
Interoperable Naming Service
Specification

New Edition: November 2000

 paid up,
fied
 copyright
ving

ire use
 be

at are
r

 an
ent does

 or c
s listed
s be the
marks or
rotected
 form or
nd

 in

IDL,
, Inc.
Copyright 1999, BEA Systems
Copyright 1999, DSTC
Copyright 1999, Iona Technologies Ltd.
Copyright 1999, Inprise

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free,
worldwide license to copy and distribute this document and to modify this document and distribute copies of the modi
version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the
in the included material of any such copyright holder by reason of having used the specification set forth herein or ha
conformed any computer software to the specification.

PATENT

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may requ
of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a license may
required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of those patents th
brought to its attention. OMG specifications are prospective and advisory only. Prospective users are responsible fo
protecting themselves against liability for infringement of patents.

NOTICE

The information contained in this document is subject to change without notice. The material in this document details
Object Management Group specification in accordance with the license and notices set forth on this page. This docum
not represent a commitment to implement any portion of this specification in any company's products.

WHILE THE INFORMATION IN THIS PUBLICATION IS BELIEVED TO BE ACCURATE, THE OBJECT
MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE MAKE NO WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL INCLUDING, BUT NOT LIMITED TO ANY
WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF
FITNESS FOR PARTICULAR PURPOSE OR USE. In no event shall The Object Management Group or any of the
companies listed above be liable for errors contained herein or for indirect, incidental, special, consequential, relianceover
damages, including loss of profits, revenue, data or use, incurred by any user or any third party. The copyright holder
above acknowledge that the Object Management Group (acting itself or through its designees) is and shall at all time
sole entity that may authorize developers, suppliers and sellers of computer software to use certification marks, trade
other special designations to indicate compliance with these materials. This document contains information which is p
by copyright. All Rights Reserved. No part of this work covered by copyright herein may be reproduced or used in any
by any means--graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage a
retrieval systems--without permission of the copyright owner.

RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by government is subject to restrictions as set forth
subdivision (c) (1) (ii) of the Right in Technical Data and Computer Software Clause at DFARS 252.227.7013 OMG®and
Object Management are registered trademarks of the Object Management Group, Inc. Object Request Broker, OMG
ORB, CORBA, CORBAfacilities, CORBAservices, COSS, and IIOP are trademarks of the Object Management Group
X/Open is a trademark of X/Open Company Ltd.

ers to
ISSUE REPORTING

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage read
report any ambiguities, inconsistencies, or inaccuracies they may find by completing the issue reporting form at
http://www.omg.org/library/issuerpt.htm.

Contents
1
1

1
2

2

2

2
3

3

4
4

5
5

5
5

5
6

6
7

7

7
7

7

7

Preface .
About This Document .

Object Management Group .
What is CORBA?.

X/Open .

Intended Audience.

Need for Object Services .
What Is an Object Service Specification?

Associated OMG Documents .

Service Design Principles .
Build on CORBA Concepts .

Basic, Flexible Services .
Generic Services .

Allow Local and Remote Implementations
Quality of Service is an Implementation Characteristic . .

Objects Often Conspire in a Service
Use of Callback Interfaces .

Assume No Global Identifier Spaces
Finding a Service is Orthogonal to Using It

Interface Style Consistency .

Use of Exceptions and Return Codes
Explicit Versus Implicit Operations

Use of Interface Inheritance .

Acknowledgments .
Interoperable Naming Service November 2000 i

Contents

1-1

1-1

1-2

1-3

1-4

-1

2-1
-4

2-4

2-4
2-6

-7
2-8

-9
-9

-9
10

-10

-11
-11

-11
11

-11
12

-13

-13
-13

-14
-14

,
16

18

-1
1. Service Description .

1.1 Overview .

1.2 Names .

1.3 Example Scenarios .

1.4 Design Principles .

2. Modules and Interfaces. 2

2.1 The CosNaming Module .
2.1.1 Resolution of Compound Names 2

2.2 NamingContext Interface .

2.2.1 Structures .
2.2.2 Exceptions .

2.2.3 Binding Objects . 2
2.2.4 Resolving Names .

2.2.5 Unbinding Names. 2
2.2.6 Creating Naming Contexts 2

2.2.7 Deleting Contexts . 2
2.2.8 Listing a Naming Context. 2-

2.3 The BindingIterator Interface. 2

2.3.1 next_one . 2
2.3.2 next_n . 2

2.3.3 destroy . 2
2.3.4 Garbage Collection of Iterators 2-

2.4 Stringified Names. 2
2.4.1 Basic Representation of Stringified Names . . . 2-

2.4.2 Escape Mechanism . 2

2.5 URL Schemes . 2
2.5.1 IOR. 2

2.5.2 corbaloc . 2
2.5.3 corbaname . 2

2.5.4 Converting between CosNames, Stringified Names
and URLs . 2-

2.6 Initial Reference to a NamingContextExt. 2-

Appendix A - OMG IDL . A-1

Appendix B - Requirements . B
ii Interoperable Naming Service November 2000

Preface
ent
and
Ltd
s.

s at
ll
 by
 and

rted
 and
nted

ide a
,
ous
p a

ed.
About This Document

Under the terms of the collaboration between OMG and X/Open Co Ltd, this docum
is a candidate for endorsement by X/Open, initially as a Preliminary Specification
later as a full CAE Specification. The collaboration between OMG and X/Open Co
ensures joint review and cohesive support for emerging object-based specification

X/Open Preliminary Specifications undergo close scrutiny through a review proces
X/Open before publication and are inherently stable specifications. Upgrade to fu
CAE Specification, after a reasonable interval, takes place following further review
X/Open. This further review considers the implementation experience of members
the full implications of conformance and branding.

Object Management Group

The Object Management Group, Inc. (OMG) is an international organization suppo
by over 800 members, including information system vendors, software developers
users. Founded in 1989, the OMG promotes the theory and practice of object-orie
technology in software development. The organization's charter includes the
establishment of industry guidelines and object management specifications to prov
common framework for application development. Primary goals are the reusability
portability, and interoperability of object-based software in distributed, heterogene
environments. Conformance to these specifications will make it possible to develo
heterogeneous applications environment across all major hardware platforms and
operating systems.

OMG's objectives are to foster the growth of object technology and influence its
direction by establishing the Object Management Architecture (OMA). The OMA
provides the conceptual infrastructure upon which all OMG specifications are bas
Interoperable Naming Service November 2000 1

ted,
ey
bject
nd

ing

st of

 the

r
eed

lpful
o
sists

ive

d

o
on

,
stem
ity.
What is CORBA?

The Common Object Request Broker Architecture (CORBA), is the Object
Management Group's answer to the need for interoperability among the rapidly
proliferating number of hardware and software products available today. Simply sta
CORBA allows applications to communicate with one another no matter where th
are located or who has designed them. CORBA 1.1 was introduced in 1991 by O
Management Group (OMG) and defined the Interface Definition Language (IDL) a
the Application Programming Interfaces (API) that enable client/server object
interaction within a specific implementation of an Object Request Broker (ORB).
CORBA 2.0, adopted in December of 1994, defines true interoperability by specify
how ORBs from different vendors can interoperate.

X/Open

X/Open is an independent, worldwide, open systems organization supported by mo
the world's largest information system suppliers, user organizations and software
companies. Its mission is to bring to users greater value from computing, through
practical implementation of open systems.

Intended Audience

The specifications described in this manual are aimed at software designers and
developers who want to produce applications that comply with OMG standards fo
object services; the benefits of compliance are outlined in the following section, “N
for Object Services.”

Need for Object Services

To understand how Object Services benefit all computer vendors and users, it is he
to understand their context within OMG’s vision of object management. The key t
understanding the structure of the architecture is the Reference Model, which con
of the following components:

• Object Request Broker, which enables objects to transparently make and rece
requests and responses in a distributed environment. It is the foundation for
building applications from distributed objects and for interoperability between
applications in hetero- and homogeneous environments. The architecture an
specifications of the Object Request Broker are described in CORBA: Common
Object Request Broker Architecture and Specification.

• Object Services, a collection of services (interfaces and objects) that support
basic functions for using and implementing objects. Services are necessary t
construct any distributed application and are always independent of applicati
domains.

• Common Facilities, a collection of services that many applications may share
but which are not as fundamental as the Object Services. For instance, a sy
management or electronic mail facility could be classified as a common facil
2 Interoperable Naming Service November 2000

s, an
antic

en
ces,
as
ct

the

 The
es a

 are
ides
 are

ect-

ry
The Object Request Broker, then, is the core of the Reference Model. Nevertheles
Object Request Broker alone cannot enable interoperability at the application sem
level. An ORB is like a telephone exchange: it provides the basic mechanism for
making and receiving calls but does not ensure meaningful communication betwe
subscribers. Meaningful, productive communication depends on additional interfa
protocols, and policies that are agreed upon outside the telephone system, such
telephones, modems and directory services. This is equivalent to the role of Obje
Services.

What Is an Object Service Specification?

A specification of an Object Service usually consists of a set of interfaces and a
description of the service’s behavior. The syntax used to specify the interfaces is
OMG Interface Definition Language (OMG IDL). The semantics that specify a
services’s behavior are, in general, expressed in terms of the OMG Object Model.
OMG Object Model is based on objects, operations, types, and subtyping. It provid
standard, commonly understood set of terms with which to describe a service’s
behavior.

(For detailed information about the OMG Reference Model and the OMG Object
Model, refer to the Object Management Architecture Guide).

Associated OMG Documents

The CORBA documentation is organized as follows:

• Object Management Architecture Guide defines the OMG’s technical objectives and
terminology and describes the conceptual models upon which OMG standards
based. It defines the umbrella architecture for the OMG standards. It also prov
information about the policies and procedures of OMG, such as how standards
proposed, evaluated, and accepted.

• CORBA Platform Technologies

• CORBA: Common Object Request Broker Architecture and Specification contains
the architecture and specifications for the Object Request Broker.

• CORBA Languages, a collection of language mapping specifications. See the
individual language mapping specifications.

• CORBA Services, a collection of specifications for OMG’s Object Services. See
the individual service specifications.

• CORBA Facilities, a collection of specifications for OMG’s Common Facilities.
See the individual facility specifications.

• CORBA Domain Technologies

• CORBA Manufacturing, a collection of specifications that relate to the
manufacturing industry. This group of specifications defines standardized obj
oriented interfaces between related services and functions.

• CORBA Med, a collection of specifications that relate to the healthcare indust
and represents vendors, healthcare providers, payers, and end users.
Interoperable Naming Associated OMG Documents Nov. 2000 3

n
y

nt

d,
dards

 (The

ons,

 of

P-
.

• CORBA Finance, a collection of specifications that target a vitally important
vertical market: financial services and accounting. These important applicatio
areas are present in virtually all organizations: including all forms of monetar
transactions, payroll, billing, and so forth.

• CORBA Telecoms, a collection of specifications that relate to the OMG-complia
interfaces for telecommunication systems.

The OMG collects information for each book in the documentation set by issuing
Requests for Information, Requests for Proposals, and Requests for Comment an
with its membership, evaluating the responses. Specifications are adopted as stan
only when representatives of the OMG membership accept them as such by vote.
policies and procedures of the OMG are described in detail in the Object Management
Architecture Guide.)

To obtain print-on-demand books in the documentation set or other OMG publicati
contact the Object Management Group, Inc. at:

OMG Headquarters

250 First Avenue, Suite 201

Needham, MA 02494

USA

Tel: +1-781-444-0404

Fax: +1-781-444-0320

pubs@omg.org

http://www.omg.org

Service Design Principles

Build on CORBA Concepts

The design of each Object Service uses and builds on CORBA concepts:

• Separation of interface and implementation

• Object references are typed by interfaces

• Clients depend on interfaces, not implementations

• Use of multiple inheritance of interfaces

• Use of subtyping to extend, evolve and specialize functionality

Other related principles that the designs adhere to include:

• Assume good ORB and Object Services implementations. Specifically, it is
assumed that CORBA-compliant ORB implementations are being built that
support efficient local and remote access to “fine-grain” objects and have
performance characteristics that place no major barriers to the pervasive use
distributed objects for virtually all service and application elements.

• Do not build non-type properties into interfaces

A discussion and rationale for the design of object services was included in the H
SunSoft response to the OMG Object Services RFI (OMG TC Document 92.2.10)
4 Interoperable Naming Service November 2000

ey
y

erful

may
real

 client
vent
ically

 that
erver
ion

hes
ple,

aces
 rules

nts.

rent
is
Basic, Flexible Services

The services are designed to do one thing well and are only as complicated as th
need to be. Individual services are by themselves relatively simple yet they can, b
virtue of their structuring as objects, be combined together in interesting and pow
ways.

For example, the event and life cycle services, plus a future relationship service,
play together to support graphs of objects. Object graphs commonly occur in the
world and must be supported in many applications. A functionally-rich Folder
compound object, for example, may be constructed using the life cycle, naming,
events, and future relationship services as “building blocks.”

Generic Services

Services are designed to be generic in that they do not depend on the type of the
object nor, in general, on the type of data passed in requests. For example, the e
channel interfaces accept event data of any type. Clients of the service can dynam
determine the actual data type and handle it appropriately.

Allow Local and Remote Implementations

In general the services are structured as CORBA objects with OMG IDL interfaces
can be accessed locally or remotely and which can have local library or remote s
styles of implementations. This allows considerable flexibility as regards the locat
of participating objects. So, for example, if the performance requirements of a
particular application dictate it, objects can be implemented to work with a Library
Object Adapter that enables their execution in the same process as the client.

Quality of Service is an Implementation Characteristic

Service interfaces are designed to allow a wide range of implementation approac
depending on the quality of service required in a particular environment. For exam
in the Event Service, an event channel can be implemented to provide fast but
unreliable delivery of events or slower but guaranteed delivery. However, the interf
to the event channel are the same for all implementations and all clients. Because
are not wired into a complex type hierarchy, developers can select particular
implementations as building blocks and easily combine them with other compone

Objects Often Conspire in a Service

Services are typically decomposed into several distinct interfaces that provide diffe
views for different kinds of clients of the service. For example, the Event Service
composed of PushConsumer, PullSupplier and EventChannel interfaces. This
simplifies the way in which a particular client uses a service.
Interoperable Naming Service Design Principles Nov. 2000 5

ngle

 to
ects

ents

faces

ng
ith an

quest
e
event
annel

a

to a

n

text.

 within
A particular service implementation can support the constituent interfaces as a si
CORBA object or as a collection of distinct objects. This allows considerable
implementation flexibility. A client of a service may use a different object reference
communicate with each distinct service function. Conceptually, these “internal” obj
conspire to provide the complete service.

As an example, in the Event Service an event channel can provide both PushConsumer
and EventChannel interfaces for use by different kinds of client. A particular client
sends a request not to a single “event channel” object but to an object that implem
either the PushConsumer and EventChannel interface. Hidden to all the clients, these
objects interact to support the service.

The service designs also use distinct objects that implement specific service inter
as the means to distinguish and coordinate different clients without relying on the
existence of an object equality test or some special way of identifying clients. Usi
the event service again as an example, when an event consumer is connected w
event channel, a new object is created that supports the PullSupplier interface. An
object reference to this object is returned to the event consumer which can then re
events by invoking the appropriate operation on the new “supplier” object. Becaus
each client uses a different object reference to interact with the event channel, the
channel can keep track of and manage multiple simultaneous clients. An event ch
as a collection of objects conspiring to manage multiple simultaneous consumer
clients.

Use of Callback Interfaces

Services often employ callback interfaces. Callback interfaces are interfaces that
client object is required to support to enable a service to call back to it to invoke some
operation. The callback may be, for example, to pass back data asynchronously
client.

Callback interfaces have two major benefits:

• They clearly define how a client object participates in a service.

• They allow the use of the standard interface definition (OMG IDL) and operatio
invocation (object reference) mechanisms.

Assume No Global Identifier Spaces

Several services employ identifiers to label and distinguish various elements. The
service designs do not assume or rely on any global identifier service or global id
spaces in order to function. The scope of identifiers is always limited to some con
For example, in the naming service, the scope of names is the particular naming
context object.

In the case where a service generates ids, clients can assume that an id is unique
its scope but should not make any other assumption.
6 Interoperable Naming Service November 2000

vices

as
h
 to be

l
t
tion

meter

de

nts

Finding a Service is Orthogonal to Using It

Finding a service is at a higher level and orthogonal to using a service. These ser
do not dictate a particular approach. They do not, for example, mandate that all
services must be found via the naming service. Because services are structured
objects there does not need to be a special way of finding objects associated wit
services - general purpose finding services can be used. Solutions are anticipated
application and policy specific.

Interface Style Consistency

Use of Exceptions and Return Codes

Throughout the services, exceptions are used exclusively for handling exceptiona
conditions such as error returns. Normal return codes are passed back via outpu
parameters. An example of this is the use of a DONE return code to indicate itera
completion.

Explicit Versus Implicit Operations

Operations are always explicit rather than implied (e.g., by a flag passed as a para
value to some “umbrella” operation). In other words, there is always a distinct
operation corresponding to each distinct function of a service.

Use of Interface Inheritance

Interface inheritance (subtyping) is used whenever one can imagine that client co
should depend on less functionality than the full interface. Services are often
partitioned into several unrelated interfaces when it is possible to partition the clie
into different roles. For example, an administrative interface is often unrelated and
distinct in the type system from the interface used by “normal” clients.

Acknowledgments

The following companies submitted and/or supported parts of the Interoperable
Naming Service specification:

• BEA Systems

• DSTC

• Inprise

• IONA Technologies, Ltd.
Interoperable Naming Interface Style Consistency Nov. 2000 7

8 Interoperable Naming Service November 2000

Service Description 1
et
o an
t,

ming

ows
a
Contents

This chapter contains the following topics.

1.1 Overview

A name-to-object association is called a name binding. A name binding is always
defined relative to a naming context. A naming context is an object that contains a s
of name bindings in which each name is unique. Different names can be bound t
object in the same or different contexts at the same time. There is no requiremen
however, that all objects must be named.

To resolve a name is to determine the object associated with the name in a given
context. To bind a name is to create a name binding in a given context. A name is
always resolved relative to a context — there are no absolute names.

Because a context is like any other object, it can also be bound to a name in a na
context. Binding contexts in other contexts creates a naming graph — a directed graph
with nodes and labeled edges where the nodes are contexts. A naming graph all
more complex names to reference an object. Given a context in a naming graph,

Topic Page

“Overview” 1-1

“Names” 1-2

“Example Scenarios” 1-3

“Design Principles” 1-4
Interoperable Naming Service November 2000 1-1

1

ess.

ames

ed to

sequence of names can reference an object. This sequence of names (called a
compound name) defines a path in the naming graph to navigate the resolution proc
Figure 1-1 shows an example of a naming graph.

Figure 1-1 A Naming Graph

1.2 Names

Many of the operations defined on a naming context take names as parameters. N
have structure. A name is an ordered sequence of components.

A name with a single component is called a simple name; a name with multiple
components is called a compound name. Each component except the last is used to
name a context; the last component denotes the bound object. The notation:

component1/component2/component3

indicates a sequence of components.

Note – The slash (/) characters are simply a notation used here and are not intend
imply that names are sequences of characters separated by slashes.

A name component consists of two attributes: the id attribute and the kind attribute.
Both the id attribute and the kind attribute are represented as IDL strings.

The kind attribute adds descriptive power to names in a syntax-independent way.
Examples of the value of the kind attribute include c_source, object_code, executable,
postscript, or “ ” . The naming system does not interpret, assign, or manage these

user
sys

bin lib
u1

u2

u3

bill alden

l1 l2

home

c1
c2

parent

abc
def
1-2 Interoperable Naming Service November 2000

1

d
at use
s

g

trings

iffer

e-
large,
ers"

ch a
ace as

s of
Given
mes
look

ly
nd so

roups

 to
.g.,
values in any way. Higher levels of software may make policies about the use an
management of these values. This feature addresses the needs of applications th
syntactic naming conventions to distinguish related objects. For example Unix use
suffixes such as .c and .o. Applications (such as the C compiler) depend on these
syntactic convention to make name transformations (for example, to transform foo.c to
foo.o).

A sequence of id and kind pairs forming a name can be expressed as a single strin
using the syntax described in Section 2.3, “The BindingIterator Interface,” on
page 2-10. This allows names to be written down easily or to be presented as a s
in user interfaces. In addition, Section 2.4, “Stringified Names,” on page 2-11
describes a way to express a name relative to a particular naming context in URL
format. The URL representation provides a human-readable form of an object
reference that is named in some naming context.

1.3 Example Scenarios

This section provides two short scenarios that illustrate how the naming service
specification can be used by two fairly different kinds of systems -- systems that d
in the kind of implementations used to build the Naming Service and that differ in
models of how clients might use the Naming Service with other object services to
locate objects.

In one system, the Naming Service is implemented using an underlying enterpris
wide naming server such as DCE CDS. The Naming Service is used to construct
enterprise-wide naming graphs where NamingContexts model "directories" or "fold
and other names identify "document" or "file" kinds of objects. In other words, the
naming service is used as the backbone of an enterprise-wide filing system. In su
system, non-object-based access to the naming service may well be as commonpl
object-based access to the naming service.

The Naming Service provides the principal mechanism through which most client
an ORB-based system locate objects that they intend to use (make requests of).
an initial naming context, clients navigate naming contexts retrieving lists of the na
bound to that context. In conjunction with properties and security services, clients
for objects with certain "externally visible" characteristics, for example, for objects
with recognized names or objects with a certain time-last-modified (all subject to
security considerations). All objects used in such a scheme register their external
visible characteristics with other services (a name service, a properties service, a
on).

Conventions are employed in such a scheme that meaningfully partition the name
space. For example, individuals are assigned naming contexts for personal use, g
of individuals may be assigned shared naming contexts while other contexts are
organized in a public section of the naming graph. Similarly, conventions are used
identify contexts that list the names of services that are available in the system (e
that locate a translation or printing service).
Interoperable Naming Example Scenarios Nov. 2000 1-3

1

nd
esent

o
vice.

, a

he
as
is
y

d to
ow

ics

is is

ation

 in a

other

her

e

 of
In an alternative system, the Naming Service can be used in a more limited role a
can have a less sophisticated implementation. In this model, naming contexts repr
the types and locations of services that are available in the system and a much
shallower naming graph is employed. For example, the Naming Service is used t
register the object references of a mail service, an information service, a filing ser

Given a handful of references to "root objects" obtained from the Naming Service
client uses the Relationship and Query Services to locate objects contained in or
managed by the services registered with the Naming Service. In such a system, t
Naming Service is used sparingly and instead clients rely on other services such
query services to navigate through large collections of objects. Also, objects in th
scheme rarely register "external characteristics" with another service - instead the
support the interfaces of Query or Relationship Services.

Of course, nothing precludes the Naming Service presented here from being use
provide both models of use at the same time. These two scenarios demonstrate h
this specification is suitable for use in two fairly different kinds of systems with
potentially quite different kinds of implementations. The service provides a basic
building block on which higher-level services impose the conventions and semant
which determine how frameworks of application and facilities objects locate other
objects.

1.4 Design Principles

Several principles have driven the design of the Naming Service:

1. The design imparts no semantics or interpretation of the names themselves; th
up to higher-level software.

2. The design supports distributed, heterogeneous implementation and administr
of names and name contexts.

3. Naming service clients need not be aware of the physical site of name servers
distributed environment, or which server interprets what portion of a compound
name, or of the way that servers are implemented.

4. The Naming Service is a fundamental object service, with no dependencies on
interfaces.

5. Name contexts of arbitrary and unknown implementation may be utilized toget
as nested graphs of nodes that cooperate in resolving names for a client. No
“universal” root is needed for a name hierarchy.

6. Existing name and directory services employed in different network computing
environments can be transparently encapsulated using name contexts. All of th
above features contribute to making this possible.

7. The design does not address namespace administration. It is the responsibility
higher-level software to administer the namespace.
1-4 Interoperable Naming Service November 2000

Modules and Interfaces 2
ing
Contents

This chapter contains the following topics.

2.1 The CosNaming Module

The CosNaming module is a collection of interfaces that together define the Nam
Service. This module contains three interfaces:

1. NamingContext interface

2. BindingIterator interface

3. NamingContextExt interface

This section describes these interfaces and their operations in detail.

The CosNaming module is shown below.

Topic Page

“The CosNaming Module” 2-1

“NamingContext Interface” 2-4

“The BindingIterator Interface” 2-10

“Stringified Names” 2-11

“URL Schemes” 2-13

“Initial Reference to a NamingContextExt” 2-18
Interoperable Naming Service November 2000 2-1

2

e”
Note – Istring was a “placeholder for a future IDL internationalized string data typ
in the original specification. It is maintained solely for compatibility reasons.

// File: CosNaming.idl
#ifndef COSNAMING_IDL_
#defineCOSNAMING_IDL_

#pragma prefix "omg.org"

module CosNaming {
typedef string Istring;

struct NameComponent {
Istring id;
Istring kind;

};
typedef sequence<NameComponent> Name;

enum BindingType { nobject, ncontext };

struct Binding {
Name binding_name;
BindingType binding_type;

};

// Note: In struct Binding, binding_name is incorrectly defined
// as a Name instead of a NameComponent. This definition is
// unchanged for compatibility reasons.
typedef sequence <Binding> BindingList;

interface BindingIterator;

interface NamingContext {
enum NotFoundReason {

missing_node, not_context, not_object
};

exception NotFound {
NotFoundReason why;
Name rest_of_name;

};

exception CannotProceed {
NamingContext cxt;
Name rest_of_name;

};

exception InvalidName{};
2-2 Interoperable Naming Service November 2000

2

exception AlreadyBound {};

exception NotEmpty{};

void bind(in Name n, in Object obj)
raises(

NotFound, CannotProceed,
InvalidName, AlreadyBound

);

void rebind(in Name n, in Object obj)
raises(NotFound, CannotProceed, InvalidName);

void bind_context(in Name n, in NamingContext nc)
raises(

NotFound, CannotProceed,
InvalidName, AlreadyBound

);

void rebind_context(in Name n, in NamingContext nc)
raises(NotFound, CannotProceed, InvalidName);

Object resolve (in Name n)
raises(NotFound, CannotProceed, InvalidName);

void unbind(in Name n)
raises(NotFound, CannotProceed, InvalidName);

NamingContext new_context();
NamingContext bind_new_context(in Name n)

raises(
NotFound, AlreadyBound,
CannotProceed, InvalidName);

void destroy() raises(NotEmpty);

void list(
in unsigned long how_many,
out BindingList bl,
out BindingIterator bi

);

};

interface BindingIterator {
boolean next_one(out Binding b);
boolean next_n(in unsigned long how_many, out BindingList bl);

void destroy();
};

interface NamingContextExt: NamingContext {
Interoperable Naming The CosNaming Module Nov. 2000 2-3

2

ly
e

is

ave

tail.
typedef string StringName;
typedef string Address;
typedef string URLString;

StringName to_string(in Name n) raises(InvalidName);
Name to_name(in StringName sn)

raises(InvalidName);

exception InvalidAddress {};

URLString to_url(in Address addr, in StringName sn)
raises(InvalidAddress, InvalidName);

Object resolve_str(in StringName n)
raises(

NotFound, CannotProceed,
InvalidName

);
};

};
#endif // _COSNAMING_IDL_

2.1.1 Resolution of Compound Names

In this specification operations that are performed on compound names recursive
perform the equivalent of a resolve operation on all but the last component of a nam
before performing the operation on the final name component. The general form
defined as follows:

ctx->op(<c1; c2; ...; cn>) equiv

ctx->resolve(<c1>)->resolve(<c2; cn-1>)->op(<cn>)

where ctx is a naming context, <c1; ...; cn> a compound name, and op a naming
context operation.

Note – The intermediate components, <c1: ...; cn> of the compound name must h
been bound using bind_context or rebind_context to take part in the resolve.

2.2 NamingContext Interface

The following sections describe the naming context data types and interface in de

2.2.1 Structures

2.2.1.1 NameComponent

struct NameComponent {
2-4 Interoperable Naming Service November 2000

2

 in a

 as a
.

.
Istring Id;
Istring kind;

};

A name component consists of two attributes: the identifier attribute (id) and the kind
attribute (kind �.

Both of these attributes are arbitrary-length strings of ISO Latin-1 characters,
excluding the ASCII NUL character.

When comparing two NameComponents for equality both the id and the kind field
must match in order for two NameComponents to be considered identical. This
applies for zero-length (empty) fields as well.

An implementation may place limitations on the characters that may be contained
name component, as well as the length of a name component. For example, an
implementation may disallow certain characters, may not accept the empty string
legal name component, or may limit name components to some maximum length

2.2.1.2 Name

A name is a sequence of NameComponent s. The empty sequence is not a legal
name. An implementation may limit the length of the sequence to some maximum
When comparing Names for equality, each NameComponent in the first name must
match the corresponding NameComponent in the second Name for the names to be
considered identical.

2.2.1.3 Binding

enum BindingType { nobject, ncontext };
struct Binding {

Name binding_name;
BindingType binding_type;

};
typedef sequence<Binding> BindingList;

This types are used by the NamingContext::list , BindingIterator::next_n and
BindingIterator::next_one operations. A Binding contains a Name in the member
binding_name , together with the BindingType of that Name in the member
binding_type.

Note – The binding_name member is incorrectly typed as a Name instead of a
NameComponent. For compatibility with the original CosNaming specification
this incorrect definition has been retained. The binding_name is used as a
NameComponent and will always be a Name with length of 1.

The value of binding_type is ncontext if a Name denotes a binding created with
one of the following operations:

• bind_context
Interoperable Naming NamingContext Interface Nov. 2000 2-5

2

tify a
he

The
ntext.

.

• rebind_context

• bind_new_context

For bindings created with any other operation, the value of BindingType is nobject .

2.2.2 Exceptions

The Naming Service exceptions are defined below.

2.2.2.1 NotFound

exception NotFound {
NotFoundReason why;
Name rest_of_name;

};

This exception is raised by operations when a component of a name does not iden
binding or the type of the binding is incorrect for the operation being performed. T
why member explains the reason for the exception and the rest_of_name member
contains the remainder of the non-working name:

• missing_node

The first name component in rest_of_name denotes a binding that is not bound
under that name within its parent context.

• not_context

The first name component in rest_of_name denotes a binding with a type of
nobject when the type ncontext was required.

• not_object

The first name component in rest_of_name denotes a binding with a type of
ncontext when the type nobject was required.

2.2.2.2 CannotProceed

exception CannotProceed {
NamingContext cxt;
Name rest_of_name;

};

This exception is raised when an implementation has given up for some reason.
client, however, may be able to continue the operation at the returned naming co

The cxt member contains the context that the operation may be able to retry from

The rest_of_name member contains the remainder of the non-working name.
2-6 Interoperable Naming Service November 2000

2

 on

e

und,

 in
2.2.2.3 InvalidName

exception InvalidName {};

This exception is raised if a Name is invalid. A name of length zero is invalid
(containing no name components). Implementations may place further limitations
what constitutes a legal name and raise this exception to indicate a violation.

2.2.2.4 AlreadyBound

exception AlreadyBound {};

Indicates an object is already bound to the specified name. Only one object can b
bound to a particular Name in a context.

2.2.2.5 NotEmpty

exception NotEmpty {};

This exception is raised by destroy if the NamingContext contains bindings. A
NamingContext must be empty to be destroyed.

2.2.3 Binding Objects

The binding operations name an object in a naming context. Once an object is bo
it can be found with the resolve operation. The Naming Service supports four
operations to create bindings: bind , rebind , bind_context and rebind_context .
bind_new_context also creates a binding, see Section 2.2.6, “Creating Naming
Contexts,” on page 2-9.

void bind(in Name n, in Object obj)
raises(NotFound, CannotProceed, InvalidName, AlreadyBound);

void rebind(in Name n, in Object obj)
raises(NotFound, CannotProceed, InvalidName);

void bind_context(in Name n, in NamingContext nc)
raises(NotFound, CannotProceed, InvalidName, AlreadyBound);

void rebind_context(in Name n, in NamingContext nc)
raises(NotFound, CannotProceed, InvalidName);

2.2.3.1 bind

Creates an nobject binding in the naming context.

2.2.3.2 rebind

Creates an nobject binding in the naming context even if the name is already bound
the context.
Interoperable Naming NamingContext Interface Nov. 2000 2-7

2

nd

t

exts

tools

ing”
t
If already bound, the previous binding must be of type nobject ; otherwise, a
NotFound exception with a why reason of not_object is raised.

2.2.3.3 bind_context

Creates an ncontext binding in the parent naming context. Attempts to bind a nil
context raise a BAD_PARAM exception.

2.2.3.4 rebind_context

Creates an ncontext binding in the naming context even if the name is already bou
in the context.

If already bound, the previous binding must be of type ncontext ; otherwise, a
NotFound exception with a why reason of not_context will be raised.

2.2.3.5 Usage

If a binding with the specified name already exists, bind and bind_context raise an
AlreadyBound exception.

If an implementation places limits on the number of bindings within a context, bind
and bind_context raise the IMP_LIMIT system exception if the new binding canno
be created.

Naming contexts bound using bind_context and rebind_context participate in
name resolution when compound names are passed to be resolved; naming cont
bound with bind and rebind do not.

Use of rebind_context may leave a potential orphaned context (one that is
unreachable within an instance of the Name Service). Policies and administration
regarding potential orphan contexts are implementation-specific.

If rebind or rebind_context raise a NotFound exception because an already
existing binding is of the wrong type, the rest_of_name member of the exception has
a sequence length of 1.

2.2.4 Resolving Names

The resolve operation is the process of retrieving an object bound to a name in a
given context. The given name must exactly match the bound name. The naming
service does not return the type of the object. Clients are responsible for “narrow
the object to the appropriate type. That is, clients typically cast the returned objec
from Object to a more specialized interface. The IDL definition of the resolve
operation is:

Object resolve (in Name n)
 raises (NotFound, CannotProceed, InvalidName);
2-8 Interoperable Naming Service November 2000

2

ltiple
ances.

he

y

 be

oyed
e
Names can have multiple components; therefore, name resolution can traverse mu
contexts. These contexts can be federated between different Naming Service inst

2.2.5 Unbinding Names

The unbind operation removes a name binding from a context. The definition of t
unbind operation is:

void unbind(in Name n)
raises (NotFound, CannotProceed, InvalidName);

2.2.6 Creating Naming Contexts

The Naming Service supports two operations to create new contexts: new_context
and bind_new_context .

NamingContext new_context();
NamingContext bind_new_context(in Name n)

raises(NotFound, AlreadyBound, CannotProceed, InvalidName);

2.2.6.1 new_context

This operation returns a new naming context. The new context is not bound to an
name.

2.2.6.2 bind_new_context

This operation creates a new context and creates an ncontext binding for it using the
name supplied as an argument.

2.2.6.3 Usage

If an implementation places limits on the number of naming contexts, both
new_context and bind_new_context can raise the IMP_LIMIT system exception
if the context cannot be created. bind_new_context can also raise IMP_LIMIT if the
bind would cause an implementation limit on the number of bindings in a context to
exceeded.

2.2.7 Deleting Contexts

The destroy operation deletes a naming context.

void destroy()
raises(NotEmpty);

This operation destroys its naming context. If there are bindings denoting the destr
context, these bindings are not removed. If the naming context contains bindings, th
operation raises NotEmpty.
Interoperable Naming NamingContext Interface Nov. 2000 2-9

2

 in

gs

s.

ng
s of

he
2.2.8 Listing a Naming Context

The list operation allows a client to iterate through a set of bindings in a naming
context.

void list (in unsigned long how_many,
 out BindingList bl, out BindingIterator bi);

};

list returns the bindings contained in a context in the parameter bl . The bl parameter is
a sequence where each element is a Binding containing a Name of length 1
representing a single NameComponent .

The how_many parameter determines the maximum number of bindings to return
the parameter bl , with any remaining bindings to be accessed through the returned
BindingIterator bi.

• A non-zero value of how_many guarantees that bl contains at most how_many
elements. The implementation is free to return fewer than the number of bindin
requested by how_many . However, for a non-zero value of how_many , it may not
return a bl sequence with zero elements unless the context contains no binding

• If how_many is set to zero, the client is requesting to use only the
BindingIterator bi to access the bindings and list returns a zero length sequence
in bl .

• The parameter bi returns a reference to an iterator object.

• If the bi parameter returns a non-nil reference, this indicates that the call to list
may not have returned all of the bindings in the context and that the remaini
bindings (if any) must be retrieved using the iterator. This applies for all value
how_many .

• If the bi parameter returns a nil reference, this indicates that the bl parameter
contains all of the bindings in the context. This applies for all values of
how_many .

2.3 The BindingIterator Interface

The BindingIterator interface allows a client to iterate through the bindings using t
next_one or next_n operations:

If a context is modified in between calls to list , next_one , or next_n , the behavior of
further calls to next_one or next_n is implementation-dependent.

interface BindingIterator {
boolean next_one(out Binding b);
boolean next_n(in unsigned long how_many,

 out BindingList bl);
void destroy();

};
2-10 Interoperable Naming Service November 2000

2

 in

gs

sing
rder

pect

t for
e.

to
2.3.1 next_one

The next_one operation returns the next binding. It returns true if it is returning a
binding, false if there are no more bindings to retrieve. If next_one returns false, the
returned Binding is indeterminate.

Further calls to next_one after it has returned false have undefined behavior.

2.3.2 next_n

next_n returns, in the parameterbl , bindings not yet retrieved with list or previous
calls to next_n or next_one . It returns true if bl is a non-zero length sequence; it
returns false if there are no more bindings and bl is a zero-length sequence.

The how_many parameter determines the maximum number of bindings to return
the parameterbl :

• A non-zero value of how_many guarantees thatbl contains at most how_many
elements. The implementation is free to return fewer than the number of bindin
requested byhow_many . However, it may not return a bl sequence with zero
elements unless there are no bindings to retrieve.

• A zero value of how_many is illegal and raises a BAD_PARAM system
exception.

next_n returns false with a bl parameter of length zero once all bindings have been
retrieved. Further calls to next _n after it has returned a zero-length sequence have
undefined behavior.

2.3.3 destroy

The destroy operation destroys its iterator. If a client invokes any operation on an
iterator after calling destroy , the operation raises OBJECT_NOT_EXIST.

2.3.4 Garbage Collection of Iterators

Clients that create iterators but never call destroy can cause an implementation to
permanently run out of resources. To protect itself against this scenario, an
implementation is free to destroy an iterator object at any time without warning, u
whatever algorithm it considers appropriate to choose iterators for destruction. In o
to be robust in the presence of garbage collection, clients should be written to ex
OBJECT_NOT_EXIST from calls to an iterator and handle this exception
gracefully.

2.4 Stringified Names

Names are sequences of name components. This representation makes it difficul
applications to conveniently deal with names for I/O purposes, human or otherwis
This specification defines a syntax for stringified names and provides operations
Interoperable Naming Stringified Names Nov. 2000 2-11

2

 (see

The

’
that

ty

tire
convert a name in stringified form to its equivalent sequence form and vice-versa
Section 2.5.4, “Converting between CosNames, Stringified Names, and URLs,” on
page 2-16).

A stringified name represents one and only one CosNaming::Name . If two names
are equal, their stringified representations are equal (and vice-versa).

The stringified name representation reserves use of the characters ‘/’, ‘.’, and ‘\’.
forward slash ‘/’ is a name component separator; the dot ‘.’ separates id and kind
fields. The backslash ‘\’ is an escape character (see Section 2.4.2, “Escape
Mechanism,” on page 2-13).

2.4.1 Basic Representation of Stringified Names

A stringified name consists of the name components of a name separated by a ‘/
character. For example, a name consisting of the components “a,” “b,” and “c” (in
order) is represented as

a/b/c

Stringified names use the ‘.’ character to separate id and kind fields in the stringified
representation. For example, the stringified name

a.b/c.d/.

represents the CosNaming::Name :

The single ‘.’ character is the only representation of a name component with empid
and kind fields.

If a name component in a stringified name does not contain a ‘.’ character, the en
component is interpreted as the id field, and the kind field is empty. For example:

a/./c.d/.e

corresponds to the CosNaming::Name :

If a name component has a non-empty id field and an empty kind field, the stringified
representation consists only of the id field. A trailing ‘.’ character is not permitted.

Index id kind

0 a b

1 c d

2 <empty> <empty>

Index id kind

0 a <empty>

1 <empty> <empty>

2 c d

3 <empty> e
2-12 Interoperable Naming Service November 2000

2

r

uses

r

 is

sport
2.4.2 Escape Mechanism

The backslash ‘\’ character escapes the reserved meaning of ‘/’, ‘.’, and ‘\’ in a
stringified name. The meaning of any other character following a ‘\’ is reserved fo
future use.

2.4.2.1 NameComponent Separators

If a name component contains a ‘/’ slash character, the stringified representation
the ‘\’ character as an escape. For example, the stringified name

a/x\/y\/z/b

represents the name consisting of the name components “a,” “x/y/z,” and “b.”

2.4.2.2 Id and kind Fields

The backslash escape mechanism is also used for ‘.’, so id and kind fields can contain
a literal ‘.’. To illustrate, the stringified name

a\.b.c\.d/e.f

represents the CosNaming::Name :

2.4.2.3 The Escape Character

The escape character ‘\’ must be escaped if it appears in a name component. Fo
example, the stringified name:

a/b\\/c

represents the name consisting of the components “a,” “ b\,” and “c.”

2.5 URL Schemes

This section describes the Uniform Resource Locator (URL) schemes available to
represent a CORBA object and a CORBA object bound in a NamingContext .

2.5.1 IOR

The string form of an IOR (IOR:<hex_octets>) is a valid URL. The scheme name
IOR and the text after the ‘:’ is defined in the CORBA 2.3 specification, Section
13.6.6. The IOR URL is robust and insulates the client from the encapsulated tran
information and object key used to reference the object. This URL format is
independent of Naming Service.

Index id kind

0 a.b c.d

1 e f
Interoperable Naming URL Schemes Nov. 2000 2-13

2

 of

.

w by

er as a

 and

al
2.5.2 corbaloc

It is difficult for humans to exchange IORs through non-electronic means because
their length and the text encoding of binary information. The corbaloc URL scheme
provides URLs that are familiar to people and similar to ftp or http URLs.

The corbaloc URL is described in the CORBA 2.3.1 Specification, Section 13.6.6
This URL format is independent of the Naming Service.

2.5.3 corbaname

A corbaname URL is similar to a corbaloc URL. However a corbaname URL
also contains a stringified name that identifies a binding in a naming context.

Note – Use of ‘#’ as a separator character as used in this document is under revie
the INS FTF.

2.5.3.1 corbaname Examples

corbaname://555xyz.com/dev/NContext1#a/b/c

This example denotes a naming context that can be contacted in the same mann
corbaloc URL at 555xyz.com with a key of “dev/NContext1.” The “#” character
denotes the start of the stringified name “a/b/c .” This name is resolved against the
context to yield the final object.

corbaname://555xyz.com#a/b/c

When an object key is not specified, as in the above example, the default key of
“NameService” is used to contact the naming context.

corbaname:///#x/y/z

This URL refers to a software agent supporting IIOP version 1.0 on the local host
default port. The naming context associated with the object key NameService is used
to resolve the name x/y/z , which yields the object reference denoted by the URL.

corbaname:///

This URL represents the naming context returned by the agent running on the loc
host at the default port. It is equivalent to corbaloc:///NameService .

corbaname:atm:00033...#a/b/c

corbaname://55xyz.com,atm:00033.../dev/NCtext#a/b/c

These last URLs illustrate support of multiple protocols as allowed by corbaloc
URLs. atm : is an example only and is not a defined URL protocol at this time.

Note – Unlike stringified names, corbaname s cannot be compared directly for
equality as the address specification can differ for corbaname URLs with the same
meaning.
2-14 Interoperable Naming Service November 2000

2

ing
ferred
s for

e are

ping is
 “%”
high-
rder
lly
2.5.3.2 corbaname Syntax

 The full corbaname BNF is:

<corbaname> = “corbaname:”<corbaloc_obj>[“#”<string_name>]

<corbaloc_obj> = <obj_addr_list> [“/”<key_string>]

<obj_addr_list> = as defined in a corbaloc URL

<key_string> = as defined in a corbaloc URL

<string_name> = stringified Name | empty_string

Where:

corbaloc_obj : portion of a corbaname URL that identifies the naming context. The
syntax is identical to its use in a corbaloc URL.

obj_addr_list : as defined in a corbaloc URL

key_string : as defined in a corbaloc URL.

string_name : a stringified Name with URL escapes as defined below.

2.5.3.3 corbaname Character Escapes

corbaname URLs use the escape mechanism described in the Internet Engineer
Task Force (IETF) RFC 2396. These escape rules insure that URLs can be trans
via a variety of transports without undergoing changes. The character escape rule
the stringified name portion of a corbaname are:

US-ASCII alphanumeric characters are not escaped. Characters outside this rang
escaped, except for the following:

“;” | “/” | “:” | “?”| “:” | “@” | “&” | “=” | “+” | “$” |

“,” | “-” | “_” | ”.” | “!” | “~” | “*” | “’” | “(“ | “)”

2.5.3.4 corbaname Escape Mechanism

The percent ‘%’ character is used as an escape. If a character that requires esca
present in a name component, it is encoded as two hexadecimal digits following a
character to represent the octet. (The first hexadecimal character represents the
order nibble of the octet, the second hexadecimal character represents the low-o
nibble.) If a ‘%’ is not followed by two hex digits, the stringified name is syntactica
invalid.
Interoperable Naming URL Schemes Nov. 2000 2-15

2

2.5.3.5 Examples

2.5.3.6 corbaname Resolution

corbaname resolution can be implemented as a simple extension to corbaloc URL
processing. Given a corbaname :

corbaname:<corbaloc_obj>[“#” <string_name>]

The corbaname is resolved by:

1. First constructing a corbaloc URL of the form: corbaloc:<corabloc_obj> .

If the <corbaloc_obj> does not contain a key string, a default key of
“NameService” is used.

2. This is converted to a naming context object reference with
CORBA::ORB::string_to_object .

3. The <string_name> is converted to a CosNaming::Name .

4. The resulting name is passed to a resolve operation on the naming context.

5. The object reference returned by the resolve is the result.

Implementations are not required to use the method described and may make
optimizations appropriate to their environment.

2.5.4 Converting between CosNames, Stringified Names, and URLs

The NamingContextExt interface, derived from NamingContext , provides the
operations required to use URLs and stringified names.

module CosNaming {
// ...
interface NamingContextExt: NamingContext {

typedef string StringName;
typedef string Address;
typedef string URLString;

StringName to_string(in Name n) raises(InvalidName);

Stringified Name After URL Escapes Comment

a.b/c.d a.b/c.d URL form identical

<a>.b/c.d %3ca%3e.b/c.d Escaped “<“ and “>”

a.b/ c.d a.b/%20%20c.d Escaped two “ “ spaces

a%b/c%d a%25b/c%25d Escaped two “%” percents

a\\b/c.d a%5c%5c/c.d Escaped “\” character, which is already
escaped in the stringified name.
2-16 Interoperable Naming Service November 2000

2

f a

y

meter
Name to_name(in StringName sn)
raises(InvalidName);

exception InvalidAddress {};

URLString to_url(in Address addrkey, in StringName sn)
raises(InvalidAddress, InvalidName);

Object resolve_str(in StringName n)
raises(

NotFound, CannotProceed,
InvalidName

);
};

};

2.5.4.1 to_string

This operation accepts a Name and returns a stringified name. If the Name is invalid,
an InvalidName exception is raised.

2.5.4.2 to_name

This operation accepts a stringified name and returns a Name. If the stringified name
is syntactically malformed or violates an implementation limit, an InvalidName
exception is raised.

2.5.4.3 resolve_str

This is a convenience operation that performs a resolve in the same manner as
NamingContext ::resolve . It accepts a stringified name as an argument instead o
Name.

2.5.4.4 to_url

This operation takes a corbaloc URL <address> and <key_string> component such
as

• //myhost.555xyz.com

• //myhost.555xyz.com/a/b/c

• atm:00002112...,//myhost.xyz.com/a/b/c

for the first parameter, and a stringified name for the second. It then performs an
escapes necessary on the parameters and returns a fully formed URL string. An
exception is raised if either the corbaloc address and key parameter or name para
are malformed.
Interoperable Naming URL Schemes Nov. 2000 2-17

2

pty,
It is legal for the address and/or stringified_name to be empty. If the address is em
it means the local host and the iiop protocol.

2.5.4.5 URL to Object Reference

Conversions from URLs to objects are handled by CORBA::ORB::string_to_object
as described in the CORBA 2.3 Specification, Section 13.6.6.

2.6 Initial Reference to a NamingContextExt

An initial reference to an instance of this interface can be obtained by calling
resolve_initial_references with an ObjectID of NameService .
2-18 Interoperable Naming Service November 2000

OMG IDL A
// File: CosNaming.idl
#ifndef _COSNAMING_IDL_
#define _COSNAMING_IDL_

#pragma prefix "omg.org"

module CosNaming {

typedef string Istring;

struct NameComponent {
Istring id;
Istring kind;

};
typedef sequence<NameComponent> Name;

enum BindingType { nobject, ncontext };

struct Binding {
Name binding_name;
BindingType binding_type;

};

// Note: In struct Binding, binding_name is incorrectly defined
// as a Name instead of a NameComponent. This definition is
// unchanged for compatibility reasons.
typedef sequence <Binding> BindingList;

interface BindingIterator;

interface NamingContext {

enum NotFoundReason {
Interoperable Naming Service November 2000 A-19

A

missing_node, not_context, not_object
};

exception NotFound {
NotFoundReason why;
Name rest_of_name;

};

exception CannotProceed {
NamingContext cxt;
Name rest_of_name;

};

exception InvalidName{};

exception AlreadyBound {};

exception NotEmpty{};

void bind(in Name n, in Object obj)
raises(

NotFound, CannotProceed,
InvalidName, AlreadyBound

);

void rebind(in Name n, in Object obj)
raises(NotFound, CannotProceed, InvalidName);

void bind_context(in Name n, in NamingContext nc)
raises(NotFound, CannotProceed, InvalidName, AlreadyBound);

void rebind_context(in Name n, in NamingContext nc)
raises(NotFound, CannotProceed, InvalidName);

Object resolve (in Name n)
raises(NotFound, CannotProceed, InvalidName);

void unbind(in Name n)
raises(NotFound, CannotProceed, InvalidName);

NamingContext new_context();
NamingContext bind_new_context(in Name n)

raises(
NotFound, AlreadyBound,
CannotProceed, InvalidName

);

void destroy() raises(NotEmpty);

void list(
in unsigned long how_many,
A-20 Interoperable Naming Service November 2000

A

out BindingList bl,
out BindingIterator bi

);
};

interface BindingIterator {
boolean next_one(out Binding b);
boolean next_n(in unsigned long how_many, out BindingList bl);
void destroy();

};

interface NamingContextExt: NamingContext {
typedef string StringName;
typedef string Address;
typedef string URLString;

StringName to_string(in Name n) raises(InvalidName);
Name to_name(in StringName sn)

raises(InvalidName);

exception InvalidAddress {};

URLString to_url(in Address addr, in StringName sn)
raises(InvalidAddress, InvalidName);

Object resolve_str(in StringName n)
raises(

NotFound, CannotProceed,
InvalidName, AlreadyBound

);
};

};
#endif // _COSNAMING_IDL_
Interoperable Naming Nov. 2000 A-21

A

A-22 Interoperable Naming Service November 2000

Requirements B
ust

d in a

erver.

in
B.1 Conformance Requirements

B.1.1 Optional Interfaces

There are no optional interfaces in this specification. A compliant implementation m
implement all of the functionality and interfaces described.

B.1.2 Documentation Requirements

A compliant implementation must document all of the following:

• any limitations to the character values or character sequences that may be use
name component

• any limitations to the length (including minimum or maximum) of a name
component

• any limitations to number of name components in a name

• any limitations to the maximum number of bindings in a context

• any limitations to the total number of bindings (implementation-wide)

• any limitations to the maximum number of contexts

• the means provided to deal with orphaned contexts and bindings

• Any policy for dealing with potentially orphaned naming contexts. Orphaned
contexts are contexts that are not bound in any other context within a naming s

• Any policy for destroying binding iterators that are considered to be no longer
use.

• Under what circumstances, if any, a CannotProceed exception is raised.
Interoperable Naming Service November 2000 B-23

B

B-24 Interoperable Naming Service November 2000

	Preface
	About This Document
	Object Management Group
	What is CORBA?
	X/Open

	Intended Audience
	Need for Object Services
	What Is an Object Service Specification?

	Associated OMG Documents
	Service Design Principles
	Build on CORBA Concepts
	Basic, Flexible Services
	Generic Services
	Allow Local and Remote Implementations
	Quality of Service is an Implementation Characteristic
	Objects Often Conspire in a Service
	Use of Callback Interfaces
	Assume No Global Identifier Spaces
	Finding a Service is Orthogonal to Using It

	Interface Style Consistency
	Use of Exceptions and Return Codes
	Explicit Versus Implicit Operations
	Use of Interface Inheritance

	Acknowledgments

	1. Service Description
	1.1 Overview
	1.2 Names
	1.3 Example Scenarios
	1.4 Design Principles

	2. Modules and Interfaces
	2.1 The CosNaming Module
	2.1.1 Resolution of Compound Names

	2.2 NamingContext Interface
	2.2.1 Structures
	2.2.2 Exceptions
	2.2.3 Binding Objects
	2.2.4 Resolving Names
	2.2.5 Unbinding Names
	2.2.6 Creating Naming Contexts
	2.2.7 Deleting Contexts
	2.2.8 Listing a Naming Context

	2.3 The BindingIterator Interface
	2.3.1 next_one
	2.3.2 next_n
	2.3.3 destroy
	2.3.4 Garbage Collection of Iterators

	2.4 Stringified Names
	2.4.1 Basic Representation of Stringified Names
	2.4.2 Escape Mechanism

	2.5 URL Schemes
	2.5.1 IOR
	2.5.2 corbaloc
	2.5.3 corbaname
	2.5.4 Converting between CosNames, Stringified Names, and URLs

	2.6 Initial Reference to a NamingContextExt

	Appendix A - OMG IDL
	Appendix B - Requirements

