is a communication end point and disconnecting it implies that the proxy
object is destroyed. After being disconnected, the proxy can no longer be used to
send or receive events.

A push consumer can also disconnect a proxy by raising the Disconnected
exception in the push operation.

It isthe client’s responsibility to disconnect (and destroy) the proxy when the client
terminates since the service has no means of knowing that the client no longer
exists. Accordingly, the client should call its associated proxy’s disconnect method.
For example, if the client is a push supplier connected to a ProxyPushConsumer
(suppliers connect to consumer proxies, consumers connect to supplier proxies),
then the disconnect push consumer () method for itS ProxyPushConsumer
object should be called prior to termination.

Queues

&4 PRISMTECH

Queues are buffers for storing events until consumers are ready to receive the
events. Queues free suppliers from the need to wait for consumers to consume their
events before continuing.

Each event channel has a master event queue and each supplier proxy has a proxy
gueue, one proxy gqueue per consumer object (see Figure 5).

Incoming events enter the master event queue: if event reliability is set to persistent,
the event will be written to persistent storage before the event is sent on. The
behaviour of the master event queue is affected by the event channel’s order and
discard QoS policies. The queue’s maximum length is set by the MaxQueueLength
property.

Events are then dispatched into proxy queues. Each proxy queue has its own order
and discard policies for the proxy object it is connected to, i.e. each proxy queue
may have different policies than the others. The maximum queue size for a proxy
queueis limited by the MaxEvent sPerConsumer QOS property.

The proxy queues potentially contain very different sets of events, depending on
filtering, ordering, queue size and the “speed” of the consumer. When an event is
delivered, it is removed from the master queue.

The proxy queue keeps track of the events which have been delivered. If the
Notification Service fails for any reason (e.g. host crash, lost connection, etc.), then
the contents of the master queue will be recovered, provided that the events have
been set as persistent beforehand. Note that when recovery takes place only those
events which have not yet been delivered to a consumer will be allowed to re-enter
the proxy queue.

19
Notification Service

1.3 Conceptsand Architecture

Proxy
Consumer
Proxy
Consumer

Supplier
Admin
Object

Queue

Direction of Event Flow >

Figure5 Event Queues

1.3.4.7.1 OpenFusion Queue Extensions

The OpenFusion implementation of the Notification Service provides a number of
gueue management extensions in addition to the standard OMG interfaces. These
additional extensions can be used to access useful information or functionality that
is not provided otherwise.

1.3.4.8 Quality of Service

20

There is no direct communication between suppliers and consumers when using the
Notification Service (a decoupled communication model). Consequently, when an
event is sent from a supplier to a consumer, there are three points where the event is
(conceptually) transmitted:

1. whenthe event is delivered by the supplier to the event channel
2. when it isforwarded by the channel
3. when the event is delivered by the channel to the consumer

An application may wish to set QoS at each of these points. Accordingly, the
Notification Service enables each channel, connection and message (the
transmission points) to possess relevant, configurable QoS settings. These settings
cover the delivery guarantee, aging characteristics and prioritisation for the
transmitted events.

& PRISMTECH

Notification Service

1.3 Conceptsand Architecture

Standard OMG Properties

Quality of Service settings are defined as properties; each property has an
associated value. A particular property may have a range of values that indicate
different requirements or delivery characteristics to support a wide variety of
application needs: precise QoS requirements, at any particular level, can be
expressed as a set of properties.

Quality of Service properties cover three main areas:. reliability, queue management
and event management. Note that not all QoS properties can be applied at all levels
of the Notification Service.

Detailed descriptions of these properties are given under Supplemental |nformation,
Sandard OMG Properties. on page 67.

OpenFusion QoS Extensions

&4 PRISMTECH

The OpenFusion Notification Service supports the QoS properties described in the
OMG specification which are listed above. Further, the OpenFusion Notification
Service supports a comprehensive, extensible QoS framework that allows clients to
configure the run-time behaviour of event channels, admin and proxy objects: in
other words, their QoS properties can be set at run-time.

The OpenFusion Notification Service's QoS also:

« enforces portability, especially with regard to reliability
* supports ORB vendor features

* addresses the Event Service's deficiencies

« provides additional queuing policies

The extended OpenFusion Notification Service QoS properties are listed and
described under Supplemental Information, OpenFusion QoS Extensions on page
73.

The QoS framework supports logical grouping, whereby a channel treats its admin
objects as a group and an admin object treats its proxies as a group.

A group is a collection of objects that have been created by a particular factory, the
group object. For example, a channel, the group object (or group for short) groups
the admin objects it has created; an admin object is the group object for its proxies.

The value of a QoS property that has been applied to a group automatically becomes
the default value for all new objects created by that group. Note that existing
objects, those previously created by the group object, are not affected. Also note that
aclient may override existing QoS group properties for any object within the group.

21
Notification Service

22

1.3 Conceptsand Architecture

Filtering

Filtering allows the transmission of eventsto be selectively stopped or filtered out.
Filtering is performed using filter objects which are attached to admin and proxy
objects (see Figure 2, Main Components on page 13). A single filter object can be
added to more than one of these objects at atime: for example a single filter can be
used by several proxies, or by a proxy and an admin. However, this can lead to
unmanageabl e deployment situations (see warning note shown immediately below).

Filter objects should be destroyed when the objects that use them are destroyed,
otherwise they will become a source of |eakage. However, care must be taken when
destroying filter objects that are used by multiple objects in order to avoid
inadvertently destroying afilter which is still in use.

Filter objects use a constraint language to describe which events should be filtered,
i.e. they constrain which events are allowed and may be referred to as forward filters
since they forward filtered events. Also, all constraints added to afilter are assigned
aunique identifier which enables constraints to be modified or deleted at run-time.

Condraint Language

Any conformant implementation of the Notification Service specification must
support the Extended Trader Constraint Language (Extended TCL), an extension of
the constraint language used for the Trading Service.

The Extended TCL grammar fixes afew problems with the basic Trader Constraint
Language, while adding suitable constructs for filtering events.

This grammar is intuitive for programmers because it mimics how data structures
are normally accessed and is based on the Java style dot notation.

For example, asimple query string could be:
Stype name == ‘Alarm’ and S$Priority > 4
which forwards events of type a1arm which have a priority greater than four.

A description of the Extended TCL grammar and how to use filter constraints with
the Notification Service is given under Writing Constraint Expressions on page 53.

Sequencing

The Notification Service supports the transmission of sequences of Sructured
Events (event sequencing for short). Event sequencing is a process or technique
whereby one or more events are transmitted at a time as a single |1 OP package.
Event sequencing boosts the event transmission performance of the service: sending
an 11OP package with one event and sending an |10P package with 100 events takes
approximately the same amount of time.

There are separate sequence clients and proxies which are used for transmitting
sequences of Structured Events (see Figure 6).

& PRISMTECH

Notification Service

1.3 Conceptsand Architecture

Event sequencing uses the MaximumBatchSize and PacingInterval QO0S
properties. These properties can only be applied on the consumer side:

* MaximumBatchSize - The maximum number of events that a consumer wishes

to receive a atime. Consumers should always set this QoS since the default value
isone.

* PacingInterval - The maximum time the consumer is willing to wait for the
batch to fill. At the end of the pacing interface, the Notification Service will
deliver whatever eventsit has. The default value is zero (indefinite wait).

The Notification Service will wait at least until one event is available before
delivering any events to the consumer. If no events are available, the Notification
Service will therefore wait longer than the pacing interval.

{ab
Sequence
Push
Supplier
Sequence
Push
Supplier

Structured
Push
Consumer

Structured
Proxy Push
Supplier

Sequence
Proxy Push
Consumer

Consumer
Admin
Object

ad,eb,c,f

Sequence
Proxy Push
Supplier

d,b

Supplier
Admin
Object

Consumer
Admin
Object

Sequence
Proxy Push
Consumer

Sequence
Proxy Push
Supplier

{ade}
\ Direction of Event Flow > {bcf}

Figure6 Sequencing Architecture

All events delivered by all connected suppliers will be included in the event
sequences arriving on the consumer side.

Event sequencing does not influence the order of events transmitted through the
channel (notice the order of the events as received by the consumersin Figure 6).
However, ordering can be controlled by using QoS properties and filters.

1.3.4.10.1 Auto-sequencing

&4 PRISMTECH

Auto-sequencing provides a significant performance improvement for structured
proxies without changing how the proxies function externally. When
auto-sequencing is used, a proxy uses internal batching to send multiple structured
events in one CORBA call: this provides the performance increase usually

23
Notification Service

24

A

1.3 Conceptsand Architecture

associated with a sequence proxy. Externally, however, a structured proxy push
supplier still sends structured events individually to the consumer and a structured
proxy push consumer still receives structured events individually from the supplier.

Auto-sequence functionality is used exclusively by structured proxies, not by the
sequence proxies described in the previous section.

There are characteristics of auto-sequencing which make it unsuitable for some
situations:

» A failure of the service can result in a loss of a number of events up to the
maximum batch size.

* |f asupplier process terminates (by invoking System.exit () or returning from
itsmain () method, for example), events up to the maximum batch size may be
lost. To avoid this situation in a controlled shutdown, suppliers should call
disconnect () before the process ends. Thiswill cause any pending eventsto be
delivered to the channel.

» Exceptions cannot be sent back to a caller. For example, a structured proxy push
supplier will not be able to report to the event channel when it has failed to push
events onto a structured consumer.

Auto-sequencing should not be used if persistence or error detection are important
issues.

Two QoS properties, AutoSequenceBatchSize and AutoSequenceTimeout,
are used to control auto-sequence functionality.

By default, auto-sequence functionality is switched on in an OpenFusion
installation. If it is not required, it should be switched off using the appropriate QoS
settings (as described on page 75).

Persistence

The OpenFusion implementation of the Notification Service provides the ability to
make events and connections persistent.

The OpenFusion Framework and by association the OpenFusion Notification
Service, provides the facility to add components as plugin modules for supporting
different application requirements. The event persistence is enabled and managed
through:

* event database plugins which connect the service to a selected database, such as
Oracle and

« additional QoS properties which are provided in the Notification Service

& PRISMTECH

Notification Service

1.3 Conceptsand Architecture

Features

The persistence feature of the OpenFusion Notification Service provides improved
reliability by enabling the use of arecovery strategy

Requirements
There are a number of factorsto be aware of when using persistence:

« event reliability can only be set to persistent if the connection reliability is aso set
to persistent

the client must be a persistent CORBA object
* its proxy must only be connected once

the proxy is disconnected when the oBJECT NOT EXIST ORB system exception
isthrown

« the proxy must be suspended when the client object is passivated
* QoS properties must be set for:

- maximum queue size(s)

- reconnect interval

A persistent client is a persistent CORBA object. A persistent object can be
activated and passivated several times, but in terms of the ORB (and thus the
Notification Service) it is the same object.

When a server with persistent client objects is re-started (or the object is otherwise
activated), the client must not create a new proxy since it will continue to use the
proxy that was used prior to passivation.

The Notification Service will retry persistent clients until it encounters an
OBJECT NOT_ EXIST System exception. This exception is normally raised when the
object is de-registered from the BOA or POA.

Persistent clients should use a number of QoS properties to control resources. The
discard policy and maximum queue size should be used for consumers to limit the
number of events that are queued on their behalf.

The reconnect interval can be set to reduce the frequency at which the Natification
Service retries an unavailable object.

Push consumers can al so suspend these proxies prior to passivation in order to avoid
interaction while the object is unavailable.

Passvating Persstent Clients

Persistent clients are automatically re-connected when they re-register with the
ORB. A persistent client would normally save the proxy 1or when it connectsto the
Notification Service the first time.

25

& PRISMTECH Notification Service

26

1.3 Conceptsand Architecture

When a persistent client is passivated, the ORB will raise standard NO_IMPLEMENT
system exceptions when the Notification Service attempts to deliver or retrieve
events, or do event type callbacks.

Passivated

. ; H I i
» | = | s
i i persstent | : 11 [Persstent |
Vo i i H Proxy Vo i 1
- client] i 0 client 1
| i i |]

1 ' ! ' il :

__

i1 [Persstent
client

N

ORB rebind
Same

NO_ IMPLEM,

ORB >

Figure 7 Passivating Persistent Clients
When the persistent client is later activated, the ORB will rebind the connection
between the Notification Service and the client. This happens automatically and the
client should not connect to a new proxy.

The client normally loads the proxy 1or from file or, for example, the Naming
Service upon restart. The proxy is needed for later connection manipulation
(suspend, resume), filter administration and ultimately disconnecting.

If aclient de-registers from the ORB, the ORB will raise an OBJECT NOT EXIST
exception when the Notification Service tries to interact with the client. This will
disconnect the client.

Federation

Federation is a method of connecting separate Notification Service instances and
their event channels together (see Figure 8, Federation of Channels Architecture).

Federation effectively creates a composite system partitioned into any number of
subsystems. Partitioning an event system into multiple “event subsystems’ can have
anumber of advantages:

* Performance:
- enabling multiple hosts to be used for utilising increased CPU resources
- providing fan-out to consumers on the local machine

& PRISMTECH

Notification Service

&4 PRISMTECH

1.3 Conceptsand Architecture

Sending events to a channel that in turn forwards them to a number of
consumers can result in great performance improvements. As an example, if the
consumers are al on the same machine the events can be sent using one network
invocation and a series of local invocations.

Reliability:

- avoiding single points of failure
By having multiple event channelsit is possible to avoid single points of failure.

Although parts of the system may no longer receive events if an event channel
fails, this does not necessarily have to affect other consumers.

Flexibility:
- makes it easy to move event subsystems
- can use filtering to control fan-in and fan-out

Grouping suppliers and consumers into logical units can simplify system
configuration and improve flexibility. For instance, instead of changing all
consumers in a group to use a new channel, only the suppliers that provide
events to the group would need to be altered.

Referring to Figure 8, the fact that a consumer proxy is a supplier and a proxy
supplier is a consumer allows channels to be federated without using special clients
that forward events from one channel to another. The inheritance structure described
allows a proxy supplier to be connected directly to a proxy consumer.

Notification Service 1

Proxy
Consumer,
Proxy
Consumer,

Proxy
Supplier
Proxy
Supplier
Proxy
Supplier

Notification Service 2

Proxy
Supplier
Proxy
Supplier

Notification Service 3

Proxy
Consumer

Proxy
Supplier
Proxy
Supplier

Direction of event flow i

27
Notification Service

28

A

1.3 Conceptsand Architecture

Figure 8 Federation of Channels Architecture

Loca Channd

The local channel concept (Figure 9) provides failure support for dumb clients
which assume that the Notification Service is always available.

Local channel protection is only intended to recover from node failures and not
process failures.

Suppliers and consumers may always create a proxy, connect and just start sending
or receiving events: connection reliability would be set to best effort on the client
side of the channel.

The federation connections would be persistent to ensure they are re-established
after a node crash. It is possible to use a separate Notification Service as the
intermediator, or use direct connections.

Referring to Figure 9, if Host C becomes unavailable, the proxy supplier on Host A
(or Host B) will queue all incoming events until the receiving Notification Service
becomes available again.

In order to be certain that the consumer doesn’t lose events, it may be necessary to
make the consumer persistent. This would avoid a situation where the proxy
consumer starts receiving persistent events before the consumer has connected.

Host B

Notification Service

Host A /

Local Notification Service

Client|Process

Notification Service

Client|Process

Figure9 Local Host

& PRISMTECH

CHAPTER

Using the Service

I ntroduction

& PRISMTECH

The main tasks which are performed when using the Notification Service include:
« initialising the ORB and the Notification Service
* creating event suppliers, which requires
- connecting to the Notification Service event channel
- creating events
- sending events
* creating event consumers, which requires
- connecting to the Natification Service event channel
- receiving events
setting QoS properties
« creating and applying event filters
This section describes how the specific features of the Notification Service can be
used to achieve the tasks listed above. The section is organised into a sequence of
topicswhich
« give genera instructions for compiling and running Notification Service clients
« describe basic aspects of creating Notification Service clients

« describe advanced features of Notification Service clients such as QoS and event
filtering

Each topic uses examples to illustrate how the tasks can be accomplished.

Additional examples, complete with source code and descriptions of how to compile

and run them, are supplied separately as part of the OpenFusion product

distribution.

Note

« All of the example code used in this section requires that the OpenFusion
Notification Service isinstalled and running.

29
Notification Service

30

2.2 Compilingand Running Clients

» Thereislittle or no error-checking in the examples shown here. Code to deal with
exceptions has generally been omitted for the sake of clarity and brevity. These
exceptions must of course be properly caught and handled in a working system.

Import Satements

The following packages are required to be imported into classes which are
Notification Service clients. Thislist is not exhaustive: additional packages may be
required depending on the specific features of the client.

Standard Notification Service Features
The following packages support OMG standard Notification Service features

org.omg.CosNotification. *
org.omg.CosNotifyComm. *
org.omg.CosNotifyFilter. *
org.omg.CosNotifyChannelAdmin. *
org.omg.CosTypedNotifyComm. *
org.omg.CosTypedNotifyChannelAdmin. *

OpenFusion Extensions

The following package is needed when using the OpenFusion Notification Service
extensions:

com.prismt.cos.CosNotification.NotificationExtensions.*

Compiling and Running Clients

This section describes the general principles to follow when compiling and running
Notification Service clients.

Compiling Client Applications

Clients written for the OpenFusion Notification Service must be compiled with a
supported Java compiler. See the OpenFusion release notes for supported Java
versions.

For further instructions, consult the documentation supplied with your Java
compiler. The are no specific compiler options needed in order to compile
Notification Service clients.

Running Client Applications

Before running any Notification Service client applications, the Notification Service
must be running on one of the supported ORBs.

& PRISMTECH

Notification Service

2.2 Compilingand Running Clients

Initialising the ORB

The appropriate ORB daemon should be running before the Notification Serviceis
started. Full instructions for how to run your ORB will be given in your ORB
documentation. For example, when running JacORB use the following command:

$ imr

The OpenFusion Product Guide lists supported ORBs and their start-up/run
commands.

Sarting the Notification Service

Step 1. Ensure your PATH contains the bin directory of the JDK and the bin directory of
the OpenFusion distribution. The UNIX scripts (or Windows . bat files) that start
the Notification Service are located in the bin directory.

Step 2: Ensure the appropriate ORB daemon is running (see above).

Sep 3: Start the Notification Service from a command prompt using the following
command:

)

% server -start NotificationService

The same command can be used at either a UNIX or Windows command prompt.

Alternatively, start the OpenFusion Administration Manager and use the GUI tools
to start and configure the Notification Service. The System Guide gives details of
using the Administration Manager and other options for running OpenFusion
services.

Configuring the Notification Service

The OpenFusion Natification Service can be installed and run “out of the box” with
no additional configuration. It is strongly recommended, however, that you
configure the service to optimise performance and reliability for your specific
environment. Section 13, Notification Service Configuration, on page 169 describes
every configurable service property. All properties can be set programatically, or see
the System Guide for details of how to set properties through the GUI
Administration Manager.

All of the example code given in this section can be run using the default (out of the
box) Natification Service configuration.

Sarting Clients

Once the Notification service is running and suitably configured, client applications
can be started.

31

& PRISMTECH Notification Service

32

2.3 CreatingClients

The Notification Service must be running before any clients are started, otherwise
clients will be unable to create or resolve event channels and thus unable to
function.

Also note that in most cases consumers should be started before suppliers are
started, otherwise events may be lost as suppliers begin pushing them onto the event
channel before there is a consumer available to receive them.

Creating Clients

Notification Service clients include both suppliers and consumers. This section
provides a simple example of each, showing how the key features that every client
must possess can be implemented. Advanced client features, such as filtering and
setting QoS, are covered in subsequent sections.

Creating a Supplier

The first task a Notification Service supplier must perform is to locate the
Notification Service server instance and connect to it. Connections are made to an
event channel, via proxy and admin objects.

Connecting to the Server
Step 1: Obtain an object reference to the event channel factory.

Event channels are created by the Notification Service’'s event channel factory.
Before an event channel can be created, an object reference to the factory must be
obtained. The ORB’S resolve initial references method is passed the
name NotificationService and thisis used to resolve initial references to
locate the object
org.omg.CORBA.Object object = null;
org.omg.CORBA.ORB orb = null;
try

object = orb.resolve initial references (“NotificationService”) ;

catch (org.omg.CORBA.ORBPackage.InvalidName ex)

System.err.println (“Failed to resolve Notification Service”) ;
System.exit (1) ;

At this point, the type of the object referenced by object is an undefined of type
org.omg.CORBA.Object. The narrow method of the
EventChannelFactoryHelper helper classis used to narrow the returned object
reference to a specific EventChannelFactory object.

EventChannelFactory factory = null;

factory = EventChannelFactoryHelper.narrow (object) ;

& PRISMTECH

Notification Service

2.3 CreatingClients

Sep 2: Create an event channel or obtain areference to an existing channel.

New event channels can be created once the reference to the factory has been
obtained (step 1). The example below uses the factory object’s
create channel method to create a new channel with default Quality of Service
settings.

Property[] gos new Property[0] ;

Property[] adm new Property[0] ;

org.omg.CORBA.IntHolder id = new org.omg.CORBA.IntHolder () ;
EventChannel channel = null;

try

{

channel = factory.create channel (gos, adm, id);

catch (UnsupportedQoS ex) {}
catch (UnsupportedAdmin ex) {}

Further details of setting QoS properties when the channel is created are given in
Creating an Event Channel with QoS on page 46.

Managing Event Channels

&4 PRISMTECH

Once the event channel has been created, the supplier may need to perform other
actions upon it. To this end, the following example shows how the supplier might
obtain areference to a specific event channel.

First,theget all channels operation returns a sequence of channel identifiers:
int ids[] = factory.get all channels () ;

Next, the get _event channel operation is used to obtain an EventChannel
object from an identifier:

Vector vector = new Vector () ;
for (int i = 0; i < ids.length; i++)
try
{ -
vector.addElement (factory.get event channel (ids[i]));
catch (ChannelNotFound ex) {} // ignore
EventChannel all[] = new EventChannel [vector.size ()];

for (int i = 0; i < all.length; i++)

all[i] = (EventChannel) vector.elementAt (i) ;

33
Notification Service

2.3 CreatingClients

The event channel objects are collected in a vector in order to account for the
situation when other interactions are happening with the event channel factory at the
same time. This strategy illustrates general practice when dealing with distributed
systems.

Destroying an Event Channel

The supplier might also be responsible for destroying the event channel onceitisno
longer needed.

Event channels are destroyed using the destroy operation:

channel .destroy () ;

All administration objects and all proxy objects created by the administration
objects are destroyed along with the channel. Also, all suppliers and consumers
connected to this channel are disconnected and any events which have yet to be
delivered are discarded. Note that the object reference to a channel is invalidated
when it is destroyed

Sep 3: Get the supplieradmin object reference.

Supplier administration objects in the Notification Service are created using the
new_ for suppliers operation. This operation takes a filter operator in
parameter and a unique identifier out parameter and returns a newly created
administration object:

InterFilterGroupOperator sop = InterFilterGroupOperator.AND OP;

org.omg.CORBA.IntHolder sid = new org.omg.CORBA.IntHolder () ;

SupplierAdmin sadm = channel.new for suppliers (sop, sid);

The InterFilterGroupOperator Object specifies how filters attached to an
administration object are combined with filters attached to the proxies created by the
administration object. The Notification Service supports the following settings for
the filter operator:

» AND: Both an administration filter and a proxy filter must pass an event in order
for the event to be forwarded.

» OR: The event is forwarded when either an administration filter or a proxy filter
passes an event.

Managing Administration Objects
Administration objects are managed via an array in a similar manner to the event
channels described in Step 2. The following code shows how to create alist of all
SupplierAdmin objectsin an event channel:

int ids[] = channel.get all supplieradmins () ;
Vector vector = new Vector () ;

34

Notification Service & PRISMTECH

2.3 CreatingClients

for (int i = 0; i < ids.length; i++)
try
{

vector.addElement (channel.get supplieradmin (ids[i]));

catch (AdminNotFound ex) {} // ignore

SupplierAdmin all[] = new SupplierAdmin [vector.size ()];
for (int i = 0; i < all.length; i++)
all[i] = (SupplierAdmin) vector.elementAt (i) ;

Step 4: Obtain a structured push consumer proxy object.

&4 PRISMTECH

The supplier admin object supports operations for creating proxy consumers. In the
example code below, the SupplierAdmin object admin, obtained in Step 3, is used
to produce proxy consumers (in other words, proxies which represent consumers).
The example shows the creation of three types of consumer.

First, create holders which will hold the IDs of the proxies for each of the three
types:

org.omg.CORBA.IntHolder anyID
org.omg.CORBA.IntHolder strID
org.omg.CORBA.IntHolder seqgID

new org.omg.CORBA.IntHolder () ;
new org.omg.CORBA.IntHolder () ;
new org.omg.CORBA.IntHolder () ;

The client types which will be used are then specified and saved to clientType
variables:

ClientType.ANY EVENT;
ClientType.STRUCTURED_EVENT;
ClientType.SEQUENCE EVENT;

ClientType anyType
ClientType strType
ClientType seqType

The proxyPushConsumer variables for each of the three types are declared. This
is followed by the declaration of three ProxyConsumer variables:

ProxyPushConsumer anyProxy;
StructuredProxyPushConsumer strProxy;
SequenceProxyPushConsumer seqgProxy;

ProxyConsumer pcl = null;
ProxyConsumer pc2 = null;
ProxyConsumer pc3 = null;

The supplier admin object’'sobtain notification push consumer methodis
called to obtain a reference to the correct proxy object. For each proxy, the identity
and type parameters are passed. The return for this call is always a
ProxyConsumer

try

{

pcl = admin.obtain notification push consumer (anyType, anyID) ;

35
Notification Service

2.3 CreatingClients

pc2
pc3

admin.obtain notification push consumer (strType, strID);
admin.obtain notification push consumer (seqType, seqID) ;

catch (AdminLimitExceeded ex)

System.err.println (“Admin limit exceeded!”) ;
System.exit (1) ;

The final stage uses helper classes to cast the objects into their correctly typed

proxies:

anyProxy = ProxyPushConsumerHelper.narrow (pcl) ;

strProxy = StructuredProxyPushConsumerHelper.narrow (pc2) ;

segProxy = SequenceProxyPushConsumerHelper.narrow (pc3) ;
Managing Proxies

The administration interfaces support a number of operations for managing the
created proxies. The following code:

1. Obtainsthe unique identifier, the channel and the filter operation
2. Liststhetotal number of proxies

3. Examines whether or not the proxy with identifier 42 exists for a
SupplierAdmin object caled admin

int id = admin.MyID () ;

EventChannel ec = admin.MyChannel () ;

InterFilterGroupOperator op = admin.MyOperator () ;

int [] pushProxies = admin.push consumers () ;

int total = pushProxies.length;

System.out.println (“Total proxies: “ + total);

try

{

ProxyConsumer proxy = admin.get proxy consumer (42);
System.out.println (“Proxy with id 42 exists!”);

catch (ProxyNotFound ex)

System.out.println (“Proxy with id 42 doesn’t exist!”);

Sep 5: Connect to the proxy.
To connect to aproxy usethe connect structured push supplier method.

In the following code, strProxy is the reference to the structured push consumer
proxy obtained in step 4. The connect structured push supplier methodis
used to connect a structured push supplier object to it.

try

strProxy.connect structured push supplier

36

Notification Service & PRISMTECH

(
StructuredPushSupplierHelper.narrow
(ObjectAdapter.getObject (this))
) 5

2.3 CreatingClients

catch (org.omg.CosEventChannelAdmin.AlreadyConnected ex)

System.err.println (“Already connected!”) ;
// Handle exception
return;

Step 6: Disconnect from the proxy.

To disconnect the supplier from the proxy consumer, use the
disconnect structured push consumer method:

strProxy.disconnect structured push consumer () ;

The proxy object isinvalidated and cannot be used when it has been disconnected.

Further options for proxy management can be found in Removing Inactive Proxies
on page 44.

Creating Events
Structured events consist of header and body components. The header consists of
properties added to the event as an array. The body consists of datain the form of a
CORBA any. These components are created using the methods illustrated in the
following example:

StructuredEvent event = new StructuredEvent () ;

&4 PRISMTECH

Property gos[] = new Property [2];

gos [0] = new Property () ;

gos [0] .name = Priority.value;

gos [0] .value = orb.create any () ;

gos [0] .value.insert short ((short) 4);
gos[1] = new Property () ;

gos [1] .name = Timeout.value;

gos[1] .value = orb.create any () ;

gos [1] .value.insert ulonglong ((long) 4*10*1000*1000) ;
Property filterable[] = new Property [2];
filterable[0] = new Property ();
filterable[0] .name = “packets”;

filterable[0] .value = orb.create_any () ;
filterable[0] .value.insert long (2000) ;
filterable[1l] = new Property ();
filterable[1l] .name = “username”;

filterable([1l] .value = orb.create_any () ;
filterable[1l] .value.insert string (“client 1”);

EventType type = new EventType (“Telecom”, “Info”);
FixedEventHeader fixed = new FixedEventHeader (type, “event”);

org.omg.CORBA.Any data = orb.create any ();

// 4 seconds

37
Notification Service

38

2.3 CreatingClients

data.insert long (42);
event .header = new EventHeader (fixed, qos) ;

event.filterable data = filterable;
event .remainder of body = data;

This example creates a structured event with the following components:

- QOS settings priority (short) and timeout (unsigned long) in the variable
header

- filterable properties packets (long) and username (String) in the filterable
body

- domain name Telecom (string)
- type name Info (string)
- some data (long)

Sending Events

Step 1.

Sep 2:

Sep 3:

Sep 4:

Sep 5:

Sep 6:

Events in the Notification Service are transmitted by client objects implementing
one of the following Supplier interfaces:

* PushSupplier
* StructuredPushSupplier
* SequencePushSupplier

A supplier can begin sending events as soon as it has obtained a proxy of the
corresponding type and has connected to it. The event supplier typically obtains its
events from some external source or produces events when some external event has
occurred. See Creating Events on page 37 for an example of how to create a
structured event.

A typical event supplier must perform each of the steps listed below.

Resolve an event channel factory. Codefor thisis given in Connecting to the Server,
step 1 on page 32.

Obtain areference to an event channel. Code for this is given in Connecting to the
Server, step 2 on page 33.

Obtain a reference to a supplier admin abject. Code for thisis given in Connecting
to the Server, step 3 on page 34.

Obtain areference to a proxy consumer object. Code for thisis given in Connecting
to the Server, step 4 on page 35.

Connect to the proxy consumer. Code for this operation is given in Connecting to
the Server, step 5 on page 36.

After the supplier has established a connection to the proxy consumer, it can begin
pushing events onto the event channel.

& PRISMTECH

Notification Service

2.3 CreatingClients

The following code uses an infinite loop to send a continuous stream of simple
events. (Thisis suitable for test purposes; in reality, events would normally be sent
when created by some triggering mechanism.)

while (true)

org.omg.CORBA.Any data = orb.create any ();
obtain data (data); // obtain data from external source

StructuredEvent event = new StructuredEvent () ;

EventType etype = new EventType (“example”, “test”);
FixedEventHeader fixed = new FixedEventHeader (etype, “event”) ;
Property variable[] = new Property[0];

event .header = new EventHeader (fixed, wvariable) ;
event.filterable data = new Property[0];
event .remainder of body = data;

try
proxy.push structured event (event) ;

catch (org.omg.CosEventComm.Disconnected ex) {}

}

In this example, the data of the structured event is obtained by invoking the
obtain_ data method, which gets the data from an external source. The proxy’s
push_structured event method is used to push the event onto the event
channel.

Creating a Consumer

The first task a Notification Service consumer must perform is locate the
Notification Service and connect to it. Connections are made to an event channel,
via proxy and admin objects.

Connecting to the Server

Sep 1: Obtain an object reference to the event channel factory. The method is identical to
that used in suppliers, as described in Creating a Supplier on page 32:

org.omg.CORBA.Object object = null;
org.omg.CORBA.ORB orb = null;

try
object = orb.resolve initial references (“NotificationService”) ;
catch (org.omg.CORBA.ORBPackage.InvalidName ex)

System.err.println (“Failed to resolve Notification Service”) ;
System.exit (1) ;

39

& PRISMTECH Notification Service

2.3 CreatingClients

EventChannelFactory factory = null;

factory = EventChannelFactoryHelper.narrow (object) ;

Step 2: Create an event channel or obtain a reference to an existing channel. The method is
identical to that used in suppliers, as described in Creating a Supplier on page 32:

org.omg.CORBA.IntHolder cid = new org.omg.CORBA.IntHolder () ;
Property[] gos = new Property[0];

Property[] adm = new Property[0];

EventChannel channel = null;

try

{

channel = factory.create channel (gos, adm, cid);

catch (UnsupportedQoS ex) {}
catch (UnsupportedAdmin ex) {}

Sep 3: Get the ConsumeraAdmin object reference.

Consumer administration objects in the Notification Service are created using the
new_ for consumers operation. This operation takes a filter operator in
parameter and a unique identifier out3. .. == parameter and returns a newly
created administration object:

InterFilterGroupOperator cop = InterFilterGroupOperator.AND OP;
org.omg.CORBA.IntHolder cid = new org.omg.CORBA.IntHolder () ;

ConsumerAdmin cadm = channel.new_for_ consumers (cop, cid);

The InterFilterGroupOperator object specifies how filters attached to an
administration object are combined with filters attached to the proxies created by the
administration object. The Notification Service supports the following settings for
the filter operator:

» AND: Both an administration filter and a proxy filter must pass an event in order
for the event to be forwarded.

* Or: The event is forwarded when either an administration filter or a proxy filter
passes an event.

Managing Administration Objects
Administration objects are managed via an array in the same manner as suppliers
manage admin objects. The following code shows how to create a list of all
ConsumerAdmin Objectsin an event channel:
int ids[] = channel.get all consumeradmins () ;
Vector vector = new Vector ();

for (int i = 0; 1 < ids.length; i++)

try

{

40

Notification Service & PRISMTECH

2.3 CreatingClients

vector.addElement (channel.get consumeradmin (ids[i]));

catch (AdminNotFound ex) {} // ignore

ConsumerAdmin all[] = new ConsumerAdmin [vector.size ()];
for (int i = 0; 1 < all.length; i++)
all[i] = (ConsumerAdmin) vector.elementAt (i) ;

Sep 4: Obtain a structured push supplier proxy object.

The consumer admin object supports operations for creating proxy suppliers. In the
example code below, the ConsumerAdmin object admin, obtained in step 3, is used
to produce proxy suppliers (in other words, proxies which represent suppliers). The
example shows the creation of three types of supplier.

First, create holders which will hold the 1Ds of the proxies for each of the three
types:

org.omg.CORBA.IntHolder anyID

org.omg.CORBA.IntHolder strID
org.omg.CORBA.IntHolder seqID

new org.omg.CORBA.IntHolder () ;
new org.omg.CORBA.IntHolder () ;
new org.omg.CORBA.IntHolder () ;

The client types which will be used are then specified and saved to clientType
variables:

ClientType anyType
ClientType strType
ClientType seqType

ClientType.ANY EVENT;
ClientType.STRUCTURED EVENT;
ClientType.SEQUENCE EVENT;

The ProxyPushSupplier variables for each of the three types are declared. This
isfollowed by the declaration of three ProxySupplier variables:

ProxyPushSupplier anyProxy;
StructuredProxyPushSupplier strProxy;
SequenceProxyPushSupplier seqgProxy;

ProxySupplier psl = null;
ProxySupplier ps2 = null;
ProxySupplier ps3 = null;

To initially obtain a reference to the correct proxy object, the call
obtain notification push supplier iS made on the consumer admin
object. For each proxy, the parameters for identity and type are passed. The return
for thiscall isalways aProxySupplier:

try
psl = admin.obtain notification push supplier (anyType, anyID) ;
ps2 = admin.obtain notification push supplier (strType, strID);
ps3 = admin.obtain notification push supplier (seqType, seqlID) ;

catch (AdminLimitExceeded ex)

41

& PRISMTECH Notification Service

2.3 CreatingClients

System.err.println (“Admin limit exceeded!”) ;
System.exit (1) ;

The final stage uses helper classes to cast the objects into their correctly typed

proxies:

anyProxy = ProxyPushSupplierHelper.narrow (psl);

strProxy = StructuredProxyPushSupplierHelper.narrow (ps2);

segProxy = SequenceProxyPushSupplierHelper.narrow (ps3);
Managing Proxies

The administration interfaces support a number of operations for managing the
created proxies. The following code:

1. Obtainsthe unique identifier, the channel and the filter operation.
2. Liststhetotal number of proxies.

3. Examines whether or not the proxy with identifier 42 exists for a
ConsumerAdmin object called admin.

int id = admin.MyID () ;

EventChannel ec = admin.MyChannel () ;

InterFilterGroupOperator op = admin.MyOperator () ;

int [] pushProxies = admin.push suppliers () ;

int total = pushProxies.length;

System.out.println (“Total proxies: “ + total);

try

ProxySupplier proxy = admin.get proxy supplier (42);
System.out.println (“Proxy with id 42 exists!”);

catch (ProxyNotFound ex)

System.out.println (“Proxy with id 42 doesn’t exist!”);

Step 5: Connect to the proxy.
Usethe connect structured push consumer method to connect to a proxy.

In the following code, proxy is the reference to structured push consumer proxy
obtained in Step 4. The connect structured push consumer method is used
to connect a structured push consumer object toit.
try

strProxy.connect structured push consumer

(

StructuredPushConsumerHelper .narrow
(ObjectAdapter.getObject (this))
)i

42

Notification Service & PRISMTECH

2.3 CreatingClients

catch (org.omg.CosEventChannelAdmin.AlreadyConnected ex)

System.err.println (“Already connected!”) ;
// Handle exception
return;

catch (org.omg.CosEventChannelAdmin.TypeError ex)

System.err.println (“Type error!”);
// Handle exception
return;

}

Sep 6: Disconnect from the proxy.

To disconnect the consumer from the proxy supplier, use the
disconnect structured push supplier method, asfollows:

strProxy.disconnect structured push supplier () ;

The proxy object isinvalidated and cannot be used when it has been disconnected.

Further options for proxy management can be found in Removing Inactive Proxies
on page 44.

Receiving Events

&4 PRISMTECH

Events in the Notification Service can be received by client objects implementing
one of the following Consumer interfaces.

e PushConsumer
e StructuredPushConsumer

* SequencePushConsumer

Push consumers receive events by implementing a push operation that corresponds
to the consumer type. Note that responsive push consumers should return from the
push operation as quickly as possible. One way to achieve this would be to provide
event processing within a separate thread.

The following code shows a simple implementation of the push operation used by

structured push consumers:

public void push structured event (StructuredEvent event)
org.omg.CORBA.Any data = event.remainder of body;

int value = data.extract long () ;
System.out.println (“Received event: “ + value);

The extract long method extracts the data from the incoming event. In this

example, we assume that the datais an integer value. If the supplier had formed the

event in a different way, putting a string in the event body, for example, a different
extraction method would be required.

43

Notification Service

2.3 CreatingClients

Suspending and Resuming Connections

Event consumers of the push type can temporarily suspend event communication.
To prevent event loss when a consumer connection is suspended, the event channel
buffers the events sent by the supplier. When the connection is re-established, event
transmission to the consumer resumes with potentially no loss of events.

In practice, the event loss on reconnection is controlled by Quality of Service
properties. The MaxEventsPerConsumer QOS property determines how many
events will be held for a disconnected consumer. See Section 4.1, Quality of Service
Properties on page 67 for a description of the MaxEventsPerConsumer property.

To suspend a connection, the client should call the proxy’s suspend connection
operation as shown in the following example:
try
{
strProxy.suspend connection () ;
catch (ConnectionAlreadyInactive ex)

System.err.println (“Already suspended!”) ;
// handle exception

catch (NotConnected ex)

System.err.println (“Not connected!”) ;
// handle exception

To resume a suspended connection, the client should call the proxy’s
resume_connection method as shown in the following example:
try

strProxy.resume connection () ;
catch (ConnectionAlreadyActive ex)

System.err.println (“Already resumed!”) ;
// handle exception

catch (NotConnected ex)

System.err.println (“Not connected!”) ;
// handle exception

Removing I nactive Proxies

A common requirement in the Notification Service is to remove inactive supplier
and consumer proxies when they are no longer needed (because they are connected
to suppliers or consumers that no longer exist).

This section gives guidance on how thisis handled for different types of proxy.

44
Notification Service & PRISMTECH

2.3 CreatingClients

Proxy Push Consumers

When the proxy has been idle for a specified period of time, the proxy is
disconnected. The amount of idle time required before disconnection should be
specified with the MaxInactivityInterval Quality of Service property,
described on page 75.

Proxy Push Suppliers

The way that proxy push suppliers are handled depends on the setting of the
ConnectionReliability Quality of Service property.

With Connection Reliability Set to Best Effort

If the ConnectionReliability QOS on the proxy is set to BestEffort, the
Notification Service will always destroy a proxy push supplier when it fails to
deliver an event to its attached consumer.

With Connection Reliability Set to Persstent

If the ConnectionReliability QOSis setto Persistent, the Notification
Service will keep resending events until an OBJECT NOT EXIST System exception
is encountered. The conditions that raise this exception are ORB-specific. Most
ORBs raise the exception only when the object no longer exists; in this case, the
proxy can be safely removed. The following ORBS throw OBJECT NOT EXIST
correctly:

 VisiBroker 3.4
VisiBroker 5.0
OrbixWeb 3.2
Orbix 2000 v1.2
Orbix 2000 v2.0
JacORB 1.3

« JacORB 1.4

However, a number of ORBSs raise the exception if the object is merely inactive, in
which caseit is not always safe to remove the proxy. The following ORBs have this
behaviour:

* VisiBroker 4.1
* VisiBroker 4.5
e Orbacus 4.0
e Orbacus 4.1

45

& PRISMTECH Notification Service

2.4 Using Quality of ServiceProperties

When OBJECT NOT EXIST cannot be used reliably, the MaxReconnectAttempts
and ReconnectInterval QOS properties can be used. MaxReconnectAttempts
defines the maximum number of times the Notification Service will attempt to
reconnect to afailed push consumer. The Notification Service disconnects the client
(as though the disconnect operation had been invoked on the proxy) if the client is
still unavailable after the maximum number of attempts have been made.
ReconnectInterval determines the interval the Notification Service will wait
between reconnect attempts.

Alternative M ethod

To determine whether a given proxies (of any type) is inactive, the
ConnectedClient QOS property can be used. This property is set on all proxies
and givesthe object reference of the connected client. Useget gos () on the proxy
to obtain the property array and loop through the array to locate the
ConnectedClient property (see Accessing the QoS on page 48 for an example of
this). The value of the connectedClient property contains the object reference of
the client associated with that proxy. From this, it is possible to determine if the
client exists and whether the proxy can therefore be safely destroyed.

Using Quality of Service Properties

Quality of Service settings may be applied to event channels, admin objects and
proxy objects on either the supplier or the consumer side. The following example
demonstrates how to apply QoS to an event channel.

Creating an Event Channéel with QoS

Step 1:

QoS properties and administrative properties are applied to an event channel when it
is created by passing an array of properties as a parameter of the create channel
operation. The following example illustrates this. The example code given here can
be part of aeither a supplier or a consumer.

Create an array to hold the QoS properties. In this example, the array is sized to hold
two properties.

Property[] gosProp = new Property[2];

Sep 2:

gosProp [0] =

Add the QoS properties to the array. Each array element holds a property hame and
aproperty value. The following code adds the EventReliability property to the
array and setsits value to persistent.

new Property () ;

gosProp [0] .name = EventReliability.value;
gosProp [0] .value = orb.create any ();
gosProp [0] .value.insert short

(org.omg.CosNotification.Persistent.value) ;

46

& PRISMTECH

Notification Service

2.4 Using Quality of Service Properties

Similarly, the following code adds the connectionReliability property to the
array and setsits value to persistent.

gosProp[1l] = new Property () ;

gosProp[1] .name = ConnectionReliability.value;
gosProp [1] .value = orb.create any ();

gosProp [1] .value.insert short

(org.omg.CosNotification.Persistent.value) ;

Sep 3: Repeat the above steps to create an array of administrative properties. Although the
procedure is the same as for QoS properties, a separate array is required as the
create channel method takes two separate array parameters. The following code
creates an array of one element and populates it with the MaxQueueLength
property, setting the property’s value to 100.

Property[] admProp = new Property[1];
admProp [0] = new Property () ;
admProp [0] .name = MaxQueueLength.value;
admProp [0] .value = orb.create any ();
admProp [0] .value.insert long (100) ;

Step 4: Use the event channel factory’s create channel operation to create the channel,
passing the Qos and administrative property arrays as parameters, as illustrated by
the following code:

org.omg.CORBA.IntHolder id = new org.omg.CORBA.IntHolder () ;
EventChannel channel = null;

try

{

channel = factory.create channel (gosProp, admProp, id);

catch (UnsupportedQoS ex) {}
catch (UnsupportedAdmin ex) {}

The Notification Service throws exceptions with detailed information when the code
attempts to set illegal QoS or administrative properties.

Managing QoS
QoS and administrative properties do not have to be set when the event channel is
created. Properties can be altered programatically at any time and new properties
can be added to the channel.

Adding New QoSto a Channel

Adding a new QoS or administrative property to an existing channel requires the
channel’s set _gos oOr set _admin operations. These operations take an array of
properties as a parameter. The array of properties is constructed exactly asin
Creating an Event Channel with QoS on page 46.

47

& PRISMTECH Notification Service

2.4 Using Quality of ServiceProperties

Thefollowing codeillustrates how to use set _gos to add the MaximumBatchSize

QoS property:
Property newQoS[] = new Property[1];
newQoS[0] = new Property ();

newQoS [0] .name = MaximumBatchSize.value;
newQoS[0] .value = orb.create any ();
newQoS [0] .value.insert long (100) ;

try

{

channel.set_gos (newQoS) ;

catch (UnsupportedQoS ex) {}

The following code illustrates how to use set_admin to add the MaxQueueLength
administrative property:

Property newAdm[] = new Property[1];
newAdm[0] = new Property ();

newAdm[0] .name = MaxQueueLength.value;
newAdm[0] .value = orb.create any ();
newAdm[0] .value.insert long (10) ;

try
{

channel.set admin (newAdm) ;

catch (UnsupportedAdmin ex) {}

Accessing the QoS

The QoS and administrative settings for a channel can be accessed using the
channel’s get gos and get_admin operations. The following code illustrates a
way of simply listing the current value of each property:

channel.get _gos ();
channel.get _admin () ;

Property qosP[]
Property admP []

for (int i = 0; 1 < gosP.length; i++)
System.out.println (“Name : “ + gosP[i] .name) ;
System.out.println (“Value: “ + gosP[i] .value);

for (int i = 0; 1 < admP.length; i++)

System.out.println (“Name : “ + admP[i] .name) ;
System.out.println (“Value: “ + admP[i] .value) ;

Validating Event QoS

Supplier and consumer proxies provide an operation for validating the QoS setting
of an event. The operation isvalidate event gos and is defined in the
ProxyConsumer and ProxySupplier interfaces.

& PRISMTECH

Notification Service

2.5 UsingFilters

Itisgood practice for al suppliersthat use QoS settingsin the header of a structured
event to use this operation to validate the settings before sending an event.

Property[] gos = new Property([2];
NamedPropertyRangeSegHolder available;

gos [0] = new Property () ;

gos [0] .name = Priority.value;

gos[0] .value = orb.create_any () ;

gos [0] .value.insert short ((short) 4);

gos[1] = new Property ();

gos [1l] .name = Timeout.value;

gos[1] .value = orb.create any ();

gos [1] .value.insert ulonglong ((long) 4*10*1000*1000); // 4 seconds

available = new NamedPropertyRangeSeqgHolder () ;
try

proxy.validate event gos (gos, available) ;
catch (UnsupportedQoS ex)

System.err.println (“Unsupported QoS settings!”) ;
// Handle exception.

Using Filters

Filters can be attached to both admin objects and proxies on both the supplier and
the consumer side. Filters that are attached to admin objects apply to all the proxies
created by that admin object.

An object with attached filters will only forward an event when one or more of the
filters passes the event.

Filter Objects

&4 PRISMTECH

Filters are objects in their own right and must be treated as distinct from the admin
or proxy objectsthey are attached to. An individual filter object can be used by more
than one admin or proxy object.

There are two important points to keep in mind when managing filters:

* A filter exists independently of the proxiesthat is associated with: if an associated
proxy is destroyed or the proxy’s reference to the filter is removed, then the filter
will still exist. Accordingly, it is recommended that the filter’s reference is stored
so that it can still be referenced or destroyed after its associated proxies are
removed.

« A filter should be destroyed only after all proxies referencing the filter have
removed their references to it, otherwise the proxies may contain hanging
references (which may subsequently throw an exception).

49
Notification Service

2.5 UsingFilters

Take care to avoid leaving references to non-existent filters or creating orphaned
filter objects which have no references to them.

Creating a Filter Object

The recommended way to create afilter is by using the event channel’sfilter factory,
as this creates the filter in the same process as the admin and proxy objects which
will useit.

Sepl: Obtain a reference to a filter factory by invoking the channel’s
default filter factory Object, asin thefollowing code:
FilterFactory filterFactory = channel.default filter factory ();

Sep 2: Usethefactory’screate filter operation to create the filter object.

The create filter operation takes the name of the filter grammar as a
parameter. Currently, the only grammar supported by the Notification Service is
Extended TCL, so the string EXTENDED TCL must be passed to the
create filter operation. Thefollowing code illustrates this.

Filter filter = null;
String grammar = “EXTENDED TCL”;

try
filter = filterFactory.create filter (grammar) ;
catch (InvalidGrammar ex)

System.err.println (“Grammar “ + grammar + “ is invalid!”);
// Handle exception

Adding a Filter Object to an Admin Object

Use the admin object’s add_filter operation to add a filter to the object, as
follows:

int id = admin.add filter (filter);

Listing Filter Objects
The following example shows how to obtain alist of filters attached to an admin
object and then use that list to perform management operations on each item in the
list (in this case, to verify that the correct filter grammar is being used).

int[] all = admin.get all filters () ;
Vector vector = new Vector ();

for (int i = 0; 1 < all.length; i++)
try

Filter £ = admin.get filter (all[i]);
vector.addElement (f);

50

Notification Service & PRISMTECH

2.5 UsingFilters

catch (FilterNotFound ex) {}

for (int 1 = 0; i < vector.size(); i++)
Filter £ = (Filter) vector.elementAt (i) ;
if (! f.constraint grammar () .equals (“EXTENDED TCL”))

System.err.println (“Filter has unknown grammar!”) ;
// Handle exception

}

Removing Filter Objects

To remove asingle, specified filter from an admin object, use the following:
try

admin.remove filter (id);

catch (FilterNotFound ex) {} // somebody else removed it!

To remove all filters from an admin object, use the following:

admin.remove all filters ();

Note that neither of these operations destroys the filter object, they simply remove
references to the object.

Event Filters

The filter object itself will not carry out any filtering activities. To create a working
event filter, filter constraints must be added to the object. A filter can be composed
of one or more constraints.

OR semantics are applied between multiple constraints and between multiple filters.
If any one constraint in any filter matches the event, the proxy or administration
object will forward the event.

Either AND or OR semantics may be applied between administration object filters
and proxy object filters. For OR semantics, an event will be forwarded if it matches
either the administration object filters or the proxy object filters. For AND
semantics, both must match.

A constraint must be explicitly associated with one or more event types. A
constraint will only be evaluated if the event type matches one or more of the event
types associated with the constraint. To optimise performance, if no constraints
attached to a particular filter match an event’s event type the filter will not be
invoked at all.

51

& PRISMTECH Notification Service

2.5 UsingFilters

Certain constraints are only applicable to certain types of event. For example,
“aarm” eventsmay have“Origin” and “ Category” fieldsin the filterable body while
other event types may not. Constraints which filter on Origin and Category fields
will only be applicableto “alarm” events.

Constructing Constraints

The following example creates afilter constraint which will pass only events of type
Alarm from the Telecom domain which have a priority greater than 5.

Sep 1. Create an EventType array and add the type and domain which will be filtered:

EventType types[] = new EventTypel[l];
types[0] = new EventType (“Telecom”, “Alarm”) ;

The wildcard character, *, can be used in the domain or event type fields if the
constraint is to match all event types or domains, as shown in the following code:

EventType typesl[] = new EventTypel[l];
typesl [0] = new EventType (“*”, W“x7),

Sep 2: The expression which will filter on priority greater than 5 is a string written using
Extended TCL grammar:

String expr = “$Priority > 5”;

Extended TCL isdescribed in Extended TCL Grammar on page 54.

Sep 3. Create a ConstraintExp array to hold the filter constraints created in Steps 1 and
2

ConstraintExp exp[] = new ConstraintExp[1];
exp[0] = new ConstraintExp (types, expr);

Step 4: Use thefilter object’s add constraints operation to attach the constraint to the
filter. Each filter object can consist of multiple constraint expressions.
try
ConstraintInfo info[] = filter.add constraints (exp);

int id = info[0] .constraint_ id;
System.out.println (“Added constraint has id “ + id);

catch (InvalidConstraint ex)

System.err.print (“The constraint with the expression “);
System.err.print (ex.constr.constraint expr) ;
System.err.println (“ is invalid!”) ;

// Handle exception.

52

Notification Service & PRISMTECH

2.5 UsingFilters

Managing Constraints
Each constraint added to afilter is assigned a unique identifier (unique within the
scope of that filter object). This provides a means to access specific constraints at
run time, allowing them to be modified or deleted.

A filter'smodify constraints operation is used to both modify and delete
constraints. The following code demonstrates this. In the example, constraints with
identifiers 1, 2, 3, and 5 are deleted and the constraints with identifiers 4 and 6 are

modified.

int del 1ist[] = { 1, 2, 3, 5 };

EventType etypesl[] = new EventTypel[l];

ConstraintExp cexp[] = new ConstraintExp[2];
ConstraintInfo modify list[] = new ConstraintInfo([2];
etypesl[0] = new EventType (“Telecom”, “Powerfailure”) ;
cexp[0] = new ConstraintExp (etypesl, “$.voltage < 210”);
modify 1list[0] = new ConstraintInfo (cexp[0], 4);
EventType etypes2[] = new EventTypel[l];

etypes2[0] = new EventType (“Telecom”, “Alarm”);

cexp[l] = new ConstraintExp (etypes2, “$Priority == 3");
modify list[1l] = new ConstraintInfo (cexp[0], 6);

try

filter.modify constraints (del list, modify list);
catch (InvalidConstraint ex)

System.err.print (“The constraint with the expression “);
System.err.print (ex.constr.constraint expr) ;
System.err.println (“ is invalid!”);

// Handle exception.

catch (ConstraintNotFound ex)

System.err.println (“Constraint with id “ + ex.id + “ not found!”);
// Handle exception.

Themodify constraints operation can throw an InvalidConstraint
exception when one of the modified constraints contains invalid syntax. Also, the
ConstraintNotFound exception is thrown when any of the unique identifiers
specified in either of the input sequences cannot be found.

Filters also have aremove all constraints operation, which removes every
constraint added to the filter.

Writing Constraint Expressions
This section describes the syntax and conventions of Extended TCL grammar,
which is used for creating filtering constraint expressions.
The following points should be noted if filter performance is an issue:

53

& PRISMTECH Notification Service

54

2.5 UsingFilters

* Filtering simple datatypesis faster than filtering complex data types.

» The filter parser uses the Dynany interface to process complex data types: thisis
relatively slow and should be avoided if possible.

» More complex constraint expressions take longer to process.

Extended TCL Grammar

Extended TCL is based on Java-style ‘dot’ notation and syntax. A typical constraint
is constructed as follows:

$.header.fixed header.event type.type name == ’'Info’
& K eywords are case sensitive in TCL.

The elements used in this expression are individually explained in the following
sections.

Basic Elements

$ Token

The s token is used to denote the current event. For example, the expression
$domain_ name refersto the value of the current event’'sdomain_ name variable, as
in the following constraint expression:

omain name == elecom
d » 'Tel ’

The ¢ token may refer to either a variable of type any or a variable of type
StructuredEvent, depending on whether Event Service style or Notification
Service style event communication is used.

‘dot’ Operator
The dot operator is used to access an element within a structure. For example, the
expression event type.type name refersto the value of the type name
element within the event type structure. The expression
$.remainder of body refersto afield called remainder of body within the
current event.

A full example of aconstraint using this operator is:

$.header.fixed header.event type.type name == ’'Info’

Literds
Thefollowing literal expressions are allowed within a constraint.

* Integers: sequences of digits with optional leading + or -
$.header.variable header (Priority) ==

* Floats: sequences of digits with adecimal point and optional exponent notation
$.remainder of body == 10.5

& PRISMTECH

Notification Service

2.5 UsingFilters

» Qrings: strings of one or more characters enclosed by single quotation marks: -
. To include a single quotation mark in a string, prefix it with a backslash
character: \ . To include a backslash, use a double backslash: \\.

$.filterable data(username) == ’'joe’

Runtime Variables

Runtime variables are used as shorthand for common components within a
structured event. For example, the expression
$.header.fixed header.event type.type name Can be shortened to
stype_name. Note that there is no dot between the s and the variable namein a
shortened runtime variable expression.

Runtime variables can be used for any component in the fixed header, variable
header, or filterable body of an event. If the runtime variable cannot be found, the
expression which uses it defaultsto s . runtime. This alows generic filters, which
can be used for different types of event, to be written.

There is a specia runtime variable, scurtime, which refers to the current time. Its
typeisutcT from the TimeBase module.

Operators
Comparative Functions

The following comparative operations can be used:
== equality
= inequality
> greater than
>= greater than or equal
< less than
<= less than or equal
~ substring match
in element in sequence

&4 PRISMTECH

The result of applying a comparative function is aboolean value (true or false).

Example 1
$.Cost < 5
If the value of the Cost property islessthan 5, the expression evaluatesto true.

Example 2

‘UK’ in $.Country Name
55
Notification Service

2.5 UsingFilters

If the Country Name property, which consists of a sequence of strings,
includes the string “Uk”, then the expression evaluates to t rue.

Boolean Operators

TCL supports the standard boolean operators and, or, and not. Boolean
expressions evaluate to a weakly-typed 1ong. This allows complex expressions
which evaluate whether a number of boolean expressions are satisfied. For example:

Stype name == ‘COUNTRY’ and (
(‘France’ in $.Country Name)
(‘Germany’ in $.Country Name
(*Italy’ in $.Country Name)
()

(UK’ in $.Country Name) +
+

)+
+

‘Spain’ in $.Country Name)) > 2
Specia Operators
» The bracket operator, [1, is used when the component is an array. For example,

$ [3] refersto the fourth element in an event which contains an array.

* A member called length is available when the component is an array or
sequence. For example, theexpression $. length > 3 evaluatesto true for al
eventsthat are either arrays or sequences of length four or more.

» The parenthesis operator, (), is used to reference, by name, a particular value
within a component that is a list of namevalue pairs. For example,
$.header.variable header (Priority) == 3 evauatesto true if the
Priority QOSin the variable header of a structured event equals 3.

* The type id member which refers to the unscoped IDL type name. For
example, when a component is an IDL struct caled myEvent, the type id
field isMyEvent.

* The repos_id member which refers to the Repositoryld. For example, when a
component is an IDL struct caled MyEvent, the repos id field is
IDL:module/MyEvent:1.0.

» The default operator is used when a component is aunion, in order to examine
whether the union has an active default member or not. For example, the
expression default $ evaluates to true when the event is a union with an
active default member.

» The exists operator is used to determine whether afield exists within acomponent
or not. For example, exists $.packets evaluatesto true if the event has a
field called packets.

Mathematical Operators
TCL supports the following mathematical operators:
+ - * /

56

Notification Service & PRISMTECH

2.5 UsingFilters

Operator Precedence

TCL hasthe following operator precedence (highest to lowest):

() exist unary-minus
not

*/

+ - ~

in

== l= < <= > >=

and

or

Parentheses, (), can be used to over-ride operator precedence.

Constraint Examples

&4 PRISMTECH

The following examples show constraints that can be used to filter out events based
on the values of the event’s properties.

These examples assume that structured events of the type created in the examplein
Creating Events on page 37 are being sent.

In each case, the example will pass events for which the constraint expression
evaluatesto true.

« eventsthat have a priority equal to 3:
$.header.variable header (Priority) == 3

* eventsthat have a datavalue of 42:
$.remainder of body == 42

« events that have exactly three QoS settings:
$.header.variable header. length == 3

 events with datatype long:
$.remainder of body. type id == ’long’

 eventsthat time out in less than or equal to three seconds:

$.header.variable header (timeout) <=
Scurtime + (3*¥10%1000*1000)

 events which are in the Telecom domain and have the Info event type:

$.header.fixed header.event type.domain name == ’'Telecom’
and $.header.fixed header.event type.type name == ’'Info’

The expression can be simplified using runtime variables (page 55) to give:
Sdomain name == ’'Telecom’ and S$type name == ’'Info’

« al eventsthat do not belong to the Telecom domain:
not $domain name == ’‘Telecom’

57
Notification Service

2.6 Using Persistence

* events that have more than 200 packets or a username called joe:

$.filterable data(packets) > 200 or
$.filterable data(username) == ’'joe’

Using Persistence
The Notification Service supports persistent storage via JDBC access to arelational

database. Oracle, Sybase, Informix, and hsgldb are supported on both Unix and
Windows platforms. Microsoft SQL Server is supported on Windows.

For detailed information on how to configure persistent storage, see the OpenFusion
CORBA Services System Guide.

58

Notification Service & PRISMTECH

CHAPTER

A

API Definitions

This section describes selected interfaces and related aspects of the service: the
complete IDL API is provided elsewhere as part of the product distribution.

The OMG IDL for version 4 of the OpenFusion Notification Service is the samein
as in previous versions, however features which are not supported in version 4
throw aNO TIMPLEMENT System exception.

OMG Sandard API Definitions

& PRISMTECH

The cosNotification module contains common data types and interfaces used
throughout the Notification Service. The interfaces in this module are summarized
in Table 1.

Table 1 CosNoatification I nterfaces

Interface Purpose

AdminPropertiesAdmin |A baseinterface for the EventChannel interface
which supports operations for setting and getting
various administrative properties on an event
channel object.

QoSAdmin A base interface for the EventChannel interface,
both administration interfaces, and all of the
different proxy interfaces. It supports operations for
setting and getting various QoS properties on an
event channel and proxy objects. Thereisalso an
operation for negotiating the QoS supported by the
Notification Service.

The CosNot i fyComm module contains the client interfaces for the Notification
Service. These are the interfaces from which different types of suppliers and
consumers need to inherit in order to connect to and communicate with the
Notification Service. Note that clients that support interfaces from the
CosEventComm module can also be connected to the Notification Service. The
Noatification Service client interfaces are summarized in Table 2.

59
Notification Service

60

3.1 OMG Standard API Definitions

Table 2 CosNotifyComm I nterfaces

Interface Purpose
PushConsumer Aninterface for untyped push consumers. The
Notification Service version of thisinterface
supports the PushConsumer interface from the
Event Service aswell asthe NotifyPublish
interface.
PushSupplier An interface for untyped push suppliers. The

Notification Service version of thisinterface
supports the pushSupplier interface from the
Event Service aswell asthe NotifySubscribe
interface.

SequencePushConsumer

An interface for sequence style push consumers.

SequencePushSupplier

Aninterface for sequence style push suppliers. It
supports operations for receiving batches of
structured events.

StructuredPushConsumer

Aninterface for structured push consumers.

StructuredPushSupplier

Aninterface for structured push suppliers. It
supports an operation for receiving a structured
event.

The cosNotifyFilter module contains data types and interfaces used for
filtering. The Notification Service supports normal forward filters and so-called
mapping filters that can manipulate the priority or timeout values associated with
events. Thefilter interfaces are summarized in Table 3.

Table 3 CosNatifyFilter I nterfaces

Interface

Pur pose

Filter

Interface for afilter. The filter supports match
operationsfor the three different event typesaswell
as operations for managing filter constraints.

FilterAdmin

Interface for filter administrators. Thisis a base
interface for the administration interface and all the
proxy interfaces. It supports operations for the
management of filter objects.

FilterFactory

Interface for afilter factory. Thisinterface supports
operations for creating filter and mapping filter
objects.

Notification Service

& PRISMTECH

3.1 OMG Standard API Definitions

The cosNotifyChannelAdmin module contains the server interfaces for the
Notification Service. In particular, there are interfaces for the channel,
administration objects and proxy objects. Most of these interfaces extend the
corresponding interfaces from the CosEventChannelAdmin module in order to
make the Notification Service backwards compatible with the Event Service. The
interfaces in this module are summarized in Table 4.

Table 4 CosNotifyChannelAdmin I nterfaces

Interface

Purpose

ConsumerAdmin

An interface for consumer administration
objects. The Notification Service version of
thisinterface supports the ConsumeraAdmin
interface from the Event Service aswell as
the Qosadmin, NotifySubscribe and
FilterAdmin interfaces.

EventChannel

An interface for the event channel. The
Notification Service version of thisinterface
supports the EventChannel interface from
the Event Service as well asthe Qosadmin
and AdminPropertiesAdmin interfaces.

EventChannelFactory

An interface for the event channel factory.
The factory supports creation and collection
management of event channel objects.

ProxyConsumer

A common base interface for proxy
consumers. It extends the gosadmin and
FilterAdmin interfacesto ensure that all
proxy consumers support QoS and filter
management.

ProxyPushConsumer

An interface for untyped proxy push
consumers. The Notification Service version
of thisinterface is derived from the Event
Service ProxyPushConsumer and
ProxyConsumer interfaces.

ProxyPushSupplier

An interface for untyped proxy push
suppliers. The Notification Service version
of thisinterface is derived from the Event
Service proxyPushSupplier and
ProxySupplier interfaces.

&4 PRISMTECH

61
Notification Service

3.1 OMG Standard API Definitions

Table 4 CosNotifyChannel Admin I nterfaces (Continued)

I nterface

Purpose

ProxySupplier

A common base interface for proxy
suppliers. It extends the Qosadmin and
FilterAdmin interfacesto ensurethat al
proxy suppliers support QoS and filter
management.

SequenceProxyPushConsumer

An interface for sequence proxy push
consumers. It supports operations for
retrieving sequences of structured events.

SequenceProxyPushSupplier

An interface for sequence proxy push
suppliers.

StructuredProxyPushConsumer

An interface for structured proxy push
consumers. It supports an operation for
sending a structured event.

StructuredProxyPushSupplier

An interface for structured proxy push
suppliers.

SupplierAdmin

An interface for supplier administration
objects. The Notification Service version of
this interface supports the SupplierAdmin
interface from the Event Service aswell as
the gosadmin, NotifyPublish and
FilterAdmin interfaces.

Event Channel Factory Interface

The CosNotifyChannelAdmin: :EventChannelFactory provides
functionality for creating new event channels and for getting and listing channels
already created by means of the following operations:

* create channel - Creates a new event channel with default Quality of Service
and administrative settings. The new channel has a unique identifier.

* get _all channels - Returns an array of unique identifiers for al channels

created by the factory.

* get event channel - Obtainsan EventChannel object for agiven identifier.

62
Notification Service

& PRISMTECH

3.1 OMG Standard API Definitions

Event Channel Interface

&4 PRISMTECH

The CosNotifyChannelAdmin: : EventChannel interface extends the
corresponding interface from the Event Service as well as the QoSAdmin and
AdminPropertiesAdmin interfaces. In summary, the event channel provides the
following operations.

e default consumer admin - This operation returns the default consumer
administration object. This object has the unique identification number zero.

* default filter factory - Thisoperation returnsthe default filter factory.

* default supplier admin - This operation returns the default supplier
administration object. This object has the unique identification number zero.

* MyFactory - This operation returns the factory object that created this event
channel object.

* for consumers - Event Service style operation for obtaining a
ConsumerAdmin Object. This operation provides backward compatibility with
the Event Service and the administration object obtained with this operation does
not have a unique identifier.

* for suppliers - Event Service style operation for obtaining a
SupplierAdmin object. This operation provides backward compatibility with
the Event Service and the administration object obtained with this operation does
not have a unique identifier.

* new_for consumers - Preferred way to obtain a ConsumerAdmin object with a
unique identifier assigned to it.

* new _for suppliers - Preferred way to obtain a supplierAdmin object with a
unique identifier assigned to it.

* get consumeradmin - Obtains a ConsumerAdmin object for a given identifier.
Note that administration objects created with for consumers cannot be
retrieved with this operation.

* get_supplieradmin - ObtainsaSupplierAdmin object for agiven identifier.
Note that administration objects created with for suppliers cannot be
retrieved with this operation.

* get_all consumeradmins - Returns a list of unique identifiers for all
ConsumerAdmin objects created by this event channel, i.e. by using the
new for consumers operation.

* get all supplieradmins - Returns a list of unique identifiers for all
SupplierAdmin oObjects created by this event channel, i.e. by using the
new for suppliers operation.

* destroy - Destroys an event channel.

63
Notification Service

64

3.1 OMG Standard API Definitions

* set_gos - Modifiesthe quality of service settings of an event channel.
* get_gos - Returnsthe quality of service settings of an event channel.
* set_admin - Modifies the administrative settings of an event channel.
* get_admin - Returns the administrative settings of an event channel.

The first six of these operations are not described further in this guide as they are
either smple get operations or else part of the Event Service.

Administration Interfaces

The administration objects, CosNot ifyChannelAdmin: : ConsumerAdmin and
CosNotifyChannelAdmin: : SupplierAdmin, are used by both event suppliers
and event consumers and serve two distinct purposes.

1. Creating and managing the various proxy objects.

2. Grouping proxies. Both QoS settings and filters set on an administration object
are shared by all proxies created by that administration object.

The consumerAdmin interface supports additional mapping filter objects that can
be used by a client to supersede the priority and timeout QoS settings that an event
supplier has defined. Thisis a useful feature since consumers may have a different
view of the relative importance of an event’s timeout value from that of the supplier.

The most important functionality of administration objectsisto create proxies. Both
of the administration interfaces support equivalent operations for creating proxies.

The consumerAdmin interface operations are listed below. Note that the
SupplierAdmin interface operations are the same, except that consumer proxies
are created instead of supplier proxies:

* obtain push supplier - Event Service style operation for creating a push
proxy. Proxies created with this operation are not assigned a unique identifier.

* obtain notification push supplier - Preferred way to create a push
proxy. This operation can create Any type, structured type or sequence type
proxies, all of which are assighed a unigque identifier.

Filter Interfaces

Filters are objects which can be attached to administration objects and proxy
objects. The preferred way to create afilter is by using the filter factory because
filters created in this manner are then in the same process as the administration and
proxy objects using them. Filter interfaces are defined in the
CosNotifyFilter::Filter.

The operations for defining filters are located in the Filteradmin interface. These
operations are summarised below:

& PRISMTECH

Notification Service

3.1 OMG Standard API Definitions

* add filter - Attaches afilter to an administration or proxy object. This newly
added filter enters the list of filters which are evaluated when the object decides
whether or not to forward an event.

* remove filter - Removes a filter, with a given identifier, from an
administration or proxy object.

* get filter - Obtainsafilter object for agiven identifier.

* get_all filters- Returnsalist of the uniqueidentifiersfor al filters attached
to this administration or proxy object.

* remove _all filters: Removes al filters attached to this administration or
proxy object.

65

& PRISMTECH Notification Service

3.1 OMG Standard API Definitions

66

Notification Service & PRISMTECH

CHAPTER

4.1 Quality of Service Properties
The standard OMG, OpenFusion extended QoS properties, and Administrative

Properties are described in detail below.

4.1.1 Sandard OMG Properties.

Table 5 lists each of the standard OMG QoS properties, including their associated
data types or possible values The four right-hand columns indicate the level (of the
channel hierarchy) to which the QoS property may be applied. For example, the
EventReliability Q0S may be applied only at the event channel level or to

& PRISMTECH

(structured) events, but not to admin or proxy objects.
Table 5 Sandard Quality of Service Properties

4 Supplemental |nformation

Property

Channel

Admin

Proxy | Event

ConnectionReliability
(BestEffort/Persistent)

X

X

X

DiscardPolicy; (Any, FIFO,
Priority, Deadline, LIFO)

EventReliability
(BestEffort/Persistent)

MaxEventsPerConsumer- (long)

MaximumBatchSize® (long)

OrderPolicy (Any, FIFO,
Priority, Deadline)

PacingIntervalZ (TimeT)

Priority (short)

StartTime (UtcT)

StartTimeSupported (boolean)

StopTime (UtcT)

StopTimeSupported (boolean)

Timeout (TimeT)

67
Notification Service

68

4.1 Quality of ServiceProperties

1 This QoS property has no meaning when set per supplier admin or per proxy consumer.
At the proxy level, this property only applies to sequence style proxies.

Detailed descriptions of these properties are given below.

EventReliability

TheEventReliability QoS property controlswhether events are delivered using
a persistent or a best effort strategy. Setting this property to persistent means
that the channel will store events persistently and events are guaranteed to be
delivered even when the Notification Service or any of its clients crashes. The
default value isBestEf fort, which means that the Notification Service may lose
events during a crash. However, persistent events will be re-delivered to their proxy
gueues after the crash (proxy queues ignore events that have already been delivered
to the connected consumer).

The persistence of eventsis managed by the event database plugin. The Naotification
Service supports different plugin modules to support different application
requirements. Please consult the System Guide for details on configuring the
persistent plugin.

ConnectionReliability

The ConnectionReliability QOS property controls whether connections are
handled using a persistent or a best effort strategy.

Note that setting event reliability to persistent and connection reliability to best
effort is a combination that has no meaning and is not supported. The default value
isBestEffort, which means that connections will be lost when the Notification
Service failsto deliver or receive events from aclient.

All clients should also be implemented as persistent objects when the
ConnectionReliability QOS property isto be set to Persistent. Thereason
for thisisthat client objects need to assume the same identity when recovered after a
crash. Thisisthe only way that the Notification Service can logically reconnect to
the client. The Notification Service will never be able to reconnect to a transient
client object.

The Notification Service will keep retrying persistent client objects until an
OBJECT NOT EXIST system exception is encountered. This exception is raised by
an object activator when the client object no longer exists. The
MaxReconnectAttempts QOS property, described later, may be used to limit the
durability of persistent clients.

& PRISMTECH

Notification Service

&4 PRISMTECH

4.1 Quality of ServiceProperties

Priority

The priority QOS property definesthe relative priority of an event: the higher the
number, the higher the priority. It is normally set in the variable header of a
structured event. The priority may also be set on a per-channel, per-admin or
per-proxy basis. Applying the priority to an event channel object means that all
events that pass through the channel will receive that priority unless another valueis
set in the variable header. The default priority of an event is zero. The event
priority QoS applies only when the 0rderPolicy and DiscardPolicy QO0S
properties have avalue of PriorityOrder.

StartTime

The startTime QOS property can only be set in the header of a structured event. It
defines the point in time after which the Notification Service is alowed to deliver
the event. The start time is an absolute value, where the units are 100 nanoseconds
since base time. Base time is defined as 00:00:00 local time, October 15, 1582.

Proxy objects may be configured to ignore event start times by setting the
StartTimeSupport QOS property to FALSE.

StopTime

The stopTime QOS property can only be set in the header of a structured event. It
defines the absolute timeout of an event. The Notification Service deletes this event
from al queues when timeout occurs. An event that expires from a proxy queueis
treated as though it had never been received by the Notification Service. The unit is
100 nanoseconds since base time, where base timeis defined as 00:00:00 local time,
October 15, 1582.

The event stop time QoS is always applicable. It may be further used when the
OrderPolicy and DiscardPolicy QOS properties have a value of
DeadlineOrder.

The timeout may also be set on a per-channel, per-admin or per-proxy basis.
Applying the timeout to an event channel object means that all events that pass
through the channel will receive the said timeout value unless avalue is set in the
variable header.

StartTimeSupported

The startTimeSupported QOS property controls whether or not event headers
with a start time setting will be processed. The default value for the
StartTimeSupported QOSis TRUE. This QoS can be applied at different levels,
€.g. one proxy object may have start time values supported whereas another proxy
has the start times disabled. It is possible to use the startTimeSupported QOS to
alow certain privileged consumers to receive events immediately.

69
Notification Service

70

4.1 Quality of ServiceProperties

StopTimeSupported

The stopTimeSupported QOS property controls whether or not event headers
with a stop time setting will be processed. The default value for the
StopTimeSupported QOS is TRUE. This QoS applies to both events with a
StopTimeSupported QoS value and events with a Timeout QoS value. It is
possible to use the stopTimeSupported QOS to allow certain consumers to
receive al events, e.g. for data collection purposes.

Timeout

The Timeout QOS property defines a relative timeout for an event. It is normally
set in the variable header of a structured event. The Notification Service deletesthis
event from all queues when this timeout occurs. A consumer views an expired event
in the same way as it does an event that was never delivered to the Notification
Service.

The unit for the Timeout QO0S is 100 nanoseconds and the default value is zero,
which means that no timeout is applied. A value in the range of 1-9999 is not
supported, i.e. the smallest value for the event timeout is one millisecond. The
lowest value is used when both the Timeout and the stopTime QoS are defined
for an event.

The event timeout QoS is always applicable. It can be used further when the
OrderPolicy and DiscardPolicy QOS properties have a value of
DeadlineOrder.

The timeout may also be set on a per-channel, per-admin or per-proxy basis.
Applying the timeout to an event channel object means that all events that pass
through the channel will receive the said timeout value unless avalue is set in the
variable header.

MaxEventsPerConsumer

The MaxEventsPerConsumer QOS property defines the maximum number of
events that a proxy will gueue on behalf of the connected consumer. This setting can
be used to prevent a single consumer from exhausting the master queue. The default
gueue size for MaxEventsPerConsumer iSunlimited (itsproperty valueis set to
Zero).

The MaxEventsPerConsumer QOS property applies to the proxy queues. QoS
properties may be fine grained or coarse grained so each proxy queue may have
different maximum queue length, or all proxies that are created by one consumer
administration object may have the same maximum queue lengths.

& PRISMTECH

Notification Service

&4 PRISMTECH

4.1 Quality of ServiceProperties

The MaxEventsPerConsumer QOS property is typically used when the incoming
event rate exceeds the capabilities of the Notification Service for extended periods
of time. It is also used when the proxy queue represents periodic updates that will be
available in the shape of a new event at alater time. Limiting the queue size also
reduces the resources required by the Notification Service.

OrderPolicy

The orderPolicy QOS property defines the order in which events are delivered.
The default value is Priorityorder, which means that events are delivered
according to their priority. The Notification Service appliesarFifoorder policy for
delivering events with the same priority. The other settings for this QoS are
DeadlineOrder and AnyOrder. The DeadlineOrder policy means that events
with the shortest timeout value will be delivered first.

OrderPolicy has no meaning when applied to supplier admins or proxy
consumers. Attempting to set this QoS on a supplier admin or proxy consumer will
have no effect (but will produce awarning in the service log).

MaximumBatchSize

The MaximumBatchSize QOS property controls the maximum number of events a
sequenced event consumer will receive for each event delivery. The default valueis
one, i.e. a sequence type consumer will receive one event at atime. A sequence
consumer would normally always increase this value since having a batch size of
one defeats the performance advantage of using sequencing.

Pacinginterval

The pacingInterval QOS property defines the maximum time a sequence type
client will wait between subsequent event deliveries. A value set to zero means that
the consumer is willing to wait until such time as MaximumBatchSize events are
available. The unit for this QoS is 100 nanoseconds and the default value is zero. A
value in the range 1-9999 is not supported, i.e. the smallest value for the pacing
interval is one millisecond. Note that the consumer will always wait until at |east
one event is available.

DiscardPolicy

TheDbpiscardpPolicy QoS property defines the order in which events are discarded
from event queues. The following values determine the order that events are
discarded.

e AnyOrder - any event may be discarded when the queue becomes full.
e FifoOrder - thefirst event received will be the first discarded.

71
Notification Service

72

4.1 Quality of ServiceProperties

* priorityOrder - events will be discarded in priority order such that the lower
priority events will be discarded before the higher priority events. The order in
which events of the same priority are discarded is determined by the
PriorityDiscardPolicy Setting.

* DeadlineOrder - events will be discarded in the order of the shortest expiry
deadline will be discarded first.

The default value for biscardpPolicy iSAnyOrder.

The discard policy is not used by the master queue when the RejectNewEvents
administrative property is set to TRUE.

Events are discarded from the master queue when the value of the
MaxQueueLength administrative property is reached. An event that is discarded
from the master queue will never reach any consumer and appears to the consumer
as though the event was never delivered to the event channel.

Events are discarded from proxy queues once the value of the
MaxEventsPerConsumer QOS is reached. The other settings for this QoS are
PriorityOrder, DeadlineOrder, FifoOrder, and LifoOrder.

Events spend relatively little time in the event channel before being delivered to the
proxy suppliers due to the Notification Service's architecture. In order It is better to
use MaxEventsPerConsumers On the proxy suppliers rather than
MaxQueueLength on the event channel in order to effectively apply a discard
order.

In general, it is not common for sufficient events to accumulate in the channel to
reach MaxQueueLength, but setting MaxQueueLength is still useful (when used
in conjunction with MaxEventsPerConsumers) to impose an overall limit on the
number of events within the service.

The Notification Serviceis able to optimise queues when they:
* use the same order and discard policies
» when the order policy isthe same and the discard policy is set to AnyOrder

The service must maintain separate orderings when different order and discard
policies are used.

& PRISMTECH

Notification Service

4.1 Quality of ServiceProperties

OpenFusion QoS Extensions

&4 PRISMTECH

Table 6 lists the QoS properties provided in the OpenFusion Notification Service to
extend the OMG Notification Service standard QoS properties.

Table 6 Extended Quality of Service Properties

Property Channel | Admin | Proxy | Event
MaxReconnectAttemptsl(long) X X X
ReconnectInterval® (TimeT) X X X
ConnectedClient® (Object) X
MaxInactivityIntervald(TimeT) X X X
AutoSequenceBatchSize (long) |X X X
AutoSequenceTimeout X X X
(ulonglong)

DisconnectCallback X X X
MaxMemoryUsage X
MaxMemoryUsagePolicy X
MemoryCheckInterval X
MemoryEscalationExponent X
MemoryMaxRecoveryAttempts X
MemoryTargetMargin X

PropagateQoS X X
DiscardedEvents x
DiscardedEventCount x

Lrhis QoS property applies only to proxy push suppliers.
This QoS property isread only.
his QoS property applies only to proxy push consumers.

Detailed descriptions of these properties are given below.

MaxReconnectAttempts

The MaxReconnectAttempts QOS property defines the maximum number of
times the Notification Service will attempt to reconnect to a failed push consumer.
The Notification Service disconnects the client as though the disconnect operation
had been invoked on the proxy when the client is still unavailable after the
maximum number of attempts have been made.

73
Notification Service

74

4.1 Quality of ServiceProperties

Theoretically, the absolute timeout value for push consumers is the product of the
MaxReconnectAttempts property value and the ReconnectInterval property
value. However, the actual time taken for the entire timeout period can take longer
than the absolute timeout value:

1. The ReconnectInterval property is the interval of time the Notification
Service will wait before making another connection attempt. This interval is
measured from the time that it becomes aware that a connection attempt failed
(e.g. by receiving an exception from the ORB).

2. The absolute timeout value cannot account for the length of time taken from
when a client disconnection occurs until the time that the Notification Service
becomes aware of the disconnection. Normally, thisis not an issue, but under
certain circumstances (such as when the orb daemon is not running on particular
ORBs) the effect of this delay can be dramatic.

For example, if an ORB takes 20 seconds to pass an exception indicating client
disconnection, then the ReconnectInterval will effectively be increased by
20 seconds. Assuming that the ReconnectInterval iSset to 1 second and the
number MaxReconnectAttempts iS Set to 120, then the actual absolute
timeout will be 120 * (20+1) = 2520 seconds = 42 minutes, instead of the
expected 120 seconds (2 minutes).

Reconnectinterval

The ReconnectInterval QoS property defines the interval of time that the
Notification Service will wait before retrying persistent push consumers that are
unavailable. Thisinterval is measured from the time that it determines that a
connection attempt failed (see MaxReconnectAttempts above).

This QoS property has no meaning when ConnectionReliability IS setto
BestEffort. Also note that this QoS has no meaning for push suppliers.

The Notification Service waits for the reconnect interval before resuming event
reception or delivery after event communication has failed. The unit for this QoSis
100 nanoseconds and the default value is one second, i.e. 10,000,000 nanoseconds.
A value in the range 1-9999 is not supported, i.e. the smallest value for the
reconnect interval is one millisecond.

The Noatification Service considers an event consumer or supplier to be unavailable
when the operation that retrieves or delivers events raises a system exception. The
only system exception is the OBJECT NOT_ EXIST exception and this is handled
differently to other system exceptions by the Notification Service, i.e. the proxy
object is disconnected when a client raises this exception.

& PRISMTECH

Notification Service

&4 PRISMTECH

4.1 Quality of ServiceProperties

ConnectedClient

The ConnectedClient QOS property is aread-only property that applies only to
proxy objects. The value associated with this QoS is the object reference of the
client associated with the proxy. For example, the ConnectedCclient Q0S
property contains a structured push consumer object for structured push supplier
proxies.

MaxInactivityInterval

TheMaxInactivityInterval QOS property isthe connection timeout for push
suppliers. Thisis arelative timeout value and is reset whenever a supplier calls
push on its consumer regardless of whether the operator is successful or not; in
other words, the timeout is reset when the proxy detects any activity from its client.

When the proxy has been idle for the maximum inactivity interval, then the
Notification Service disconnects the client as though the disconnect operation had
been invoked on the proxy.

The unit for MaxInactivityInterval iS 100 nanoseconds. The default valueis O
(zero), which disables this QoS and allows idle push suppliers to never timeout. The
minimum supported timeout value (other than the zero default value) is one
millisecond, i.e. values of 10000 or greater.

AutoSequenceBatchSize

The maximum batch size that will be sent by a structured proxy (consumer or
supplier) when auto-sequencing is being used. When the proxy has received this
number of events, they will be sent as a single batch. The default value is 200
events. If the AutoSequenceTimeout interval is exceeded while the proxy is
waiting for sufficient events to complete a batch, the batch will be sent even if it is
incomplete.

To disable auto-sequencing, set this QoSto 0 or 1, or set AutoSequenceTimeout
to avalue less than 10.

See Auto-segquencing on page 23 for mare information about auto-sequencing.

AutoSequenceTimeout

This is the maximum amount of time that will be allowed to elapse before an
auto-sequence batch is sent. If this interval elapses before the batch reaches the
required size (specified by the AutoSequenceBatchSize property), the
incomplete batch is sent regardless.

The unit for this property is milliseconds. The default value is 200 milliseconds.

To disable auto-sequencing, set this QoS to a value less than 10 or set
AutoSequenceBatchSizetoOor 1.

75
Notification Service

76

4.1 Quality of ServiceProperties

See Auto-seguencing on page 23 for more information about auto-sequencing.

DisconnectCallback

This property affects all proxies. If set to true (the default) then when a proxy's
disconnect method is called, then the disconnect method on its connected client will
also be called. This behaviour is in accordance with the behaviour specified in the
OMG Notification Service Specification v1.3.

If set to false, then a proxy's connected client will not have its disconnect operation
invoked when that of the proxy isinvoked. This behaviour isin accordance with the
behaviour specified in the OMG Noatification Service Specification v1.0.

MaxMemoryUsage

Affects the memory size of event channels. MaxMemoryUsage is Similar in purpose
to the property MaxQueueLength, except that the size of memory is controlled,
rather than the number of events. MaxMemoryUsage takes a value of type
ulonglong. The unitsfor this property are bytes. When this value is exceeded then
attempts will be made to limit memory usage according to the current usage policy.
The current usage policy is controlled using the MaxMemoryUsagePolicy

property.

MaxMemoryUsagePolicy

Affects event channels. MaxMemoryUsagePolicy isthe policy by which memory
usage is controlled when MaxMemoryUsage is exceeded. It can take one of three
values:

» purgeEvents - If this value is set, then MaxMemoryUsage is treated as a soft
limit. Whenever an event is received that pushes memory usage above the
MaxMemoryUsage level, that event will be added to the internal queue of the
appropriate event channel as normal. Then, in a manner that mirrors discard
behaviour, the event at the back of the queue will have its data purged from
memory. If the event is set to best effort delivery, then it is effectively discarded
and the memory it used will be available for recovery by the garbage collector.
However, in the case of a persistent event a place holder will remain in memory so
that the data can be rel oaded from its persistent store, when required. Therefore, in
the case of a persistent event, not all of the memory used will freed and the total
memory usage will continue to increase. Nonetheless, the rate of increase will be
greatly reduced making this an appropriate policy for dealing with bursts of event
delivery.

* Notethat if events contain very small amounts of datathen very little memory will
be recovered by purging them, asit isthe event data that is purged from memory.
purgeEvents Will produce better results with larger event sizes.

& PRISMTECH

Notification Service

&4 PRISMTECH

4.1 Quality of ServiceProperties

* DiscardEvents - If this value is set, then MaxMemoryUsage is treated as a
limit. Whenever an event is received that takes memory usage above
MaxMemoryUsage, an event is discarded according to the current discard policy.
Note that since events vary in size, the memory usage may <till grow since the
new event may be larger than that which is discarded.

* RejectEvents - If thisvalueis set, then MaxMemoryUsage is treated as a hard
limit. Whenever an event is received that takes memory usage above
MaxMemoryUsage, al org.omg.CORBA.IMP LIMIT exception isthrown.

The default value of this property is PurgeEvents.

PropagateQoS
Controls how changes to a QoS on an event channel are propagated to admins and
proxies.

When propagateQos isset to false (the default), changes made to a QoS after it
has been set on a channel will not affect the QoS settings on an admin or proxy.
When it is set to true, changes made to the QoS on the channel will carry through
to the admins and proxies, even over-riding any QoS that has been set individually
on the admin or proxy.

For example, the Timeout Q0Sissetto 10000 onthe event channdl. This setting is
applied to all admins and proxies created on that channel. If Timeout isthen
changed to 20000 on the channel while PropagateQos is set to fase, the admins
and proxies retain their setting of 20000. Any new admins and proxies, however,
will take on the new value of 20000.

If Timeout ischanged to 20000 on the channel while PropagateQos is set to
true, the admins and proxies a so take on the new setting of 20000.

DiscardedEvents

The DiscardedEvents QOS property provides a mechanism for detecting when a
proxy supplier has discarded one or more events: proxy suppliers can set this
property to truein order to indicate that at least one event has been discarded.

Setting this property to false indicates that no events have been discarded. The
DiscardedEvents property can be re-set (to the false value) either by using the
supplier proxy’'s set_gos () method or by using the Notification Service
Manager’'s GUI.

Clients are not allowed to set Di scardedEvent to true: attempts by a client to do
so will be ignored by the QoS (hote that the server will not throw an exception if an
attempt is made). The piscardedEvents property valueis atype boolean.

77
Notification Service

78

4.1 Quality of ServiceProperties

DiscardedEventCount

The DiscardedEventCount iS complimentary to the DiscardedEvents Q0S
property. The DiscardedEventCount property valueisa long type (a CORBA
ulonglong) showing the total number of events which have been discarded. The
value cannot be reset: attempts to modify the value will be ignored.

Memory Management Properties

Each event channel has a memory manager. The manager periodically monitors and
controls the channel’s memory usage. The QoS properties described below are used
to set the memory management control parameters and behaviour. Generally, the
memory manager keeps memory usage at or below a maximum memory usage
level. If this level is exceeded, then it will attempt to return the memory usage to a
level at or below the desired maximum. Please note that if it may not be possible,
under extreme situations, for the system to be kept under the desired maximum
memory level.

MemoryCheckinterval

The memory manager checks memory usage at discrete intervals. The
MemoryCheckInterval property value setsthe interval, in milliseconds, between
checks. The default value is 5000 milliseconds (five seconds). The property value
typeisa CORBA ulonglong (Javalong).

A value of 0 milliseconds will cause the memory manager to halt the checking of
memory usage. Setting the MemoryCheckInterval to avalue greater than O will
cause memory checking to be resumed.

MemoryEscalationExponent

Memory recovery is attempted whenever memory usage exceeds the
MaxMemoryUsage property value. The memory manager instructs channel
components to release memory in this situation, using appropriate methods.

If the component fails to free a sufficient amount of memory using its chosen
method, then the manager make another attempt to recover memory by directing the
component to free memory by using a more severe method. The manager
successively directs a more severe memory recover method each time the
component fails to rel ease sufficient memory.

The MemoryEscalationExponent property controls the rate of increase of the
level of the memory recover method used. The rate of increase is applied
exponentially using:

A

n ~ EXPONENT
where

& PRISMTECH

Notification Service

&4 PRISMTECH

4.1 Quality of ServiceProperties

n is the current attempt number (the first attempt is 1, second is 2, etc)
EXPONENT is the exponentia value.
The MemoryEscalationExponent property setsthe value of the EXPONENT.

For example, if MemoryEscalationExponent iS Set to 2, the escalation levels
will be increased as follows:

first attempt n2=2
second attempt 27"2=4
third attempt 3N2=8

The default value istwo (2). The property valuetypeisa CORBA 1long (Javaint).

MemoryMaxRecoveryAttempts

The memory manager can repeatedly direct channel components to free memory
whenever the maximum allowed memory usage is reached, as described above
under MemoryEscalationExponent: the severity of the memory recovery
method increases on each attempt.

However, overall system performance can degrade after the severity level increases
beyond a sufficiently high level. There will not be any benefits if memory recovery
efforts increase or continue when this situation occurs. The
MemoryMaxRecoveryAttempts property is provided to stop memory recovery
efforts when extreme memory usage situations are reached: CPU resources, which
are bei?g used to recover memory, can be returned to the system for processing
events.

This property helpsto tune the system for the best balance between performance and
memory usage control, as well as protecting the system from dangerous or pointless
severity escalation during extreme conditions.

The MemoryMaxRecoveryAttempts is disabled if it is set to zero (0), in other
words, memory recovery attempts will not be stopped. The default valueisten (10),
in other words, memory recover will be escalated up to ten times. The property
value typeisa CORBA long (Java int).

1. Theterm extremein thiscontext indicates a situation where, for example, supplier clients
are sending such high numbers of eventsthat the physical limits of the service and system
are breached. If extreme conditions are reached more than occasionally, then additional
Notification Service resources should be provided, such as providing additional CPUs,
federating Notification Service servers across CPUs or hosts, etc. for the number of
clients being served

79
Notification Service

80

4.1 Quality of ServiceProperties

MemoryTargetMargin

The memory manager attempts to maintain memory usage at or below level set by
the MaxMemoryUsage value. When this level is exceeded, the manager directs
components to free memory in order to return the memory usage to alevel at or
below the MaxMemoryUsage value.

If usage level is simply returned to the MaxMemoryUsage level, but no lower, then
itislikely that the maximum will be quickly exceeded again, requiring the manager
to release memory again, reducing performance.

The MemoryTargetMargin property provides a margin below the
MaxMemoryUsage Value, in bytes, which the memory usage should be freed to
when memory is released by the manager. This can prevent calls being immediately
made on the manager to release memory and thereby giving the system some
breathing space.

No memory margin is provided when the MemoryTargetMargin property valueis
set to zero (0). The default value is 204800 bytes (200K). The property value typeis
a CORBA ulonglong (Javalong).

Administrative Properties

Administrative properties refer to property settings that may be applied only to event
channel objects. These properties are usually set when an event channel is first
created. These settings are typically static in nature although they may be changed
during the lifetime of the channel object. The standard administrative properties are
described below.

MaxQueuelLength

The MaxQueueLength administrative property defines the maximum size of the
master queue for an event channel. The value of the MaxQueueLength property
should normally be greater than any value of a MaxEventsPerConsumer Q0S
property.

This prevents any badly-behaved consumer (for example a consumer that consumes
events very slowly or a consumer that remains suspended for an extended period of
time) from causing events to be rejected from the master queue. The maximum
possible size of the master queue is the accumulative size of all proxy queues.

Normally, the size of the master queue is smaller than the accumulative size of all
proxy queues because there is typically an overlap in the events received by
different consumers.

& PRISMTECH

Notification Service

4.2 Errorsand Exceptions

MaxConsumers

The MaxConsumers administrative property defines the maximum number of
consumers that can be concurrently connected to an event channel. The consumers
are counted as all the proxy suppliers of all the consumer administration objects
managed by the event channel.

MaxSuppliers

The MaxSuppliers administrative property defines the maximum number of
suppliers that can be connected concurrently to an event channel. The suppliers are
counted as all the proxy consumers of all the supplier administration objects
managed by the event channel.

RejectNewEvents

The RejectNewEvents administrative property indicates whether events should
be rejected or discarded, according to the biscardPolicy setting, when the
MaxQueueLength for the master queue is exceeded. The RejectNewEvents
property can have the following values:

» TRUE - New events received by the event channel are regjected when the
MaxQueueLength iS exceeded. A push supplier encounters an IMP LIMIT
system exception when it attempts to deliver an event to the channel.

» FALSE - New events received by the event channel are discarded according to the
DiscardPolicy QOS setting when the maximum queue length is exhausted.
Push suppliers can keep delivering events to the channel, but this may cause some
events to be discarded.

TheRrRejectNewEvents administrative property, when set to t rue, guarantees that
the Notification Service will never drop any events.

Errorsand Exceptions

Errors

&4 PRISMTECH

The Notification Service improves on the Event Service by providing QoS settings
that define how to deal with most runtime errors. Events are stored persistently
when the EventReliability QOS setting is set to persistent and the service fails.
All persistent events are recovered and re-delivered to all registered clients once the
Notification Service is restarted after the service has crashed.

Also, the Notification Service keeps trying its connections when the
ConnectionReliability QOS setting is set to persistent until it encounters an
OBJECT NOT EXISTS exception. The Notification Service just starts delivering all
gqueued events when a client crashes but is later restored with the same object
reference as it had when first connecting to the Natification Service.

81
Notification Service

4.2 Errorsand Exceptions

How events are removed from the internal queues of the Notification Service is
defined by the DiscardpPolicy QOS setting. Events are discarded when either the
MaxQueueLength Of MaxEventsPerConsumer Values are exceeded. Note that
the service keeps storing un-delivered events until the system resources are
exhausted when there is no limit on the queue length.

4.2.2 Exceptions

The Notification Service supports a number of exceptions which are summarised in

Table 7.

Table 7 Notification Service Exceptions

Exception

Description

AdminLimitExceeded

Indicates that the limit for the number of
concurrently connected proxies has been
exceeded.

AdminNotFound

Indicates that the administration object with
the specified unique identifier was not found
in an event channel.

AlreadyConnected

Indicates that a consumer or supplier was
already connected.

CallbackNotFound

Indicates that a callback object with the
specified unique identifier was not found in a
filter.

ChannelNotFound

Indicates that the channel with the specified
unique identifier was not found in an event
channel factory.

ConnectionAlreadyActive

Indicates that a connection was already active
and an attempt was made to resumeit.

ConnectionAlreadyInactive

Indicates that a connection was already
inactive when an attempt was made to suspend
it.

ConstraintNotFound

Indicates that a constraint with the specified
unique identifier was not found in afilter.

Disconnected

Indicates that a disconnected client istrying to
send or receive the event.

DuplicateConstraintID

Indicatesthat a sequence of constraints contain
duplicate unigue constraint identifiers.

Notification Service

& PRISMTECH

4.2 Errorsand Exceptions

Table 7 Notification Service Exceptions (Continued)

Exception Description

FilterNotFound Indicates that the filter object with the
specified unique identifier was not found in an
administration or proxy object.

InvalidConstraint Indicates that a constraint set on afilter object
wasinvalid.
InvalidEventType Indicates that an event type is not supported or

isinvalid.This exception is not thrown by the
OpenFusion Notification Service.

InvalidGrammar The grammar specified was not
EXTENDED TCL, SQL92, or the name of a
valid Filter class name.

Invalidvalue Indicates that aconstraint valueisinvalid, e.g.
when apriority value is not of type short or
when atimeout value is not of type TimeT.

ProxyNot Found Indicates that the proxy object with the
specified unique identifier was not found in an
administration object.

TypeError Indicates atype error.

UnsupportedAdmin Indicates that an administrative setting on an
event channel was not supported.

UnsupportedFilterableData |Indicatesthat an event contains datawhich
could not be processed by afilter object. This
exception is normally not propagated back to
clients.

UnsupportedQoSs Indicates that a quality of service setting on an
event channel, administration or proxy object
was not supported.

4.2.2.1 Implementation Limit Exception

&4 PRISMTECH

The CORBA specification provides a general exception,
org.omg.CORBA.IMP LIMIT, for indicating when alimit has been reached or
exceeded. This exception israised by the Notification Service, specifically, when an
event is pushed to a proxy push consumer and either:

1. The vaue of the QoS property MaxQueueLength has been reached and the
QoS property RejectNewEvents iS Set to true.

83
Notification Service

84

4.2 Errorsand Exceptions

2. Any resource, such as threads or memory, which is insufficient, exhausted, or
unavailable.

The org.omg.CORBA.IMP LIMIT exception includes important information in its
exception message. For example, in the case of sequence proxy push consumers, the
exception message contains the number of events that were accepted by the
Notification Service (from the sequence) before the exception was raised. This
information is important, since it can be used to ensure that the same events are not
unnecessarily supplied more than once to the Notification Service. In addition to the
number of events accepted, the message also contains other information, such asthe
limit exceeded and the length of the supplied sequence.

The org.omg.CORBA.IMP LIMIT exception storesthe number of accepted events
in the last three hexadecimal digits of its minor code provided that the length of the
supplied sequence is less than or equal to OXFFF (4096): the number may be
extracted from the minor code by subtracting the base PrismTech minor code of
0x50540000 from its value.

This feature can be used to avoid the overhead of string manipulation which is
otherwise needed to obtain the information from the exception message.

& PRISMTECH

Notification Service

EVENT TYPE REPOSITORY i
4

CHAPTER

Description

The OpenFusion implementation of the Notification Services includes the Event
Type Repository, which is an optional feature specified by the OMG

The Event Type Repository contains meta-data about event types. The repository
contains information about the properties of an event for each event type. The
repository contains information only about the properties in the filterable body of a
structured event because it was specifically designed to fulfil the requirement of
verifying filter constraints.

An important property of the Event Type Repository is the ability to modify the event
types and the relationship between event types at runtime. This allows applications
to evolve over time, e.g. an application can create a new event type, with additional
properties, that inherits from an existing event type. New applications can take
advantage of the additional information, while existing applications process the
event according to the old set of properties.

Conceptsand Architecture

& PRISMTECH

Figure 10 showsthe UML model for the Event Type Repository. The repository isa
singleton that supports a number of event domains and contains a number of event
types. An event type in turn has adomain, a name and anumber of properties. Event
types can inherit or import other event types.

87
Event Type Repository

5.1 Conceptsand Architecture

EventTypeRepository
«:DomainNameSeq : supported_domains

®lookup(name : string, domain : string) : EventType
®events_in_domain(domain : string) : EventTypeSeq

!

contains

0..*

EventType

- - Property
gzdomain : string composes

name : strin o — <name : string
- . & 0..* |izitype : TypeCode

Ffull_name() : string

Figure 10 Event Type Repository Model
The Event Type Repository model shown in Figure 10 is mapped to IDL using the
guidelines set out in the Meta Object Facility (MOF). The most important thing to
realise about the mapping is that links are transformed into interfaces rather than
operations. In addition to this, each class has a meta class with some standard
operations. Finally, the mapping automatically adds a package class and ameta class
for the package class.

Event Types
An event type is defined by three components (refer to Figure 10):

» adomain name - ahigh level categorisation of the event, for example Telecom and
Transport are domain names

* atype name - categorises events within adomain

* asequence of properties - a sequence of name-value pairs where name states the
property’s name, and value states the type of property it is when associated with
an event type

88

Event Type Repository & PRISMTECH

5.1 Conceptsand Architecture

Inheritance
An event type can inherit the properties of another event type. This means that all
the properties in the super type will also be present in the sub type. Also, the
creation of inheritance cyclesis not allowed.

Importing
One event type can be imported into another in addition to inheritance. This does
not create an inheritance relationship but all the properties of the imported type will
be present in the importer type. Property names may overlap but only when the type
associated with the property is the same in both the imported and importer event

types.

Contains
The Event Type Repository is populated with event types using the Contains
interface. It is possible for clients to look up event types and investigate what
properties are available for filtering once populated. Thus, clients can use the
repository to create meaningful constraint expressions for event filtering.

I nterfaces
The Event Type Repository consists of twelve interfaces. Section 7, API Definitions,
on page 117. The operations from these interfaces provide a generic way to reflect
on an object or association.

89

A PRISMTECH Event Type Repository

5.1 Conceptsand Architecture

0

Event Type Repository & PRISMTECH

CHAPTER

& PRISMTECH

Using Specific Features

This section describes how to use the following specific features of the Event Type
Repository:

Adding an Event Type: describes how to add a new event to the repository.
Properties: demonstrates the management of event type properties.
Event Types: demonstrates the management of event types.

Composition: demonstrates how to associate and disassociate properties
with/from event types.

Inheritance: demonstrates how to create inheritance relationships between event
types.

Import: demonstrates how to create import rel ationships between event types.
Event Type Repository description: explains how to use the event type repository.

Containment: demonstrates how to add and remove event types from the event
type repository.
Repository package: explains how to use the package interfaces.

Note:

All interfaces in the Event Type Repository inherit other interfaces from the Meta
Object Facility (MOF). This section is not intended to a reference to MOF
operations. Accordingly, the MOF RefObject and RefAssociation interface
operations are not described here.

Most operations in the Event Type Repository do not accept arguments containing
a null value. The OpenFusion implementation checks the input arguments and
raises a BAD PARAM exception when a null argument is encountered. The
examples used below assume that input values are not null, and therefore, this
exception is not checked.

Import Satements

The following packages must be imported into any application which use the Event
Type Repository:

org.omg.Reflective.*
org.omg.NotificationTypes.*

91
Event Type Repository

92

6.1 AddinganEvent Type

The Reflective and NotificationTypes packages include exception
definitions from the MOF plus all of the interfaces and data types from the Event
Type Repository.

Adding an Event Type

This topic briefly introduces some of the Event Type Repository interfaces.
Common tasks when using the repository are to create an event type, add some
properties to it and then add the event type to the repository. The first task in using
the repository isto resolve and create it. Thistask is shown in the listing below:

org.omg.CORBA.Object object = null;
RefBaseObject ref = null;
_NotificationTypesPackage pack = null;
EventTypeRepository repos = null;

try
object = orb.resolve initial references (“NotificationTypes”) ;
catch (org.omg.CORBA.ORBPackage.InvalidName ex)

System.err.println (“Failed to resolve Event Type Repository”) ;
ex.printStackTrace () ;
System.exit (1) ;

repos = EventTypeRepositoryHelper.narrow (object) ;
ref = repos.repository container () ;
pack = NotificationTypesPackageHelper.narrow (ref);

The Event Type Repository in this code is resolved and used to obtain a specific
package object. The package object has a reference to the following objects:

* An object that implements the EventTypeRepositoryClass interface. This
can be used to create a new event type repository.

* An object that implements the EventTypeClass interface. This object can be
used to create new Event Type oObjects.

» Anobject that implementsthe propertyClass interface. This object can be used
to create new property oObjects.

* Four objects that can be used to manipulate the different aggregations in the event
type repository model. The objects implement the Contains, Inherits,
Imports, and Composes interfaces, respectively.

The variables pack and repos are class variables that are used in the following to
obtain the link interfaces and manipulate the repository. The listing below shows
how to create a property and an event type. Once these have been created, the
property is added to the event type and the event type is finally added to the event
type repository.

// Get relevant object references.

& PRISMTECH

Event Type Repository

&4 PRISMTECH

6.1 AddinganEvent Type

PropertyClass property)
EventTypeClass eventType
Composes composes

Contains contains

pack.property class ref (
pack.event type class ref
pack.composes ref ();
pack.contains ref ();

2);

Property pl = null;
EventType type = null;

org.omg.CORBA.TypeCode tc;
// Create a property.
try

tc
pl

orb.get primitive tc (org.omg.CORBA.TCKind.tk string);
property.create property (“Operator”, tc);

catch (SemanticError ex)
System.err.println (“Failed to create property!”);
ex.printStackTrace () ;
System.exit (1) ;
// Create a new event type.
try
type = eventType.create event type (“telecom”, “alarm”) ;
catch (SemanticError ex)
System.err.println (“Failed to create event type!”);
ex.printStackTrace () ;
System.exit (1) ;
// Add property to event type.
try
composes.add (type, pl);
catch (StructuralError ex)
System.err.println (“Can’t add property to event type!”);
ex.printStackTrace () ;
System.exit (1) ;
catch (SemanticError ex)
System.err.println (“Never raised!”) ;
ex.printStackTrace () ;
System.exit (1) ;
// Add event type to repository.
try

contains.add (repos, type);
93
Event Type Repository

94

Step 1.
Sep 2:

Sep 3:
Sep 4:

6.2 Properties

catch (StructuralError ex)
System.err.println (“Can’t add event type to repository!”);
ex.printStackTrace () ;
System.exit (1) ;
catch (SemanticError ex)
System.err.println (“Never raised!”) ;

ex.printStackTrace () ;
System.exit (1) ;

The above code is relatively straightforward. Relevant objects are first obtained
from the package object. The code then performs the following steps:

Creates a property using an object that implements the PropertyClass interface.

Creates an event type in the telecom domain with type alarm using an object that
implements the Event TypeClass interface.

Adds the property to the event type using the Composes interface.
Adds the event type to the repository using the Contains interface.

Properties

A property is an object that encapsulates a name and a type code. The name of a
property is linked to the name of a property in the filterable body of a structured
event and the type code determines the value type (but not the actual value) of the

property.
Properties are created using the factory meta class PropertyClass. See Adding an

Event Type on page 92 for obtaining a reference to an object that implements the
PropertyClass interface by means of the package object.

The propertyClass interface has two additional operations besides the factory
operation for creating property objects. These are aresult of the MOF mapping from
the metamodel to IDL:

* all of kind property. This operation returns al properties, excluding any
subtypes of the property class. This operation returns just the properties that
have been created by the factory as the repository meta model does not have any
subtypes of the Property class.

* all of type property. This operation returns all properties, including any
subtypes of the Property class. This operation returns al the properties that have
been created by the factory in a similar manner tothe all of kind property
operation.

& PRISMTECH

Event Type Repository

&4 PRISMTECH

6.2 Properties

The example below shows how to use the create property operation to create a
new property:

PropertyClass factory = pack.property class ref ();
Property pl = null;
org.omg.CORBA.TypeCode type;

try

type = orb.get primitive tc (org.omg.CORBA.TCKind.tk string) ;
pl = factory.create property (“User”, type);

catch (SemanticError ex)

System.err.println (“Failed to create property!”);
ex.printStackTrace ();
System.exit (1) ;

The name and type code of a property can be obtained and set once created. Note
that any property can be used as a factory for creating other properties since the
Property interface inherits from the propertyClass interface. The example
below shows how to print the name and type code of a property:
try
String name = pl.name () ;

org.omg.CORBA.TypeCode tc = pl.type code ();
System.out.println (“name=" + name + “, type=" + tc);

catch (Exception ex)

System.err.println (“Never raised!”) ;
ex.printStackTrace () ;
System.exit (1) ;

Note that the get operations on the property interface are allowed to raise both the
StructuralError and SemanticError exceptions. The OpenFusion
implementation of the Event Type Repository does not raise any exceptions on the
get operations.

It is also possible to set a new name for a property and to change the type code.
However, afew restrictions apply:

* The new property name must not be used by an existing property for the event
type or any super type of the event type when the property has already been added
to an event type.

» The new property name must only be present in the import graph of the event type
when the type code is the same when the property is added to an event type.
Import graph means the event type itself or any event type imported by the event
type. Note that the super types of that event type are also part of the import graph
when an event typeisimported.

95
Event Type Repository

96

6.3 Event Types

The example below shows how to set the name and type code of a property:
try

pl.set name (“Data”);
catch (SemanticError ex)

System.err.println (“Name already used!”) ;
ex.printStackTrace () ;
System.exit (1) ;

try

{

org.omg.CORBA.TypeCode tc;
tc = orb.get primitive tc (org.omg.CORBA.TCKind.tk long) ;
pl.set type code (tc);

catch (SemanticError ex)

System.err.println (“Illegal type code!”) ;
ex.printStackTrace () ;
System.exit (1) ;

The semanticError exception israised when the new name or the new type code
conflicts with another property in the event type inheritance and import hierarchy.
This exception is not raised when the property has yet to be added to an event type.

Event Types

An event type is an object that can be added to the event type repository. It describes
the expected contents of the filterable body field of a structured event. This
description is divided into three components:

» The properties of the event type itself.

» The properties in the super types of the event type. This includes all the event
types imported by any super type.

» The properties in any type imported by the event type. Thisincludes al the event
typesin any super types of an imported event type.

The inheritance and import hierarchies defined above are referred to as the complete
graph. The complete graph for an event type defines all the properties that are
expected in the filterable body of a structured event of that event type.

Event types are created using the Event TypeClass. See Adding an Event Type on
page 92 for obtaining a reference to an object that implements the
EventTypeClass interface. The event type factory contains two operations to list
all objects created as does the PropertyClass interface. These are not described
any further here.

& PRISMTECH

Event Type Repository

&4 PRISMTECH

6.3 Event Types

An EventType object can be created as follows:
EventTypeClass factory = pack.event type class ref ();
EventType type = null;

try

{

type = factory.create event type (“telecom”, “ring”) ;
catch (SemanticError ex)

System.err.println (“Illegal type name!”) ;
ex.printStackTrace () ;
System.exit (1) ;

Note that the factory operation raises a Semant icError exception when the event
type name has a length of zero. The EventType interface inherits the
EventTypeClass interface in a similar manner to the property interface. This
means that all event type objects can be used as factories as well.

The EventType interface has five operations. There are three get operations to
obtain the domain name, the type name, and the full nhame. The full name of an
event type is composed of the names of all super types and the usual name separated
by dots. In addition, there are two set operations to set the domain and type. An
example of using the get operations is shown below:

try

“ + type.domain ());

“ + type.name ());
“ + type.get full name ());

System.out.println (“Domain
System.out.println (“Name
System.out.println (“Full name

catch (Exception ex)

System.err.println (“Never raised!”);
ex.printStackTrace () ;
System.exit (1);

The get operations are all allowed to raise StructuralError and
SemanticError exceptions according to the interface, but these exceptions are
never raised by the OpenFusion implementation.

Asfor the property interface, there are afew restrictions related to using the set
operations:
* ThesemanticError exceptionisraised by the set domain operation when the

repository does not support the new domain and the event type has been added to
an event type repository.

* Theset name Operation raisesa SemanticError exception when an event type
with that name already exists and the event type has aready been added to a
repository.

97
Event Type Repository

6.4 Composition

The example below shows how to use the set operations of the EventType
interface:
try

type.set domain (“transport”) ;
catch (SemanticError ex)

System.err.println (“Domain not allowed in repository!”) ;
ex.printStackTrace () ;
System.exit (1) ;

try

{

type.set name (“alarm”);
catch (SemanticError ex)

System.err.println (“Event type already exists!”);
ex.printStackTrace () ;
System.exit (1) ;

Composition
Creating properties or event types in isolation is not very useful. This section
describes how to create associations between event types and properties using the

Composes interface. An object that implements the composes interface can be
obtained by means of the package interface.

The composes interface has a number of operations for adding, removing and
modifying the properties associated with an event type. The interface also has
operations for obtaining information about which properties and event types are
associated with the event type. The query operations are summarised below:

* all Composes links: This operation returns all the links that are currently
established between properties and event types. Two elementsin the sequence are
returned by this operation: a property and an event type.

* exists: Thisoperation simply checks that an association between an event type
and a property exists.

* with composition: This operation returns all the properties that have been
associated with a particular event type.

* with component: This operation returns the event type that is associated with a
particular property.

98

Event Type Repository & PRISMTECH

6.4 Composition

Note that these operations are present in all the link interfaces (with slightly
different names) due to the MOF mapping. The following example code listings
illustrate how to use these operations. Code examples are provided for only the
Composes interface since these operations are similar for al the link interfaces.

Composes composes pack.composes ref ();
ComposesLink[] cl composes.all Composes links () ;
EventType type = null;

Property prop = null;

try
{ o . .
for (int i = 0; i < cl.length; i++)
type = cl[i] .composition;
prop = cl[i] .component;

System.out.println (“Link #” + i + “:”);
System.out.println (“Event domain :” type.domain ()) ;
System.out.println (“Event name g type.name ()) ;
System.out.println (“Property name:” prop.name ());
System.out.println (“Property type:” prop.type code ());

+ o+ o+ +

}

catch (Exception ex)

System.err.println (“Never raised!”) ;
ex.printStackTrace () ;
System.exit (1) ;

Theall Composes links operationis more likely to be used by a browser tool
than by an application, but it may be useful, for example, for getting a full listing of
all the associations of a composes object. Using the exists operation is very
straightforward:

if (composes.exists (type, prop))
System.out.println (“Property is added to event type”) ;

else

{

System.out.println (“Property isn’t added to event type”);

In the above example, it is assumed that the variables type and prop are event type
and property objects created elsewhere in the code. Next, the with composition
operation is called to get all the properties associated with an event type:

Property[] props = composes.with composition (type);
try

System.out.println (“Event domain :” + type.domain ()) ;
System.out.println (“Event name :” + type.name ());
System.out.println (“Properties:”);

for (int i = 0; i < props.length; i++)

99

A PRISMTECH Event Type Repository

6.4 Composition

System.out.println (“Property name:” + props[i] .name ());
System.out.println (“Property type:” + props([i].type code ());

catch (Exception ex)

System.err.println (“Never raised!”) ;
ex.printStackTrace () ;
System.exit (1) ;

Again, the type variable is assumed to be an event type defined elsewhere in the
code. Finaly, thewith component operation can be used to find the event type
that has a particular property associated with it:

EventType et = composes.with component (prop) ;

try

{

System.out.println (“Property name:” + prop.name ());
System.out.println (“Property type:” + prop.type code ());
System.out.println (“Is associated with the event type:”);
System.out.println (“Event domain :” + type.domain ());
System.out.println (“Event name :” + type.name ());

catch (Exception ex)
System.err.println (“Never raised!”) ;

ex.printStackTrace () ;
System.exit (1) ;

The remaining operations of the composes interface deal with associations between
properties and event types and are summarised bel ow:

* add - Adds a property to an event type.
* add before component - Adds a property to an event type at a particular

position.

* modify composition - Movesa property from one event type to another event
type.

* modify component - Replaces one property in an event type with another
property.

 remove - Removes a property from an event type.

The following shows an example of using the add operation:
try

{
composes.add (type, prop) ;
catch (StructuralError ex)

System.err.println (“Failed to add property to event type!”);

100

Event Type Repository & PRISMTECH

&4 PRISMTECH

6.4 Composition

ex.printStackTrace () ;
System.exit (1) ;

catch (SemanticError ex)

System.err.println (“Never raised!”) ;
ex.printStackTrace () ;
System.exit (1) ;

The add operation adds the property at the end of the list of properties of an event
type since properties are ordered. The St ructuralError exception israised in the
following circumstances:

» when the property is already added to this event type
» when any super type has a property with this name added
« when the property has a different type code in any event type in the import graph

The add_before component operation is used when you wish to place a new
property at a particular position in the ordered list of properties. An exampleis
given below:

try
composes.add before component (type, prop, before);
catch (NotFound ex)

System.err.println (“Could’t find before property!”) ;
ex.printStackTrace () ;
System.exit (1) ;

catch (StructuralError ex)

System.err.println (“Failed to add property to event type!”);
ex.printStackTrace () ;
System.exit (1) ;

catch (SemanticError ex)

System.err.println (“Never raised!”);
ex.printStackTrace () ;
System.exit (1) ;

This code is very similar to the plain add example. Note that the Not Found
exception israised when the before property is not associated with type. Aswith
the previous examples, it is assumed that the type variable is an event type,
whereas prop and before are properties that have been created or obtained
previoudly in the program.

101
Event Type Repository

6.4 Composition

Themodify composition operation isused to move a property from one event

type to another event type. This operation essentially deletes the property from one

event type and adds it to another. Here is an example of how the operation is used:
try

composes.modify composition (type, prop, new type);
catch (NotFound ex)

System.err.println (“Property was not added to event type!”);
ex.printStackTrace () ;
System.exit (1) ;

catch (StructuralError ex)

System.err.println (“Failed to add property to new event type!”);
ex.printStackTrace () ;
System.exit (1) ;

catch (SemanticError ex)

System.err.println (“Never raised!”) ;
ex.printStackTrace () ;
System.exit (1) ;

The Not Found exception is raised when the property is not associated with the
event type in a similar manner to the add_before component operation. The
StructuralError exceptionisraised in the following circumstances:

» when the property is already added to the new event type
» when any super type of the new event type has the property added or

» when the property has a different type in any event type in the import graph of the
new event type.

A property can also be replaced with another using the modify component
operation rather than by moving a property from one event type to another. This
operation removes one property from an event type and adds another as shown
below:

try
composes.modify component (type, prop, new prop) ;
catch (NotFound ex)

System.err.println (“Property was not added to event type!”);
ex.printStackTrace () ;
System.exit (1) ;

catch (StructuralError ex)

System.err.println (“Failed to add property to event type!”);
ex.printStackTrace () ;
System.exit (1) ;

102

Event Type Repository & PRISMTECH

&4 PRISMTECH

6.4 Composition

catch (SemanticError ex)

System.err.println (“Never raised!”) ;
ex.printStackTrace () ;
System.exit (1) ;

Again, NotFound is raised when the property is not associated with the event type.
The usual causesfor the structuralError exception apply:

* the new property is already added to the event type
 any super type of the event type has this property added

« the property has a different type in any event type in the import graph of the event
type
Finally, the remove operation can be used to delete, i.e. disassociate, a property
from an event type. The use of this operation is fairly straightforward as with most
operationsin the Composes interface:
try

composes.remove (type, prop) ;
catch (NotFound ex)

System.err.println (“Property was not added to event type!”);
ex.printStackTrace () ;
System.exit (1) ;

catch (StructuralError ex)

System.err.println (“Never raised!”);
ex.printStackTrace () ;
System.exit (1) ;

catch (SemanticError ex)

System.err.println (“Never raised!”);
ex.printStackTrace () ;
System.exit (1) ;

Note that this implementation of the composes interface never checks that an event
type has subtypes or that any other event types import the event type. This means
that the property is also deleted from any subtype of the event type, and from any
importer type when a property is deleted from an event type.

Adding a property to an event type automatically adds the property to any subtype
and any importer type of the event type in a similar manner to the above. The
operations in the composes interface should therefore be used with caution when
modifying the propertiesin an existing event type hierarchy.

103
Event Type Repository

104

6.5 Inheritance

Inheritance

This section describes how to use the operationsin the Inherits interface to create
or modify inheritance hierarchies of event types.

The I1nherits interface contains the same query operations as the Composes
interface because it represents an aggregation (or alink) in the repository meta
model:

* all Inherits links - This operation returns all the inheritance relationships
that are currently established between event types. The elements in the sequence
that are returned by this operation contain two elements. a subtype and a
supertype.

* exists - This operation simply checks whether one event type inherits from
another.

* with sub_type - Thisoperation returns the event type with a particular subtype.

* with super type - Thisoperation returnsall the event types that inherit from a
particular supertype.

These query type operations are not described any further here because code
examples have previously been provided.

The remainder of this section provides examples using the rest of the operationsin
the Inherits interface. Note that the operations themselves are rather similar to
those in the composes interface. The reason for this is that they are both links
mapped to IDL using the MOF.

This section therefore emphasi ses the circumstances that cause an exception to be
raised, rather than the operations themselves. Below is a summary of the operations
for manipulating inheritance hierarchies between event types:

* add - Creates an inheritance relationship between two event types.

* modify sub_type - Replaces one subtype with another.

* modify super type - Replaces one supertype with another.

* remove - Deletes an inheritance relationship between two event types.

There is no operation for adding one object before another since the inheritance
between event types is not ordered. Note that only single inheritance between event
typesis alowed in the Event Type Repository.

The add operation creates an inheritance relationship between two event types. An

example is shown below:

EventTypeClass factory = pack.event type class ref ();
EventType sub type = null;
EventType super type = null;

try

{
& PRISMTECH

Event Type Repository

6.5 Inheritance

sub_type = factory.create event type (“telecom”, “alarm”) ;
super type = factory.create event type (“telecom”, “location”) ;

catch (SemanticError ex)

System.err.println (“Illegal type name!”) ;
ex.printStackTrace () ;
System.exit (1) ;

Inherits inherits = pack.inherits ref ();
try

inherits.add (sub type, super type) ;
catch (StructuralError ex)

System.err.println (“Couldn’t add subtype to supertype!”);
ex.printStackTrace () ;
System.exit (1) ;

catch (SemanticError ex)

System.err.println (“Never raised!”);
ex.printStackTrace () ;
System.exit (1) ;

In the above, two event types are created in the usual fashion. An object that
implements the Inherits interface is resolved using the package as described
earlier. An inheritance relationship is created between the two event types using this
interface. The StructuralError exception israised in these circumstances:

* When the subtype is already added to another supertype. This is due to the fact
that the Event Type Repository supports only single inheritance between event
types when:

« any property in the subtype is defined in the supertype event type

* any property type in the subtype is defined in any type in the import graph of
supertype

* adding this event type creates a cycle in the inheritance hierarchy

Themodify sub type operation isused to replace one subtype with ancther. It is

a shorthand for first deleting one event type from a supertype and then adding

another event type to the supertype. An exampleis shown below:
try

inherits.modify sub type (sub type, super type, new sub type);
catch (NotFound ex)

System.err.println (“Subtype wasn’t added to supertype!”);
ex.printStackTrace () ;
System.exit (1) ;

105

A PRISMTECH Event Type Repository

106

6.5 Inheritance

catch (StructuralError ex)

System.err.println (“Couldn’t replace subtype!”);
ex.printStackTrace () ;
System.exit (1) ;

catch (SemanticError ex)

System.err.println (“Never raised!”) ;
ex.printStackTrace () ;
System.exit (1) ;

The structuralError exception israised in the same circumstances as noted
above becausethemodify sub type operation creates an inheritance relationship
between two event types, i.e. adds an event type to another. The Not Found
exception is raised when the subtype has not been added to the supertype.

The supertype can also be modified using the modify super type operation.
Again, thisis a shorthand method for first removing an inheritance relationship
between two event types and then creating another. Thisisillustrated below:
try
inherits.modify super type (sub_ type, super type, new super type);
catch (NotFound ex)
System.err.println (“Subtype wasn’t added to supertype!”) ;
ex.printStackTrace () ;
System.exit (1) ;
catch (StructuralError ex)
System.err.println (“Couldn’t replace supertype!”);
ex.printStackTrace () ;
System.exit (1) ;
catch (SemanticError ex)
System.err.println (“Never raised!”) ;

ex.printStackTrace () ;
System.exit (1) ;

The NotFound exception is raised when an inheritance relationship does not exist
between the subtype and supertype. The structuralError exceptionisraised in
the following circumstances:

» when a subtype has any properties that are defined in the new super type or any of
its supertypes

» when a subtype has any properties that are defined in the import graph of the new
supertype

& PRISMTECH

Event Type Repository

6.6 Import

» when adding this event type creates a cycle in the inheritance hierarchy

Finally, the remove operation is used to delete an inheritance relationship between
two event types. Itsuse is straightforward:
try

{

inherits.remove (sub type, super type);
catch (NotFound ex)

System.err.println (“Subtype wasn’t added to supertype!”);
ex.printStackTrace () ;
System.exit (1) ;

catch (StructuralError ex)

System.err.println (“Never raised!”) ;
ex.printStackTrace () ;
System.exit (1) ;

catch (SemanticError ex)

System.err.println (“Never raised!”) ;
ex.printStackTrace () ;
System.exit (1) ;

The NotFound exception is again raised when the subtype does not inherit from the
supertype. Both the structuralError and SemanticError exceptions are not
raised by thisimplementation of the Inherits interface.

The same note of caution stated for composition applies to inheritance. The
implementation of the Inherits interface does not check for existing relationships
when the inheritance hierarchy is modified. As an example, an entire branch of the
tree may be moved by invoking themodify sub type operation.

| mport

&4 PRISMTECH

Event types can import rather than inherit properties from other event types. An
import relationship between two event types just means that one event type obtains
the properties of another event type. There is no semantic relationship. This section
shows how to use the operationsin the Tmports interface.

The query operations of the Imports interface are summarised as follows:

* all Imports_ links - This operation returns al the import relationships that
are currently established between event types. The elements in the sequence that
are returned by this operation contain two elements: importer type and imported
type.

» exists - Thisoperation ssimply checks whether one event type imports another.

107
Event Type Repository

108

6.6 Import

* with importer - This operation returns al the event types that import a

particular event type.

* with imported - Thisoperation returns all the event types that are imported by

aparticular event type.

The remaining operations of the Imports interface are summarised below:
* add - Creates an import relationship between two event types.

* modify importer - Moves an imported event type from one importer event

type to another.

* modify imported - Replacesan imported event type with another.

* remove - Deletes an import relationship between two event types.

The add operation is used to create an import relationship. The two sides of the
relationship are called the importer event type and the imported event type
respectively. An imported event type may have overlapping property names as long
as the type codes of the properties are the same, unlike with inheritance.

EventTypeClass factory = pack.event type class ref
EventType importer = null;
EventType imported = null;

try

{

importer = factory.create event type (“telecom”,
= factory.create event type (“telecom”,

imported
catch (SemanticError ex)
System.err.println (“Illegal type name!”) ;
ex.printStackTrace () ;
System.exit (1) ;
Imports imports = pack.imports ref ();
try
{

imports.add (importer, imported) ;

catch (StructuralError ex)

();

“alarm”) ;
“location”) ;

System.err.println (“Failed to import event type!”);

ex.printStackTrace () ;
System.exit (1) ;

catch (SemanticError ex)
System.err.println (“Never raised!”) ;

ex.printStackTrace () ;
System.exit (1) ;

Event Type Repository

& PRISMTECH

&4 PRISMTECH

6.6 Import

The Imports object reference is resolved from the package object in the usual
manner. The structuralError exception is raised in the following
circumstances:

« any property in the event type graph of the imported event type has a different
type code than the corresponding property in the importer event type

« the addition of the event type creates a cycle in the import graph.

An example of using themodify importer isshown below. This operationisa
shorthand method for first removing the imported type from one event type and
subsequently adding it to another event type.

try

imports.modify importer (importer, imported, new importer) ;
catch (NotFound ex)

System.err.println (“Event type wasn’t imported!”) ;
ex.printStackTrace () ;
System.exit (1);

catch (StructuralError ex)

System.err.println (“Failed to import event type!”);
ex.printStackTrace () ;
System.exit (1);

catch (SemanticError ex)

System.err.println (“Never raised!”);
ex.printStackTrace () ;
System.exit (1);

The Not Found operation is raised when an import relationship between the two
event types does not exist as has been the case for many of the previous link
manipulating operations. The structuralError exception israised in the same
circumstance as stated above because the imported event type is added to a new
importer.

Themodify imported operation replaces an imported event type with another.
The operation is a shorthand method for first removing an event type from an
importer and then adding a new event type to the same importer. An exampleis
shown below:

try

{

imports.modify imported (importer, imported, new imported) ;
catch (NotFound ex)

System.err.println (“Event type wasn’t imported!”);
ex.printStackTrace () ;
System.exit (1);
109
Event Type Repository

6.7 Event TypeRepository Description

catch (StructuralError ex)

System.err.println (“Failed to import event type!”) ;
ex.printStackTrace () ;
System.exit (1) ;

catch (SemanticError ex)

System.err.println (“Never raised!”) ;
ex.printStackTrace () ;
System.exit (1) ;

The NotFound and StructuralError exceptions are raised in the same
circumstances as for themodify importer operation.

Finally, the remove operation destroys an import relationship between two event

types. Again, the Not Found exception is raised when no import relationship exists
between the two types:

try
imports.remove (importer, imported) ;

catch (NotFound ex)

System.err.println (“Event type wasn’t imported!”) ;
ex.printStackTrace () ;
System.exit (1) ;

catch (StructuralError ex)

System.err.println (“Never raised!”);
ex.printStackTrace () ;
System.exit (1) ;

catch (SemanticError ex)

System.err.println (“Never raised!”) ;
ex.printStackTrace () ;
System.exit (1) ;

Event Type Repository Description

An Event Type Repository is an object that contains a number of event type objects.
The repository supports a number of domains that constrain the domain names of
the events that are added to the repository.

An Event Type Repository is a singleton object within each server. The repository
object istypically created by the OpenFusion server process but can aternatively be
created using the factory meta class EventTypeRepositoryClass. The
EventTypeRepositoryClass interface has two additional operations besides the
factory operation for creating property objects:

110
Event Type Repository & PRISMTECH

&4 PRISMTECH

6.7 Event TypeRepository Description

* all of kind event type repository - This operation returns either the
event type repository singleton or a sequence of length zero since only one
repository is allowed within each package.

* all of type event type repository - AS above, this operation returns
one or zero event type repositories.

The example below shows how to use the create event type repository
operation to create a new repository:

EventTypeRepositoryClass etc;
EventTypeRepository repos = null;
String domains[] = { “oil”, “banking”, ““, “finance” };

etc = pack.event type repository class ref ();

try

{

repos = etc.create event type repository (domains) ;
catch (AlreadyCreated ex)

System.err.println (“Repository already created!”);
ex.printStackTrace () ;
System.exit (1);

catch (SemanticError ex)

System.err.println (“Failed to create repository!”);
ex.printStackTrace () ;
System.exit (1);

The aAlreadyCreated exception is raised when an attempt is made to create
multiple repositories within the same server. The EventTypeRepository
interface has two additional operations to those inherited from the
EventTypeRepositoryClass interface:

* supported domains - Thisreturnsalist of strings describing the domains that
are supported by the repository.

* lookup - This operation locates an event type with a particular type name and
domain.

As the supported domains operation is very simple, this section includes
example code for only the 1ookup operation:
EventType type = null;
try
type = repos.lookup (“alarm”, “telecom”) ;

catch (InvalidName ex)

System.err.println (“Invalid type name!”) ;
ex.printStackTrace () ;

111
Event Type Repository

6.8 Containment

System.exit (1) ;
catch (TypeNotFound ex)
System.err.println (“Event type not found!”) ;
ex.printStackTrace () ;
System.exit (1) ;

catch (UnknownDomain ex)

System.err.println (“Domain not supported by repository!”) ;
ex.printStackTrace () ;
System.exit (1) ;

catch (SemanticError ex)

System.err.println (“Never raised!”);
ex.printStackTrace () ;
System.exit (1) ;

try
System.out.println (“Full name = “ + type.get full name()) ;
catch (Exception ex)

System.err.println (“Never raised!”) ;
ex.printStackTrace () ;
System.exit (1) ;

Containment

Thelast step in configuring the Event Type Repository isthe contains interface. It
allows event types to be added to and removed from the repository. As with the
other link interfaces, there are four query operations:

* all Contains_links - Thisoperation returnsall the containment relationships
that are currently established between the event type repository and the event
types. The elements in the sequence returned by this operation contain two
elements: the repository and an event type.

* exists - This operation simply checks that an event type has been added to the
repository.

* with container - Thisoperation returnsall the event typesin the repository.

* with contained - This operation returns the repository where an event typeis
defined. Thiswill always be the singleton event type repository of the package.

The contains interface also has the following additional operations for
mani pul ating relationships between event types and the repository:

* add: Adds an event type to the repository.
* modify container - Movesan event type from one repository to another.

112

Event Type Repository & PRISMTECH

6.8 Containment

* modify contained - Replacesan event typein the repository with another.
* remove - Removes an event type from the repository.
An example of using add is shown below:

Contains contains = pack.contains ref ();

try

{

contains.add (repos, type);
catch (StructuralError ex)

System.err.println (“Can’t add event type to repository!”);
ex.printStackTrace ();
System.exit (1) ;

catch (SemanticError ex)

System.err.println (“Never raised!”) ;
ex.printStackTrace ();
System.exit (1) ;

In the above example, it is assumed that type is an event type created or obtained
previously in the program. The structuralError exception is raised when the
event type has aready been added to the repository or when the domain of the event
is not supported. The semanticError is not raised by thisimplementation of the
event type repository.

It is possible to have multiple repositories by creating multiple packages although
the event type repository is a singleton within each package. The
modify container operation is not needed when your application uses only a
single repository. However, below is an example of how to move an event type from
onhe repository to another:

try

{

contains.modify container (repos, type, new_repos) ;
catch (NotFound ex)
System.err.println (“Event type wasn’t in repository!”);
ex.printStackTrace () ;
System.exit (1) ;
catch (StructuralError ex)
System.err.println (“Failed to add event type to repository!”);
ex.printStackTrace () ;
System.exit (1) ;

catch (SemanticError ex)

System.err.println (“Never raised!”) ;
ex.printStackTrace ();

113

A PRISMTECH Event Type Repository

6.8 Containment

System.exit (1) ;

The NotFound exception is raised when the event type is not added to the
repository. The structuralError exception is raised when the event type could
not be added to the new repository, i.e. when the domain is not supported or when it
is aready added.

Themodify contained operation replaces one event type in the repository with
another. It is a shorthand method for first deleting one event type and subsequently
adding another. An example of usage islisted below:

try

{

contains.modify contained (repos, type, new_ type);
catch (NotFound ex)

System.err.println (“Event type wasn’t in repository!”);
ex.printStackTrace () ;
System.exit (1) ;

catch (StructuralError ex)

System.err.println (“Failed to add new event type to repository!”) ;
ex.printStackTrace () ;
System.exit (1) ;

catch (SemanticError ex)

System.err.println (“Never raised!”);
ex.printStackTrace () ;
System.exit (1) ;

Finally, the remove operation deletes an event type from the repository. The code
below is straightforward:
try

contains.remove (repos, type);

catch (NotFound ex)

System.err.println (“Event type wasn’t in repository!”);
ex.printStackTrace () ;
System.exit (1) ;

catch (StructuralError ex)
System.err.println (“Never raised!”) ;
ex.printStackTrace () ;
System.exit (1) ;

catch (SemanticError ex)

System.err.println (“Never raised!”) ;

114

Event Type Repository & PRISMTECH

6.9 Repository Package

ex.printStackTrace () ;
System.exit (1) ;

The remove operation raises only the Not Found exception when no containment
relationship exists between the event type and the event type repository.

Repostory Package

&4 PRISMTECH

The package interfaces section provides only abrief overview of the operations for
similar reasons as before.

ThereisaNotificationTypesPackageFactory interface for creating package
instances. The package factory is used to create alocal instance of an event type
repository. Note that there can still be only a single repository per server even when
used in this way:

_NotificationTypesPackage pack;

EventTypeRepositoryClass etc;

EventTypeRepository repos;

NotificationTypesPackageFactoryImpl impl;

NotificationTypesPackageFactory factory;
org.omg.CORBA.Object object;

String[] domains = { “Telecom”, “Transport”, “News” };

impl = new NotificationTypesPackageFactoryImpl () ;
object = ObjectAdapter.getObject (impl) ;
factory = NotificationTypesPackageFactoryHelper.narrow (object) ;

try

pack = factory.create notification types package () ;
etc = pack.event type repository class ref ();
repos = etc.create event type repository (domains) ;

catch (org.omg.Reflective.SemanticError ex)

System.err.println (“Semantic error occurred!”);
ex.printStackTrace ();
System.exit (1) ;

catch (org.omg.Reflective.AlreadyCreated ex)

System.err.println (“Local repository already created!”) ;
ex.printStackTrace ();
System.exit (1) ;

The factory interface has just a single operation for creating packages:
create notification types package. A package is an object that
implements the NotificationTypesPackage interface. Thisinterface has
operations to abtain references to all the objects described previoudly:

115
Event Type Repository

6.9 Repository Package

» property class ref - Returns a propertyClass factory object for this
package.

* event type class_ref - Returnsan EventTypeClass factory object for this
package.

* event type repository class ref - Returns a factory object of type
EventTypeRepositoryClass for this package.

* contains_ref - Returnsthe contains object.

* inherits ref - Returnsthe Inherits objects.

* imports ref - Returnsthe Imports object.

* composes_re -: Returns the composes object.

Previous topic have already describe how to use these simple get operations.

116

Event Type Repository & PRISMTECH

CHAPTER

API Definitions

The Event Type Repository consists of the 12 interfaces, described in this section.
The operations from these interfaces provide a generic way to reflect on an object or
association.

The Event Type Repository interfaces provide specific operations in order to access
the functionality of the repository so the generic, reflective operations are not
needed. As an example, the Composes interface has an add operation that adds a
property to an event type. Thereis also an add_1ink operation that is inherited
from the RefAssociation interface. These operations perform the same action,
one in adomain-specific way and one in ageneric way.

Classes in the UML model inherit operations from the RefObject interface. Table
8 shows the Event Type Repository interfaces that deal with classes.

Table 8 Event Type Repository Classes

Interface Purpose

NotificationTypesPackageClass |A package level interface that can be
used to create event type repository
packages.

NotificationTypesPackage Instances of the event type repository
package that are created by the factory
class.

EventTypeRepositoryClass A metaclass and factory for objects that
implement theEvent TypeRepository
interface.

EventTypeRepository Aninterface for event type repositories.

EventTypeClass A meta class and factory for objects that
implement the Event Type interface.

117

A PRISMTECH Event Type Repository

Table 8 Event Type Repository Classes (Continued)

Interface Purpose

EventType An interface for the event type objects
contained in the repository.

PropertyClass A metaclass and factory for objects that
implement the Property interface.

Property An interface for property objects. Event
type objects are composed of property
objects.

Links (aggregations in the UML model) inherit operations from the
RefAssociation interface. Table 9 shows the Event Type Repository interfaces
that deal with links.

Table 9 Event Type Repository Aggregations

Interface Purpose

Contains An interface for manipulating the
contents of an event type repository. The
interface represents the aggregation
between the repository and the event
type classes in Figure 10.

Inherits An interface for manipulating
inheritance between event types. The
interface represents the self-aggregation
on the event type classin Figure 10.

Imports An interface for manipulating imports
between event types. The interface
represents the self-aggregation on the
event type classin Figure 10.

Composes An interface for manipulating
compositions between event types and
properties. The interface represents the
aggregation between the event type and
property classesin Figure 10.

118

Event Type Repository & PRISMTECH

CHAPTER

Supplemental Information

Exceptions
The Event Type Repository supports a number of exceptions as summarised in
Table 10 below:
Table 10 Event Type Repository Exceptions
Exception Description
InvalidName Indicates that an event name was invalid.
UnknownDomain Indicates that the event type repository does not
know a domain.
TypeNot Found This exception is only raised by the 1ookup
operation of the Event TypeRepository classto
indicate that an event type could not be found.

A number of exceptions from the MOF are used in addition to the Event Type
Repository exceptions. These are summarised in Table 11 below:

Table 11 M OF Exceptions Used by the Event Type Repository

Exception Description

StructuralError Raised when an operation could not complete
because it would result in a structural error, e.g. the
repository would be inconsistent.

SemanticError Indicates a semantic error. Thisisraised when a
check of theinput parameters shows that the
operation cannot be performed.

NotFound Indicates that an object could not be found in a
container.
AlreadyCreated Indicatesthat an Event Type Repository has already

been created. This exception is raised because the
repository isasingleton.

119

A PRISMTECH Event Type Repository

8.1 Exceptions

120

Event Type Repository & PRISMTECH

EVENT DOMAIN SERVICE i
4

CHAPTER

Description
The Event Domain Service simplifies the feder ation and management of Notification

Service event channels.

The Management of Event Domains specification was developed by the OMG
Telecom Task Force. It describes standard interfaces for federating and managing a
set of Notification Service Event Channel objects, or a set of Log Service Log
objects. The OpenFusion implementation of the Event Domain Service is wholly
compliant with the OMG specification.

The federation of event channels using the Notification Service can be cumbersome
and involve several steps. The same operation using the Event Domain Service can
be performed in a single step.

The Event Domain Service can manage the following types of objects:
* Notification-style event channels

« Notification-style typed event channels

e Log Servicelogs

» Log Servicetyped logs

Although the Event Domain Service can manage notification channelsand logs, it is
independent of these other services. It is a stand-alone service that can be used to
manage objects from any OMG-compliant Notification or Log Service.

Features

& PRISMTECH

The Event Domain Service provides the following features:
» Networking of event channels:
- facilitates channel federation

-no need for an intermediary client to forward events from one channel to
another

- also supports typed events and log domains
» Simplified programming:

- federate channels in one operation

- connect aclient in one operation

123
Event Domain Service

9.2 Architectureand Concepts

* Ability to detect and (if necessary) prevent the creation of cycles and diamonds —
which helpsin topology management.

9.2 Architecture and Concepts

124

An event domain isagroup of one or more channels. (The term channel is used here
to denote any managed object, including Notification Service event channels and
Log Service logs.) The channels within a domain may or may not be connected to
one another (federated).

Note that the channels need not belong to the same Notification Service instance.
Channels from different Notification Services can be federated into a single domain.
Similarly, logs from different Log Service instances can be federated into a single
log domain.

Event suppliers and consumers can connect to any channel in the event domain,
using the operations provided by the Event Domain Service interfaces. Events flow
through the domain, from supplier to consumer, and may pass through any number
of federated channelsin the process.

Each event domain may optionally have default supplier and consumer channels
specified. An event supplier will connect to the default supplier channel unless a
specific target channel isidentified when the connection is established. An event
consumer will connect to the default consumer channel unless a specific target
channel is identified when the connection is established.

Figure 11 illustrates events flowing through one possible configuration of an event
domain with four event channels.

Event Domain

Event
Channel
2

Event
Channel
1

Event
Channel
3

Figure11 An Event Domain

& PRISMTECH

Event Domain Service

9.2 Architectureand Concepts

The Event Domain Service does not interfere with the events that flow inside a
domain. It is merely a management service that facilitates the administrative tasks
associated with federating and managing channels.

It is possible to have any mixture of connection types and event propagation models
within a single domain. For example, the connection between one set of channels
may be structured, while the connection between another set of channels may be
untyped.

9.2.1 Federating Channels

&4 PRISMTECH

A powerful feature of the Event Domain Service is the ability to federate channels
without the use of an intermediary. In other words, it is possible to connect two
channels without creating a special client that forwards events from one channel to
the other.

An example of federated Notification Servicesis shown in Figure 12. The ability to
federate event channels in this manner provides improved flexibility (alternative
paths can be made available), scalability (the system can be easily extended), and
better performance.

Notification Service 2

Proxy
Consumer,

Proxy
Supplier
Proxy
Supplier

Notification Service 1

Proxy
Consumer,
Proxy
Consumer,

Proxy
Supplier

Proxy
Supplier

Notification Service 3

. Proxy
Supplier

Proxy
Supplier
Proxy
Supplier

Direction of event flow i

Figure 12 Federated Naotification Service Example

125
Event Domain Service

126

9.2 Architectureand Concepts

The Event Domains Service provides interfaces and operations that allow the
federation of an event channel in a single operation. Consider the connection
between Notification Service 1 and Notification Service 2 in Figure 12. When using
the interfaces of the Notification Service, the following steps are needed to establish
this connection:

Get areference to the source event channel in Notification Service 1.
Get or create a consumer admin object for this channel.

Obtain a proxy supplier from the consumer admin object.

Get areference to the target event channel in Notification Service 2.
Get or create a supplier admin object for this channel.

Obtain a proxy consumer from the supplier admin object.

Connect the proxy supplier by passing in the proxy consumer object.
Connect the proxy consumer by passing in the proxy supplier object.

Using the interfaces of the Event Domain Service, this procedure can be replaced by
asingle operation.

© N o g b wDdPE

Event Type Propagation

The OpenFusion implementation of the Event Domain Service supports a QoS
setting for enabling or disabling event type propagation in adomain. An event type
change can cause a large number of callbacks in a network of many channels, so
some applications may want to disable event type propagation for performance
reasons.

Domain Topology

The topology of an event domain describes the way in which event channels are
connected together within the domain. These connections can be illustrated as a
channel graph (see Figure 11 on page 124 and Figure 13 on page 127 for examples
of channel graphs).

The nature of the Notification Service implies that a connection is always directed.
Thus, for any channel in the domain, it is possible to define upstream and
downstream directions of event flow. For example, in Figure 11 on page 124 event
channel 1 is upsteam from event channel 3, while event channel 3 is downstream
from event channel 1.

The Event Domain Service does not enforce any restrictions on how channels
should be connected. Channels may be connected to multiple other channelsin the
domain. Some channels may be part of an event domain and yet not be connected to
any other channel in the domain.

Figure 13 shows four different types of event domain that can be created:

& PRISMTECH

Event Domain Service

&4 PRISMTECH

9.2 Architectureand Concepts

adomain where the channels are connected as a directed acyclic graph
adomain that contains a diamond

adomain that contains acycle

adomain where only some of the channels are connected

Eal R A

Event Domain #1 Event Domain #2

Figure 13 Different Types of Event Domains

Elaborate domain topologies can be constructed which contain combinations of
these features. For example, a domain could contain both a cycle and a diamond, or
diamonds with multiple paths. Such complex topologies might be required to
provide redundancy in the case of a channel failure, for example. But the presence
of diamonds and cycles can cause effects which the devel oper must be aware of and
possibly take steps to avoid when the event domain is designed:

« A cycle may cause an event to propagate endlessly within the domain. To avoid
this, appropriate filters can be set up in the Notification Service or an event
timeout can be set.

127
Event Domain Service

128

9.2 Architectureand Concepts

» A diamond may cause an event to be delivered more than once to an end
consumer (the number of times being equal to the number of aternative paths by
which the event may arrive at the consumer). To avoid redundant event deliveries,
appropriate filters can be set up in the Notification Service.

The Event Domain Service supports two standard Quality of Service (QoS)
properties which can be used to prevent the creation of diamonds or cycles:

» Cycle detection rejects any attempt to create a connection between two channels
when the resulting channel graph would contain a cycle.

» Diamond detection rejects any attempt to create a connection between two
channels when the resulting channel graph would contain a diamond.

Gathering Topology Information

The Event Domain Service supports two operations for obtaining information about
cycles and diamonds that may exist in adomain:

» get_cycles returnsa sequence of cyclesin a specified domain.
 get_diamonds returns a sequence of diamonds in a specified domain.

Two additional operations can be used to obtain information about the topology of
an event domain:

» get_offer_channels returns an array of channel identifiers for al channels
upstream from a specified channel.

* get_subscription_channels returns an array of channel identifiers for al channels
downstream from a specified channel.

& PRISMTECH

Event Domain Service

CHAPTER

Using Specific Features

This section uses simple examples that work through the interfaces and describe
how to use the individual operations of the Event Domain. Related operations are
grouped together for clarity. Additional examples for using the service, complete
with source code and descriptions of how to compile and run them, are supplied
elsawhere as part of the product distribution.

Section 10.1 is a simple end-to-end example which sets up an event domain and
connects it to an event supplier and an event consumer. Sections 10.2 and 10.3
expand on this and describe domain management operations for untyped and typed
event domains, respectively. Section 10.4 describes how these features can be
applied to log domains.

Note

* Thereislittle or no error-checking in the examples shown here. Code to deal with
exceptions has generally been omitted for the sake of clarity and brevity. These
exceptions must be properly caught and handled in aworking system.

» These examples use features of the OpenFusion Naming Service to register and
resolve object names. Thisis purely for convenience: it is not necessary to use the
Naming Service with the Event Domain Service.

Import Satements
The examples provided below use the following packages:

org.omg.CosNotifyComm. *
org.omg.CosNotification.*
org.omg.CosNotifyChannelAdmin. *
org.omg.CosEventDomainAdmin. *
org.omg.CosTypedEventDomainAdmin. *

Setting up a Domain

& PRISMTECH

The following examples will set up the event domain shown in Figure 14. This
simple domain consists of three Notification Service event channels, labelled A, B,
and C in the diagram.

129
Event Domain Service

130

10.1 SettingupaDomain

The setup client is responsible for creating the domain, creating the channels and
adding them to the domain, and creating the connections between the channels.
References to all created objects will be placed in the root context of the
OpenFusion Naming Service.

Event Domain

Push

supplier

Figure 14 Event Domain and Connected Clients

Creating an Event Domain
Sep 1. Create anew (empty) event domain. This requires the following operations:

1. Obtain areference to the event domain factory. The factory is registered in the
Naming Service with the name EventDomainFactory.

2. Use the factory’s create event domain method to create the domain.
Quality of Service (QoS) and Administrative properties can be specified at this
time. (Note, however, that this example does not specify any QoS or Admin
property values. See Using a Domain Factory on page 139 for an example
which sets QoS properties for the domain.)

public EventDomain create ()
org.omg.CORBA.Object obj = null;
try
obj = orb.resolve initial references (“EventDomainFactory”) ;
catch (org.omg.CORBA.ORBPackage.InvalidName ex)
System.err.println (“Failed to resolve Event Domain Factory”) ;
System.exit (1);
EventDomainFactory factory = EventDomainFactoryHelper.narrow
(ob]) ;
Property[] gos = new Property[0];
Property[] adm = new Property[0];
org.omg.CORBA.IntHolder id = new org.omg.CORBA.IntHolder () ;
EventDomain domain = null;

try

domain = factory.create event domain (gos, adm, id);

& PRISMTECH

Event Domain Service

10.1 SettingupabDomain

catch (UnsupportedQoS ex)

System.err.println (“UnsupportedQoS”) ;
System.exit (1) ;

catch (UnsupportedAdmin ex)

System.err.println (“UnsupportedAdmin”) ;
System.exit (1) ;

Sep 2: Register the newly-created domain in the root context of the Naming Service. This
reguires the following operations:
1. Obtain areference to the Naming Service.
2. Bind the domain into the root context of the Naming Service.

Note that the register function is used at severa pointsin the domain creation
procedure. It takes an object and the name that the object isto be registered under as
parameters. To register the domain, we will passin the domain object (created in
Step 1) and the name MyDomain.

public static void register (org.omg.CORBA.Object object, String
name)

org.omg.CORBA.Object obj = null;

try

. .
obj = orb.resolve initial references (“NameService”);

catch (org.omg.CORBA.ORBPackage.InvalidName ex)
System.err.println (“Failed to resolve Name Service”) ;

System.exit (1) ;

NamingContext root = NamingContextHelper.narrow (obj) ;

NameComponent nc[] = new NameComponent [1] ;
nc[0] = new NameComponent (name, “Object”) ;
try

root.rebind (nc, object) ;
System.out.println (“Placed “ + name + “ in naming context”) ;

catch (Exception ex)

System.err.println (“Failed to bind domain: “ + ex);
System.exit (1) ;

}

Sep 3: Create three Notification Service event channels and add them to the domain. To do
this, we use the setup function, which performs the following operations:

131

& PRISMTECH Event Domain Service

10.1 SettingupaDomain

1. Obtain areference to the Notification Service event channel factory.
Create three new event channels using the factory’s create channel method.

3. Register the event channelsin the root context of the Naming Service, using the
register function described in Step 2. In this example, we will register the
channels under the names ChannelA, ChannelB, and ChannelC.

4. Add the channels to the domain, using the domain's add_channel method.

public void setup (EventDomain domain)
org.omg.CORBA.Object obj = null;
try
obj = orb.resolve initial references (“NotificationService”);
catch (org.omg.CORBA.ORBPackage.InvalidName ex)
System.err.println (“Failed to resolve Notification Service”) ;

System.exit (1);

EventChannelFactory factory = EventChannelFactoryHelper.narrow
(obj) ;
EventChannel a = null, b = null, ¢ = null;

try
Property[] gos new Property[0] ;

Property[] adm = new Propertyl[0];
org.omg.CORBA.IntHolder id = new org.omg.CORBA.IntHolder () ;

factory.create channel (gos, adm, id);
factory.create channel (gos, adm, id);
factory.create channel (gos, adm, id);

a
b
@
register (a, “ChannelA”);
register (b, “ChannelB”) ;
register (c, “ChannelC”);

catch (UnsupportedQoS ex)

System.err.println (“UnsupportedQoS”) ;
System.exit (1) ;

catch (UnsupportedAdmin ex)

System.err.println (“UnsupportedAdmin”) ;
System.exit (1) ;

int idA = domain.add channel (a);
int idB = domain.add channel (b);
int idC = domain.add channel (c);

132

Event Domain Service & PRISMTECH

10.1 SettingupabDomain

Sep 4: Set up connections in the new domain, connecting ChannelA to ChannelB and
ChannelB to ChannelC as shown in Figure 14 on page 130. This involves two
operations:

1. Create the connections. Two individual connections are required, as each
connection links two specific channels. Note that the order in which the
channels are specified in the creation operation is significant, as connections are
directed from the first identified channel to the second. The type and style of the
connection must also be specified. In this example, the connections are for
structured event channels using the push model.

2. Add the new connections to the domain, using the domain’s add_connection
method.

ClientType type = ClientType.STRUCTURED EVENT;
NotificationStyle style = NotificationStyle.Push;

Connection cl
Connection c2

new Connection (idaA, idB, type, style);
new Connection (idB, idC, type, style);

try

{

domain.add connection (cl);
domain.add connection (c2);

catch (Exception ex)

System.err.println (“Failed to created connection: “ + ex);
System.exit (1) ;

Sep 5: Set ChannelA asthe default supplier channel and ChannelC as the default consumer
channel. This ensures that suppliers, by default, will be connected to ChannelA
whilst consumers, by default, will be connected to ChannelC.

try

{

domain.set default supplier channel (idA);
domain.set default consumer channel (idC);

catch (Exception ex)

System.err.println (“Failed to set default channel: “ + ex);
System.exit (1) ;

Step 6: Print out some information about the channels, connections, and QoS properties of
the newly-created domain. (For further examples of these operations, see page 139 -
page 141.) Thisstep isnot required, but it allows usto verify that our setup example
has worked correctly.

myDomain.get all channels () ;
myDomain.get all connections () ;

int [] chID
int [] coID

System.out.println (“MyDomain has “ + chID.length + “ channels”);

133

& PRISMTECH Event Domain Service

10.1 SettingupaDomain

System.out.println (“Connection information:”);
for (int i = 0; 1 < coID.length; i++)
try

{

Connection ¢ = myDomain.get connection (coID[i]) ;
System.out.print (“ between channel #” + c.supplier id);
System.out.println (“ and channel #” + c.consumer id);

catch (ConnectionNotFound ex) { }

System.out.println (“MyDomain QoS:”) ;

Property[] gos = myDomain.get gos () ;

for (int i = 0; 1 < gos.length; i++)
System.out.println (“ name = “ + gos[i] .name) ;
System.out.println (“ value = “ + gos[i] .value) ;

Connecting a Push Supplier

The following example creates a push supplier and connects it to a channel in the
event domain, as shown on the left of Figure 14 on page 130. Using the Event
Domain Service interfaces, the supplier can connect to any of the channelsin the
domain with a single operation.

The supplier in this example contains methods for publishing events and for
disconnecting from the domain. The publish method will send 10 events to verify
that the domain connections are working correctly.

Sep 1: Obtain a reference to the domain, which was registered in the root context of the
OpenFusion Naming Service under the name MyDomain (see Creating an Event
Domain on page 130). To do this:

1. Obtain areferenceto the root context of the Naming Service.

2. Resolve the name MyDomain, which is the name we used to register the domain
in the Naming Service (as described previoudly).

public static EventDomain resolve ()
org.omg.CORBA.Object obj = null;
try
obj = orb.resolve initial references (“NameService”);
catch (org.omg.CORBA.ORBPackage.InvalidName ex)
System.err.println (“Failed to resolve Name Service”) ;

System.exit (1) ;

NamingContext root = NamingContextHelper.narrow (obj) ;
134

Event Domain Service & PRISMTECH

10.1 SettingupabDomain

NameComponent name[] = new NameComponent [1];
name [0] = new NameComponent (“MyDomain”, “Object”) ;
try

obj = root.resolve (name) ;

catch (NotFound ex)
return null;
catch (Exception ex)

System.err.println (“Failed to resolve MyDomain: “ + ex);
System.exit (1) ;

return EventDomainHelper.narrow (obj) ;

}

Sep 2: Connect the supplier to the domain. The supplier’s constructor connects the supplier
using the domain’s connect structured push supplier method. In this
example, we will connect to the domain’s default supplier channel.

public class Supplier implements StructuredPushSupplierOperations
public static void main (Stringl[] args)

//In order to make examples easier to run, for Orbacus-40 set

a POAName
if (com.prismt.openfusion.Version.getORB() .
toUpperCase () .startsWith (*ORBACUS-4"))

ObjectAdapter.setPOAName (“OpenFusion.EventDomainSupplier”) ;

orb = ObjectAdapter.init (args) ;
Setup.orb = orb;

System.out.println (“Connecting”) ;
Supplier supplier = new Supplier () ;

System.out.println (“Supplying”) ;
supplier.publish () ;

System.out .println (“Disconnecting”) ;
supplier.disconnect () ;

System.out.println (“Success”) ;

ObjectAdapter.shutdown () ;

}

public Supplier ()

org.omg.CORBA.Object ref = ObjectAdapter.createTransient
(this) ;

EventDomain domain = Setup.resolve () ;
135

& PRISMTECH Event Domain Service

10.1 SettingupaDomain

if (domain == null)

System.err.println (“MyDomain not found”) ;
System.exit (1) ;

try

StructuredPushSupplier supplier;

supplier = StructuredPushSupplierHelper.narrow (ref);
proxy = domain.connect structured push supplier (supplier) ;
ObjectAdapter.ready (false);

catch (ChannelNotFound ex)

System.err.println (“ChannelNotFound”) ;
System.exit (1) ;

}

public void disconnect structured push supplier ()

}

public void subscription change (EventType[] added, EventTypel[]

removed)
throws InvalidEventType
{

System.out.println (“Added types:”);
for (int i = 0; i < added.length; i++)

System.out.println (added[i]) ;

System.out.println (“Removed types:”) ;
for (int i = 0; 1 < removed.length; i++)

System.out.println (removed[i]) ;

}

public void publish ()

StructuredEvent event = new StructuredEvent () ;

event .header = new EventHeader () ;

event .header.fixed header = new FixedEventHeader () ;

event .header.fixed header.event type = new EventType (““, ““);
event .header.fixed header.event name = ““;

event .header.variable header = new Property[0];
event.filterable data = new Property[0];

for (int 1 = 0; i < 10; i++)

try

{

event.remainder of body = orb.create any ();
event.remainder of body.insert long (i) ;
proxy.push structured event (event) ;

catch (org.omg.CosEventComm.Disconnected ex)

136

Event Domain Service & PRISMTECH

10.1 SettingupabDomain

System.out.println (“Disconnected”) ;
System.exit (0);

}
}

public void disconnect ()

proxy.disconnect structured push consumer () ;

private static org.omg.CORBA.ORB orb = null;
private StructuredProxyPushConsumer proxy = null;

Connecting a Push Consumer

The following example creates a push consumer and connects it to a channel in the
event domain, as shown on the right of Figure 14 on page 130. Using the Event
Domain Service interfaces, the consumer can connect to any of the channelsin the
domain with a single operation.

The consumer prints out the 10 events sent by the supplier created in Connecting a
Push Supplier on page 134. The events have passed through channels A, B, and C as
shown in Figure 14, Event Domain and Connected Clients, on page 130.

Sep 1: Obtain a reference to the domain. This is as described in Step 1 of Connecting a
Push Supplier on page 134.

Sep 2: Connect the consumer to the domain. The consumer’s constructor connects the
consumer using the domain’s connect_structured push consumer method.
In this example, we will connect to the domain’s default consumer channel.

public class Consumer implements StructuredPushConsumerOperations

public static void main (Stringl[] args)
throws java.io.IOException

//In order to make examples easier to run, for Orbacus-40 set
a POAName
if (com.prismt.openfusion.Version.getORB() .
toUpperCase () .startsWith (YORBACUS-4"))

ObjectAdapter.setPOAName (“OpenFusion.EventDomainConsumer”) ;

orb = ObjectAdapter.init (args) ;

Setup.orb = orb;

Consumer consumer = new Consumer () ;

com.prismt.orb.ObjectAdapter.ready (false);

System.out.println (“Consumer Ready. Press Return to quit”);

System.in.read() ;

137

& PRISMTECH Event Domain Service

10.1 SettingupaDomain

ObjectAdapter.shutdown () ;

public Consumer ()

org.omg.CORBA.Object ref = ObjectAdapter.createTransient

(this) ;
EventDomain domain = Setup.resolve () ;

if (domain == null)

System.err.println (“MyDomain not found”) ;
System.exit (1) ;

try
StructuredPushConsumer consumer;

consumer = StructuredPushConsumerHelper.narrow (ref);
proxy = domain.connect structured push consumer (consumer) ;

catch (ChannelNotFound ex)

System.err.println (“ChannelNotFound”) ;
System.exit (1) ;

}

public void disconnect structured push consumer ()
System.out.println (“disconnect_structured push_consumer”) ;
System.exit (0); // stop

public void offer change (EventType[] added, EventType[] removed)
throws InvalidEventType

{

System.out.println (“Added types:”);
for (int i = 0; i < added.length; i++)

System.out.println (added[i]) ;

System.out.println (“Removed types:”) ;
for (int i = 0; 1 < removed.length; i++)

System.out.println (removed[i]) ;

}

public void push structured event (StructuredEvent event)

System.out.println (event.remainder of body) ;

private static org.omg.CORBA.ORB orb = null;
private StructuredProxyPushSupplier proxy = null;

138
Event Domain Service & PRISMTECH

10.2 Managing Untyped Event Domains

Managing Untyped Event Domains

An event domain is a collection manager for the channels and connections that make
up the domain. The untyped event domain interfaces are defined in the
org.omg.CosEventDomainAdmin package. These interfaces can be used to
manage untyped event channels, as shown in the following examples. See Section
10.3, Managing Typed Event Domains on page 146, for examples of managing
typed event channels.

Using a Domain Factory

A domain factory is used to create new event domains. Each domain created by a
domain factory isidentified by an integer, which is unique within the scope of that
factory. The factory can manage the collection of the domainsit has created.

The example below shows how to create an event domain with QoS properties set,
asfollows:

1. Create an array of properties and populate it with any required QoS properties.
2. Usethecreate event domain method of the event domain factory to create

the domain.
Property[] gos = new Property[2];

gos [0] new Property (CycleDetection.value, orb.create any ());
gos [1] = new Property (DiamondDetection.value, orb.create any ());
gos [0] .value.insert short (ForbidCycles.value) ;

gos [1] .value.insert short (ForbidDiamonds.value) ;

Property[] adm = new Property[0];
org.omg.CORBA.IntHolder id = new org.omg.CORBA.IntHolder () ;
EventDomain domain = null;
try
domain = factory.create event domain (gos, adm, id);

catch (UnsupportedQoS ex)

System.err.println (“UnsupportedQoS”) ;
System.exit (1) ;

catch (UnsupportedAdmin ex)

System.err.println (“UnsupportedAdmin”) ;
System.exit (1);

Ligting the Quality of Service Properties
This example below prints the QoS properties of all domains that have been created
by afactory, asfollows:

139

& PRISMTECH Event Domain Service

140

10.2 Managing Untyped Event Domains

1. Thedomain factory’sget _all domains method returns the identifiers of the
domainsin the collection.

2. Thefactory’'sget _event domain method returns a specific domain from the

collection.

3. Thedomain'sget gos method returns the collection of QoS properties for the
domain.

int[] ids = factory.get all domains () ;

for (int i = 0; i < ids.length; i++)
try

EventDomain domain = factory.get event domain (ids[i]) ;
Property[] gos = domain.get gos () ;

System.out.println (“QoS for domain #” + ids[il]) ;

for (int j = 0; j < gos.length; j++)

“ + gos[j] .name) ;
“ + gos[j].value) ;

System.out.println (“ name
System.out.println (“ value

catch (DomainNotFound ex) { } // ignore

Destroying a Domain
The destroy operation removes adomain from afactory collection. In addition, all
existing connections between the channels in the domain are also removed.
Destroying a domain has the same effect as invoking the remove connection
operation on each individual connection in the domain.

Managing Channels
The following channel-management operations are provided:
¢ add_channel
e get all channels
¢ get channel

e remove_ channel

The add_channel operation isillustrated in Step 3 of Creating an Event Domain
on page 131. The other three operations are illustrated in the following example.
This example removes all channelsin adomain that have event reliability set to best
effort. Note that removing a channel automatically removes all existing connections
toit.

int[] ids = domain.get all channels () ;
for (int i = 0; 1 < ids.length ; i++)
try
EventChannel channel = domain.get channel (ids([i]) ;

Property[] gos = channel.get gos () ;

& PRISMTECH

Event Domain Service

10.2 Managing Untyped Event Domains

for (int j = 0; j < gos.length; j++)
if (gos[j] .name.equals (EventReliability.value))
if (gos[j].value.extract short() == BestEffort.value)

domain.remove channel (ids[i]) ;

}
}

catch (ChannelNotFound ex) { } // ignore

Managing Connections

&4 PRISMTECH

The following operations are provided to alow connection management:

e add connection

e get all connections
e get connection

e remove connection

The Event Domain Service uses the connection data structure shown in Table 12
to describe the connections in an event domain.

Table 12 Connection Data Structure

SupplierChannel

ConsumerChannel

ClientType

NotificationStyle

A connection is directed so that the supplierchannel isthe source of events
while the consumercChannel isthe target. The clientType may be untyped
(ANY EVENT), structured (STRUCTURED EVENT), Of @ sequence
(SEQUENCE_EVENT).
Theadd connection operationisillustrated in Step 4 of 10.1.1 Creating an Event
Domain on page 133. The other three operations are illustrated in the following
example. This example removes all connections with a client type of sequence
from the domain.

int[] ids = domain.get all connections () ;

for (int i = 0; i < ids.length ; i++)

try

Connection ¢ = domain.get connection (ids[i]);
if (c.ctype == ClientType.SEQUENCE EVENT)

domain.remove connection (ids[i]);

141
Event Domain Service

142

10.2 Managing Untyped Event Domains

catch (ConnectionNotFound ex) { } // ignore

The following situations can cause problems in domain management and should be
avoided:

* Connections may be made between channels without using the
add_connection operation of the Event Domain Service. Applications could
manually add such connections using the standard operations of the Notification
Service. Such connections will not be visible to the Event Domain Service.

* It is possible to add the same event channel to a domain more than once. Event
channels are identified only by number, since it is not generally possible to
reliably compare CORBA object references.

Connecting Clients

Step 1.

Sep 2:

An untyped event domain supports operations for connecting consumers and
suppliersto event channels. These operations can connect to the default supplier and
consumer channels, or to a specific channel by explicitly specifying the channel’s
unique identifier in the connect operation.

The default supplier channel is defined with the domain’s
set default supplier channel operation. The default consumer channel is
defined with the set _default consumer channel operation. Step 5 of 10.1.1
Creating an Event Domain on page 133 has an example of using these methods.

Note that if a default supplier or consumer channel is not defined, then the first
channel added to the domain is used as the default.

There are different operations for connecting suppliers and consumers for each
client type (untyped, structured, and sequence) and the push communication
model. For example:

e connect push supplier

e connect push consumer

e connect structured push supplier

e connect structured push consumer

Thefull list of operationsis given in Section 11.1, Interfaces, on page 151.

Each connect operation performs the following steps:

Obtains the supplier or consumer admin object from the target channel. A
ChannelNotFound exception israised if the target channel does not exist.

Obtains a proxy from the admin object according to the client type (untyped,
structured Of sequence) and communication model (push). An IMP_LIMIT
system exception is raised if the admin object raises an AdminLimitExceeded
exception.

& PRISMTECH

Event Domain Service

10.2 Managing Untyped Event Domains

Sep 3: Connects the client to the newly created proxy object. An INTERNAL System
exception is raised when the proxy raises an AlreadyConnected Of @ TypeError
exception, since thisis not supposed to happen.

All of thisisaccomplished by asingleline of code, asillustrated by the examplesin
Connecting a Push Supplier on page 134 and Connecting a Push Consumer on page
137.

Topology M anagement
The Event Domain Service supports several operations for topology management.
The key operations provide information about two key topographical features which
may occur in the domain: cycles and diamonds.

Cycles
If the cycleDetection QOS property has a value of AuthorizeCycles, a
domain may contain cycles.

Consider the event domain shown in Figure 15. This domain has three cycles. The
get_cycles operation returns a sequence, which in turn contains a sequence of
channel identifiers. The return value is therefore an array of arrays as illustrated to
the right of Figure 15.

Event Domain

--

Figure 15 Domain Containing Three Cycles

Note that channels 4 and 9 are not part of any cycles, and therefore do not appear in
the returned sequence.

143

& PRISMTECH Event Domain Service

10.2 Managing Untyped Event Domains

The following example usesthe get cycles operation to print out all the cyclesin
adomain:

int[] [cycles = domain.get cycles ();
for (int i = 0; 1 < cycles.length; i++)

System.out.print (“Cycle: “);
for (int j = 0; j < cyclesl[i].length; j++)

System.out.print (cycles[i] [§] + ™ “);

System.out.println () ;

}

The output from running this example on the domain shown in Figure 15 is:

Cycle: 0 1 2
Cycle: 3 5 6
Cycle: 7 8 10 11 12
i The order of channel identifiersin the return sequences may not be precisely as

indicated in the above graph for the get _cycles operation. Although the sequence
will be ordered correctly, it may start with any channel in the cycle.

Diamonds

If the DiamondDetection QOS property has avalue of AuthorizeDiamonds, a
domain may contain diamonds.

Consider the event domain shown in Figure 16. This domain has three diamonds,
where one of the diamonds has three edges. Theget diamonds operation returnsa
sequence of diamonds. Each diamond is a sequence of routes. A route is a sequence
with the identifiers of all channels that participate in a diamond path. The return
valueisthus an array of integer arrays asillustrated to the right of Figure 16.

Event Domain

| [o14] [024] [034] |
[[568] [578]]

[[10111315] [10121415 |]

144
Event Domain Service & PRISMTECH

10.2 Managing Untyped Event Domains

Figure 16 Domain Containing Three Diamonds
Note that channel 9 is not a part of any diamonds, and therefore does not appear in
the returned sequence.
The following example uses the get diamonds operation to print out all the
diamonds in adomain:

int [] [] [] diamonds = domain.get diamonds () ;
for (int i = 0; 1 < diamonds.length; i++)

System.out.println (“Paths in diamond #” + 1) ;
for (int j = 0; j < diamonds[i].length; j++)

System.out.print (™ path #” + j + “: “);
for (int k = 0; k < diamonds[i] [j] .length; k++)

System.out.print (diamonds[i] [j] [k] + “ “);

System.out.println ();

}
}

The output from running this example on the domain shown in Figure 16 is:

Paths in diamond #0:
path #0: 0 1 4
path #1: 0 2 4
path #2: 0 3 4

Paths in diamond #1:
path #0: 5 6 8
path #1: 5 7 8

Paths in diamond #2:
path #0: 10 11 13 15
path #1: 10 12 14 15

Channels
The Event Domain Service supports the following additional operations for
obtaining information about the topology of an event domain:

» get_offer_channels - Returns an array of channel identifiers for al channels
upstream from the specified target channel

 get_subscription_channels - returns an array of channel identifiersfor all channels
downstream from the specified target channel

145

& PRISMTECH Event Domain Service

146

10.3 Managing Typed Event Domains

Disabling Event Type Propagation

The Event Domain Service also supports an additional QoS setting,
EventTypesEnabled, to control event type propagation in an event domain. An
event type change can cause a large number of callbacks in a network of many
channels, so applications may disable event type propagation for performance
reasons. The default isfor event type propagation to be enabled.

Event type subscription changes will affect all channels upstream from the initiating
consumer, and event type offer changes will affect all channels downstream from
theinitiating supplier.

Event type information will propagate through a domain as follows:

1. A consumer connected to an event channel changes its subscribed types, either
by calling the proxy’s subscription change operation or by manipulating
the event types associated with a Notification Service filter constraint.

2. The proxy notifies the channel about this change.

3. The channed informs all connected suppliers (by invoking their
subscription_change operation) when the newly added or removed event
type modifies the event type aggregate at the channel.

4. Theevent typeinformation is propagated back through the event channelsin the
domain.

Event type callbacks will never endlessly propagate through the event system when
there is a cycle, because a channel will only issue event type callbacks when the
aggregate of subscribed or offered types changes.

Managing Typed Event Domains

Typed event domains are collections of typed event channels and connections.
Typed event domain interfaces are defined in the
org.omg.CosTypedEventDomainAdmin package. The basic functionality is the
same as that of the untyped event domain, described in 10.2, Managing Untyped
Event Domains, on page 139. Additional operations for connecting typed clients are
described below.

Using a Typed Event Domain Factory

The Typed Event Domain Factory supports the same operations as the untyped
event domain factory. The factory is resolved by using the name
TypedEventDomainFactory, as shown in the example below:
org.omg.CORBA.Object obj = null;

try

{

obj = orb.resolve initial references (“TypedEventDomainFactory”) ;

}

& PRISMTECH

Event Domain Service

10.3 Managing Typed Event Domains

catch (org.omg.CORBA.ORBPackage.InvalidName ex)

System.err.println (“Failed to resolve Typed Event Domain

Factory”) ;
System.exit (1) ;

TypedEventDomainFactory factory;
factory = TypedEventDomainFactoryHelper.narrow (obj) ;

Managing Typed Channels
Typed event channels are added to a typed event domain using the
add_typed channel operation.

It is possible to add untyped event channels to a typed event domain, since the
TypedEventDomain interface inherits from the EventDomain interface. Untyped
event channels are added using the add_channel operation.

Managing Typed Connections
The TypedConnection data structure shown in Table 13 describes the connections
in atyped event domain. Compare this structure with Table 12, Connection Data
Sructure: the typed event model does not support client type and instead uses a
repository identifier (the key field).
Table 13 TypedConnection Data Structure

SupplierChannel

ConsumerChannel

Key

NotificationStyle

The following example shows how to create a typed connection between two
channels. The channels have the identifiers ida and idB (assumed to be initialized
elsewhere in the code).
try

NotificationStyle style = NotificationStyle.Push;

String id = AccountObserverHelper.id() ;

TypedConnection c¢ = new TypedConnection (idA, idB, id, style);
domain.add typed connection (c);

catch (ChannelNotFound ex)

System.err.println (“ChannelNotFound”) ;
System.exit (1) ;

catch (org.omg.CosEventChannelAdmin.TypeError ex)

System.err.println (“TypeError”) ;
System.exit (1);

147

& PRISMTECH Event Domain Service

148

10.3 Managing Typed Event Domains

catch (AlreadyExists ex)

System.err.println (“AlreadyExists”) ;
System.exit (1) ;

catch (CycleCreationForbidden ex)

System.err.println (“CycleCreationForbidden”) ;
System.exit (1) ;

catch (DiamondCreationForbidden ex)

System.err.println (“DiamondCreationForbidden”) ;
System.exit (1) ;

Refer to the Typed Notification Service documentation for information about the
AccountObserver interface.

The Event Domain Service contains a significant limitation, caused by an error in
the OMG Event and Notification Service specifications. An inheritance flaw in the
specifications makes it impossible to use the Event Domain Service to create a
connection between a typed event channel and an untyped event channel. This also
means that the get _channel operation of the untyped event domain cannot return
atyped event channel. Clients should use the get typed channel operation to
retrieve atyped event channel.

Connecting Typed Clients

A typed event domain supports operations for connecting typed suppliers and
consumers to typed event channels. These operations can connect to the default
supplier and consumer channels, or to a specific channel by explicitly specifying the
channel’s unique identifier in the connect operation.

The default typed supplier event channel is defined with the
set_default typed consumer channel operation. The default typed
consumer channel isdefined withthe set default typed supplier channel
operation. These operations are used identically to the equivalent operations
provided for untyped domains (see Step 5 of 10.1.1 Creating an Event Domain on
page 133 for an example.)

Note that if a default supplier or consumer channel is not defined, then the first
channel added to the domain is used as the default.

There are different operations for connecting suppliers and consumers for each
communication model (push). For example:

e connect typed push supplier
Thefull list of operationsis given in Section 11.1, Interfaces on page 151.

& PRISMTECH

Event Domain Service

10.4 LogDomains

The client application must specify the repository identifier of the interface to be
used for typed event communication (in addition to the arguments supplied with the
connect operations as with an untyped event domain). The format of this string is
the same as that used for the key field in the TypedConnection data structure.

L og Domains

&4 PRISMTECH

A log domain is functionally similar to an event domain, except that it supports the
management of log objects and typed log objects. The EventLogbomain interface
inherits from the TypedEventDomain interface, so alog domain supports al the
operations described in the previous sections.

The log domain factory is functionally identical to the event domain factory and
typed event domain factory, previously described. This factory is resolved using the
name EventLogDomainFactory. It supports the creation and collection
management of log domains.

Log domains support the type-safe addition and retrieval of logs and typed logs
through the following operations:

e add log

e add_typed log

e get log

* get_typed log.

Note: typed and untyped logs both are handled by the same classes

(EventLogbDomain and EventLogDomainFactory). There are no separate
classes for typed logs.

149
Event Domain Service

10.4 LogDomains

150

Event Domain Service & PRISMTECH

CHAPTER

]J. API Definitions

This chapter describes the main Event Domain interfaces. The complete IDL API is
provided elsewhere as part of the product distribution.

11.1 Interfaces

The Event Domain Service interfaces are listed in Table 14:
Table 14 Event Domain Service I nterfaces

Interface Description

EventDomain An event domain for federating and managing
untyped event channels, and for connecting event
suppliers and consumers to event channels.

EventDomainFactory A factory for creating and managing untyped
event domains.

EventLogDomain An event domain for managing logs and typed
logs.

EventLogDomainFactory A factory for managing logs and typed logs.

TypedEventDomain An event domain for managing typed event
channels.

TypedEventDomainFactory |A factory for creating and managing typed event
channels.

The EventDomain interfaces, as shown in Figure 17, support operations for
managing untyped event channels and connections within a domain, as well as for
connecting consumers and suppliers to an event channel within the domain. In
addition, the interfaces have operations for domain topography management: for
obtaining upstream and downstream channel information, and for listing the cycles
and diamonds within a domain.

151
Event Domain Service

& PRISMTECH

11.1 Interfaces

QoSAdmin AdminPropertiesAdmin
(from org.omg.CosNotification) (from org.omg.CosNotification)

EventDomainFactory EventDomain

domains

Figure 17 CosEventDomainAdmin Module I nterfaces
The TypedEventDomain interfaces, as shown in Figure 18, inherit from the
EventDomain interfaces and include additional operations for the connection of
typed clients to a typed event channel. These operations have an additional
argument to those of the corresponding untyped operations: the repository identifier
that specifies the interface to be used for typed event communication.

EventDomain
(from org.omg.CosEventDomainAdmin)

TypedEventDomainFactory TypedEventDomain

domains

Figure 18 CosTypedEventDomainAdmin Module Interfaces

152
Event Domain Service & PRISMTECH

11.1 Interfaces

A log domain is very similar to an event domain, since a log is functionally
equivalent to an event channel. Inheritance means that L og domains require very
few additional operations to support their management. The Event LogDomain
interfaces are shown in Figure 19. A log domain, like an event domain, supports
only notification style log objects. The only other operations in the
EventLogDomain interfaces are used for the type-safe addition and retrieval of
typed log objects.

EventDomain
(from org.omg.CosEventDomainAdmin)

TypedEventDomain
(from org.omg.CosTypedEventDomainAdmin)

EventLogDomainFactory EventLogDomain

domains

Figure 19 DsL ogDomainAdmin Module Interfaces

EventDomain

Thisisthe main interface for federating untyped event channels, and for connecting
suppliers and consumers to an event channel.

Operations

add_channel
Adds an untyped event channel to a domain.

153
& PRISMTECH Event Domain Service

154

11.1 Interfaces

add_connection
Connects two event channels in a domain. If either channel does not exist, a
ChannelNotFound exception is raised

If the two channels are already connected, an AlreadyExists exception is raised.
This exception is also raised if a channel is being connected to itself (that is, the
same channel is specified at both ends of the connection).

If the cycleDetection QOS property is set to ForbidCycle, and the creation of
the requested connection would result in a cycle configuration, a
CycleCreationForbidden exception is raised.

If the DiamondDetection QOS property is set t0 Forbidbiamond, and the
creation of the requested connection would result in a diamond configuration, a
DiamondCreationForbidden exception israised.

connect_push_consumer

Connects a push consumer to the default consumer channel of atarget domain. If no
channels are found, a ChannelNotFound exception will be raised.

connect_push_consumer_with_id

Connects a push consumer to a specified channel of a target domain. A
ChannelNotFound exception will beraised if the channel does not exist.

connect_push_supplier

Connects a push supplier to the default supplier channel of atarget domain. If no
channels are found, a Channe1Not Found exception will be raised.

connect_push_supplier_with_id
Connects a push supplier to a specified channel of a target domain. A
ChannelNotFound exception will be raised if the channel does not exist.

connect_sequence_push_consumer

Connects a sequence push consumer to the default consumer channel of a target
domain. If no channels are found, a Channe1NotFound exception will be raised.

connect_sequence_push_consumer_with_id

Connects a sequence push consumer to a specified channel of atarget domain. A
ChannelNotFound exception will be raised if the channel does not exist.

connect_sequence_push_supplier

Connects a sequence push supplier to the default supplier channel of a target
domain. If no channels are found, a ChannelNotFound exception will be raised.

& PRISMTECH

Event Domain Service

&4 PRISMTECH

11.1 Interfaces

connect_sequence_push_supplier_with_id

Connects a sequence push supplier to a specified channel of atarget domain. A
ChannelNotFound exception will be raised if the channel does not exist.

connect_structured_push_consumer

Connects a structured push consumer to the default consumer channel of atarget
domain. If no channels are found, a ChannelNotFound exception will be raised.

connect_structured_push_consumer_with_id

Connects a structured push consumer to a specified channel of atarget domain. A
ChannelNotFound exception will be raised if the channel does not exist.

connect_structured_push_supplier

Connects a structured push supplier to the default supplier channel of a target
domain. If no channels are found, a Channe1NotFound exception will be raised.

connect_structured_push_supplier_with_id

Connects a structured push supplier to a specified channel of a target domain. A
ChannelNotFound exception will be raised if the channel does not exist.

destroy

Removes a domain from a factory collection. This will also remove any existing
connections between channelsin the domain.

get_all_channels

Returns a sequence of all the unique identifiers corresponding to all the existing
channelsin adomain.

get_all_connections

Returns a sequence of the unique identifiers corresponding to all the existing
connections in adomain.

get_channel

Uses the unique channel identifier to return an object reference to a specific channel
in adomain. A ChannelNotFound exception will be raised if no channel
corresponding to the specified identifier exists.

155
Event Domain Service

156

11.1 Interfaces

get_connection

Uses a connection’s unique identifier to return the connection data structure for
that connection (described in Managing Connections on page 141). A
ConnectionNotFound exception will be raised if no connection corresponding to
the identifier exists or if the connection is atyped connection.

get_cycles
Returns a sequence of all the cyclesin adomain.

get_diamonds
Returns a sequence of al the diamonds in a domain.

get_offer_channels

Returns alist of all channels that exist upstream of a specified channel in a domain.
A ChannelNotFound exception will be raised if the specified channel does not
exist.

get_subscription_channels

Returns a list of all channels that exist downstream of a specified channel in a
domain. A ChannelNotFound exception will be raised if the specified channel
does not exist.

remove_channel

Removes a channel from adomain. This also removes all existing connections to the
channel. A channelNotFound exception will be raised if the specified channel
does not exist.

remove_connection

Removes a connection between two specified channels in a domain. A
ConnectionNotFound exception will be raised if the specified connection does
not exist.

set_default_consumer_channel

Used to define the default consumer channel for a domain. A ChannelNotFound
exception will be raised if the specified channel does not exist.

set_default_supplier_channel

Used to define the default supplier channel for a domain. A ChannelNotFound
exception will beraised if the specified channel does not exist.

& PRISMTECH

Event Domain Service

11.1 Interfaces

EventDomainFactory

A factory interface for creating and managing event domains.

Operations

create_event_domain
Creates a new instance of an event domain. Takes the following parameters:

* A list of name-value pairs that specify the initial QoS properties for the new
domain. If no implementation of the EventDomain interface exists that can
support al of the requested QoS property settings, an UnsupportedQoS
exception is raised.

« A list of name-value pairs that specify the initial administration properties for the
new domain. If no implementation of the EventDomain interface exists that can
support the requested administration properties, an UnsupportedAdmin
exception is raised.

get_all_domains
Returnsalist of all the domains that have been created by the factory.

get_event_domain

Uses the unique domain identifier to return an object reference to a specific domain
that has been created by this factory. A DomainNotFound exception will be raised
if no domain corresponding to the specified identifier exists.

EventL ogDomain

&4 PRISMTECH

An event domain interface for managing logs and typed logs.

Operations

add_log
Adds an untyped Notification log channel to the domain.

add_typed_log
Adds atyped Noatification log channel to the domain.

get_log
Uses the unique log channel identifier to return an object reference to a specific

untyped log channel in the domain. A ChannelNotFound exception will be raised
if no log corresponding to the specified identifier exists.

157
Event Domain Service

158

11.1 Interfaces

get_typed_log

Uses the unique log channel identifier to return an object reference to a specific
typed log in the domain. A channelNotFound exception will be raised if no log
corresponding to the specified identifier exists.

EventL ogDomainFactory

A factory interface for managing logs and typed logs.

Operations

create_event_log_domain

Creates a new instance of an event log domain. Takes the following parameters:

» A list of name-value pairs that specify the initial QoS properties for the new
domain. If no implementation of the EventLogbomain interface exists that can
support al of the requested QOS property settings, an UnsupportedQoS
exception israised.

A list of name-value pairs that specify the initial administration properties for the
new domain. If no implementation of the EventLogDomain interface exists that
can support the requested administration properties, an UnsupportedAdmin
exception is raised.

get_all_event_log_domains
Returns alist of all the event log domains that have been created by the factory.

get_event_log_domain

Uses the unique domain identifier to return an object reference to an event log
domain that has been created by thisfactory. A bomainNotFound exception will be
raised if no domain corresponding to the specified identifier exists.

TypedEventDomain

An interface for managing typed event channels.

Operations

add_typed_channel
Adds atyped event channel to a domain.

add_typed_connection

Forms atyped connection between two typed event channelsin the domain. If either
channel does not exist, a ChannelNotFound exception is raised.

& PRISMTECH

Event Domain Service

&4 PRISMTECH

11.1 Interfaces

If the two channels are already connected, an AlreadyExists exception is raised.
This exception is also raised if a channel is being connected to itself (that is, the
same channel is specified at both ends of the connection).

If either of the two channelsis not atyped event channel, a TypeError exception is
raised.
If the CycleDetection QOS property is set to ForbidcCycle, and the creation of

the requested connection would result in acycle, acycleCreationForbidden
exception is raised.

If the DiamondDetection QOS property is set to Forbidbiamond, and the
creation of the requested connection would result in a diamond, a
DiamondCreationForbidden exceptionis raised.

connect_typed_push_consumer

Connects atyped push consumer to the domain’s default typed consumer channel. If
the target domain contains no typed channels, a ChannelNotFound exception is
raised.

If the default channel for typed consumers does not support the ability to push typed
events, aNoSuchImplementation exception israised.

connect_typed_push_consumer_with_id

Connects a typed push consumer to a specified channel in the target domain. If the
specified channel does not exist, a ChannelNotFound exception is raised.

If the specified channel does not support the ability to push typed events, a
NoSuchImplementation exception israised.

If the typed consumer does not support the specified interface, then the TypeError
exception is raised.

connect_typed_push_supplier

Connects atyped push supplier to the domain’s default typed supplier channel. If the
target domain contains no typed channels, a ChannelNotFound exception is
raised.

If the default channel for typed suppliersis not capable of creating a typed proxy
consumer that supports the specified interface, an InterfaceNotSupported
exception is raised.

connect_typed_push_supplier_with_id
Connects a typed push supplier to a specified channel in the target domain. If the
specified channel does not exist, a ChannelNotFound exception is raised.

159
Event Domain Service

160

11.1 Interfaces

If the specified channel is not capable of creating atyped proxy consumer that
supports the specified interface, an InterfaceNotSupported exception israised.

get_typed_channel

Usesaunique identifier to return the object reference of atyped channel in the target
domain. A channelNotFound exception will be raised if no channel
corresponding to the specified identifier exists.

get_typed_connection

Uses a unique identifier to return the object reference of atyped connection in the
target domain. A ConnectionNotFound exception will be raised if no connection
corresponding to the specified identifier exists, or if the connection is not a typed
connection.

set_default_typed consumer_channel

Used to define the default typed consumer channel for a domain. A
ChannelNotFound exception will be raised if the specified channel does not exist.

set_default_typed_supplier_channel

Used to define the default typed supplier channel for a domain. A
ChannelNotFound exception will beraised if the specified channel does not exist.

TypedEventDomainFactory

A factory interface for creating and managing typed event domains.

Operations

create_typed_event_domain
Creates a new instance of atyped event domain. Takes the following parameters:

» A list of name-value pairs that specify the initial QoS properties for the new
domain. If no implementation of the TypedEventDomain interface exists that
can support all of the requested QoS property settings, an UnsupportedQoS
exception israised.

A list of name-value pairs that specify the initial administration properties for the
new domain. If no implementation of the TypedEventDomain interface exists
that can support the requested administration properties, an UnsupportedAdmin
exception is raised.

get_all_typed_domains
Returns alist of al the typed event domains that have been created by the factory.

& PRISMTECH

Event Domain Service

11.1 Interfaces

get_typed_event_domain

Uses a unique identifier to return the object reference to a typed event domain that
has been created by this factory. A DomainNotFound exception will be raised if no
typed event domain corresponding to the specified identifier exists.

161
& PRISMTECH Event Domain Service

11.1 Interfaces

162

Event Domain Service & PRISMTECH

CHAPTER

12 Supplemental Information

12.1 Quality of Service Properties

The OpenFusion implementation of the Event Domain Service currently supports
three different QoS properties, as described in Table 15.

Table 15 Event Domain Service QoS Properties

Property Description

CycleDetection When thisis set to ForbidCycles, thedomainraisesa
CycleCreationForbidden exception when attempting
to add a connection that will form a cycle.

When thisis set to AuthorizeCycles, the creation of
cycleswill be allowed and will not be flagged in any way.

Thedefault isauthorizeCycles.

DiamondDetection |Whenthisissetto ForbidDiamonds, the domain raises
aDiamondCreationForbidden exception when
attempting to add a connection that will form a diamond.

When thisis set to AuthorizeDiamonds, the creation of
diamonds will be allowed and will not be flagged in any
way.

The default isAuthorizeDiamonds.

EventTypesEnabled|When thisis set to true, the domain will enable
propagation of event type information. This means that
get offered typesandget subscription types
operations of the proxiesinvolved in a connection will be
invoked with the NONE_NOW_UPDATES ON Obtain mode.

When thisisset to false, event type callbacks will be
disabled by using the NONE NOW_UPDATES OFF obtain
mode.

The default value is true.

163

& PRISMTECH Event Domain Service

Administration Properties

12.2 AdministrationProperties

The OpenFusion implementation of the Event Domain Service supports a single
administration property, as described in Table 16.

Table 16 Event Domain Service Administration Setting

Property Description
DomainName | The name of adomain. This name must be unique within the
domain collection of asingle factory. A domain name may be
useful in some applications as an aternative to an integer domain
identifier.
Exceptions

The exceptions raised by the Event Domain Service are described in Table 17.
Table 17 Event Domain Service Exceptions

Exception Description
AlreadyExists Raised when trying to add a connection that
aready existsin the target domain. Also raised
when trying to create a connection where the
source and target channel are the same.
ChannelNotFound Raised when specifying a channel identifier

that does not correspond to a channel contained
in the target domain. Also raised when trying
to get atyped channel usingtheget channel
operation on an untyped event domain.

ConnectionNotFound

Raised when trying to get or remove a
connection that does not exist in the target
domain. Also raised when trying to get atyped
connection using the get connection
operation on an untyped event domain.

CycleCreationForbidden

Raised when the specified connection would
form acyclein the target domain. This
exception can only be raised when the
CycleDetection QOS has been set to
ForbidCycles.

164
Event Domain Service

& PRISMTECH

12.3 Exceptions

Table 17 Event Domain Service Exceptions (Continued)

Exception Description

DiamondCreationForbidden |Raised when the specified connection would
form adiamond in the target domain. This
exception can only be raised when the
DiamondDetection QOSisset to
ForbidDiamonds.

DomainNotFound Raised when specifying a domain identifier
that does not correspond to adomainin a
factory collection.

InterfaceNotSupported Raised when atyped connection isformed
between two channels and the specified
interface could not be supported by either the
source or target channel.

NoSuchImplementation Raised when a typed connection is formed
between two channels and neither channel
could find an implementation to support the
specified interface.

UnsupportedAdmin Raised when trying to create anew domain and
a specified administration property could not
be supported by the Event Domain Service.

UnsupportedQoS Raised when trying to create anew domain and
a specified QoS property could not be
supported by the Event Domain Service.

165

& PRISMTECH Event Domain Service

12.3 Exceptions

166

Event Domain Service & PRISMTECH

CONFIGURATION AND
MANAGEMENT

CHAPTER

Notification Service

Configuration

The configuration of Singleton properties specific to the Notification Service is
described in this section. These properties appear in the Administration Manager, a
graphical user interface (GUI) based administration tool included with the
OpenFusion Graphical Tools.

The Administration Manager can be used to set the Singleton properties. These
properties can also be set programatically, generally as described in the service
description sections.

Also, the configuration settings enable the Quality of Service and administration
properties to be customised when needed.

Details for configuring Persistence, Logging, CORBA, Java and System properties
for the Notification Service are described in the System Guide.

Some properties which are not implemented in the initial version 4 release of the
Notification Service are shown in the Administration Manager, but are read-only or
locked. These properties are not documented in this guide.

Common Properties

& PRISMTECH

Instances of some common properties are used by a number of different OpenFusion
CORBA Services interfaces and services. Settings for these property instances
appear in the Administration Manager’s Object Hierarchy for the service’s
Singleton node. This small group of properties are included in this section in order
to facilitate configuration of the service while using the Administration Manager.
These properties include:

* 10OR Name Service Entry
IOR URL

IOR File Name

» Resolve Name

IOR Name Service

169
Configuration and Management

13.2 NaotificationSingleton Configuration

NotificationSingleton Configuration

The Notification Singleton exists as a single object within a given instance of the
Notification Service providing the core service functionality

Persistence Properties

Enable Write Ahead Log

When the write-ahead log is enabled, information that is normally written to the
underlying database is written to a log file instead. When the log file reaches a
specific size (defined by the Write Ahead Log Maximum Size property), the database
is updated and the log file is reused. The location of the log file is defined by the
Write Ahead Log Directory property.

The write-ahead log may increase performance when persistent events are required,
particularly when events are being delivered quickly (when consumers are available

and responding quickly).
The write-ahead log is enabled when this property is set TRUE (checked).
Property Name DB.WAL
Property Type FIXED
Data Type BOOLEAN
Accessibility READ/WRITE
Mandatory NO
Write Ahead Log Directory

The directory used to contain write-ahead log files. This directory must be local to
the host running the service. The default locationis:

<INSTALL>/domains/<domain>/<node>/NotificationService/data

where <INSTALL> is the OpenFusion installation path. See the System Guide for
details of the domains directory structure.

Property Name DB.WAL.Dir
Property Type FIXED

Data Type DIRECTORY
Accessibility READ/WRITE
Mandatory YES

170

Configuration and Management & PRISMTECH

13.2 NatificationSingleton Configuration

13.2.1.0.3 Write Ahead Log Maximum Size

The maximum number of entries that can be stored in the write-ahead |og before
flushing (writing to the underlying database) takes place.

Property Name DB.WAL.MaxSize
Property Type STATIC

Data Type INTEGER
Accessibility READ/WRITE
Mandatory NO

13.2.1.0.4 Database Plugin Class

This property is used when a database plugin is available to OpenFusion to enhance
the event persistence mechanism. Leave this field blank when the plugin is not

available.

Property Name DB.Plugin
Property Type STATIC

Data Type STRING
Accessibility READ/WRITE
Mandatory NO

13.2.2 CORBA Properties

The General properties are useful for setting the start-up parameters of a
Notification Service Singleton object. These properties are al static and mainly read
-write. All these properties are optional, but can only be set prior to starting the
Notification Service Singleton.

13.2.2.0.1 IOR Name Service Entry
The Naming Service entry for the Singleton.

Property Name Object .Name
Property Type FIXED

Data Type STRING
Accessibility READ/WRITE
Mandatory NO

171

K4 PrismTec Configuration and Management

13.2.2.0.2

13.2 NaotificationSingleton Configuration

IOR URL

The IOR URL property specifies the location of an Interoperable Object Reference
(IOR) for the Service, using the Universal Resource Locator (URL) format. This
information is used when a client attempts to resolve a reference to the Service.
Some examples are:

file:/usr/users/openfusion/servers/NotificationService.ior
http://www.prismtech.com/of/servers/NotificationService.ior
corbaloc: :server.prismtech.com/NotificationService

OpenFusion supports URLs in Corbaloc, Corbaname, file, FTP and HTTP
URL formats, although some ORBs do not support all of these
mechanisms. Consult your ORB documentation for specific details.

Property Name IOR.URL
Property Type FIXED

Data Type URL
Accessibility READ/WRITE
Mandatory NO

13.2.2.0.3 10RFileName

The IOR File Name option specifies the name and location of the IOR file for the
Singleton. If this property is not set, the IOR file name will be:

<INSTALL>/domains/<domain>/<node>/<service>/<singleton>/<singletons>.

ior

where <INSTALL> is the OpenFusion installation path. See the System Guide for
details of the domains directory structure.

Property Name IOR.File
Property Type FIXED

Data Type FILE
Accessibility READ/WRITE
Mandatory NO

13.2.2.0.4 10R Name Sarvice

The name of the Naming Service which will be used to resolve the Singleton object.

Property Name IOR.Server
Property Type FIXED

Data Type STRING
Accessibility READ/WRITE
Mandatory NO

172
Configuration and Management

& PRISMTECH

13.2.2.0.5 ResolveName

The ORB Service resolution name used to resolve cals to the Singleton.

13.2 NatificationSingleton Configuration

Property Name ResolveName
Property Type FIXED

Data Type STRING
Accessibility READ/WRITE
Mandatory YES

13.2.3 Messaging Loggers

13.2.3.0.1 ServicelLogFileLocation

The location of the service log file. Each individual component logger (the
scheduler logger, the transaction manager logger, and so on) writes to the same
service log file. By default, thisis the same log file used at the Service level.

The default location of the servicelog fileis:

<INSTALL>/domains/OpenFusion/localhost/NotificationService/
log/NotificationService.log

Property Name logkit/targets/file/filename
Property Type FIXED

Data Type FILE

Accessibility READ/WRITE

Mandatory NO

13.2.3.0.2 ServiceLog File Format

The format for entriesin the service log file. The default format is:

${priority}

% {message}\n%

The same format is used by each component logger. This format overrides the

[${category}] %{time:yyyy-MM-dd' 'HH:mm:ss.SSS}
throwable}

format specified in the Log Pattern property at the Service level.

Property Name logkit/targets/file/format
Property Type FIXED

Data Type STRING

Accessibility READ/WRITE

Mandatory NO

&4 PRISMTECH

Configuration and Management

13.2.3.0.3 S All Loggers To

13.2 NaotificationSingleton Configuration

Each component of the Notification Service (the scheduler, the transaction manager,
and so on) hasits own individual logger. For convenience, every component logger
can be set to the same level using this property. Options are:

» Set all to Disable
Set all to Error

Set all to Warning
Set all to Information
Set all to Debug

* Set Individually

The default level is Set Individually.

For fine-grained control over logging, set this property to Set Individually. This
allows each individual logger to be configured using the individual properties on

this tab (described below).

Property Name GlobalSetting
Property Type FIXED

Data Type ENUM
Accessibility READ/WRITE
Mandatory NO

13.2.3.0.4 Scheduler Logger Leve

Thelogger level for the scheduler. Options are:

« Disable (0)

» Error (1)

» Warning (2)

* Information (3)

» Debug (4)

The default level is Warning.

Property Name logcategory/scheduler
Property Type FIXED

Data Type ENUM

Accessibility READ/WRITE

Mandatory NO

13.2.3.0.5 Role Manager Logger Leve

Thelogger level for the role manager. Options are:

174
Configuration and Management

& PRISMTECH

« Disable (0)

* Error (1)

* Warning (2)

« Information (3)
* Debug (4)

The default level isWarning.

13.2 NatificationSingleton Configuration

Property Name

logcategory/rolemanager

Property Type FIXED

Data Type ENUM
Accessibility READ/WRITE
Mandatory NO

13.2.3.0.6 JTOLogger Leve
Thelogger level for JTO. Options are:

« Disable (0)

* Error (1)

* Warning (2)

« Information (3)

» Debug (4)
The default level is Warning.
Property Name logcategory/jto
Property Type FIXED
Data Type ENUM
Accessibility READ/WRITE
Mandatory NO

13.2.3.0.7 Messenger Logger Leve
The logger level for the messenger. Options are;

&4 PRISMTECH

« Disable (0)

* Error (1)

* Warning (2)

« Information (3)
* Debug (4)

175
Configuration and Management

The default level is Warning.

13.2 NaotificationSingleton Configuration

Property Name logcategory/messenger
Property Type FIXED

Data Type ENUM

Accessibility READ/WRITE

Mandatory NO

13.2.3.0.8 ORB Logger Leve

The logger level for the ORB. Options are:

 Disable (0)

e Error (1)

* Warning (2)

* Information (3)

» Debug (4)

The default level is Warning.

Property Name logcategory/orb
Property Type FIXED

Data Type ENUM

Accessibility READ/WRITE
Mandatory NO

13.2.3.0.9 Transaction Manager Logger Leve
The logger level for the transaction manager. Options are:

 Disable (0)

e Error (1)

* Warning (2)

« Information (3)

» Debug (4)

The default level is Warning.

Property Name logcategory/transactionmanager
Property Type FIXED

Data Type ENUM

Accessibility READ/WRITE

Mandatory NO

176
Configuration and Management

& PRISMTECH

13.2.3.0.10 Blobstore Logger Leve

13.2.3.0.11 Sate Factory Logger Leve

13.2 NatificationSingleton Configuration

Thelogger level for the blobstore. Options are:

« Disable (0)
e Error (1)
e Warning (2)

« Information (3)

« Debug (4)

The default level isWarning.

Property Name

logcategory/blobstore

Property Type FIXED

Data Type ENUM
Accessibility READ/WRITE
Mandatory NO

The logger level for the state factory. Options are:

« Disable (0)
e Error (1)
e Warning (2)

« Information (3)

« Debug (4)

The default level isWarning.

Property Name

logcategory/statefactory

Property Type FIXED

Data Type ENUM
Accessibility READ/WRITE
Mandatory NO

13.2.3.0.12 Sate Machine Factory Logger Level
The logger level for the state machine factory. Options are:

&4 PRISMTECH

« Disable (0)
* Error (1)
* Warning (2)

« Information (3)

* Debug (4)

177
Configuration and Management

The default level is Warning.

13.2 NaotificationSingleton Configuration

Property Name logcategory/statemachinefactory
Property Type FIXED

Data Type ENUM

Accessibility READ/WRITE

Mandatory NO

13.2.3.0.13 Thread Pool Logger Level

The logger level for the thread pool. Options are:

 Disable (0)

e Error (1)

* Warning (2)

* Information (3)

» Debug (4)

The default level is Warning.

Property Name logcategory/threadpool
Property Type FIXED

Data Type ENUM

Accessibility READ/WRITE

Mandatory NO

13.2.3.0.14 Notification Service Logger Level

The logger level for the event channel factory (which is the root object of the
Notification Service). Options are:

« Disable (0)

» Error (1)

» Warning (2)

* Information (3)

» Debug (4)

The default level isWarning.

Property Name logcategory/ecfc
Property Type FIXED

Data Type ENUM

Accessibility READ/WRITE
Mandatory NO

178
Configuration and Management

& PRISMTECH

13.2 NatificationSingleton Configuration

13.2.3.0.15 Component Manager Logger Leve

The logger level for the component manager. Options are;
« Disable (0)

e Error (1)

e Warning (2)

« Information (3)

« Debug (4)

The default level isWarning.

Property Name logcategory/ecm
Property Type FIXED

Data Type ENUM

Accessibility READ/WRITE
Mandatory NO

13.2.3.0.16 Lock Set Factory Logger Leve

The logger level for the lock set factory. Options are:
« Disable (0)

* Error (1)

* Warning (2)

« Information (3)

* Debug (4)
The default level isWarning.

Property Name logcategory/locksetfactory
Property Type FIXED

Data Type ENUM

Accessibility READ/WRITE

Mandatory NO

13.2.4 Ingtrumentation Properties

&4 PRISMTECH

The interfaces for setting the instrumentation properties, as well as the datatypes for
values returned by the Process.getvalue () method of the CORBA pProcess
interface, are given below.

For information on managing instrumentation, including how to obtain the
associated property values using the pProcess.getvalue () method, please refer
to the System Guide.

179
Configuration and Management

Events Recaived

13.2 NaotificationSingleton Configuration

This property monitors the total number of all push events received by the
Notification Service during execution of the service. In other words, the count of
events sent by push suppliers via proxy push consumers.

Property Name EventsReceived
Property Type DYNAMIC

Data Type COUNTER
Accessibility READ ONLY
Mandatory NO

getValue() Return Type longlong

Number of Proxy Push Consumers

This property monitors the current number of structured proxy push consumersin

existence on the service.

Property Name

ProxyPushConsumers

Property Type DYNAMIC
Data Type COUNTER
Accessibility READ ONLY
Mandatory NO
getValue() Return Type longlong

Number of Structured Proxy Push Consumers
This property monitors the current number of structured proxy push consumersin

existence on the service.

Property Name

StructuredProxyPushConsumers

Property Type DYNAMIC
Data Type COUNTER
Accessibility READ ONLY
Mandatory NO
getValue() Return Type longlong

180
Configuration and Management

& PRISMTECH

13.2 NatificationSingleton Configuration

13.2.4.0.4 Number of Sequence Proxy Push Consumers
This property monitors the current number of sequence proxy push consumersin

existence on the service.

Property Name SequenceProxyPushConsumers
Property Type DYNAMIC

Data Type COUNTER

Accessibility READ ONLY

Mandatory NO

getValue() Return Type longlong

13.2.4.0.5 EventsDdivered

This property monitors the total number of all push events delivered by the
Notification Service during execution of the service. In other words, the count of
events received by push consumers via proxy push suppliers.

Property Name EventsDelivered
Property Type DYNAMIC

Data Type COUNTER
Accessibility READ ONLY
Mandatory NO

getValue() Return Type longlong

13.2.4.0.6 Number of Consumer Admins

This property monitors the current number of consumer admins in existence on the

service.

Property Name ConsumerAdmins
Property Type DYNAMIC

Data Type COUNTER
Accessibility READ ONLY
Mandatory NO

getValue() Return Type longlong

&4 PRISMTECH

181
Configuration and Management

Current Total of Eventsin Channds

13.2 NaotificationSingleton Configuration

This property monitors the total number of eventsin channels.

Property Name CurrentEvents
Property Type DYNAMIC

Data Type COUNTER
Accessibility READ ONLY
Mandatory NO

getValue() Return Type longlong

Current Totd of Events Awaiting Delivery

This property monitors the total number of events awaiting delivery. This count
givesthe current load on the Service.

Thisfigureis calculated as follows:
Events in queues + (Eventsin channel * Number of proxies)
Where:

» Events in queues is the number of events in the queues of al proxy suppliers
(events which the proxy suppliers have yet to send to their consumer clients).

» Eventsin channdl isthe number of eventsin the channel (events which are waiting
to be sent to proxy suppliers). This is the count returned by the Current Total of

Events in Channel property.

» Number of Proxiesisthe number of proxy suppliers.

Property Name EventsAwaitingDelivery
Property Type DYNAMIC

Data Type COUNTER

Accessibility READ ONLY

Mandatory NO

getValue() Return Type longlong

Number of Proxy Push Suppliers

This property monitors the current number of proxy push supplier objects in

existence on the service.

Property Name ProxyPushSuppliers
Property Type DYNAMIC
Data Type COUNTER

182
Configuration and Management

& PRISMTECH

13.2 NatificationSingleton Configuration

Accessibility READ ONLY
Mandatory NO
getValue() Return Type longlong

13.2.4.0.10 Number of Structured Proxy Push Suppliers
This property monitors the current number of structured proxy push supplier objects

in existence on the service.

Property Name StructuredProxyPushSuppliers
Property Type DYNAMIC

Data Type COUNTER

Accessibility READ ONLY

Mandatory NO

getValue() Return Type longlong

13.2.4.0.11 Number of Sequence Proxy Push Suppliers
This property monitors the current number of sequence proxy push supplier objects

in existence on the service.

Property Name SequenceProxyPushSuppliers
Property Type DYNAMIC

Data Type COUNTER

Accessibility READ ONLY

Mandatory NO

getValue() Return Type longlong

13.2.4.0.12 Reconnecting Consumers

This property monitors the current number of unavailable push consumer objectsin

existence on the service.

Property Name

ReconnectingConsumers

Property Type DYNAMIC
Data Type COUNTER
Accessibility READ ONLY
Mandatory NO
getValue() Return Type longlong

&4 PRISMTECH

183
Configuration and Management

13.2 NaotificationSingleton Configuration

13.2.4.0.13 Number of Supplier Admins
This property monitors the current number of Supplier Admin objects in existence

on the service.

Property Name SupplierAdmins
Property Type DYNAMC

Data Type COUNTER
Accessibility READ ONLY
Mandatory NO

getValue() Return Type longlong

13.2.4.0.14 Number of Event Channels

This property monitors the current number of Event Channel objectsin existence on

the service.
Property Name Channels
Property Type DYNAMIC
Data Type COUNTER
Accessibility READ ONLY
Mandatory NO
getValue() Return Type longlong

13.2.4.0.15 Number of Custom Filters Created

The number of custom filters that have been created using the filter factory since the

service was last started.

Property Name CustomFiltersCreated
Property Type DYNAMIC

Data Type COUNTER

Accessibility READ ONLY

Mandatory NO

getValue() Return Type longlong

13.2.4.0.16 Number of Attached Filters

The number of filters attached to the admins and proxies.

Property Name AttachedFilters
Property Type DYNAMIC
Data Type COUNTER

184
Configuration and Management

& PRISMTECH

13.2 NatificationSingleton Configuration

Accessibility READ ONLY
Mandatory NO
getValue() Return Type longlong

13.2.4.0.17 Number of Filters Added

The number of times afilter has been added to an admin or proxy.

Property Name FiltersAdded
Property Type DYNAMIC

Data Type COUNTER
Accessibility READ ONLY
Mandatory NO

getValue() Return Type longlong

13.2.4.0.18 Number of Sandard Filters Destroyed

The number of standard filters (that were created using the filter factory) that have

been destroyed since the service was last started.

Property Name

StandardFiltersDestroyed

Property Type DYNAMIC
Data Type COUNTER
Accessibility READ ONLY
Mandatory NO
getValue() Return Type longlong

13.2.4.0.19 Number of Standard Filters Created

The number of standard filters that have been created using the filter factory since

the service was last started.

Property Name

StandardFiltersCreated

Property Type DYNAMIC
Data Type COUNTER
Accessibility READ ONLY
Mandatory NO
getValue() Return Type longlong

&4 PRISMTECH

Configuration and Management

13.2 NaotificationSingleton Configuration

13.2.4.0.20 Number of Events Rejected by Filters
The number of events rejected by filters.

Property Name EventsFiltered
Property Type DYNAMIC

Data Type COUNTER
Accessibility READ ONLY
Mandatory NO

getValue() Return Type longlong

13.2.4.0.21 Number of Filters Removed

The number of times afilter has been removed from an admin or proxy.

Property Name FiltersRemoved
Property Type DYNAMIC

Data Type COUNTER
Accessibility READ ONLY
Mandatory NO

getValue() Return Type longlong

13.2.4.0.22 Number of Buffered Events

The total number of event buffered in the sequence proxy push suppliers.

Property Name BufferedEvents
Property Type DYNAMIC

Data Type COUNTER
Accessibility READ ONLY
Mandatory NO

getValue() Return Type longlong

13.2.4.0.23 Number of Events Received

The running total of eventsreceived from suppliers.

Property Name EventsReceived
Property Type DYNAMIC

Data Type COUNTER
Accessibility READ ONLY
Mandatory NO

getValue() Return Type longlong

186
Configuration and Management

& PRISMTECH

13.2 NatificationSingleton Configuration

13.2.4.0.24° Minimum Threadpool Size
The minimum number of threadsin the thread pool.

Property Name MinThreads
Property Type DYNAMIC
Data Type COUNTER
Accessibility READ ONLY
Mandatory NO
getValue() Return Type longlong

13.2.4.0.25 Number of Free Threadsin the Threadpool
The number of free threadsin the thread pool

Property Name FreeThreads
Property Type DYNAMIC
Data Type COUNTER
Accessibility READ ONLY
Mandatory NO

getValue() Return Type longlong

13.2.4.0.26 Number of Pending Jobs

The number of jobs that are pending execution.

Property Name PendingJobs
Property Type DYNAMIC
Data Type COUNTER
Accessibility READ ONLY
Mandatory NO

getValue() Return Type longlong

&4 PRISMTECH

187

Configuration and Management

13.2 NaotificationSingleton Configuration

13.2.4.0.27 Maximum Threadpool Size
The maximum number of threads in the thread pool.

Property Name MaxThreads
Property Type DYNAMIC
Data Type COUNTER
Accessibility READ ONLY
Mandatory NO
getValue() Return Type longlong

13.2.4.0.28 The Number of Working Threads
The number of threads in the thread pool that are executing jobs.

Property Name WorkingThreads
Property Type DYNAMIC

Data Type COUNTER
Accessibility READ ONLY
Mandatory NO

getValue() Return Type longlong

13.2.4.0.29 The Number of Current Threads
The number of threads currently in the thread pool.

Property Name CurrentThreads
Property Type DYNAMIC

Data Type COUNTER
Accessibility READ ONLY
Mandatory NO

getValue() Return Type longlong

Configuration and Management

& PRISMTECH

13.2 NatificationSingleton Configuration

General Properties

Maximum Queue Size

The maximum queue size of the event delivery manager. When the maximum queue
size is exceeded, events are removed from the queue, oldest first, if the
EventReliability QoS is set to BestEffort. In the case of Persistent, the events
are stored and re-sent when appropriate.

Property Name MaxQueueSize
Property Type STATIC
Data Type INTEGER
Accessibility READ/WRITE
Mandatory NO

M essaging

&4 PRISMTECH

JMX Ingrumentation: Start SUN HTML Adapter

Checkbox. If thisis true (checked), then the Sun HTML Adapter will be started
alongside the service. The Adapter runs for aslong as the notification service does.

The Sun HTML Adapter is a utility provided by Sun that allows JM X
instrumentation values to be examined via a web browser. It is provided as an
alternative to the Instrumentation panel for the Notification Singleton. To use the
adapter, specify the port on which it will be run (JMX Instrumentation: Port for Sun
HTML Adapter) and ensure it is started with the service (JMX Instrumentation: Start
SUN HTML Adapter). The adapter can be accessed by entering http://server:port in
aweb browser, where

 server isthe server on which the notification service is running and
* port isthe port selected for the adapter.

JMX Ingtrumentation: Port for Sun HTML Adapter

A numeric value which specifies which port the Sun HTML Adapter will run on.

JMX Instrumentation: Register Individual Objects

This is a checkbox: if set then the IMX instrumentation will be available on
individual objects (channels, admins and proxies). The Instrumentation panel for the
Notification Singleton will always display the total figures for the entire
Notification Service. However, these figures are derived from the objects within the
service: this control allows those objects to be registered individually when
examining using the Sun HTML Adapter, for example.

189
Configuration and Management

13.2 NaotificationSingleton Configuration

13.2.6.0.4 Lock Set Factory: Fairness Policy
Thefairness policy for the lock set factory. Options are:

- FIFO
. JVM

i Although JVM is shown as an option, it is not implemented in the initial version 4
release. FIFO will be used, regardless of which option is selected for this property.

Property Name components/LockSetFactory/fairness
Property Type FIXED

Data Type ENUM

Accessibility READ/WRITE

Mandatory NO

13.2.6.0.5 Thread Pool: Minimum Pool Size
The minimum pool size for the thread pool. The default is o (zero).

Property Name components/ThreadPool /pool-min
Property Type FIXED

Data Type INTEGER

Accessibility READ/WRITE

Mandatory NO

13.2.6.0.6 Thread Pool: Maximum Pool Size
The maximum size of the thread pool. The default is 20.

Property Name components/ThreadPool /pool -max
Property Type FIXED

Data Type INTEGER

Accessibility READ/WRITE

Mandatory NO

13.2.6.0.7 Thread Poal: Initial Pool Size

Theinitial size for the thread pool. The default is o (zero).

Property Name components/ThreadPool /pool-initial
Property Type FIXED

Data Type INTEGER

Accessibility READ/WRITE

Mandatory NO

190
Configuration and Management

& PRISMTECH

13.2 NatificationSingleton Configuration

13.2.6.0.8 Thread Pool: Thread Timeout

How long, in milliseconds, an idle thread remains in the pool before being
discarded. This controls how long an The default timeout is 1000 milliseconds (1
second).

Property Name components/ThreadPool/thread-timeout
Property Type FIXED

Data Type INTEGER

Accessibility READ/WRITE

Mandatory NO

13.2.6.0.9 Transaction Manager: Domain Timeout

The maximum time is allowed before a transaction times out, in milliseconds. The
default timeout is set to 0, which is an unlimited timeout. It is recommended that
this value is changed to reflect the specific needs of the system. For example,
moderately |oaded systems might use a value of 60000 (60 seconds); a heavily
loaded system needed a higher value or may even retain the default unlimited

timeout value.
Property Name components/TransactionManager/domain/
timeout
Property Type FIXED
Data Type INTEGER
Accessibility READ/WRITE
Mandatory NO

13.2.6.0.10 Event Database: Purge Rate

The threshold for the number of Delete Event records that can be written to the
database before a purge attempt will beinitiated. The default valueis 1000.

The purge involves a scan of the database to determine if records are eligible for
deleting. An event will be deleted if it has been received and acknowledged by all
the consumers who were expected to receiveit or if it was discarded by the service.

Property Name components/EventDatabase/purgerate
Property Type STATIC

Data Type INTEGER

Accessibility READ/WRITE

Mandatory YES

&4 PRISMTECH

191
Configuration and Management

13.3 ProcessSingleton Configuration

13.2.6.0.11 Event Database: Maximum Purge Memory

The maximum amount of memory the purge algorithm is allowed to use for storing
records in memory during processing, expressed in Kb. The default valueis s000.

The purge algorithm attempts to match Store records with Delete records for a
specific event and will continue to read records until a match is made or the size of
the temporary collection in memory reaches the size set by this property. When this
memory threshold is reached, al the records currently in memory are processed and
any outstanding records are written to the end of the datafiles for future processing.

Property Name components/EventDatabase/
maxpurgememory

Property Type STATIC

Data Type INTEGER

Accessibility READ/WRITE

Mandatory YES

13.2.6.0.12 Journd: Guaranteed Synchronisation

If set to true, this property forces the Journal to synchronize the disk file with the
Journal file stream when event records are written. If false, thereis no guarantee
that event records will be written to disk (the synchronization will be determined by
the VM).

The default value of this property is false.

Property Name components/Journal /guaranteedsyncing
Property Type STATIC

Data Type BOOLEAN

Accessibility READ/WRITE

Mandatory YES

13.3 ProcessSingleton Configuration
13.3.0.0.1 IOR Name Service Entry

The Naming Service entry for the Singleton.

Property Name Object .Name
Property Type FIXED

Data Type STRING
Accessibility READ/WRITE
Mandatory NO

192
Configuration and Management

& PRISMTECH

13.3.0.0.2

13.3 ProcessSingleton Configuration

IOR URL

The IOR URL property specifies the location of an Interoperable Object Reference
(IOR) for the Service, using the Universal Resource Locator (URL) format. This
information is used when a client attempts to resolve a reference to the Service.
Currently only http and file URL s are supported, for example:

file:/usr/users/openfusion/ProcessSingleton.ior

http://www.prismtech.com/openfusion/ProcessSingleton.ior

Property Name IOR.URL
Property Type FIXED

Data Type URL
Accessibility READ/WRITE
Mandatory NO

13.3.0.0.3 I0ORFileName

The IOR File Name option specifies the name and location of the IOR file for the
Singleton. If this property is not set, the IOR file name will be:

<INSTALL>/domains/<domain>/<node>/<service>/<singleton>/<singletons.

10r

where <INSTALL> is the OpenFusion installation path. See the System Guide for
details of the domains directory structure.

Property Name IOR.File
Property Type FIXED

Data Type FILE
Accessibility READ/WRITE
Mandatory NO

13.3.0.0.4 10OR Name Service

The name of the Naming Service which will be used to resolve the Singleton object.

Property Name IOR.Server
Property Type FIXED

Data Type STRING
Accessibility READ/WRITE
Mandatory NO

&4 PRISMTECH

193
Configuration and Management

13.3 ProcessSingleton Configuration

194

Configuration and Management & PRISMTECH

CHAPTER

14 Notification Service Manager

The Notification Service browser acts as a window on to the functioning processes
of the service. The Notification Service Manager enables devel opers to create Event
Channels, Admin Objects, and Proxy Objects. A useful feature of the Notification
Service Manager isits use in verifying new Notification-Service-based clients.

The Notification Singleton object acts as the base process for a single instance of
the OpenFusion Notification Service. The Notification Service Manager is invoked
by right-clicking on the Notification Sngleton of a running Notification Service in
the Administration Manager.

14.1 Usingthe Notification Service Manager

Start the Notification Service Manager from the command line with the following
command:

)

% run com.prismt.cos.treebrowser.notification.
NotificationServiceBrowser -name NotificationService

The Structured Consumer Manager can be started with the following command:

% run com.prismt.cos.CosNotification.util.Consumer
-name NotificationService

The Structured Supplier Manager can be started with the following command:

% run com.prismt.cos.CosNotification.util.Supplier
-name NotificationService

The Notification Service must be running before any of the Managers can be started.

14.1.1 TheNotification Service M anager

& PRISMTECH

The Notification Service Manager displaysinformation about the channels that have
been created by an EventChannelFactory object. When the manager isfirst run,
and providing no developers have created Event Channels programmatically, the
manager will display the default service EventChannelFactory object, below the
Notification Serviceicon itself (Figure 20).

195
Configuration and Management

14.1 Using theNatification Service Manager

If the ChannelConfigurator Object is present, a saved configuration may be loaded.

[Administration Manager | Notification Service Manager |

& MNotification Service 0
@ [Event Channel Factory
o] Q 0- IDLomg.orgfCosMotifkChannelAdmin/EventChannel: 1.0
& [Supplier Admins
& (&3] Consumer Admins

There is ho information to display

Figure 20 Notification Service M anager

Notification Service Hierarchy

The left-hand pane of the Notification Service browser displays the Notification
Service object hierarchy. Theicons used in the Notification Service object hierarchy
are shownin Table 18.

Table 18 Notification Service Nodes

Icon Object
Event Channel Factory

By Theroot node. Also used to show the Defaultl Filter
Factory parent node and for Filter Factory objects.
Channel

Shows the unique identification number and the
name of the channel interface.

2!

Supplier Admins

e Parent node for all supplier admins.
Consumer Admins
& Parent Node for all consumer admins.

Supplier Admin

. Shows the unigue identification number and the
name of the supplier admin interface.

196

Configuration and Management & PRISMTECH

14.1 Using the Notification Service Manager

Table 18 Notification Service Nodes (Continued)

Icon Object

Consumer Admin

% Shows the unique identification number and the
name of the consumer admin interface.

Filters
Parent node for event filters.

Proxy Push Suppliers
] Parent Node for Proxy Suppliers.

Proxy Push Consumers
e Parent node for Proxy Consumers.

Proxy Push Supplier

" Shows the unique identification number and the
o name of the proxy interface.

Proxy Push Consumer

) Shows the unique identification number and the
} name of the proxy interface.

Notification Service Details

Theright hand pane will display the details of the individual objectsin the hierarchy
when they are selected. If no node is selected, or if a node which has no associated
details is selected, this box will be empty and contain the message There is no
information to display.

Setting up an Event Channdl

The core component of the Notification Service is the Event Channel. The Event
Channel handles the transmission of events over the distributed network provided
by the ORB implementation being used.

Creating an Event Channel

Sep 1: To create an Event channel, right-click on the Event Channel Factory node in the
hierarchy pane of the browser and select Create Channel.

197

K4 PrismTec Configuration and Management

14.1 Using theNatification Service Manager

Sep 2: A new Event Channel instance will be created. If the Event Channel is selected in
the hierarchy pane, the details about its ID and Class name are displayed at the top,
and a tabbed pane with the current Admin and QoS properties and their values are

shown. Details about Event Channel properties are described next.

Setting Propertieson an Event Channel

Default properties can be set for an Event Channel. This enables the user to specify
how the channel will respond to the events it receives. There are two types of

property: Admin properties and QoS properties.

Admin Property Settings
Administrative properties refer to property settings that may be applied only to event
channel objects. These properties are usually set when an event channel is first
created. These settings are typically static in nature although they may be changed
during the lifetime of the channel object. The standard administrative properties

which can be set through the Notification Service Manager are:

* MaxQueuelLength

MaxConsumers

MaxSuppliers
RejectNewEvents

See Administrative Properties on page 137 for a description of these properties.

QoS Property Settings
The QoS properties which can be set on a event channel through the Notification
Service Manager are:

198

ConnectionReliability
EventReliability
MaxEventsPerConsumer
MaxReconnectAttempts
MaximumBatchSize
OrderPolicy
Pacinginterval

Priority
Reconnectinterval
Timeout
AutoSequenceBatchSize
AutoSequenceTimeout
PropagateQoS

Configuration and Management

& PRISMTECH

14.1 Using the Notification Service Manager

See Section 5.1, Quality of Service Properties, on page 117 for a description of these
properties.

Setting up a Supplier or Consumer Admin

A supplier admin is a representation of a SsupplieraAdmin object created by a
particular event channel. A consumer admin is a representation of a
ConsumerAdmin Object created by a particular event channel. Every channel is
created with a default supplierAdmin and ConsumerAdmin Object, which are
given IDs of zero. To view these, expand the tree in the left pane. You should see a
similar structure to that shown in Figure 21.

& Motification Service
@ [y Event Channel Factory
@ £ 0- IDLomg.orgfCoshotifyChannelsdmin/EventChannal:1.0
@ sSupplier Admins
@ 0 - IDLomy.org/CosMotiyChannelAdmindSupplieradmin:1.0
% (8] Consumer Adming
& 2 0- IDL:omg.org/CosMatifChannelAdminiCongumaradrmin:t .0

Figure21 Supplier and Consumer Admins
If the user selects either of the default Supplier or Consumer Admin objectsin the
hierarchy, then the right panel will display details about these. At the top of the pane
there is information about the object selected: its ID, Class, Channel and its default
filter operator OR. Beneath thisis atabbed panel. One tab displays the QoS Settings
associated with the object, and the other tab displays Subscribed Types (for a
Consumer Admin) or Offered Types (for a Supplier Admin).

QoS Settings

&4 PRISMTECH

The following QoS properties can be set for SupplierAdmin and ConsumerAdmin
objects:

 ConnectionReliability (Consumer Admin only)

¢ MaxEventsPerConsumer (Consumer Admin only)

199
Configuration and Management

200

14.1 Using theNatification Service Manager

» MaxReconnectAttempts (Consumer Admin only)
* MaximumBatchSize (Consumer Admin only)

* OrderPolicy (Consumer Admin only)

* Pacinginterval (Consumer Admin only)

* Priority

* Reconnectinterval (Consumer Admin only)

» Timeout

» AutoSeguenceBatchSize

» AutoSeguenceTimeout

See Section 5.1, Quality of Service Properties, on page 117 for a description of these
properties.

Admin Filters

Administration objects and all of the proxy objects in the Notification Service
inherit the Fi1teradmin interface. This means that all of these objects can have
filters attached. Each object which can have filters attached contains a child node,
Filters. The Filters node contains children that represent the individual filters that
have been created for that object.

Filter Settings

One use of filtersisto narrow the sorts of events received by Consumer objects.
This is done by applying constraints to Supplier and Consumer Admin objects.
These constraints can be specified by using the extended Trader Constraint
Language (TCL). To locate the Filter section beneath the Supplier and Consumer
Admin objects, expand the hierarchies below each. The Notification Browser should
look like that in Figure 22.

& PRISMTECH

Configuration and Management

14.1 Using the Notification Service Manager

cﬂ!ﬂ Matification Service
@ By BEvent Channel Factory
o ﬁ 0 - 1IDL.omg. orgfCoskotifyChannelddminEventChannel: 1.0
c] Supplier Admins
@ @5 0 - IDL:omg. orgfCoskotiffChannelAdminfSupplierAdmin:t .0
Filters
Proxy Push Consurmers
% [Consumer Admins

@ @ 0 - IDL:omg.orgfCoskotifChannelAdminfConsumerAdmin: 1.0
Filters
Proxy Push Suppliers

Figure 22 Filters

Custom Filters

A custom filter is afilter which is not based on the standard grammar (TCL)
but is created via a custom filter implementation class. This class must
implement the Filteroperations interface and must be available on the
CLASSPATH. The class must be specified when the filter is created, as
described in the following section.

Creating aNew Filter

Sep 1: To create a new filter object, right-click on the Filters icon in the hierarchy tree
beneath either the Admin or Proxy object. Select the option Add Filter from the
pop-up menu. The Add Filter dialog is displayed, as shown in Figure 23.

201
K4 PrismTec Configuration and Management

E Fitter Grammar or Class Name:

14.1 Using theNatification Service Manager

To create 3 standard filter, zelect one of the standard grammars from the list.
To create a custormn filter, enter the name of the filter implementation class.

EXTENDED _TCL|

0K

Cancel

Figure23 Add Filter
Sep 2: Select the required filter grammar from the drop-down

list (currently,

EXTENDED TCL iSthe only available option). Or, if a custom filter is required, type

the name of the custom filter implementation class into the text box.

Sep 3: Click the OK button.

Sep 4: A new filter object line will appear in the hierarchy. Select thisline to view thefilter
details in the right-hand pane. See Figure 24.

202
Configuration and Management

& PRISMTECH

14.1 Using the Notification Service Manager

Filter:
1D: 1
Class: IDL:omg.orgiCosNotifyFilter Filter:1.0
Grammar: EXTEMDED_TCL
Constraints |
rConstraints rConstraint Details
rGeneral Information
rFuent Types:
Damain Mame Type Mame
(|
Add
Remove |
-
Remove All
Save

Figure24 Filter Details
At thetop of thisfilter is a pane containing thefilter ID, the IDL Class on which the
filter is based, and the Grammar with which it will be constructed. Below thisis a
split panel. To the left is a pane where any number of filter constraints can be added
and removed. To the right is another pane with the details of the constraint currently
selected in the | eft pane.

i If afilter is based on a custom filter implementation class which does not support
constraints, the constraint-related controls (Add, Remove) will be disabled.

Adding a Congtraint

Step 1: Add anew constraint by clicking the Add button in the left pane. This displays the
Add Constraint dialog, as shown in Figure 25.

203

K4 PrismTec Configuration and Management

204

Step 2:
Sep 3

14.1 Using theNatification Service Manager

E rConstraint Details
rGeneral Information
rEvent Types
Domain Mame Type NMame
s
- |
| Add H Remowve |
| oK || Cancel ‘

Figure25 Add Constraint

Each constraint is automatically assigned an ID number. When the constraint isfirst
added, the ID text box will be blank.

Constraint expressions are added using the Expression field and the Event Types
table. Steps 2, 3, and 4 illustrate this using the following constraint expression as an
example:

(($domain type == ’'Telecommunications’ and
Stype name == ’'CommunicationsAlarm’) or
Sdomain type == ‘Healthcare’ and
Stype name == ‘VitalSigns’)) and severity == 3

This expression could be added directly into the Expression text box. However it is
easier to add the domain and type names of the events into the Event Types table.

Enter the expression severity == 3 into the Expression text box.

Click the Add button below the Event Types table. A new row will now appear in
the table. Enter Telecommunications into the Domain Name column and
CommunicationsAlarm into the Type Name column.

& PRISMTECH

Configuration and Management

Sep 4

Sep 5:
Sep 6:

14.1 Using the Notification Service Manager

Click the Add button below the Event Types table and enter Healthcare and
VitalSigns into the Domain Name and Type Name columns.

Click the OK button once the full constraint expression has been entered.

To complete the process of adding a constraint, click the Save button in the
Constraints panel. The constraint will now be stored.

Removing aFilter

To remove afilter object, right-click on the Filters icon in the hierarchy tree beneath
the required Supplier or Consumer Admin object. Select Destroy Filter from the
pop-up menu. A warning dialog will appear to confirm that the filter will now be
destroyed and removed from the hierarchy tree.

Removing a Congtraint

Sep 1:

Sep 2

To remove a constraint, select the constraint in the Constraints list.

Click the Remove button below it. The constraint will now disappear from the list.
Click the Remove All button to remove al constraints from the filter.

Setting Proxy Instances

&4 PRISMTECH

Supplier and Consumer Proxy objects are shown in the Notification Service
Browser beneath Proxy Nodes in the hierarchy panel. See Figure 26. A Notification
Service may have one or more Proxy instances. These Proxy instances are created
using the Supplier or Consumer Admin interfaces.

Proxy instances are used to connect suppliers and consumers to the Event Channel.
A supplier connects via a Proxy Consumer, which is obtained from a Supplier
Admin. A consumer connects via a Proxy Supplier, which is obtained from a
Consumer Admin.

205
Configuration and Management

14.1 Using theNatification Service Manager

@ Motification Service
@ By Event Channel Factory
@ ﬁ 0- IDLomg.orgiCoskotifChannelAdminiBventChannel 1.0
@ Supplier Admins

Filters
Proxy Push Consumers
@ Consumer Admins

Filters
Proxy Push Suppliers

] @g 0- IDL:omg. orgiCoskotifvChannelAdminfSupplierddmin:1.0

o @ 0 - 1IDL.omy. orgfCoskotifyChanneldAdminfConsumerddmin:t .0

Figure 26 Proxy Objects

QoS Settings
The QoS properties which can be set on a Proxy object through the Notification
Service Manager are:

ConnectionReliability
DisconnectCallback
MaxEventsPerConsumer
MaxReconnectAttempts
MaximumBatchSize
Pacinginterval

Priority
Reconnectinterval
Timeout
AutoSequenceBatchSize

AutoSequenceTimeout

Some of these Qos properties are not available for all types of Proxy object.

See Section 4.1, Quality of Service Properties, on page 67 for a description of these
properties.

206

Configuration and Management

& PRISMTECH

14.1 Using the Notification Service Manager

Creating a New Proxy Object

Sep 1:

Step 2:

Step 3:
Sep 4.

Supplier Admin objects are used to create proxy consumer objects for Supplier
clients. Consumer Admin objects are used to create proxy supplier objects for
Consumer clients.

To create a new Proxy Object, select the relevant node in the Natification browser
hierarchy pane:

 Proxy Push Supplier
 Proxy Push Consumer

Right-click on the linein the hierarchy tree and select the Obtain New Proxy option
from the pop-up menu.

Select the Client Type from the list box: Structured, or Sequence.

Click the OK button to create the proxy. A new proxy instance will appear in the tree
below the node.

Proxy Filters

Proxy objects like Admin objects can have filter objects associated with them.
Applying filtersto Proxy objects in the Notification Browser is essentially the same
process as applying them to Admin objects. Refer to the section Filter Settings on
page 200 for details.

Upon receipt of each event, the Proxy invokes the appropriate match operation on
each of its associated filter objects. The match operation takes the contents of the
event as input and returns a boolean result. A FALSE value is returned only when
none of the constraints in the filter objects are satisfied by the event, otherwise
TRUE is returned. Where the Proxy has multiple filter objects associated with it, it
will invoke match on each in turn until either one returns TRUE or all have returned
FALSE. Whenever the result of all match operations evaluates FAL SE, then the
event is discarded.

Testing Event Ddlivery

&4 PRISMTECH

The Notification Browser provides facilities for testing the communication between
objectsin the Notification Service. Once Event Channels are available, the user can
configure and create events and send them using built-in Structured Supplier and
Consumer clients.

To use the event delivery test clients, the Notification Service requires the following
objects to be configured and available.

* An Event Channel object. Refer to Creating an Event Channel on page 197.

e Two Event Channel Admin objects. Default Supplier and Consumer Admin
objects will always be available when the Event Channel is created, so thereis no
need to create any more unless the user wishes to do this.

207
Configuration and Management

208

14.1 Using theNatification Service Manager

Creating the Test Clients
Once the Notification Service is running and configured correctly, the clients can be
created.

* Right click on the NatificationSingleton in the Administration Manager’s Object
Hierarchy and select Notification Structured Supplier Manager from the pop-up
menu. A new Sructured Supplier Manager will appear as a new tab in the
browser framework.

* Right click on the NotificationSingleton in the Administration Manager’s Object
Hierarchy and select Notification Structured Consumer Manager from the
pop-up menu. A new Sructured Consumer Manager will appear as a new tab in
the browser framework.

Configuring the Test Clients

Configuring the Structured Supplier
Figure 27 shows the Structured Supplier Manager. The manager is split into two
panes; the Satus pane and the Events pane. The Status pane displays information
about the current status of the supplier connection through its proxy and admin
objects. The Events pane shows the events being transmitted by the supplier.

The Events pane can be cleared by right clicking on the window and selecting the
Clear option from the pop-up menu.

fndminiMratiun Manager ermcatiun Senice Manager |/Stru-::tured Supplier
rstatus

Resalved Motification Service. .

rEvents:

Figure27 Sructured Supplier Manager

& PRISMTECH

Configuration and Management

14.1 Using the Notification Service Manager

Configuring the Structured Consumer

Figure 28 shows the Structured Consumer Manager. The manager is split into two
panes; the Status pane and the Events pane. The Status pane displays information
about the current status of the consumer connection through its proxy and admin
objects. The Events pane shows the events being received by the consumer.

The Events pane can be cleared by right clicking on the window and selecting the
Clear option from the pop-up menu.

fndminimratiun Manager |/Nm'rﬁ-::atinn Senice Manager |/Stru-::tured Consumer |
ratatus

Resalved Motification Service...

rEvents

Figure 28 Sructured Consumer M anager

The textual representations of events sent and received by the Test Client GUIs will
take up space in memory while they are displayed (as all text does within any text
pane). The user should be aware that this could potentially cause memory
exhaustion in the Administration Manager process if messages are sent or received
over extended periods.

Connecting the Structured Supplier

Sep 1:

Sep 2

&4 PRISMTECH

When the Structured Supplier Manager is invoked, the Structured Supplier client
resolves the Notification Service.

Connect the Structured Supplier to the Notification Service by clicking on the
Connect Supplier icon in the tool bar. You will then be prompted to select the
identifier of the Event Channel and Supplier Admin. If there is more than one Event
Channel or more than one Supplier Admin available then you can select the
appropriate identifiers from the drop-down lists.

Select a Channel and Admin and click OK. The Structured Supplier client will now
be connected to the Notification Service and will create a proxy automatically.

209
Configuration and Management

14.1 Using theNatification Service Manager

Connecting the Structured Consumer

When the Structured Consumer Manager isinvoked, the Structured Consumer client
resolves the Notification Service.

Step 1: Connect the Structured Consumer to the Notification Service by clicking on the
Connect Consumer icon in the tool bar. You will then be prompted to select the
identifier of the Event Channel and Consumer Admin. If there is more than one
Event Channel or more than one Consumer Admin available then you can select the
appropriate identifiers from the drop-down lists.

Sep 2: Select a Channel and Admin and click on OK. The Structured Consumer client will
now be connected to the Notification Service and will create a proxy.

Cresting Test Events
The final stage of configuration isto create events to transmit over the Notification
Service.

Sep 1. Click on the Structured Supplier Manager tab in the browser, and click on the
Configure Events tool bar button. The Configure Events dialog box is displayed, as
shown in Figure 29.

¥ Configure Events
E —+Event Sequence
Domain | Type | Marme | Data
Add...
rEvent Communication
Mumber of loops: 1]
Event interval (ms): 0
| Load... | | Save... | | OK ‘ ‘ Cancel

Figure 29 Configure Events Dialog Box
The Configure Events dialog is separated into two panes. The Event Sequence
contains a list of the events to be transmitted. The Event Communication allows the
user to configure the event transmission mechanism. The Number of Loops field

210

Configuration and Management & PRISMTECH

Step 2:

Step 3:

&4 PRISMTECH

14.1 UsingtheNotification Service Manager

expects an integer for the number of times that the batch of events in the Event
Sequence table will be transmitted across the Event Channel. In normal
circumstances events are usually transmitted once only, but for testing purposes this
can beincreased. The Event Interval field allows the user to specify, in milliseconds,
the interval between the transmission of the event batches listed in the Event
Sequence table.

Enter the value of 10 into the Number of Loops field and 100 into the Event Interval
field. This will instruct the Notification Service to transmit the event sequence ten
times, at intervals of one every one tenth of a second.

Click the Add button in the Event Sequence pane. This gives a dialog box for
creating structured events, shown in Figure 30.

211
Configuration and Management

14.1 Using theNatification Service Manager

¥ Configure Event

rFixed Header

Domain: |
Twpe:
Hame:

~variahle Header

Marme Yallue

Add... Edit... Remove Validate...

rFilterable Bodhy

Marme Yallue

Add... Edit... Remowve Repository

rRemaining Body:

Type: null
Value:

Set...

OK Cancel

Figure 30 Configure Event Dialog Box
Sep 4: Enter Healthcare into the Domain field of the Fixed Header section, and
VitalSigns into the Type field. Enter an identifier for the Event instance (for
example, my vital signs_event 1).
212

Configuration and Management & PRISMTECH

14.1 Using the Notification Service Manager

Sep 5: Click the Add button in the Filterable Body section of the dialog. Enter the property
severity into the Name field and switch the data type to short in the Type field.
Finally set the value to 3 in the Value field. Click OK. The Filterable Body will now
contain the new property.

Sep 6: Click OK to load the event into the Event Sequence table of the Configure Events
dialog.

Step 7: Repeat step 3 through step 6 as before, but give this event a different identifier and
set the severity to 4.

Step 8: To save aconfigured event sequence for use at alater date, click the Save button. To
load events select the Load button and load a previously saved file. For this exercise
click on OK.

Transmitting Test Events

Sep 1. To begin transmitting the events, click the Send Events button on the tool bar.

Sep 2: If you examine the Structured Supplier Manager you should notice the events being
transmitted in the Events pane.

Sep 3: If you switch to the tab of the Structured Consumer Manager you will notice the
events being received in the Events window.

Filter Events
The next example will demonstrate the use of filters on event transmission.

Sep 1: Select the Notification Service Manager window and create a new Filter object on
the Supplier Admin object.

Step 2: Create anew constraint.

Step 3: Add the expression $severity != 3, and add the domain Healthcare and type
VitalSigns to the Event Types table. This will create a filter to accept only
Healthcare/Mital Signs events whose severity is not equal (!=) to 3. Property
variables in constraint expressions must always be preceded by the $ sign.

Sep 4: Clear the Events panesin the Structured Supplier and Consumer Manager windows
and click the Send Events button again.

Sep 5: Examine the Events pane in the Structured Supplier Manager. Both events are
transmitted to the Event Channel.

Sep 6: Now examine the Events pane in the Structured Consumer Manager. You should
notice that only the event with severity==4 is being received by the Consumer
client. The event with severity==3 isfiltered out due to the constraint created on
the Supplier Adminin step 3.

& PRISMTECH 213

Configuration and Management

14.1 Using theNatification Service Manager

Destroying Proxy Objects
Proxy objects are destroyed if the Disconnect button is clicked or if the browser is
closed.

214

Configuration and Management & PRISMTECH

CHAPTER

15 Channel Configurator Tool

The Channel Configurator tool is a Java Object which is used with the Notification
Service to help manage channel configurations. The configuration of Notification
Service channels can be saved and used to re-initialise the Notification Service
when it is restarted. The Service can therefore be stopped and started without the
added overhead of recreating all the channels.

The Channel Configurator can perform the following functions:
» Save the Notification Service channel configuration into an XML file.

 Load an existing channel configuration into the Notification Service froman XML
file.

15.1 ChanndConfigurator Object Configuration

The Channel ConfigurationObject Java Object must be added to the Notification
Service before the Channel Configurator tool can be used. Adding Java Objects to a
Service is described in the System Guide.

Once the Channel ConfigurationObject has been added to the Service, the following
properties must be configured before the Notification Serviceis restarted.
15.1.0.0.1 NotificationServiceName

The name of the Notification Service that the Channel Configurator tool will
run on. The default value is NotificationService.

Property Name NotificationServiceName
Property Type DYNAMIC
Data Type STRING
Accessibility READ/WRITE
Mandatory YES
& PRISMTECH 215

Configuration and Management

15.2 Using the Channel Configurator Tool

NameServiceName
The name of the Naming Service that the Channel Configurator tool will bind
objects to.
Property Name NameServiceName
Property Type DYNAMIC
Data Type STRING
Accessibility READ/WRITE
Mandatory NO

Channel Configuration URL

The URL of the XML file containing the channel configuration information. This
property is mandatory but does not have a default value, so a value must be entered
before the Notification Service can be started.

Property Name ChannelConfigurationURL
Property Type DYNAMIC

Data Type STRING

Accessibility READ/WRITE

Mandatory YES

Using the ChannelConfigurator Tool

When the Notification Service is started, the Channel Configurator tool will
automatically attempt to load channel configurations from the XML file pointed to
by the Channel Configuration URL property. If the file cannot be located, the Service
will start with no channels configured.

Thetool will attempt to resolve each object described in the XML file, according to

the following rules:

1. If the XML file contains an ID number (1D element), the tool will load the

object described by the ID.

2. If the XML file contains an IOR string (1or element), the tool will load the

object described by the string.

3. If the XML file containsan IOR URL (10rR_URL element), the tool will load the

object pointed to by the URL.

4. If the XML file contains a Naming Service entry (NS_Entry element) and the
object can be resolved in the Naming Service, the tool will load that object.

216
Configuration and Management

& PRISMTECH

&4 PRISMTECH

15.2 Using the Channel Configurator Tool

5. If the XML file contains a Naming Service entry (NS_Entry element) but the
object cannot be resolved, the tool will create a new object and register it in the
Naming Service with the name specified by thens Entry element.

These rules are evaluated in the order given. So if all three elements exist for an
object, the object will be resolved from the IOR string and the other elements will
not be evaluated.

If the tool cannot resolve an object from any of these elements, it will create a new
object.

From version 2.5.3 onwards, only the 1D element is used. The other elements (Tor,
IOR_URL, and NS_Entry) are still checked, but thisis only for compatibility with
files created by earlier versions (which did not have the 1D element). It is suggested
that older XML files are re-saved in the current version in order to update their
structure.

When the channel configurator writes the time-related QoS property values
(MaxInactivityInterval, PacingInterval, ReconnectInterval,
ThreadIdleTime and Timeout) to the XML file, it changes the units from 100
nanoseconds to milliseconds. When the configurator reads in the XML file to
recreate the service configuration, it will convert the values back to 100ns units.

217
Configuration and Management

15.3 Running fromthe CommandLine

Saving a Channd Configuration

To save the Notification Service’'s current channel configuration, open the
Notification Service Manager. Right-click on the root node of the Notification
Service hierarchy and select Save Channel Configuration from the pop-up menu, as

shown in Figure 31.

lﬁ Mlotification Service

@ [y Event Channel
& £ 0- IDLprisn
@ £ 1-1DLprisn
& L 2- IDL:pris

Save Channel Configuration
Refresh Current Node
Diagnostic Information

CORBA Ohject Browser
Notification Service Manager

nExtensionsfGueue:1.0
nExtensionsfGueue:1.0
nExtensionsiciueue:1.0

Figure 31 Saving Channel Configuration
A Save diaog box is displayed. Select the directory and file name for the XML file.
Thefile should be given an . xML extension.
If the specified XML file already exists, it will be overwritten by the new file.

& If the file name and location do not match that specified by the Channel
Configuration URL property, then the Notification Service will not beinitialised with
the saved configuration the next time it is started.

Running from the Command Line
To load a saved channel configuration into the Notification Service:

o\

run com.prismt.cos.CosNotification.tools.config.ChannelConfigurator:

-load <URL> <NotificationService> <NamingService>

To save the current channel configuration of the Notification Service to an XML

file:

o°

run com.prismt.cos.CosNotification.tools.config.ChannelConfigurator:

-save <URL> <NotificationService>

218
Configuration and Management

& PRISMTECH

15.3 Running fromthe Command Line

Where:

<URL> isthe URL of the XML configuration file.
<NotificationServices isthe Notification Service resolve name.
<NamingServices isthe Naming Service resolve name.

219
K4 PrismTec Configuration and Management

15.3 Running fromthe CommandLine

220

Configuration and Management & PRISMTECH

INDEX

| nd ex

Adding

anEventType. it 92

Constraintsccooiiviinnnn.. 203
AdminObjects 17
Admin Properties. 198
Administration Interfaces. 64
Administration Properties

DomainName 164
Blobstore Logger Level (property).......... 177
Channel

Configurationcou... 215
Channel Configuration URL (property). 216
Channel graphs. 126
Channel Management

TypedEventDomain 140

Untyped Event Domain 140
Channel ConfigurationURL (property). 216
ChannelConfigurator 196, 215
ChannelNotFound Exception. 164
Channels. 196
Channels (property) ...t 184
Client Connection

TypedEventDomain 148

Untyped Event Domain 142
Component

Connection ...t 12

Creation.oiiiiii i 12

Component Manager Logger Level (property) 179

components/EventDatabase/maxpurgememory
(property). ..o 192

components/Journal/guaranteedsyncing (property)
192

components/L ockSetFactory/fairness (property) . .
190

& PRISMTECH

AlreadyExists Exception 164
API Definitions 151
AuthorizeCycles. 163
AuthorizeDiamonds. 163

AutoSequenceBatchSize (QoS property). . 75, 198
AutoSequenceTimeout (QoS property) . . . 75, 198
AULO-SEQUENCING. . .« o v et 23

components/ThreadPool/pool-initial (property). . .
190

components/ThreadPool/pool-max (property) . 190

components/ThreadPool/pool-min (property) . 190

components/ThreadPool/thread-timeout (property)
191

components/TransactionM anager/domai n/timeout

(property)oo 191
Composition. 98
Configuring a Structured Supplier.......... 208
ConnectedClient (QoS property) 75
Connecting

PushConsumers...................... 137

Push Suppliers 134

TypedClients. 148

UntypedClients 142
Connection Data Structure

Typed EventDomain 147

Untyped Event Domain 141
Connection Management

Typed EventDomain 147

Untyped Event Domain 141
ConnectionNotFound Exception 164
ConnectionReliability (property) 68

ConnectionRéiability (QoS property) . . 198,199,

223
Notification Service Guide

Index

224

206

Congtraint Language 22
Constraints

Adding..........o 203

Removing........................... 205
Consumer Admin 197
Consumer Admins.coou.t. 196

Settingup. ... 199
ConsumerAdmins (property). 181
Containmentcccvvvun... 112
Containsinterface....................... 89
CosEventDomainAdmin Interfaces. 152

CosTypedEventDomainAdmin Interfaces ... 152

Database Plugin Class (property)

Notification Service................... 171
DB.Plugin (property)

Notification Service................... 171
DB.WAL (property)covvvvnan.. 170
DB.WAL.Dir (property) 170
DB.WAL .MaxSize (property). 171
default_consumer_admin Operation. 63
default_filter_factory Operation............ 63
default_supplier_admin Operation 63
Dependencies (on Other Services) 9
DestroyingaDomain 140
Detecting

Cycles ... 128

Diamonds.coiii.t, 128
Diamond Detection 128

QoSProperty ... 163
Enable Write Ahead Log (property) 170
Errors. 8l
Event

Body.......coiii 15

Communication Models. 16

Header 14

Transmissionooviiiiii 11

TYPES. .ot 88, 96
EventChannel 16

Notification Service Guide

create channel Operation................. 62

Creating
aNewFilter......................... 201
TestEvents ...t 210

Current Total of Events Awaiting Delivery
(property)o 182

Current Total of Eventsin Channels (property) . .
182

CurrentEvents (property) 182
CycleDetection. 128
QoSProperty ... 163
CycleCreationForbidden Exception 164
Cycles. ... 127, 143
DiamondCreationForbidden Exception 165
Diamonds 127, 144
Disabling Event Type Propagation. 126, 146
DiscardPolicy (QoS property). 71
DisconnectCallback (QoS property). 76, 206
Domain Factory
o 149
TypedEvent 146
UntypedEvent....................... 139
DomainTopologyov.... 126, 143
DomainName (administration property). 164
DomainNotFound Exception 165
Domains
LOg. o 149
TypedEvent 146
Downstream 126
DsLogDomainAdmin Interfaces. 153
Factory. ... 196
Properties. 198
Settingup. 197
Event Channel Factory
create_channel Operation 62
Event Channel Factory Interface. 62
Event Channel Interface
default_consumer_admin Operation. 63
default_filter_factory Operation 63
& PRISMTECH

default_supplier_admin Operation......... 63
destroy Operation 63
for_consumersOperation 63
for_suppliersOperation 63
get_ adminOperation. 64
get_all_consumeradmins Operation. 63
get_all_supplieradmins Operation 63
get_consumeradmin Operation. 63
get gosOperation. 64
get_supplieradmin Operation 63
MyFactory Operation 63
new_for_consumers Operation............ 63
new_for_suppliersOperation............. 63
set_ adminOperation.................... 64
set qosOperation...................... 64
Event Database
Maximum Purge Memory (property) 192
Purge Rate (property) 191
Event Domain Service
Architecture o 124
Channel Management 140
ConCeEPtS . .o o 124
Connection Management, Typed 147
Connection Management, Untyped 141
CycleDetection. 143
Diamond Detection. 144
Disabling Event Type Propagation. 126
Domain Factory, Typed 146
Exceptions. 164
Interfaces. i 151
LogDomains.c.coouun... 149
OVEIVIBW. ..o 123
Push Consumer Example 137
Push Supplier Example. 134
QoSProperties ... 163
Supplemental Information 163
Topology Management. 143
Typed Client Connection 148
Typed EventDomains 146
Untyped Client Connection 142
Untyped DomainFactory 139
Using ServiceFeatures. 129
Event Type Propagation
Disabling. ...t 126, 146
Event Type Repository
& PRISMTECH

ContainsiInterface. 89
EventType....... ..., 88
Import 89
Inheritance. 89

Example
ASSOCIations 98
EventTypeo, 96
Event Type Repository Object 110
Event Type, Adding 92
Event Type, Removing............... 112
Import 107
Inheritance. 104
Properties 94
Repository Package. 115
Exceptions 119
Interfaces L. 89
Event Type Repository Description. 110
EventChannelFactory Object.............. 195
EventDomain Interface 151, 153
EventDomainFactory 157
EventDomainFactory Interface 151, 157
EventLogDomain Interface 157
EventLogDomainFactory Interface.. 151, 158
EventReliability (QoS property) 68, 198
Events Delivered (property)............... 181
Events Received (property) 180
Events, Defined oL 14
Events, Structuredo 14
EventsAwaitingDelivery (property)......... 182
EventsDelivered (property) 181
EventsReceived (property). 180
EventTypesEnabled (QoS property) 163

Examples

Event Type Repository 115
Exceptions 81, 82, 119, 164
AlreadyEXists........................ 164
ChannelNotFound. 164
ConnectionNotFound 164
CycleCreationForbidden. 164
DiamondCreationForbidden. 165
DomainNotFound. 165
InterfaceNotSupported 165
NoSuchlmplementation 165
UnsupportedAdmin 165
UnsupportedQoS 165
225

Notification Service Guide

Index

—

FederatingChannels 125 Filtering. ... 22
Federation............................. 26 for_consumersOperation 63
Filter ... 197 for_suppliersOperation. 63
Events 213 ForbidCycles.......................... 163
Interfaces. 64 ForbidDiamonds. 163
Removing........................... 205
G
get_ adminOperation. 64 get qosOperation....................... 64
get_all_consumeradmins Operation 63 get_supplieradmin Operation 63
get_all_supplieradmins Operation. 63 getvaue)method...................... 179
get_consumeradmin Operation............. 63 GlobalSetting (property) 174
Import ... 89, 107 EventLogDomain 157
Inheritance. 89, 104 EventLogDomainFactory 151, 158
Instrumentation TypedEventDomain. 151, 158
Notification Service Properties 179 TypedEventDomainFactory 151, 160
Instrumentation Properties 179 IOR File Name (property)............ 172,193
InterfaceNotSupported Exception. 165 IOR Name Service (property)......... 172,193
Interfaces. 89, 151 IOR Name Service Entry (property). ... 171, 192
CoskEventDomainAdmin 152 IORURL (property) 172,193
CosTypedEventDomainAdmin.......... 152 IOR.File(property) 172,193
EventDomain.................... 151, 153 IOR.URL (property) 172,193
EventDomainFactory. 151, 157 IOR URLElement..................... 216
J
JMX (Instrumentation) Properties. 179 Guaranteed Syncing (property) 192
Journal JTO Logger Level (property) 175
L
Loca Channel 28 logcategory/jto (property)l 175
Lock Set Factory logcategory/locksetfactory (property). 179
Fairness Policy (property) 190 logcategory/messenger (property).......... 176
Lock Set Factory Logger Level (property) ... 179 logcategory/orb (property) 176
LogDomains.ccuvu.n.. 149 logcategory/rolemanager (property) 175
logcategory/blobstore (property). 177 logcategory/scheduler (property) 174
logcategory/ecfc (property). 178 logcategory/statefactory (property)......... 177
logcategory/ecm (property). 179 logcategory/statemachinefactory (property).. 178

226
Notification Service Guide

& PRISMTECH

logcategory/threadpool (property) 178

logcategory/transactionmanager (property) .. .1

76

Managing
Channels......... i, 140
Connections, 141
Proxies ... 36, 42
TypedChannels 147
Typed Connections. 147

MaxConsumers (admin property). 81, 198

MaxEventsPerConsumer (QoS property). 70,198,

199, i 206

Maximum Queue Size (property). 189

MaximumBatchSize (QoS property) 71,198, 200,

NameServiceName (property) 216
new_for_consumers Operation. 63
new_for_suppliersOperation............... 63
NoSuchlmplementation Exception. 165
Notification Service
Configuration 169
Errors ... 81
Event Channel Factory, create_channel
Operation.............ccvvvuvn... 62
Event Channel Interface
default_consumer_admin Operation. 63
default_filter_factory Operation......... 63
default_supplier_admin Operation 63
destroy Operation 63
for_consumers Operation 63
for_suppliers Operation. 63
get_admin Operation.................. 64
get_all_consumeradmins Operation 63
get_all_supplieradmins Operation. 63
get_consumeradmin Operation.......... 63
get gosOperation.................... 64
get_supplieradmin Operation 63
MyFactory Operation 63
new_for_consumers Operation.......... 63
new_for_suppliersOperation 63
set_admin Operation.................. 64

&4 PRISMTECH

logkit/targets/file/filename (property) 173
logkit/targets/file/format (property) 173
206

MaxInactivitylnterval (QoS property) 73,75
MaxMemoryUsage (QoS property) 76
MaxMemoryUsagePolicy (QoS property). 76
MaxQueuel ength (admin property). 80, 198
MaxQueueSize (property) 189
MaxReconnectAttempts (QoS property) . 73,198,
200, . 206
MaxSuppliers (admin property) 81, 198
Messenger Logger Level (property)......... 175
MyFactory Operation. 63
set gosOperation.................... 64
Exceptions 82
Hierarcchy 196
Introduction 7,29, 59, 67
Manager ... 195
Proxy Management. 36, 42

Quality of Service Property
ConnectedClient 75
ConnectionReliability 68
DiscardPolicy 71
EventReliability 68
MaxEventsPerConsumer. 70
MaximumBatchSize.................. 71
MaxInactivitylnterval 73,75
MaxReconnectAttempts 73
OrderPolicy......................... 71
Pacinginterval 71
Priority 69
Reconnectinterval 74
StartTimeSupported 69
StopTime. 69
StopTimeSupported 70
Timeout.ccoiiiii... 70
Service Dependencies. 9
Notification Service Logger Level (property) . 178
NotificationServiceName (property) 215
227

Notification Service Guide

Index

NotificationSingleton Configuration. 170
NS Entry Element. 216, 217
Number of Consumer Admins (property).... 181
Number of Event Channels (property) 184

Number of Proxy Push Consumers (property) 180
Number of Proxy Push Suppliers (property). . 182
Number of Sequence Proxy Push Consumers

(property) ... 181
Object.Name (property) 171, 192
OMG

Standard API Definitions. 59
Standard Features. 7
OpenFusion

Pacinginterval (QoS property) . 71, 198, 200, 206

Passivating Persistent Clients 25
Persistence. i 24
Priority. ... 69
Priority (QoS property) 69, 198, 200, 206
ProcessgetvValue(). 179
ProcessSingleton Configuration
Notification Service. 192
PropagateQoS (QoS property) 77,198
Proxy
Defined, 17
Instances, 205
QoS Properties
CycleDetection...................... 163
Diamond Detection 163
EventTypesEnabled. 163
Lising.........cooiiiiii 139
QoS Settingso 199
Proxy Objects.couunt. 206
Quality of Service Property
ConnectedClient 75
ConnectionReliability 68
DiscardPolicy. 71

Notification Service Guide

Number of Sequence Proxy Push Suppliers

(property)ooo i 183
Number of Structured Proxy Push Consumers
(property)ooo i 180
Number of Structured Proxy Push Suppliers
(property)o 183
Number of Supplier Admins (property) 184
Enhancements............ 8
QOSEXtensions. 21,73
QueueExtensions 20
ORB Logger Level (property)............. 176
OrderPolicy (QoS property) 71, 198, 200
Management 36, 42
PushConsumers 197
Push Suppliers. 197
Proxy Objects
Destroying.............ccoivan... 214
Proxy PushConsumer. 197
Proxy Push Supplier 197
ProxyPushConsumers (property) 180
ProxyPushSuppliers (property)............ 182
PushConsumer.....................t. 137
Push Supplier 134
EventReliability. 68
MaxEventsPerConsumer. 70
MaximumBatchSize 71
MaxInactivitylnterva 73,75
MaxReconnectAttempts 73
OrderPolicyot 71
Pacinginterval 71
Priority. 69
Reconnectinterval 74
StartTimeSupported. 69
StopTime. ... 69
& PRISMTECH

StopTimeSupported 70
TIMEOUL. . ..o 70
Reconnecting Consumers (property) 183
ReconnectingConsumers (property)......... 183

Reconnectinterval (QoS property) .. 74,198, 200,
206

RejectNewEvents (admin property) 198
Notification Service 8l
Removing
Congtraintscccovvivnnnn... 205

SequenceProxyPushConsumers (property) .. .181
SequenceProxyPushSuppliers (property). 183

SEqUENCING . .« oo et 22
Service Log File Format (property) 173
Service Log File Location (property)........ 173
Set All Loggers To (property) 174
set_ adminOperation. 64
set gosOperation................cocvun.. 64
Singletons

NotificationSingleton 170
Standard

OMGProperties 21, 67
Starting the Notification Service Manager. . . .195
StartTime 69
StartTimeSupported (QoS property) 69
Thread Pool

Initial Pool Size (property) 190

Maximum Pool Size (property) 190

Minimum Pool Size (property)........... 190

Thread Timeout (property) 191
Thread Pool Logger Level (property)........ 178
Timeout (QoS property) 70, 198, 200, 206
Topology Management. 126, 143

& PRISMTECH

Queues, Defined. 19

Filters . ..o 205
Repository Package 115
Requirements................. 25
Resolve Name (property) 173
ResolveName (property) 173
Resuming Connections. 18
Role Manager Logger Level (property)...... 174
State Factory Logger Level (property). 177

State Machine Factory Logger Level (property) . .
177

StopTime (property).oovvvi i, 69
StopTimeSupported (QoS property) 70
Structured Consumer, Connecting.......... 210
Structured Events.l 14
Structured Supplier, Configuration 209

StructuredProxyPushConsumers (property). . . 180
StructuredProxyPushSuppliers (property) 183

Supplier Admin 196
Supplier Admins. 196

Settingup i 199
SupplierAdmins (property) 184
Suspending Connections 18

Transaction Manager

Domain Timeout (property) 191
Transaction Manager Logger Level (property) 176
Transmitting TestEvents. 213
Typed EventDomain.................... 146
TypedEventDomain Interface 151, 158

TypedEventDomainFactory Interface . . . 151, 160

229
Notification Service Guide

Index

UnsupportedAdmin Exception 165 Using
UnsupportedQoS Exception 165 DomainFactory...................... 139
Untyped Event Domain. 139 Typed Event Domain Factory 146
Upstream........... .o, 126

W
WriteAheadLog....................... 170 Write Ahead Log Maximum Size (property) . 171
Write Ahead Log Directory (property) 170

230
Notification Service Guide

& PRISMTECH

	Notification Service
	Table of Contents
	List of Figures
	Preface
	About the Notification Service Guide
	Contacts

	Introduction
	Notification Service
	1 Description
	1.1 OMG Standard Features
	1.2 OpenFusion Enhancements
	1.3 Concepts and Architecture
	1.3.1 Dependencies on Other Services
	1.3.2 The Basic Concept
	1.3.3 The Architecture
	1.3.4 The Details
	1.3.4.1 Structured Events
	1.3.4.2 Event Type Repository
	1.3.4.3 Event Communication Models
	1.3.4.4 Event Channel
	1.3.4.5 Admin Objects
	1.3.4.6 Proxies
	1.3.4.7 Queues
	1.3.4.8 Quality of Service
	1.3.4.9 Filtering
	1.3.4.10 Sequencing
	1.3.4.11 Persistence
	1.3.4.12 Federation

	2 Using the Service
	2.1 Introduction
	2.1.1 Import Statements

	2.2 Compiling and Running Clients
	2.2.1 Compiling Client Applications
	2.2.2 Running Client Applications
	2.2.2.1 Initialising the ORB
	2.2.2.2 Starting the Notification Service
	2.2.2.3 Configuring the Notification Service
	2.2.2.4 Starting Clients

	2.3 Creating Clients
	2.3.1 Creating a Supplier
	2.3.1.1 Connecting to the Server
	2.3.1.2 Creating Events
	2.3.1.3 Sending Events

	2.3.2 Creating a Consumer
	2.3.2.1 Connecting to the Server
	2.3.2.2 Receiving Events
	2.3.2.3 Suspending and Resuming Connections

	2.3.3 Removing Inactive Proxies
	2.3.3.1 Proxy Push Consumers
	2.3.3.2 Proxy Push Suppliers
	2.3.3.3 Alternative Method

	2.4 Using Quality of Service Properties
	2.4.1 Creating an Event Channel with QoS
	2.4.2 Managing QoS
	2.4.2.1 Adding New QoS to a Channel
	2.4.2.2 Accessing the QoS
	2.4.2.3 Validating Event QoS

	2.5 Using Filters
	2.5.1 Filter Objects
	2.5.1.1 Creating a Filter Object
	2.5.1.2 Adding a Filter Object to an Admin Object
	2.5.1.3 Listing Filter Objects
	2.5.1.4 Removing Filter Objects

	2.5.2 Event Filters
	2.5.2.1 Constructing Constraints
	2.5.2.2 Managing Constraints

	2.5.3 Writing Constraint Expressions
	2.5.3.1 Extended TCL Grammar
	2.5.3.2 Basic Elements
	2.5.3.3 Operators
	2.5.3.4 Constraint Examples

	2.6 Using Persistence

	3 API Definitions
	3.1 OMG Standard API Definitions
	3.1.0.1 Event Channel Factory Interface
	3.1.0.2 Event Channel Interface
	3.1.0.3 Administration Interfaces
	3.1.0.4 Filter Interfaces

	4 Supplemental Information
	4.1 Quality of Service Properties
	4.1.1 Standard OMG Properties.
	4.1.2 OpenFusion QoS Extensions
	4.1.2.1 Memory Management Properties

	4.1.3 Administrative Properties

	4.2 Errors and Exceptions
	4.2.1 Errors
	4.2.2 Exceptions
	4.2.2.1 Implementation Limit Exception

	Event Type Repository
	5 Description
	5.1 Concepts and Architecture
	5.1.1 Event Types
	5.1.2 Inheritance
	5.1.3 Importing
	5.1.4 Contains
	5.1.5 Interfaces

	6 Using Specific Features
	6.1 Adding an Event Type
	6.2 Properties
	6.3 Event Types
	6.4 Composition
	6.5 Inheritance
	6.6 Import
	6.7 Event Type Repository Description
	6.8 Containment
	6.9 Repository Package

	7 API Definitions
	8 Supplemental Information
	8.1 Exceptions

	Event Domain Service
	9 Description
	9.1 Features
	9.2 Architecture and Concepts
	9.2.1 Federating Channels
	9.2.2 Domain Topology

	10 Using Specific Features
	10.1 Setting up a Domain
	10.1.1 Creating an Event Domain
	10.1.2 Connecting a Push Supplier
	10.1.3 Connecting a Push Consumer

	10.2 Managing Untyped Event Domains
	10.2.1 Using a Domain Factory
	10.2.2 Listing the Quality of Service Properties
	10.2.3 Destroying a Domain
	10.2.4 Managing Channels
	10.2.5 Managing Connections
	10.2.6 Connecting Clients
	10.2.7 Topology Management
	10.2.7.1 Cycles
	10.2.7.2 Diamonds
	10.2.7.3 Channels

	10.2.8 Disabling Event Type Propagation

	10.3 Managing Typed Event Domains
	10.3.1 Using a Typed Event Domain Factory
	10.3.2 Managing Typed Channels
	10.3.3 Managing Typed Connections
	10.3.4 Connecting Typed Clients

	10.4 Log Domains

	11 API Definitions
	11.1 Interfaces
	11.1.0.1 EventDomain
	11.1.0.2 EventDomainFactory
	11.1.0.3 EventLogDomain
	11.1.0.4 EventLogDomainFactory
	11.1.0.5 TypedEventDomain
	11.1.0.6 TypedEventDomainFactory

	12 Supplemental Information
	12.1 Quality of Service Properties
	12.2 Administration Properties
	12.3 Exceptions

	Configuration and Management
	13 Notification Service Configuration
	13.1 Common Properties
	13.2 NotificationSingleton Configuration
	13.2.1 Persistence Properties
	13.2.2 CORBA Properties
	13.2.3 Messaging Loggers
	13.2.4 Instrumentation Properties
	13.2.5 General Properties
	13.2.6 Messaging

	13.3 ProcessSingleton Configuration

	14 Notification Service Manager
	14.1 Using the Notification Service Manager
	14.1.1 The Notification Service Manager
	14.1.1.1 Notification Service Hierarchy
	14.1.1.2 Notification Service Details

	14.1.2 Setting up an Event Channel
	14.1.2.1 Creating an Event Channel
	14.1.2.2 Setting Properties on an Event Channel
	14.1.2.3 Admin Property Settings
	14.1.2.4 QoS Property Settings

	14.1.3 Setting up a Supplier or Consumer Admin
	14.1.3.1 QoS Settings

	14.1.4 Admin Filters
	14.1.4.1 Filter Settings

	14.1.5 Setting Proxy Instances
	14.1.5.1 QoS Settings
	14.1.5.2 Creating a New Proxy Object
	14.1.5.3 Proxy Filters

	14.1.6 Testing Event Delivery
	14.1.6.1 Creating the Test Clients
	14.1.6.2 Configuring the Test Clients
	14.1.6.3 Destroying Proxy Objects

	15 ChannelConfigurator Tool
	15.1 ChannelConfiguratorObject Configuration
	15.2 Using the ChannelConfigurator Tool
	15.2.1 Saving a Channel Configuration

	15.3 Running from the Command Line

	Index

