
Unreliable Multicast Inter-ORB
Protocol Specification

This OMG document replaces the draft adopted specification (ptc/2001-10-18). It is an OMG Final
Adopted Specification, which has been approved by the OMG board and technical plenaries, and is
currently in the finalization phase. Comments on the content of this document are welcomed, and
should be directed to issues@omg.org by May 15, 2002.

You may view the pending issues for this specification from the OMG revision issues web page
http://www.omg.org/issues/; however, at the time of this writing there were no pending issues.

The FTF Recommendation and Report for this specification will be published on July 1, 2002. If
you are reading this after that date, please download the available specification from the OMG for-
mal specifications web page.

OMG Final Adopted Specification
November 2001

November 2001 Unreliable Multicast: Final Adopted Specification 29-1

Unreliable Multicast Inter-ORB
Protocol 29

Note – from the OMG Technical Editor: Eventually, this specification will become part
of the CORBA Core document. The chapter number is temporary and may change.

Contents

This chapter contains the following topics.

Topic Page

Section I - Introduction

“Purpose” 29-2

“MIOP Packet” 29-3

“Packet Collection” 29-3

“PacketHeader” 29-3

“Joining an IP/Multicast Group” 29-5

“Quality Of Service” 29-6

“Delivery Requirements” 29-6

Section II - MIOP Object Model

“Definition” 29-6

“Unreliable IP/Multicast Profile Body
(UIPMC_ProfileBody)”

29-7

“Group IOR” 29-9

“Adding Group Knowledge to PortableServer::POA” 29-11

29-2 Unreliable Multicast: Final Adopted Specification November 2001

29

Section I - Introduction

29.1 Purpose

The purpose of MIOP (Unreliable Multicast Inter-ORB Protocol) is to provide a common
mechanism to deliver GIOP request and fragment messages via multicast. The default
transport specified for MIOP is IP Multicast1 through UDP/IP2 which will provide the
ability to perform connectionless multicast. This requires that IDL operations will have
one-way semantics.

The initial version of MIOP will be designated 1.0. This version scheme will be
independent of the GIOP version.

MIOP will not be dependent upon data that is contained in the GIOP header, request
header, or fragment header; MIOP does not read or interpret GIOP messages. This will
provide the capability for MIOP to be used for future and existing protocols as defined in
by the OMG.

This specification mandates that implementers of this technology shall reuse the CDR
marshalling.

The following sections describe the wire protocol and send/receive semantics of MIOP.

“MIOP Gateway” 29-15

“Multicast Group Manager” 29-15

“MIOP URL” 29-32

Section III - Request Issues

“GIOP Request Message Compatibility” 29-33

“MIOP Request Efficiency” 29-34

“Client Use Cases” 29-35

“Server Use Cases” 29-36

Appendix A - “Conformance” 29-37

Appendix B - “Consolidated IDL” 29-38

1. Deering, S. “Host Extensions for IP Multicasting” RFC 1112 Network Working Group,
Stanford University August 1989

2. Postel,J. “User Datagram Protocol” RFC-768 Information Sciences Institute, August 28,
1980

Topic Page

November 2001 Unreliable Multicast: MIOP Packet 29-3

29

29.2 MIOP Packet

An MIOP Packet is defined as the MIOP PacketHeader information, which is defined
below, as well as the raw GIOP data (body) contained in the rest of the MIOP Packet. An
MIOP Packet will be sent and later reassembled on the receiving side. MIOP Packets are
the atomic pieces that comprise a Packet Collection which is discussed below.

29.3 Packet Collection

A Packet Collection is comprised of one or more MIOP Packets and is defined as
complete, packaged, GIOP request/fragment message. Only GIOP request messages and
associated request message fragments are allowed in an MIOP Packet in a Packet
Collection.

The total data contained in a GIOP message (header, request/fragment header and body),
determines the total number of MIOP Packets that need to be sent and subsequently
reassembled by the receiver.

The number of packets that comprise a Packet Collection are dependent on the maximum
size of the frame buffer supported by the hardware. Typically Ethernet supports 1518
bytes per frame, although UDP will allow up to 65536 bytes per frame if the physical
layer can support it. If the Packet Collection cannot fit in the hardware specified frame
size, the MIOP protocol requires that the GIOP message be broken up into packets that
comprise a Packet Collection.

The MIOP sender will label the packet data so that the receiving MIOP layer can
determine the number of packets in the MIOP message, as well as the position of each
packet as a part of the Packet Collection (e.g., packet 3 of 20). In addition, the sender
provides a unique signature for each Packet Collection to ensure that the receiver can
properly reassemble the packets (i.e., make sure that 3 of 20 is not some other message’s
3 of 20).

29.4 PacketHeader

The PacketHeader is the MIOP data structure that represents the state information for a
single packet within the Packet Collection in MIOP. This data structure is used to send
and receive packetized GIOP messages in the form of MIOP Packet Collections. This
data structure precedes any associated GIOP data which has been packetized. All MIOP
packets in a Packet Collection must start with a PacketHeader.

Therefore it is required that:

• MIOP senders insert a PacketHeader in front of each packet of GIOP
request/fragment data;

• MIOP receivers read and strip off MIOP PacketHeaders and concatenate all the
GIOP related data from the packets of a message before posting the GIOP request
to the ORB; and

• The GIOP data in the MIOP Packet body must start on a eight byte boundary
following the UniqueId field.

The following IDL defines the fields of the Packet Header. The text following the IDL
will describe the field in detail.

29-4 Unreliable Multicast: Final Adopted Specification November 2001

29

module MIOP
{
 typedef sequence <octet, 252> UniqueId;

 struct PacketHeader_1_0
 {
 char magic[4]; // 4bytes
 octet hdr_version; // 1 byte
 octet flags; // 1 byte
 unsigned short packet_length; // 2 bytes
 unsigned long packet_number; // 4 bytes
 unsigned long number_of_packets; // 4bytes,
sub-total 16 bytes
 UniqueId id; // body
data must begin on a

// 8 byte
boundary
 };

};

29.4.1 struct PacketHeader

The PacketHeader is a variable length data structure that provides the capability for
packet reassembly on the receivers side. The sending side is responsible for properly
filling in the values before it is sent.

29.4.1.1 Magic

The magic field is a four byte character array which will always be the literal value
‘MIOP.’ This field will provide a mechanism for determining if a multicast message is a
CORBA MIOP message or some other unrelated datagram.

29.4.1.2 Header Version

This field is a 1 byte value that contains the major and minor versions of MIOP. The
high-order four bits of the octet will be the major version and the low-order four bits are
the minor version (e.g. decimal 16 will equal version 1.0).

29.4.1.3 Flags

The Flags field is a single octet that provides the value of the sending endian, and a stop
message bit as well as unused, additional bits for future use.

The 1.0 version of MIOP specifies that the lowest order bit of the octet will contain the
endian flag. The value zero for the endian flag indicates big-endian byte ordering and the
value one indicates little-endian byte ordering.

The second lowest order bit will designate the stop message flag. This bit contains a
value of one for the last packet sent in a Packet Collection; otherwise it must be zero.

November 2001 Unreliable Multicast: Joining an IP/Multicast Group 29-5

29

The values of the six reserved bits must be set to zero for MIOP 1.0

29.4.1.4 Packet Length

This field is mandatory and is used to define the actual number of bytes delivered with
an MIOP Packet in a Packet Collection. This value must be the same for all MIOP
Packets with the exception of the last packet which may contain a value which is less
than the length specified in the other packets in the Packet Collection. This value is
constrained by the physical layer of the underlying transport. For instance, UDP allows
as much as 65K or as little as 512 bytes for the size of a single UDP packet.

The value specified in this field will not take into account the length of the header.

29.4.1.5 Packet Number

This field is mandatory and is an unsigned long value that states the current packet
number that is being delivered (e.g. packet 3 of 20 in the Packet Collection). The number
of the first packet must be zero and the number of the last packet must be n-1.

29.4.1.6 Number of Packets

This field is optional but can be used in conjunction with the first instance of an MIOP
Packet in the Packet Collection, Packet Length field, to perform optimizations for
allocating the receive message buffer used in packet reassembly. The number-of-packets
field is an unsigned long value that states the total number of packets that are to be
delivered3. In the event that this field is not used it must be set to the value zero.

29.4.1.7 UniqueId

This variable length data structure provides the unique signature required for packet
reassembly on the receiving side. This field must be identical for all packets associated
with a Packet Collection. The data structure for this field is a bounded sequence of octets
not to exceed 252 bytes of octet data4. The data contained in the body of the packet
following the octet portion of the sequence must start on an eight byte boundary to
maintain the integrity of the GIOP data in the packet. Implementations must provide as a
default, uniqueness appropriate for the internet as a whole (e.g., GUID format of COM).

29.5 Joining an IP/Multicast Group

IP/Multicast only requires receivers to explicitly join an IP/Multicast group before they
receive their first MIOP packet.

3. Based on a UDP packet of 512, and the maximum number of packets (4,294,967,296) pack-
ets, the maximum message size would be approximately 2GB. This size would include the
IP header, UDP header, MIOP PacketHeader(s), and all other related data.

4. The unique id should be kept as small as possible for those applications that broadcast small
GIOP messages.

29-6 Unreliable Multicast: Final Adopted Specification November 2001

29

29.6 Quality Of Service

29.6.1 Time-To-Live

When the implementation is using IP/Multicast, the socket option
IP_MULTICAST_TTL, provides the capability for a UDP/IP datagram to be sent over
more than one subnet. This value could be assigned statically or dynamically. This
specification does not address how an application would set TTL.

29.6.2 Incomplete Receipt of a Packet Collection

In the event that an MIOP packet is received out of order in the context of its Packet
Collection, the protocol should wait for the missing packets until the last packet is
received. If the missing packets are not received by the time of the receipt of the last
packet, the Packet Collection is in error and should be dropped.

The receiver should provide a mechanism to time out incomplete Packet Collections in
the event that a partial collection has been received but no further packets are incoming.
This will keep the protocol from expending resources and waiting indefinitely.

29.7 Delivery Requirements

The MIOP protocol requires that a single GIOP request message, including any
fragment, must be sent as a single MIOP message. This does not imply that the entire
GIOP request must be encoded before it is delivered to the MIOP layer. The MIOP
protocol must be notified that the last portion of the GIOP message is being sent. This
notification must also occur for non-fragmented GIOP requests. Upon receipt of the last
portion or the whole GIOP message. MIOP will generate packets from the GIOP data
and set the stop bit in the Packet Header flags for the last MIOP packet it creates. All
MIOP packets associated with a GIOP request, including the fragments will have the
same data image expressed in their UniqueId field of their Packet Header in a given
Packet Collection.

Section II - MIOP Object Model

29.8 Definition

The current CORBA object model specifies that a single object reference will map to a
single object implementation via an object key. The invocation semantics are both two-
way and one-way with reliability requirements for the delivery and ordering of messages.

The proposed specification for the MIOP object model does not specify an object key but
a group identifier that can be associated to multiple PortableServer::ObjectId values
which in turn can be used to activate implementation objects. The delivery semantics of
CORBA messages over MIOP are one-way with no reliability of message receipt. There
are no requirements for MIOP to be reliable so therefore no group membership is

November 2001 Unreliable Multicast: Unreliable IP/Multicast Profile Body (UIPMC_ProfileBody) 29-7

29

needed. Therefore it is entirely possible to have an application sending CORBA
messages via MIOP with no receiving applications present (e.g., the unpopular radio
station that no one listens to but broadcasts non-the-less).

An on-going theme in the MIOP object model is the behavior of object groups. An object
group in MIOP consists of group identification information as well as network
communication information. Object group technology is necessary for implementing the
MIOP object model. Therefore, the role of object groups will be covered during the
discussion of the following document sections.

The object model for MIOP will consist of the following topics:

• MIOP Unreliable IP/Multicast Profile Body;

• Group IOR;

• Portable Group Adapter (PGA);

• Gateway; and the

• Multicast Group Manager (MGM).

29.9 Unreliable IP/Multicast Profile Body (UIPMC_ProfileBody)

The UIPMC_ProfileBody contains all the information required to make an invocation
on a servant object using IP/Multicast as a transport mechanism. The profile differs from
the IIOP profile in that:

• the object key field is omitted; and

• the field expressing a host name is replaced by a multiple character field that will
express a valid IPv4/IPv6 multicast address, or an alias name to a multicast address.

The absence of the object key in the UIPMC profile is due to the fact that an MIOP
request will typically be delivered to multiple servants that are associated with an object
group and are housed in applications built using different vendor’s ORBs. This of course
is different than the classical IIOP scenario in which an object key provides a mapping to
a single servant.

The definition of the UIPMC profile is defined below.

module MIOP
{

...
typedef GIOP::Version Version;
typedef string Address;
struct UIPMC_ProfileBody
{

Version miop_version;
Address the_address;
short the_port;
sequence<IOP::TaggedComponents> components;

};
};

29-8 Unreliable Multicast: Final Adopted Specification November 2001

29

29.9.1 Version

The version field contains the major and minor version of the data structure. The version
nomenclature will start at 1.0. This version field should be considered separate from the
version of the MIOP PacketHeader.

29.9.2 Address

The Address field specifies either

• a class D address for IPv4 (e.g., 225.1.1.1);

• an IPv6 address (e.g., FF01:0:0:0:0:0:0:1 - all nodes address); or

• a alias to a multicast address.

29.9.3 Port

This field is an unsigned short value that contains the port value associated with the
Address field.

29.9.4 Group Components

This field will contain any additional component profiles. It has the same semantics as in
an IIOP ProfileBody. At least one of these components must contain a group component
and additionally a component specifying a IIOP profile to be used for two-way
operations and operations supporting the CORBA::Object OMA. The concepts of the
components are discussed below.

module IOP {

const ProfileId TAG_UIPMC = OMG_assigned;
const ComponentId TAG_GROUP = OMG_assigned;
const ComponnetId TAG_GROUP_IIOP = OMG_assigned

};

module PortableGroup {

typedef GIOP::Version Version;

struct GroupInfo { // tag = TAG_GROUP;
Version component_version;
GroupDomainId group_domain_id;
ObjectGroupId object_group_id;
ObjectGroupRefVersion object_group_ref_version;

};
typedef sequence <octet> GroupIIOPProfile

};

November 2001 Unreliable Multicast: Group IOR 29-9

29

Object Groups can have lifetimes that persist after senders and receivers are no longer
invoking on the destination endpoints of the object group. In fact, object groups can exist
with no associated, participating sender or receiver objects. They should therefore be
created to be unique to avoid ambiguity.

29.9.4.1 GroupInfo

The fields associated with this tagged component are used to provide unique information
to describe a group.

Version
The current version of the tagged component.

GroupDomainId
A simple string that applies scope to the ObjectGroupId. This was changed from the
FT::FTDomainId.

ObjectGroupId
A 64 bit identifier that uniquely defines the group.

ObjectGroupRefVersion
This field is optional and will be set to zero for MIOP when it is not being used. An
implementation may set the value if multiple versions of an object group reference exist.

29.9.4.2 GroupIIOPProfile

This data field will contain the profile data for an IIOP tagged profile. This IIOP profile
will be used to support the OMA of CORBA::Object. This component is not required
to complete the UIPMC profile.

29.10 Group IOR

A Group IOR will serve the purpose of providing the client with the means to invoke
directly to:

• an IIOP gateway application in the event that the client is not multicast capable (via
a standard IIOP profile); or

• MIOP aware servant objects that support the same interface and belong to the same
multicast group (via a multicast profile; for example, UIPMC_ProfileBody).

The creator of the IOR, (typically the MGM but not necessarily), creates the number of
profiles in the IOR based on the requirements of the object group participants. This
suggests that one or both profiles could be present in the Group IOR. MIOP aware clients
will directly target the UIPMC profile contained in the Group IOR. This would allow
them to directly use the multicast capability as opposed to using a gateway. All the
profiles are essentially optional but one of course must be present. The figure below
details the contents of the Group IOR.

29-10 Unreliable Multicast: Final Adopted Specification November 2001

29

Figure 29-1 An example of the Group Interoperable Object Reference used for Unreliable
Multicast.

29.10.1 Gateway Profile

The profile for the gateway is a standard IIOP profile. The gateway itself could be
multicast aware, or like the CORBA EventService, simply multiplex requests to the
servant objects via a conventional IIOP mechanism. Therefore no restrictions should be
placed on servants which would not allow both standard GIOP over IIOP requests and
MIOP requests to target the same servant object.

If the gateway supports GIOP version 1.2, the creator of the Group IOR should place the
UIPMC Profile5 information in the profile field of the union field for
GIOP::TargetAddress.

5. It is assumed that other profiles created for MIOP will be handled in a similar fashion.

November 2001 Unreliable Multicast: Adding Group Knowledge to PortableServer::POA 29-11

29

If the gateway supports GIOP version 1.0 or 1.1, the creator of the Group IOR should
place the UIPMC Profile information in the object key field. This data will appear as an
encapsulation preceded by the literal characters ‘MIOP.’

Providing the entire profile as part of the request header allows the gateway to use the
destination endpoints for forwarding the request to its intended destinations via multicast.

29.10.2 UIPMC Profile

The UIPMC profile would directly support MIOP operations. This could be the only
profile associated with an IOR for those situations where there are no gateway
applications available. In addition, the creator of the group IOR can specify an IIOP
profile to be placed as a tagged component of the UIPMC profile to support the OMA of
CORBA::Object. The UIPMC profile differs from an IIOP profile in that the object key
field is not present. The identify of the group is defined by the
PortableGroup::GroupInfo data supplied in the components.

29.10.3 Unreliable Multicast Object Groups

Object groups represent a collection of participating objects, both invoking and receiving
CORBA operations on common object group information, that take their identity from
the information associated with the group definition. Typically this group information is
stored in the Multicast Group Manager (MGM) when such an application is present.
Often, though not in this specification, an object group’s information will define a
group’s object membership; this specification ignores membership. It is assumed that
future reliable multicast oriented specifications will address group membership.

For the scope of this specification, an object group will provide some unique
identification of itself (id, name, type version) as well as the ability to disclose its
destination endpoints.

29.11 Adding Group Knowledge to PortableServer::POA

This section will discuss how to extend the current model for the PortableServer::POA to
take into account servant groups. Several operations will added to extend the POA and
provide object group functionality. For those ORB vendors that do not wish to
implement the group methods of the POA, these additional routines will be optional
compliance points when implementing the POA specification and implementations
should raise the CORBA system exception CORBA::NO_IMPLEMENT.

The UIPMC profile for the Group IOR does not define a universal object key; object
keys are opaque structures that are vendor defined. In addition, an object key as defined
in IIOP, is intended to specify a single object as opposed to an object group. The intent
of this specification was to not change the semantics of object keys or define a common
object key format; neither of which would be hardily welcomed by the vendor
community. Instead, the ORB implementation for the Group Object Adapter should use
the PortableGroup::GroupInfo in the UIPMC profile components field and an
associated PortableServer::ObjectId to correctly dispatch the MIOP operation to the
correct objects6.

29-12 Unreliable Multicast: Final Adopted Specification November 2001

29

The operations discussed below provide a mechanism to map a well known multicast
group reference associated with an object group to a standard
PortableServer::ObjectId. This removes the need of having a common object key
format. This also provides a mechanism to allow servant objects residing in different
vendor’s ORB applications to all receive the same messages. This of course is dependent
on:

1. The servants are using the same group reference containing the definition for the
same object group.

2. The destination endpoints in the group reference are being used for receiving
requests.

3. The interface that the request is being invoked upon is identical, or derived from the
parent interface by inheritance, to the one contained in the object group’s definition.

There should be no restrictions on different object groups sharing the same destination
endpoints.

29.11.1 New Operations

module PortableServer

exception NotAGroupObject {};
typedef sequence <ObjectId> IDs;

interface POA {
...
ObjectId

create_id_for_reference(in CORBA::Object the_ref)
raises (NotAGroupObject);

IDs
reference_to_ids (in CORBA::Object the_ref)

raises (NotAGroupObject);

void
associate_reference_with_id

(in CORBA::Object ref, in ObjectId oid)
raises(NotAGroupObject);

void
disassociate_reference_with_id

(in CORBA::Object ref, in ObjectId oid)
raises(NotAGroupObject);

6. The plural is used here to address multiple objects all associated with the same object group
within a single process space. This requirement is necessary to address location transpar-
ency. Multiple collocated objects that have associated themselves with the same object
group, which are invoked upon locally, will need to receive the request.

November 2001 Unreliable Multicast: Adding Group Knowledge to PortableServer::POA 29-13

29

}; // end interface POA

}; // end module PortableServer

29.11.1.1 Group Object Adapter Operations

create_id_for_reference
The operation create_id_for_reference() takes as an argument a widened Group IOR
and generates a unique PortableServer::ObjectId for that reference. This identifier
returned by this routine is of the type PortableServer::ObjectId. This identifier is
later associated with a servant via the standard API in the POA; that is,
activate_object_with_id().

ObjectId
create_id_for_reference(in CORBA::Object the_ref)

raises (NotAGroupObject);

Parameters

the_ref A reference for the object group.

Return Value

A unique ObjectId.

Raises

NotAGroupObject Raised if the object reference is not a group reference.

reference_to_ids
The operation reference_to_ids() takes as an argument a widened Group IOR and
returns a sequence of object identifiers that are currently associated with the Group
IOR.

IDs
reference_to_ids (in CORBA::Object group_ref)

raises (NotAGroupObject);

Parameters

the_ref A reference for the object group.

Return Value

A sequence of servant object identifiers that are currently
associated with the group.

Raises

NotAGroupObject Raised if the object reference is not a group reference.

29-14 Unreliable Multicast: Final Adopted Specification November 2001

29

associate_reference_with_id
The operation takes a previously generated ObjectId and associates it with a group
reference. Servants activated using this ObjectId will be candidates for receiving MIOP
requests via the group information provided in the IOR. The operation silently ignores
repeat/duplicate associations of a POA/ObjectId pair with the provided object reference.

void
associate_reference_with_id

(in CORBA::Object ref, in ObjectId oid)
raises(NotAGroupObject);

Parameters

ref A reference for the object group.

oid A system or user generated ObjectId.

Return Value

None.

Raises

NotAGroupObject Raised if the object reference is not a group reference.

disassociate_reference_with_id
The operation takes a previously generated ObjectId and removes the association it had
with a group reference. Servants activated using this ObjectId will no longer receive
MIOP requests via the group information provided in the IOR. The operation silently
ignores disassociations that no longer or never existed.

void
disassociate_reference_with_id

(in CORBA::Object ref, in ObjectId oid)
raises(NotAGroupObject);

Parameters

ref A reference for the object group.

oid A system or user generated ObjectId.

Return Value

None

Raises

NotAGroupObject Raised if the object reference is not a group reference.

29.11.2 Invocation Scenarios

The routines listed above do not have the capability to modify or destroy an ObjectId that
is generated by the POA or by the application programmer. They simply associate an ID
to a reference either implicitly or explicitly. Therefore a call to
create_id_for_reference() or associate_id_with_reference() followed by a call

November 2001 Unreliable Multicast: MIOP Gateway 29-15

29

to disassociate_id_with_reference() does nothing to the existence of the ObjectId
and allows that same ObjectId to be reused again in a call to
associate_id_with_reference().

29.12 MIOP Gateway

A gateway may be used to provide access to all MIOP aware servants that are in the
object group. Prior to the creation of the group IOR, the creator can specify the use of a
gateway and creator of the group IOR can insert the IIOP profile of the gateway in the
Group IOR.

An MIOP unaware client ORB uses the IIOP profile from the group IOR and establishes
a connection to the gateway. The gateway in turn uses the destination endpoints specified
by the UIPMC profile (placed in the object key pre GIOP 1.2, and in the TargetAddress
profile field in GIOP 1.2) to forward GIOP request messages to the members of the
object group. The gateway could use MIOP multicast or an IIOP mechanism similar to
the CORBA EventService.

An MIOP client application using a gateway would be MIOP unaware. Like any normal
IIOP sending application, it simply makes requests without regard to the UIPMC profile
in the IOR.

29.13 Multicast Group Manager

The Multicast Group Manager serves the purpose creating and managing multicast object
groups as well as managing multicast transport resources. Creation of the multicast group
can result in the assignment of multicast destination endpoints on which senders
multicast their messages and receivers accept them. Once an object group is created, the
group reference can be stored in the Naming Service to be retrieved by applications
interested in participating in the object group.

When the MGM is instructed to create a multicast object group, it may perform one of
the following criteria:

• Just create the group with a no destination endpoints;

• Create the group and automatically allocate the endpoints; or

• Create the group and supply its own preferred destination endpoints.

When the endpoints of the multicast transport are specified, the MGM can create a
completed group reference and publish the reference to the world. The newly
created/updated group reference would contain any specific IIOP profiles to the gateway,
as well as the UIPMC profile. Once a client application gets a group reference, it can
then start multicasting to servant objects who are listening on those same destination
endpoints. A receiving application would acquire a published IOR and associate this
reference with an ObjectId and then activate a servant object with that id allowing the
dispatching of request to the participating servant objects.

A single MIOP multicast address may be associated with more than one object group.
This allows a process to listen to messages for more than one group on a single multicast
address.

29-16 Unreliable Multicast: Final Adopted Specification November 2001

29

Objects that are recipients of multicasts have interfaces defined in IDL like any other
objects. However, because multicast is unidirectional, the only operations that can be
invoked on an interface are operations that have a void return type, in parameters only,
and do not raise exceptions. These restrictions create a problem because all IDL
interfaces inherit from CORBA::Object which contains operations that do not meet
these restrictions. For example, is_a() and non_existent() are operations that have a
return value.

Therefore the group IOR created by the MGM must be able to:

• Provide a common factory to manage object groups; and

• Provide the capability to be able to support the OMA of CORBA::Object.

The MGM’s role in implementing the OMA will be discussed at the end of this section
on the MGM. The following sections will discuss the IDL that comprises the MGM.

Since the implementation of the MGM is optional, an orb vendor should use the corbaloc
mechanism to create a group reference with a UIPMC profile if the MGM is not
available. Once this reference is properly created, it needs to be published in a
conventional application determined place (e.g., file, CORBA Naming Service, etc.) so
that participating applications can acquire the reference to send and receive multicast
requests.

29.13.1 module PortableGroup

This section presents the IDL for the module PortableGroup. The module will be used
for other specifications outside this specification that deal with Object Groups. The IDL
from the discussion of the PGA above is not included in the full IDL definition of
PortableGroup pending its full acceptance. The full IDL for module will be presented at
the end of the specification in Appendix B.

29.13.1.1 Common Types

module PortableGroup {

// Specification for Interoperable Object Group References
typedef string GroupDomainId;
typedef unsigned long long ObjectGroupId;
typedef unsigned long ObjectGroupRefVersion;

typedef GIOP::Version Version;

struct GroupInfo { // tag = TAG_GROUP;
Version component_version;
GroupDomainId group_domain_id;
ObjectGroupId object_group_id;
ObjectGroupRefVersion object_group_ref_version;

};
typedef sequence <octet> GroupIIOPProfile

// Specification of Common Types and Exceptions

October 2001 Unreliable Multicast: 29-17

29

// for GroupManagement
interface GenericFactory;

typedef CORBA::RepositoryId TypeId;
typedef Object ObjectGroup;
typedef CosNaming::Name Name;
typedef any Value;

struct Property {
Name nam;
Value val;

};

typedef sequence<Property> Properties;
typedef Name Location;
typedef sequence<Location> Locations;
typedef Properties Criteria;

struct FactoryInfo {
GenericFactory the_factory;
Location the_location;
Criteria the_criteria;

};

typedef sequence<FactoryInfo> FactoryInfos;
typedef long MembershipStyleValue;

const MembershipStyleValue MEMB_APP_CTRL = 0;
const MembershipStyleValue MEMB_INF_CTRL = 1;

typedef unsigned short InitialNumberReplicasValue;
typedef unsigned short MinimumNumberReplicasValue;

exception InterfaceNotFound {};
exception ObjectGroupNotFound {};
exception MemberNotFound {};
exception ObjectNotFound {};
exception MemberAlreadyPresent {};
exception BadReplicationStyle {};
exception ObjectNotCreated {};
exception ObjectNotAdded {};
exception UnsupportedProperty {

Name nam;
};

exception InvalidProperty {
Name nam;
Value val;

};

exception NoFactory {

October 2001 Unreliable Multicast: 29-18

29

Location the_location;
TypeId type_id;

};

exception InvalidCriteria {
Criteria invalid_criteria;

};

exception CannotMeetCriteria {
Criteria unmet_criteria;

};
};

29.13.2 Identifiers for PortableGroup

The identifiers listed below are identical to those defined in fault tolerant CORBA.

GroupDomainId
The name of the Group Domain. This name provides additional scoping with a group
identifier.

ObjectGroupId
Unique Id for the Object Group.

ObjectGroupRefVersion
The current version of the reference. It should start at version 1.0.

GroupInfo
The unique information used object group identification as well as being used for object
dispatching in the Portable Group Adapter.

GroupIIOPProfile
This is additional component information that is defined as an IIOP profile. This profile
is used to support the implicit two-way operations associated with CORBA::Object.

TypeId
Repository Id of the Group Object’s supported interface.

ObjectGroup
A collection of information used to define how one contacts a group of related group
participants. It is uniquely identified by the information in the GroupInfo and the
destination endpoints used to contact the servants in the group.

Name
The name of a property - may be hierarchical.

November 2001 Unreliable Multicast: Multicast Group Manager 29-19

29

Value
The value of a property - may be any valid IDL type.

Property
A Name/Value pair.

Properties
A sequence of Property.

Location
This type is not used in MIOP for unreliable multicast.

Locations
This type is not used for MIOP for unreliable multicast.

Criteria
An IDL rename of the type Properties.

FactoryInfo
This type is not used for MIOP for unreliable multicast.

FactoryInfos
This type is not used for MIOP for unreliable multicast.

MembershipStyleValue
This type is not used for MIOP for unreliable multicast.

29.13.3 Exceptions for PortableGroup

The behavior of the exceptions is the same as in the CORBA Fault Tolerant specification
except where differences are noted.

InterfaceNotFound
The exception is not used by the MGM.

ObjectGroupNotFound
The object group cannot be found by the MGM based on the identifier that was provided.

MemberNotFound
The exception is not used by the MGM.

29-20 Unreliable Multicast: Final Adopted Specification November 2001

29

ObjectNotFound
The exception is raised if no group reference is associated with the object group.

MemberAlreadyPresent
The exception is not used by the MGM.

BadReplicationStyle
The exception is not used by the MGM.

ObjectNotCreated
The GenericFactory did not create the object.

ObjectNotAdded
The exception is not used by the MGM.

UnsupportedProperty
The property is not recognized or unsupported.

InvalidProperty
The property was either repeated or is in conflict with an existing property.

NoFactory
The factory cannot create an object with the id provided.

InvalidCriteria
The criteria provided was not understood by the factory.

CannotMeetCriteria
The criteria was understood but the factory is unable to support the criteria.

29.13.4 interface PropertyManager

// Specification of PropertyManager Interface
interface PropertyManager {

void set_default_properties
(in Properties props)

raises (InvalidProperty, UnsupportedProperty);

Properties get_default_properties();

void remove_default_properties
(in Properties props)

raises (InvalidProperty, UnsupportedProperty);

November 2001 Unreliable Multicast: Multicast Group Manager 29-21

29

void set_type_properties
(in TypeId type_id, in Properties overrides)

raises (InvalidProperty, UnsupportedProperty);

Properties get_type_properties(in TypeId type_id);

void remove_type_properties
(in TypeId type_id, in Properties props)

raises (InvalidProperty, UnsupportedProperty);

void set_properties_dynamically
(in ObjectGroup object_group, in Properties overrides)

raises
(ObjectGroupNotFound,
 InvalidProperty,
 UnsupportedProperty);

Properties get_properties
(in ObjectGroup object_group)

raises(ObjectGroupNotFound);

}; // endPropertyManager

This interface was taken from the CORBA Fault Tolerant specification. It has been
modified to be general to object groups

29.13.4.1 Operations for PropertyManager

set_default_properties
The method sets all the default properties in the object group domain for all object
groups. The default property values are determined by the implementation.

void set_default_properties
(in Properties props)
raises (InvalidProperty, UnsupportedProperty);

Parameters

props A sequence of properties that are to applied to all object groups
within a object group domain.

Return Value

None.

Raises

29-22 Unreliable Multicast: Final Adopted Specification November 2001

29

get_default_properties
This method returns the default properties for the object groups within the object group
domain.

Properties get_default_properties();

Parameters

None.

Return Value

The default properties that have been set for the object groups.

Raises

None.

remove_default_properties
This method removes the given default properties.

void remove_default_properties(in Properties props)
raises (InvalidProperty, UnsupportedProperty);

Parameters

props The properties to be removed.

Return Value

None

Raises

set_type_properties
This method sets the properties that override the default properties of the object groups,
with the given type identifier, that are created in the future.

void set_type_properties
(in TypeId type_id, in Properties overrides)

InvalidProperty If one or more of the properties in the sequence is
not valid.

UnsupportedProperty If one or more of the properties in the sequence is
not supported.

InvalidProperty If one or more of the properties in the sequence is
not valid.

UnsupportedProperty If one or more of the properties in the sequence is
not supported.

November 2001 Unreliable Multicast: Multicast Group Manager 29-23

29

raises (InvalidProperty, UnsupportedProperty);

Parameters

type_id The repository id for which the properties, that are to override the
existing properties, are set.

overrides The overriding properties.

Return Values

None

Raises

get_type_properties
This method returns the properties of the object groups, with the given type identifier,
that are created in the future. These properties include the properties determined by
set_type_properties(), as well as the default properties that are not overridden by
set_type_properties().

Properties get_type_properties(in TypeId type_id);

Parameters

type_id The repository id for which the properties, that are to override the
existing properties, are set.

Return Value

The overriding properties for the given type identifier.

Raises

None.

remove_type_properties
This method removes the given properties, with the given type identifier.

void remove_type_properties
(in TypeId type_id, in Properties props)
raises (InvalidProperty, UnsupportedProperty);

Parameters

type_id The repository id for which the given properties are to be removed.

props The properties to be removed.

Return Value

None.

InvalidProperty If one or more of the properties in the sequence is
not valid.

UnsupportedProperty If one or more of the properties in the sequence is
not supported.

29-24 Unreliable Multicast: Final Adopted Specification November 2001

29

Raises

set_properties_dynamically
This method sets the properties for the object group with the given reference dynamically
while the application executes. The properties given as a parameter override the
properties for the object when it was created which, in turn, override the properties for
the given type which, in turn, override the default properties.

void set_properties_dynamically
(in ObjectGroup object_group, in Properties overrides)
raises(ObjectGroupNotFound, InvalidProperty, UnsupportedProperty);

Parameters

object_group The reference of the object group for which the overriding
properties are set.

overrides The overriding properties.

Raises

get_properties
This method returns the current properties of the given object group. These properties
include those that are set dynamically, those that are set when the object group was
created but are not overridden by set_properties_dynamically(), those that are set as
properties of a type but are not overridden by create_object() and
set_properties_dyamically(), and those that are set as defaults but are not overridden
by set_type_properties(), create_object(), and set_properties_dyamically().

Properties get_properties(in ObjectGroup object_group)
raises(ObjectGroupNotFound);

Parameters

object_group The reference of the object group for which the properties are to be
returned.

InvalidProperty If one or more of the properties in the sequence is
not valid.

UnsupportedProperty If one or more of the properties in the sequence is
not supported.

ObjectGroupNotFound If object group specified cannot be found.

InvalidProperty If one or more of the properties in the sequence is
invalid

UnsupportedProperty If one or more of the properties in the sequence is
not supported.

November 2001 Unreliable Multicast: Multicast Group Manager 29-25

29

Return Value

The set of current properties for the object group with the given
reference.

Raises

29.13.5 interface ObjectGroupManager

// Specification of ObjectGroupManager Interface
interface ObjectGroupManager {

ObjectGroup create_member
(in ObjectGroup object_group,
 in Location the_location,
 in TypeId type_id,
 in Criteria the_criteria)
raises

(ObjectGroupNotFound,
 MemberAlreadyPresent,
 NoFactory,
 ObjectNotCreated,
 InvalidCriteria,
 CannotMeetCriteria);

ObjectGroup add_member
(in ObjectGroup object_group,
 in Location the_location,
 in Object member)
raises

(ObjectGroupNotFound,
 CORBA::INV_OBJREF,
 MemberAlreadyPresent,
 ObjectNotAdded);

ObjectGroup remove_member
(in ObjectGroup object_group,
 in Location the_location)

raises
(ObjectGroupNotFound, MemberNotFound);

Locations locations_of_members
(in ObjectGroup object_group) raises(ObjectGroupNotFound);

ObjectGroupId get_object_group_id
(in ObjectGroup object_group) raises(ObjectGroupNotFound);

ObjectGroup get_object_group_ref
(in ObjectGroup object_group) raises(ObjectGroupNotFound);

ObjectGroupNotFound If the object group is not found.

29-26 Unreliable Multicast: Final Adopted Specification November 2001

29

Object get_member_ref
(in ObjectGroup object_group,
 in Location loc)

raises(ObjectGroupNotFound, MemberNotFound);

}; // end ObjectGroupManager

This interface is largely unused by the MGM with the exception of two methods which
will be discussed below. The MGM will use this interface to obtain the current reference
and identifier of an object group. The routines that are not discussed in the table below
all return the exception CORBA::NO_IMPLEMENT. The behavior of the operations in
this interface is the same as in the CORBA Fault Tolerant specification except where
differences are noted.

29.13.5.1 Operations for ObjectGroupManager

get_object_group_id
The method takes an object group reference as a parameter and returns the identifier of
the object group.

ObjectGroupId get_object_group_id
(in ObjectGroup object_group) raises (ObjectGroupNotFound);

Parameters

object_group A reference for the object group.

Return Value

The identifier of the object group.

Raises

get_object_group_ref
The method takes an object group reference as a parameter and returns the current
reference of the object group. Any address changes or new allocations can be found by
updating this reference.

ObjectGroupId get_object_group_ref
(in ObjectGroup object_group) raises (ObjectGroupNotFound);

Parameters

object_group A reference for the object group.

Return Value

The identifier of the object group.

ObjectGroupNotFound Raised if the object group is not found by the
MGM.

November 2001 Unreliable Multicast: Multicast Group Manager 29-27

29

Raises

29.13.6 interface GenericFactory

// Specification of GenericFactory Interface
interface GenericFactory {

typedef any FactoryCreationId;

Object create_object
(in TypeId type_id,
 in Criteria the_criteria,
 out FactoryCreationId factory_creation_id)

raises
(NoFactory,
 ObjectNotCreated,
 InvalidCriteria,
 InvalidProperty,
 CannotMeetCriteria);

void delete_object
(in FactoryCreationId factory_creation_id)

raises (ObjectNotFound);

}; // end GenericFactory

This interface provides a generic create and destroy functionality for object groups. The
call to create_object() will return a type Any that contains a
PortableGroup::ObjectGroupId. The call to destroy_object() will remove the
object group and the group reference from the factory. The behavior of the operations in
this interface are the same as in the CORBA Fault Tolerant specification except where
differences are noted.

29.13.6.1 Operations for GenericFactory

create_object
This routine creates a group reference from the type id and criteria list specified. It
returns a group object identifier and an group object reference.

Object create_object
 (in TypeId type_id,
 in Criteria the_criteria,
 out FactoryCreationId factory_creation_id)
raises
 (NoFactory,
 ObjectNotCreated,
 InvalidCriteria,

ObjectGroupNotFound Raised if the object group is not found by the
MGM.

29-28 Unreliable Multicast: Final Adopted Specification November 2001

29

 InvalidProperty,
 CannotMeetCriteria
);

Parameters

Return Value

The group object created by the factory.

Raises

delete_object
This method deletes an object group, and all its available information, based on the type
id specified.

void delete_object
 (in FactoryCreationId factory_creation_id) raises (ObjectNotFound);

Parameters

factory_creation_id A identifier that was previously provided by a create call.

Return Value

None

Raises

object_group A reference for the object group.

type_id The repository id of the object to be created.

the_criteria Additional information that is evaluated before the
object is created. MIOP can use these to set the types
and numbers of profiles in the Group IOR.

factory_creation_id Unique value assigned by the factory and later used for
deletion.

NoFactory The object cannot be created.

ObjectNotCreated The object cannot be created.

InvalidCriteria The criteria is not understood.

InvalidProperty Invalid property was passed in the criteria.

CannotMeetCriteria The application understands the criteria but is unable to
process it

ObjectNotFound Raised if the object reference is not found by the MGM.

November 2001 Unreliable Multicast: Multicast Group Manager 29-29

29

29.13.7 module MGM

module MGM {

// Property values

typedef long GroupCreationMode
const GroupCreationMode CREATE_ADDRESS_DEFERED = 0;
const GroupCreationMode CREATE_ADDRESS_GENERATED = 1;
const GroupCreationMode CREATE_ADDRESS_SUPPLIED = 2;

interface ObjectGroupFactory :
PortableGroup::GenericFactory,
PortableGroup::PropertyManager,
PortableGroup::ObjectGroupManager {}

};

This module will encapsulate the specific properties of the MGM as well as the interface
for ObjectGroupFactory.

29.13.8 MGM Properties

The following sections document the policies in the MGM. It is assumed that the
implementers may add to the list of properties based on their specific protocol and
application needs. The only protocol currently supported is IP/Multicast.

29.13.8.1 GroupCreationMode

Name org.omg.mgm.GroupCreationMode

Value CREATE_ADDRESS_DEFERED

CREATE_ADDRESS_GENERATED

CREATE_ADDRESS_SUPPLIED

The creation mode CREATE_ADDRESS_DEFERED will direct the creation of an
object group without any multicast destination endpoints. The inclusion of properties that
involve destination endpoints will cause the exception CannotMeetCriteria to be
raised.

The creation mode CREATE_ADDRESS_GENERATED will direct the creation of an
object group with MGM selected multicast destination endpoints. The inclusion of
properties that involve destination endpoints will cause the exception
CannotMeetCriteria to be raised.

The creation mode CREATE_ADDRESS_SUPPLIED will direct the creation of an
object group with those destination endpoints which are specified in another property.
The exclusion of properties that contain destination endpoints will cause the exception
CannotMeetCriteria to be raised.

These properties can only be set at group creation time.

29-30 Unreliable Multicast: Final Adopted Specification November 2001

29

29.13.8.2 CreateSpecifyGateway

Name org.omg.mgm.CreateSpecifyGateway

Value The CORBA::Object of the gateway.

This property will register the MIOP gateway in the object group. This property can be
set anytime.

29.13.8.3 SupportImplicitOperations

Name org.omg.mgm.SupportImplicitOperations

Value CORBA::Object.

This property will allow the MGM to create an IOR with a profile that supports the
OMA of the object group. The IOR value could be one of the following:

• A object not associated with an MIOP gateway (application defined);

• An MIOP gateway; or

• The MGM.

If the value of the IOR is null, the MGM will assume it will be supporting the OMA.
This property can be set anytime.

29.13.8.4 CreateIncludeGateway

Name org.omg.mgm.CreateIncludeGateway

Value CORBA::Boolean

If the value of the property is set to TRUE, the profile of the gateway is included in the
group IOR. If the value of the property is set to FALSE, the profile of the gateway is
excluded in the group IOR. This property can be set anytime.

29.13.8.5 ProtocolEndpointsIPPort

Name org.omg.mgm.ProtocolEndpointsIPPort

Value An unsigned short value designating a unique port.

This property can be set anytime.

29.13.8.6 ProtocolEndpointsIPAddress

Name org.omg.mgm.ProtocolEndpointsIPv4Address

Value A string designating an IPv4 or IPv6 multicast address.

This property can be set anytime.

November 2001 Unreliable Multicast: Multicast Group Manager 29-31

29

29.13.8.7 GroupDomainId

Name org.omg.mgm.GroupDomainId

Value string

This value is used to scope the group identifier. If this property is not specified, the
group domain identifier will default to “DefaultGroupDomain.” This property can only
be set once during the life of the object group. If an attempt is made to set this value after
the default has been changed, the exception PortableGroup::InvalidProperty will be
raised.

29.13.9 interface ObjectGroupFactory

This interface provides the capability to manage objects groups. It directly inherits the
ObjectGroupManager, PropertyManager, and the GenericFactory interfaces. It
completely reuses the specifications for its inherited interfaces.

29.13.10 Interoperable Object Group Reference Operations

To avoid breaking the CORBA object model, it is recommended that each group IOR’s
UIPMC profile contain the PortableGroup::GroupIIOPProfile tagged component
which will profile the capability to invoke two-way CORBA::Object implicit operations.
The methods for addressing these operations are discussed in the following sections.

is_a

This operation is unchanged. If the interface is understood by the client ORB, the call
will return true. If the UIPMC profile was created without the
PortableGroup::GroupIIOPProfile component, the client ORB should try to resolve
the interface internally and only return false it cannot resolve the interface name
internally. Otherwise if will use the IIOP profile in the
PortableGroup::GroupIIOPProfile to try to resolve the call.

non_existent

For a group IOR, this operation always returns the value true.

 validate_connection

For a group IOR, this operation always replies with true if the current policies are
correct.

get_domain_managers

Similar considerations as for is_a here.

get_interface

Same considerations as for is_a and get_domain_managers.

29-32 Unreliable Multicast: Final Adopted Specification November 2001

29

is_nil

This operation would return false if at least one profile is present, otherwise it returns
true if no profiles are present.

is_equivalent

Cases:

• If both references are non-group references the behavior is unchanged.

• If one reference is a group reference and the other is not a group reference, then
the references are not equivalent.

• The number of profiles must be equal. If both references are group references
then the field of the group components are compared and must be identical for all
profiles that contain them.

hash

Follows the semantics of is_equivalent.

create_request

Unchanged.

get_policy

Unchanged.

set_policy_overrides

Unchanged.

Other Two Way Calls
If the group IOR contains only the UIPMC profile, the client ORB may use the tagged
component PortableGroup::GroupIIOPProfile, if it exists, to process two-way calls
on an interface that supports both two-way and one-ways calls.

If the group IOR contains both an IIOP gateway profile and the UIPMC profile, the
sending ORB can choose to use the gateway IIOP profile even if it is MIOP aware. An
MIOP unaware client would always use the IIOP gateway profile even in the existence of
the UIPMC profile.

29.14 MIOP URL

This section provides a corbaloc URL definition of an MIOP profile. The following
defines the syntax:

<corbaloc> = "corbaloc:"<obj_addr_list>["/"<key_string>]
<obj_addr_list> = [<obj_addr> ","]* <obj_addr>
<obj_addr> = <prot_addr>
<prot_addr> = <iiop_prot_addr> | <miop_prot_addr>
<miop_prot_addr> = <miop_prot_token><miop_addr>
<miop_prot_token> = "miop"

November 2001 Unreliable Multicast: GIOP Request Message Compatibility 29-33

29

<iiop_prot_token> = “iiop”
<miop_addr> = <version><group_addr>[;<group_iiop>]
<version> = <major> "." <minor> "@" | empty_string
<group_addr> = <group_id>”/”<ip_multicast_addr>
<group_iiop> = <iiop_prot_token>”:”<version> <hostname>":"\

<port> “/” <objecy_key>
<ip_multicast_addr> = <classD_IP_address> | <IPv6_address> ":" <port>
<classD_IP_address> = "224.0.0.0" - "239.255.255.255"
<port> = number (default to be defined)
<group_id> = <group component version>”-”<group_domain_id>”-”

<object_group_id>[“-”<object group reference version>]
<group component version> = <major> "." <minor>
<group_domain_id> = string
<object_group_id> = unsigned long long
<object group reference version> = unsigned long
<major> = number (default 1)
<minor> = number (default 0)

It would be written as follows below. The example URL does not use the Object
Reference Version as defined in the PortableGroup::GroupInfo. Therefore this value
must be 0 in the constructed profile. Not that both the multicast address and the group
information are required. This example also supplies a
PortableGroup::GroupIIOPProfile tagged component.

corbaloc:miop:1.0@1.0-MyLIttleDomin-1/225.1.1.8:5000;
iiop:1.1@oma_host:1234/object_key,\
iiop:1.2@gateway_host:1234/object_key

Section III - Request Issues

29.15 GIOP Request Message Compatibility

Client ORBs will fall into two categories when invoking operations via MIOP:

1. MIOP aware clients; and

2. MIOP unaware clients.

If the client is MIOP aware it will use the UIPMC profile even if the IIOP gateway
profile is present. In addition, the MIOP aware client may make use of the
PortableGroup::GroupIIOPProfile tagged component to resolve CORBA::Object
implicit operations and other interface specific two-way operations.

The MIOP unaware client will always use the gateway IIOP profile and ignore the
UIPMC profile. All calls (one-way, two-way including implicit operations) will be send
to the gateway application.

29-34 Unreliable Multicast: Final Adopted Specification November 2001

29

29.15.1 GIOP 1.2 Request Message

All requests involving MIOP operations will send the UIPMC profile along with the
request. This will be placed in the target field of the GIOP 1.2 request header. This
profile will be used by the object adapter to dispatch the request to the appropriate
objects that support the interface within the confines of their object adapter. Some client
ORBs may decide to set the destination endpoints to null or zero value since they are not
required for message dispatching.

29.15.2 Object Key Support in Pre-GIOP 1.2

In order to achieve inter-ORB interoperability for MIOP, the notion of an object key had
to be abandoned unless one was willing to define a common object key format for MIOP.
For GIOP version 1.2, the target field can contain either an IOR, an object key or a
tagged profile making it possible for the UIPMC profile can be sent along with the
request. To insure consistency, the ORB must always send the UIPMC profile for GIOP
version 1.2.

GIOP versions 1.0 and 1.1 do not have the flexibility of the target field in their request
header. Support for these protocols must be negotiated through their object_key field.
The encoding for pre-GIOP 1.2 versions shall be required to mark the first four octets of
the sequence with ‘MIOP.’ ORB vendors on the receiving side that do not recognize the
object key format will have to check the beginning of the sequence for the presence of
the literal value ‘MIOP.’ The remainder of the sequence will contain the UIPMC profile
as an encapsulation. This data can then be used by the object adapter to correctly
dispatch the request after it is extracted from the object_key field.

29.16 MIOP Request Efficiency

There are two efficiency related scenarios for invoking requests via a UIPMC profile.
Since the semantics of these requests are one-way with no remote status or exceptions,
there is no way to detect the failure of a request message.

In one scenario there could be a registered object group with no members. Although this
is not desirable, it is perfectly legal in MIOP since the notion of group membership is not
enforced or discussed. The client in this case would be broadcasting messages to no
recipients. There is nothing specified in this specification keep this from occurring. It
will be the responsibility of the participating applications to make sure that group
resources are cleaned up by one of the participants and that listening applications exist
and are cooperating with the broadcasters.

A different scenario involves a client invoking requests on a non-existent object group or
one that has been destroyed by a participating application. This scenario is detectable if
the MGM is present. It is therefore advisable that the requesting objects periodically poll
the MGM for the presence of the object group via two of the CORBA::Object implicit
operations is_a() and non_existent(). These operations will return the values false
and true respectively in the event that the object group no longer exists. Another
alternative would be to invoke
MGM::ObjectGroupFactory::get_object_group_ref(), which would raise an
exception in the event that the object group had been deleted or could not be found.

November 2001 Unreliable Multicast: Client Use Cases 29-35

29

29.17 Client Use Cases

The following sections will address specific scenarios that clients would potentially use
to initiate their communication with a multicast object group.

29.17.1 Using the MGM

29.17.1.1 Creating/Finding an Object Group

The application responsible for creating object groups obtains the IOR of the
MGM::ObjectGroupManager. The application responsible for creating object groups
invokes create_object() and specifies a list of properties to create an object group. The
IOR that is returned to the client potentially contains an IIOP profile for the MIOP
gateway and a UIPMC profile for multicast object group. This IOR is made available to
participating group applications via some applications determined mechanism such as the
Naming Service.

29.17.2 No MGM is Present

The application responsible for creating object groups creates an object group reference
via the corbaloc scheme. The application is responsible to make sure that the
TAG_GROUP information in the profile’s component field is unique. This IOR is made
available to participating group applications via some applications determined
mechanism such as the Naming Service.

29.17.3 Gateway Application is Used

The presence of a gateway is usually an indication that the sender or some subset of
senders are not MIOP aware. MIOP unaware sending applications simply invoke on the
gateway reference as they would any IIOP IOR and ignore the UIPMC profile.

29.17.4 Sender is MIOP Aware

The sending application potentially acquires a group reference with all possible profiles:

• a UIPMC profile with a PortableGroup::GroupInfo and a
PortableGroup::GroupIIOPProfile component; and

• an IIOP profile of the gateway.

The client will choose the UIPMC profile and send its MIOP request via this profile.

29.17.5 Sender is MIOP Unaware

The sending application potentially acquires a group reference with all possible profiles:

• a UIPMC profile with a PortableGroup::GroupInfo and a
PortableGroup::GroupIIOPProfile component; and

• an IIOP profile of the gateway.

29-36 Unreliable Multicast: Final Adopted Specification November 2001

29

The client will always choose the IIOP gateway profile and send its request via this
profile and ignore the UIPMC profile.

29.18 Server Use Cases

The following sections will address specific scenarios that server ORBs would
potentially use to initiate their communication with a multicast object group.

29.18.1 Using an Object Group

1. The receiving ORB acquires a group IOR from the Naming Service.

2. The server ORB associates the group reference with a PortableServer::ObjectId
to provide a mechanism for dispatching requests to this servant object or collection
of servant objects.

3. The server ORB will have to use the destination endpoints in the UIPMC profile to
read messages from sending applications. This can be done ahead of time if the
endpoints are well known or dynamically from the acquired group reference.

29.18.2 Gateway Application is Used

Since the gateway is acting as an advocate of the sending applications, there is no effect
on the server applications. They would behave as defined in the previous section.

October 2001 Unreliable Multicast: Summary of Optional Verses Mandatory Interfaces 29-37

29

Appendix A Conformance

A.1 Summary of Optional Verses Mandatory Interfaces

An interface to an MIOP gateway should be considered an optional interface.

A.2 Proposed Compliance Points

The specification is a single, optional compliance point within the CORBA Core
specification.

A.3 Changes to Other OMG Specifications

This specification contains an extension to the PortableServer module and the POA
interface as well as additions to module IOP.

module PortableServer
...

exception NotAGroupObject {};
typedef sequence <ObjectId> IDs;

interface POA {
...
ObjectId

create_id_for_reference(in CORBA::Object the_ref)
raises (NotAGroupObject);

IDs
reference_to_ids (in CORBA::Object the_ref)

raises (NotAGroupObject);

void
associate_reference_with_id

(in CORBA::Object ref, in ObjectId oid)
raises(NotAGroupObject);

void
disassociate_reference_with_id

(in CORBA::Object ref, in ObjectId oid)
raises(NotAGroupObject);

}; // end interface POA
...
}; // end module PortableServer

29-38 Unreliable Multicast: Final Adopted Specification November 2001

29

Appendix B Consolidated IDL

B.1 OMG IDL
#ifndef MIOP_IDL
#define MIOP_IDL

#include <IOP.idl>;
#include "GIOP.idl"
#pragma prefix "omg.org"
module MIOP
{
 typedef sequence <octet, 252> UniqueId;
 struct PacketHeader_1_0
 {
 char magic[4];
 octet hdr_version;
 octet flags;
 unsigned short packet_length;
 unsigned long packet_number;
 unsigned long number_of_packets;
 UniqueId Id;
 };

typedef GIOP::Version Version;

typedef string Address;

struct UIPMC_ProfileBody
{

Version miop_version;
Address the_address;
short the_port;
sequence<IOP::TaggedComponents> components;

};
};
#endif

#ifndef _PortableGroup_IDL_
#define _PortableGroup_IDL_

#include "CosNaming.idl" // 98-10-19.idl
#include "IOP.idl" // from 98-03-01.idl
#include "GIOP.idl" // from 98-03-01.idl
#include "CORBA.idl" // from 98-03-01.idl
#pragma prefix "omg.org"

module IOP {
const ProfileId TAG_UIPMC = OMG_assigned;

October 2001 Unreliable Multicast: OMG IDL 29-39

29

const ComponentId TAG_GROUP = OMG_assigned;
const ComponnetId TAG_GROUP_IIOP = OMG_assigned

};

module PortableGroup {

// Specification for Interoperable Object Group References
typedef GIOP::Version Version;
typedef string GroupDomainId;
typedef unsigned long long ObjectGroupId;
typedef unsigned long ObjectGroupRefVersion;

struct TagGroupTaggedComponent { // tag = TAG_GROUP;
GIOP::Version group_version;
GroupDomainId group_domain_id;
ObjectGroupId object_group_id;
ObjectGroupRefVersion object_group_ref_version;

};

typedef sequence <octet> GroupIIOPProfile; // tag = TAG_GROUP_IIOP

// Specification of Common Types and Exceptions
// for GroupManagement
interface GenericFactory;

typedef CORBA::RepositoryId TypeId;
typedef Object ObjectGroup;
typedef CosNaming::Name Name;
typedef any Value;

struct Property {
Name nam;
Value val;

};

typedef sequence<Property> Properties;
typedef Name Location;
typedef sequence<Location> Locations;
typedef Properties Criteria;

struct FactoryInfo {
GenericFactory the_factory;
Location the_location;
Criteria the_criteria;

};

typedef sequence<FactoryInfo> FactoryInfos;
typedef long MembershipStyleValue;

const MembershipStyleValue MEMB_APP_CTRL = 0;
const MembershipStyleValue MEMB_INF_CTRL = 1;

29-40 Unreliable Multicast: Final Adopted Specification November 2001

29

typedef unsigned short InitialNumberReplicasValue;
typedef unsigned short MinimumNumberReplicasValue;

exception InterfaceNotFound {};
exception ObjectGroupNotFound {};
exception MemberNotFound {};
exception ObjectNotFound {};
exception MemberAlreadyPresent {};
exception BadReplicationStyle {};
exception ObjectNotCreated {};
exception ObjectNotAdded {};
exception UnsupportedProperty {

Name nam;
};

exception InvalidProperty {
Name nam;
Value val;

};

exception NoFactory {
Location the_location;
TypeId type_id;

};

exception InvalidCriteria {
Criteria invalid_criteria;

};

exception CannotMeetCriteria {
Criteria unmet_criteria;

};

// Specification of PropertyManager Interface
interface PropertyManager {

void set_default_properties
(in Properties props)

raises (InvalidProperty, UnsupportedProperty);

Properties get_default_properties();

void remove_default_properties
(in Properties props)

raises (InvalidProperty, UnsupportedProperty);

void set_type_properties
(in TypeId type_id, in Properties overrides)

raises (InvalidProperty, UnsupportedProperty);

October 2001 Unreliable Multicast: OMG IDL 29-41

29

Properties get_type_properties(in TypeId type_id);

void remove_type_properties
(in TypeId type_id, in Properties props)

raises (InvalidProperty, UnsupportedProperty);

void set_properties_dynamically
(in ObjectGroup object_group, in Properties overrides)

raises
(ObjectGroupNotFound,
 InvalidProperty,
 UnsupportedProperty);

Properties get_properties
(in ObjectGroup object_group)

raises(ObjectGroupNotFound);

}; // endPropertyManager

// Specification of ObjectGroupManager Interface
interface ObjectGroupManager {

ObjectGroup create_member
(in ObjectGroup object_group,
 in Location the_location,
 in TypeId type_id,
 in Criteria the_criteria)
raises

(ObjectGroupNotFound,
 MemberAlreadyPresent,
 NoFactory,
 ObjectNotCreated,
 InvalidCriteria,
 CannotMeetCriteria);

ObjectGroup add_member
(in ObjectGroup object_group,
 in Location the_location,
 in Object member)
raises

(ObjectGroupNotFound,
 CORBA::INV_OBJREF,
 MemberAlreadyPresent,
 ObjectNotAdded);

ObjectGroup remove_member
(in ObjectGroup object_group,
 in Location the_location)

raises
(ObjectGroupNotFound, MemberNotFound);

29-42 Unreliable Multicast: Final Adopted Specification November 2001

29

Locations locations_of_members
(in ObjectGroup object_group) raises(ObjectGroupNotFound);

ObjectGroupId get_object_group_id
(in ObjectGroup object_group) raises(ObjectGroupNotFound);

ObjectGroup get_object_group_ref
(in ObjectGroup object_group) raises(ObjectGroupNotFound);

Object get_member_ref
(in ObjectGroup object_group,
 in Location loc)

raises(ObjectGroupNotFound, MemberNotFound);
}; // end ObjectGroupManager

// Specification of GenericFactory Interface
interface GenericFactory {

typedef any FactoryCreationId;

Object create_object
(in TypeId type_id,
 in Criteria the_criteria,
 out FactoryCreationId factory_creation_id)

raises
(NoFactory,
 ObjectNotCreated,
 InvalidCriteria,
 InvalidProperty,
 CannotMeetCriteria);

void delete_object
(in FactoryCreationId factory_creation_id)

raises (ObjectNotFound);
}; // end GenericFactory

}; // end PortableGroup
#endif // for #ifndef _PortableGroup_IDL_

#ifdef _MGM_idl
#define _MGM_idl
#include “PortableGroup.idl”
module MGM {

// Property values

typedef long GroupCreationMode
const GroupCreationMode CREATE_ADDRESS_DEFERED = 0;
const GroupCreationMode CREATE_ADDRESS_GENERATED = 1;
const GroupCreationMode CREATE_ADDRESS_SUPPLIED = 2;

October 2001 Unreliable Multicast: OMG IDL 29-43

29

interface ObjectGroupFactory :
PortableGroup::GenericFactory,
PortableGroup::PropertyManager,
PortableGroup::ObjectGroupManager {}

};
#endif // _MGM_idl

29-44 Unreliable Multicast: Final Adopted Specification November 2001

29

	Unreliable Multicast Inter-ORB Protocol
	29.1 Purpose
	29.2 MIOP Packet
	29.3 Packet Collection
	29.4 PacketHeader
	29.4.1 struct PacketHeader

	29.5 Joining an IP/Multicast Group
	29.6 Quality Of Service
	29.6.1 Time-To-Live
	29.6.2 Incomplete Receipt of a Packet Collection

	29.7 Delivery Requirements
	29.8 Definition
	29.9 Unreliable IP/Multicast Profile Body (UIPMC_ProfileBody)
	29.9.1 Version
	29.9.2 Address
	29.9.3 Port
	29.9.4 Group Components

	29.10 Group IOR
	29.10.1 Gateway Profile
	29.10.2 UIPMC Profile
	29.10.3 Unreliable Multicast Object Groups

	29.11 Adding Group Knowledge to PortableServer::POA
	29.11.1 New Operations
	29.11.2 Invocation Scenarios

	29.12 MIOP Gateway
	29.13 Multicast Group Manager
	29.13.1 module PortableGroup
	29.13.2 Identifiers for PortableGroup
	29.13.3 Exceptions for PortableGroup
	29.13.4 interface PropertyManager
	29.13.5 interface ObjectGroupManager
	29.13.6 interface GenericFactory
	29.13.7 module MGM
	29.13.8 MGM Properties
	29.13.9 interface ObjectGroupFactory
	29.13.10 Interoperable Object Group Reference Operations

	29.14 MIOP URL
	29.15 GIOP Request Message Compatibility
	29.15.1 GIOP 1.2 Request Message
	29.15.2 Object Key Support in Pre-GIOP 1.2

	29.16 MIOP Request Efficiency
	29.17 Client Use Cases
	29.17.1 Using the MGM
	29.17.2 No MGM is Present
	29.17.3 Gateway Application is Used
	29.17.4 Sender is MIOP Aware
	29.17.5 Sender is MIOP Unaware

	29.18 Server Use Cases
	29.18.1 Using an Object Group
	29.18.2 Gateway Application is Used

