
Micro Focus
OpenFusion CORBA Services

Version 5.1

Naming Service Guide



ii

Copyright 2009-2023 Open Text.

The only warranties for products and services of Open Text and its affiliates 
and licensors (“Open Text”) are as may be set forth in the express warranty 
statements accompanying such products and services.

Nothing herein should be construed as constituting an additional warranty. 
Open Text shall not be liable for technical or editorial errors or omissions 
contained herein. The information contained herein is subject to change 
without notice.

2023-09-05



OpenFusion CORBA Services Naming Service Guide iii

Contents

Preface ...................................................................................... vii
About the Naming Service Guide........................................................................vii

Intended Audience...................................................................................vii
Organisation ...........................................................................................vii
Conventions............................................................................................vii

Contacting Micro Focus ....................................................................................viii
Further Information and Product Support ...................................................viii
Information We Need ............................................................................... ix
Contact information ................................................................................. ix

Part I  Naming Service
Description .................................................................................. 3

Overview ......................................................................................................... 3
OMG Standard Features.............................................................................3
OpenFusion Enhancements ........................................................................ 3

Concepts and Architecture.................................................................................. 4
OMG Standard.......................................................................................... 4

Naming Contexts.............................................................................. 4
Federation ....................................................................................... 5
Name Components ........................................................................... 6
Interoperable Naming Service (INS).................................................... 6
Stringified Names .............................................................................6

OpenFusion Enhancements ........................................................................ 8
Java Naming and Directory Interface (JNDI)......................................... 8
Multiple Forms of Persistence ............................................................. 8
Caching........................................................................................... 9
Purging and Memory Management ...................................................... 9
Load Balancing Concepts ................................................................. 10
Load Balancing in OpenFusion .......................................................... 11
Instrumentation ............................................................................. 12
Fail-over........................................................................................ 12
Replication..................................................................................... 12

Using Specific Features ............................................................. 13
Obtaining the Root Context .............................................................................. 13
Naming Context Creation and Destruction .......................................................... 14
Binding and Unbinding Operations..................................................................... 14
Accessing Naming Context Contents .................................................................. 16
BindingIterator Operations ............................................................................... 16
Naming Context Extension Operations ............................................................... 17
Using the LoadBalancingFactory ........................................................................ 19
Manipulating Objects in the LoadBalancer........................................................... 20
Using the LoadBalancer with the Naming Service................................................. 20
Customizing the LoadBalancer .......................................................................... 21

Worked Example ....................................................................... 23
Example Client ............................................................................................... 23

API Definitions .......................................................................... 25
OMG Standard API Definitions........................................................................... 25

NamingContext Interface ......................................................................... 25
NamingContextExt Interface..................................................................... 26



iv OpenFusion CORBA Services Naming Service Guide

BindingIterator Interface..........................................................................26
OpenFusion API Extensions...............................................................................27

LoadBalancingFactory Interface.................................................................27
LoadBalancer Interface ............................................................................27
LoadBalancer Standard Policies .................................................................28
LoadBalancerPlugin Interface ....................................................................29
JNDIObject Interface ...............................................................................29

Supplemental Information.........................................................31
Administration Properties and Instrumentation ....................................................31
Java Naming & Directory Interface (JNDI)...........................................................31
Lightweight Directory Access Protocol (LDAP)......................................................31
Purging Options ..............................................................................................32
Memory Management ......................................................................................32
XML Export and Import ....................................................................................33

Exporting and Importing Cyclics ................................................................34
Exceptions......................................................................................................35

Part II  Java Naming and Directory
Description ................................................................................39

Overview........................................................................................................39
Oracle JNDI Standard Features .................................................................39
OpenFusion Enhancements.......................................................................39

Concepts and Architecture ................................................................................40
Standard JNDI ........................................................................................40
The Initial Context...................................................................................40
Naming Systems.....................................................................................41
References and Addresses ........................................................................41

OpenFusion SPI Implementation ...............................................43
Names...........................................................................................................43
Java Objects ...................................................................................................44
Supplied Factories ...........................................................................................44

Storing CORBA Objects ............................................................................44
Storing RMI-IIOP Objects .........................................................................45

Federation......................................................................................................45

Using Specific Features..............................................................47
JDBC-based Persistence ...................................................................................47
 Accessing Data ..............................................................................................48

Supplemental Information.........................................................49
Configuration Properties ...................................................................................49

Standard Properties.................................................................................49
Provider-specific Properties.......................................................................49

General .........................................................................................50
Persistence ....................................................................................50

Exceptions......................................................................................................52



OpenFusion CORBA Services Naming Service Guide v

Part III  Configuration and Management
Naming Service Configuration ................................................... 55

NameSingleton Configuration............................................................................ 55
CORBA Properties ................................................................................... 55
Lightweight Directory Access Protocol (LDAP) ............................................. 57
Persistence Options................................................................................. 59
Instrumentation Properties....................................................................... 61
General Properties .................................................................................. 63

LoadBalancingFactorySingleton Configuration...................................................... 67

Naming Service Manager ........................................................... 69
Running the Naming Service Manager................................................................ 69
Using the Naming Service Manager ................................................................... 69

Object Icons .......................................................................................... 71
Tool Bar Buttons ..................................................................................... 71
Adding a Naming Context ........................................................................ 71
Binding OpenFusion Services.................................................................... 72
Binding Objects ...................................................................................... 72
Deleting a Naming Context or Object Binding ............................................. 73
Exporting XML........................................................................................ 73
Importing XML ....................................................................................... 73
Launching Managers and Browsers............................................................ 74

CORBA Object Browser.................................................................... 74
Naming Service Manager ................................................................. 74

The Purgable Interface.............................................................. 75
Purge Class Plugin........................................................................................... 75
Using the Purgable Interface ............................................................................ 75

Part IV  Appendix
Command Line Management Tool .............................................. 79

Features ........................................................................................................ 79
Configuration ......................................................................................... 80
Using the file Protocol.............................................................................. 80
Using the http Protocol ............................................................................ 80
Using IOR and corbaloc URL ..................................................................... 81
Running ................................................................................................ 82

Index......................................................................................... 85



vi OpenFusion CORBA Services Naming Service Guide



OpenFusion CORBA Services Naming Service Guide vii

Preface
About the Naming Service Guide

The Naming Service Guide is included with the OpenFusion CORBA 
Services’ Documentation Set. The Naming Service Guide explains how to 
use the OpenFusion Naming Service.

The Naming Service Guide is intended to be used with the System Guide 
and other OpenFusion CORBA Services documents included with the product 
distribution; refer to the Product Guide for a complete list of OpenFusion 
documents.

Intended Audience
The Naming Service Guide is intended to be used by users and 
developers who wish to integrate the OpenFusion Naming Service into 
products which comply with OMG or J2EE standards for object services. 
Readers who use this guide should have a good understanding of the 
relevant programming languages (such as Java, IDL) and of the relevant 
underlying technologies (J2EE, CORBA).

Organisation
The Naming Service Guide is organised into three main sections. The first 
two sections describe the OpenFusion Naming Service and JNDI, 
respectively. These sections provide:

•     a high level description and list of main features

•     explanation of the architecture and concepts

•     how to use specific features

•     detailed explanations of the main interfaces and how to use them

•     other information which is needed to use the component

The third section, “Configuration and Management”, provides information 
on configuring and managing the OpenFusion Naming Service using the 
OpenFusion Graphical Tools. This section includes detailed descriptions of 
properties specific to the service, plus instructions on using the OpenFusion 
Graphical Tools’ Browsers and Managers. This section should be read in 
conjunction with the System Guide.

Conventions
The conventions listed below are used to guide and assist the reader in 
understanding the Naming Service Guide.

Item of special significance or where caution needs to be taken.

Item contains helpful hint or special information.

Information applies to Windows systems only.

Information applies to Unix based systems (e.g. Solaris) only.

C language specific

C++ language specific

i
WIN

UNIX

C
C++



viii OpenFusion CORBA Services Naming Service Guide

Java language specific

Hypertext links are shown as blue.

Items shown as cross-references, such as “Contact information”’, act as 
hypertext links; click on the reference to go to the item.

Courier fonts indicate programming code and file names.

Extended code fragments are shown in shaded boxes
:

Italics and Italic Bold indicate new terms or emphasise an item.

Bold indicates user related actions, e.g. File | Save from a menu.

Steps in a task are numbered:

1 One of several steps required to complete a task.

Contacting Micro Focus
Our Web site gives up-to-date details of contact numbers and addresses. 

Further Information and Product Support
Additional technical information or advice is available from several sources. 

The product support pages contain a considerable amount of additional 
information, such as: 

•     The Product Updates section of the Micro Focus SupportLine Web site, 
where you can download fixes and documentation updates. 

•     The Examples and Utilities section of the Micro Focus SupportLine Web 
site, including demos and additional product documentation. 

To connect, enter http://www.microfocus.com in your browser to go to the 
Micro Focus home page, then click Support. 

Note: 
Some information may be available only to customers who have 
maintenance agreements. 

If you obtained this product directly from Micro Focus, contact us as 
described on the Micro Focus Web site, http://www.microfocus.com. If you 
obtained the product from another source, such as an authorized 
distributor, contact them for help first. If they are unable to help, contact 
us. 

Also, visit: 

•     The Micro Focus Community Web site, where you can browse the 
Knowledge Base, read articles and blogs, find demonstration programs 
and examples, and discuss this product with other users and Micro Focus 
specialists. 

% Commands or input which the user enters on the
command line of their computer terminal

 NameComponent newName[] = new NameComponent[1];
  
 // set id field to “example” and kind field to an empty string
 newName[0] = new NameComponent (“example”, ““);

Java

http://www.microfocus.com 


OpenFusion CORBA Services Naming Service Guide ix

•     The Micro Focus YouTube channel for videos related to your product.

Information We Need
However you contact us, please try to include the information below, if you 
have it. The more information you can give, the better Micro Focus 
SupportLine can help you. But if you don't know all the answers, or you 
think some are irrelevant to your problem, please give whatever 
information you have. 

•     The name and version number of all products that you think might be 
causing a problem. 

•     Your computer make and model. 

•     Your operating system version number and details of any networking 
software you are using. 

•     The amount of memory in your computer. 

•     The relevant page reference or section in the documentation. 

•     Your serial number. You can find this by either logging into your order via 
the Electronic Product Distribution email or via the invoice with the order. 

Contact information
Our Web site gives up-to-date details of contact numbers and addresses. 

Additional technical information or advice is available from several sources. 

The product support pages contain considerable additional information, 
including the Product Updates section of the Micro Focus SupportLine Web 
site, where you can download fixes and documentation updates. To 
connect, enter http://www.microfocus.com in your browser to go to the 
Micro Focus home page, then click Support. 

If you are a Micro Focus SupportLine customer, please see your SupportLine 
Handbook for contact information. You can download it from our Web site or 
order it in printed form from your sales representative. Support from Micro 
Focus may be available only to customers who have maintenance 
agreements.

You may want to check in particular:

•     https://supportline.microfocus.com/productdoc.aspx. (documentation 
updates and PDFs)

To subscribe to Micro Focus electronic newsletters, use the online form at:
http://www.microfocus.com/Resources/Newsletters/infocus/newsletter-
subscription.asp

http://www.microfocus.com
https://supportline.microfocus.com/productdoc.aspx
http://www.microfocus.com/Resources/Newsletters/infocus/newsletter-subscription.asp


x OpenFusion CORBA Services Naming Service Guide



Part I          
Naming Service

In this part
This part contains the following:

Description page 3

Using Specific Features page 13

Worked Example page 23

API Definitions page 25

Supplemental Information page 31





OpenFusion CORBA Services Naming Service Guide 3

Description 
The OpenFusion Naming Service and OpenFusion JNDI are part of a range 
of services and interfaces included with the OpenFusion CORBA Services 
product. The OpenFusion Naming Service can be used stand-alone or with 
other OpenFusion CORBA Services interfaces and services. 
The OpenFusion Naming Service and OpenFusion JNDI are standards based 
and fully compliant with recognised industry standards and specifications, 
supporting portability and interoperability.
The OpenFusion Naming Service provides a straightforward way of finding 
and using objects, by associating meaningful names with them. The Naming 
Service can then be used like a white pages telephone directory to find an 
object and obtain its Object Reference, without complex programming or 
using proprietary ORB mechanisms.
The Naming Service can also be used in any CORBA-compliant distributed-
object system to create and maintain a directory of other services.

Overview

OMG Standard Features
The OpenFusion Naming Service is wholly compliant with the OMG 
specification. Basic features of the OMG specification include the ability to:

•     Give meaningful names to objects (name bindings)

•     Find names which have been bound to objects (resolve)

•     Group names in logical hierarchies (naming contexts)

•     Group distributed naming hierarchies (federation)

•     Retrieve lists of names and step through them (iteration)

The OMG also specifies an Interoperable Naming Service (INS), which 
extends the Naming Service to add interoperability and portability across 
ORBs and applications. Features of the INS include:

•     Away to find and use a common initial naming context

•     Support for URL-style names

OpenFusion Enhancements
The OpenFusion implementation of the Naming Service includes several 
enhancements. This extended service is layered on top of the OMG-defined 
Naming Service and INS, and does not affect the use of these standard 
services.

Enhancements include:

•     Multiple forms of persistence

•     Caching

•     Purging and memory management

•     Load balancing

•     Additional instrumentation (service monitoring functions)



4 OpenFusion CORBA Services Naming Service Guide

Concepts and Architecture

OMG Standard
The Naming Service associates meaningful names with objects. An 
association between a name and an object’s Interoperable Object Reference 
(IOR) is called a binding or name binding.

Name bindings are grouped in hierarchies called naming contexts. A naming 
context is an object containing zero or more name bindings. Each name 
binding within a naming context refers to either another naming context or 
a CORBA object.

There is no limit to the number of different names that can be bound to the 
same object or naming context, or to the number of bindings that a naming 
context can contain.

Resolving a name is the process of locating an object or naming context by 
reading a name binding and retrieving the associated object reference.

Iteration is the process of retrieving a list of bindings from a naming 
context, and looking at each binding in turn.

Naming Contexts
A naming context is a set of name bindings where each name is unique 
within that context; the same name may, however, appear in other naming 
contexts. Naming contexts can be bound to other naming contexts to create 
naming hierarchies.

A very simple hierarchy of naming contexts is shown in Figure 1. It illustrates 
the fact that a given binding within a naming context can point to either an 
object or another naming context, and that a single object can be 
referenced by more than one name. These hierarchies are known as naming 
graphs.



OpenFusion CORBA Services Naming Service Guide 5

 

Figure 1  Simple Naming Graph
An object is referenced using an initial naming context, which is also 
referred to as the root context. This is followed by a sequence of one or 
more name components. Such a sequence is known as a compound name. 
Each name component resolves to the next naming context in a chain until 
the last name component resolves to the required object. In Figure 1, 
objects A, B and D are bound directly to the root context, so their names 
have only one component (these are simple names); objects C and E have 
names with three components. The full compound name for object C can be 
represented like this:

NamingContext2/NamingContext4/ObjectC

Object E can be accessed via two different names.

The service specification also permits a naming context to contain a binding 
which refers to a parent or grandparent further up the graph. For example, 
in Figure 1 Naming Context 4 could contain a binding to Naming Context 2. 
This kind of reference is sometimes referred to as cyclic.

The root context is always implicit in a compound name; a special 
operation, resolve_initial_references, is performed once to obtain 
the root context, and all subsequent resolve operations depend on that.

Although it is not a requirement of the service specification, it is convenient 
and customary to have a single root naming context.

Federation 
The OpenFusion Naming Service has the ability to link many distributed 
naming systems in a naming graph so that they appear as a single 
namespace. This is known as federation, and it enables large 
heterogeneous systems of names and naming contexts to be implemented. 
Clients using the Naming Service do not need to be aware of the physical 
location of a server, or of the way in which it is implemented; the link from 

Root
Naming
Context

Naming
Context 2

Naming
Context 3

Naming
Context 4

CORBA
object

B

CORBA
object

A

CORBA
object

C

CORBA
object

D CORBA
object

E

n

name 1
name 2
name 3
.
.
name

n

name 1
name 2
name 3
.
.
name

n

name 1
name 2
name 3
.
.
name

n

name 1
name 2
name 3

.

.
name



6 OpenFusion CORBA Services Naming Service Guide

a naming context to an object can cross several different ORBs running on 
different systems.

Name Components 
Each name component has id and kind fields (sometimes referred to as 
attributes), represented by IDL strings. These strings are composed of ISO 
Latin-1 characters (excluding the ASCII NUL, 00h) and the combined length 
can be up to 255 characters.

The Naming Service always matches names using both fields, so it is 
acceptable for either field to be zero-length or to contain an empty string 
provided that uniqueness within a naming context is maintained. Table 1 
shows valid combinations of id and kind values.

Note that although it is technically possible for both fields to contain empty 
strings, this is not normally recommended, as it can be confusing to resolve 
to an empty name.

Interoperable Naming Service (INS) 
The Interoperable Naming Service extends the basic Naming Service. It 
implements the NamingContextExt interface, which is derived from the 
standard NamingContext interface. This interface introduces an 
interoperable stringified form of the CosNaming::Name and other URL 
formats in order to facilitate the interpretation of object references.

Stringified Names 
Names are sequences of name components, which are not human-readable 
and can be difficult for applications to deal conveniently with. A syntax for 
stringified names is therefore defined, and operations are provided to 
convert a name in sequence form to its equivalent stringified form and vice 
versa.

A stringified name has components separated by forward slashes; the id 
and kind fields within each component are separated by dots. The dot is 
omitted when the kind field is empty unless the id field is also empty, in 
which case the name component is comprised of a single dot. Similarly, if 
there is no dot in a stringified name component, then that component is 
taken to be an id field only (the associated kind field is empty).

For example, the stringified name ’name1/name2.kind1/./.kind2’ 
contains all the valid field combinations shown in Table 1, Name Component 
Fields.

A backslash must be used as an escape character if it is necessary for a 
name to contain a slash, backslash or dot.

Interoperable Object Reference (IOR)
A CORBA object is uniquely identified by its Interoperable Object Reference 
(IOR). The IOR is the CORBA 2.x compliant format for a standard 
representation of an object reference for all ORB vendors.

Table 1 Name Component Fields 

Id Kind

name1 <empty>

name2 kind1

<empty> <empty>

<empty> kind2



OpenFusion CORBA Services Naming Service Guide 7

URLs
The exchange of IORs through non-electronic means is difficult because of 
their length and the way that binary information is encoded. The corbaloc 
URL scheme provides URLs that are familiar to people and are similar to FTP 
or HTTP URLs. A corbaname URL is similar to a corbaloc URL except that a 
corbaname URL also contains a stringified name that identifies a binding in 
a naming context. The corbaloc and corbaname schemes allow service 
addresses to be exchanged more easily throughout organizations. These 
schemes are also used to allow arbitrary object references to be specified 
for an initial service, although some ORBs do not currently support these 
bootstrapping mechanisms. For example, the following line of code shows 
the OpenFusion Notification Service being referenced with a corbaloc URL:

The available URL formats are: IOR, Corbaloc, Corbaname, file, FTP and 
HTTP.

IOR
The string form of an IOR (IOR:<hex_octets>) is a valid URL. The IOR URL 
is robust and insulates the client from the encapsulated transport 
information and object key used to reference the object. This URL format is 
independent of the Naming Service.

Corbaloc
The corbaloc URL scheme provides stringified object references that are 
more easily manipulated than IORs. This URL format is independent of the 
Naming Service.

A corbaloc URL contains:

•     One or more protocol identifiers

•     Protocol-specific components

There are currently two protocols defined: Internet Inter-ORB protocol 
(IIOP) and resolve_initial_references (RIR). The RIR scheme allows 
for access to the ORB’s configured initial references. The IIOP scheme is 
defined for use in TCP/IP and DNS centric environments such as the 
Internet. This protocol contains:

•     One or more address(es) with an optional IIOP version number and an 
optional port

•     An object key

For example:

This means that at host 10.1.1.123, on port 14005, it is possible to 
resolve the object reference denoted by the key. The key has been escaped 
to map away from octet values that cannot be directly part of a URL.

This means that, at host server.microfocus.com (using IIOP version 1.1) 
or, at the host denoted by the IP address 10.1.1.123 on port 14005 the 
key can be resolved as described above.

-ORBInitRef NotificationService=corbaloc::server.microfocus.com/NotificationService

corbaloc::10.1.1.123:14005/
%00PMC%00%00%00%04%00%00%00%252cb9b780-7803-11d3-a8ae-fef54d18874b%
00%00%00%00%00%00%00%10-%9Er0x%03%11%D3%A8%AE%FE%F5M%18%87K

corbaloc::1.1@server.microfocus.com,10.1.1.123:14005/
%00PMC%00%00%00%04%00%00%00%252cb9b780-7803-11d3-a8ae-fef54d18874b%
00%00%00%00%00%00%00%10-%9Er0x%03%11%D3%A8%AE%FE%F5M%18%87K



8 OpenFusion CORBA Services Naming Service Guide

Port 2809 is used if a port is not specified.

Corbaname
A corbaname URL is similar to a corbaloc URL. However, a corbaname 
URL also contains a stringified name that identifies a binding in a naming 
context. For example: 

The first URL specifies that an object (of type NamingContext) can be 
found at host server.prismtechnologies.com using the object key 
00PMC%06%00%04%00%00. The second URL uses the resolve initial 
references syntax to return a reference to a NamingContext. The stringified 
name a/string/path/to/obj is then used as the argument to a resolve 
operation on that NamingContext. The URL denotes the object reference 
that results from that lookup.

file
The file format (file://) should specify a file containing either a URL or an 
IOR.

FTP
The FTP format (ftp://) should, as above, specify a file containing a URL 
or an IOR. However, in this case, the file should be accessible via FTP.

HTTP
This format (http://) should specify an HTTP URL that returns an object 
URL or an IOR.

OpenFusion Enhancements
The OpenFusion Naming Service is implemented in Java for platform 
independence.

Java Naming and Directory Interface (JNDI) 
The Java Naming and Directory Interface (JNDI) is a generic API for 
accessing naming and directory services; the OpenFusion Naming Service is 
layered on top of JNDI. This enables it to access the OpenFusion service 
provider and also the Adobe Lightweight Directory Access Protocol (LDAP) 
provider. Clients may access either transparently, or use the OpenFusion 
JNDI SPI independently of the CORBA service.

The OpenFusion JNDI implementation is described in Part II, Java Naming and 
Directory.

Please refer to the relevant Oracle documentation for details of JNDI and 
LDAP standard functionality.

Multiple Forms of Persistence 
The OpenFusion Naming Service has been layered on top of the Java 
Naming and Directory Interface (JNDI). This enables it to store its 
persistent data in memory or databases. It can also utilize Adobe’s JNDI 
Lightweight Directory Access Protocol (LDAP) provider, using standard LDAP 
authentication mechanisms.

corbaname::server.microfocus.com/%00PMC%06%00%04%00%00#a/string/
path/to/obj
corbaname:rir:#a/string/path/to/obj

i



OpenFusion CORBA Services Naming Service Guide 9

Persistent data in memory is provided by configuring the HSQLDB data 
source to provide memory based persistence.

Database persistence is implemented using Java Database Connectivity 
(JDBC). OpenFusion currently supports Oracle, Sybase and Informix on 
both Unix and Windows NT, plus Microsoft SQL Server on Windows NT only. 
Because the OpenFusion Naming Service supports persistence on enterprise 
quality, high-availability database systems, it is fully scalable.

The Naming Service can view non-CORBA objects found in JNDI and 
standard JNDI clients can access a persistent Naming Service hierarchy.

The persistence mechanism must be configured before the Naming Service 
is started; this is normally done with the Administration Manager. The 
OpenFusion Naming Service can create a jndi.properties file whenever it 
starts, which contains the minimum information required to allow another 
JNDI client to access the Naming Service hierarchy. JNDI properties can be 
configured by application resource files, environment parameters passed via 
a hashtable, system properties or applet parameters in JNDI, with those 
specified in the hashtable taking priority.

The OpenFusion JNDI implementation is described in Part II, Java Naming and 
Directory.

Caching 
Several tunable caching policies are supported by the OpenFusion Naming 
Service, to help optimise performance. Available policies are:

•    No cache (Read through and Write through)

•    Read cache and Write through

•    Read cache and Timed write

•    Read cache and Batched write

•    Read cache and Timed Batched write

plus

•    minimum, maximum and interval

The read cache is purged as necessary using a least-recently-used 
algorithm when it reaches a user-defined size limit.

The minimum policy sets the minimum number of objects which will be left 
in the cache when it is cleared. The default value is zero (0).

The maximum policy sets the maximum number of objects which a cache 
will be allowed to hold. The default value is five hundred (500)

The interval policy sets the length of time, in seconds, that the cache is 
cleared, subject to the minimum policy described above. The default value 
is zero, which disables the interval policy.

The caching options are dynamic, so they can be changed whilst the service 
is running. This is normally done with the Administration Manager. Purging 
and Memory Management options are also described in “Supplemental 
Information”.

Care must be taken when specifying caching properties to avoid values 
which could result in thrashing (objects being rapidly loaded, removed from 
memory, and reloaded).

Purging and Memory Management 
It is important to be aware of the differences between purging and memory 
management. Memory management is related to caching, and is performed 

i



10 OpenFusion CORBA Services Naming Service Guide

without reference to the status of an object. The purging mechanism is part 
of the OpenFusion Naming Service and its handling of objects depends 
explicitly on their status.

These features can be enabled and controlled with properties specified in 
the Administration Manager. Please refer to “Supplemental Information” for 
more information.

Purging
Purging is the deletion of invalid object references and purgable objects 
from a service. Object references are regarded as invalid when they are not 
active and not persistent. The OpenFusion Naming Service can most easily 
determine whether an object is purgable if the 
com.prismt.openfusion.plugin.Purgable interface is implemented.

Memory Management
Memory Management is the removal of objects from memory. The objects 
can be naming contexts as well as client and server objects. They are re-
loaded on demand.

The purging and memory management options must be configured through 
the Administration Manager before the Naming Service is started.

Note
•     Care must be taken when specifying memory management properties to 

avoid values which could result in thrashing (objects being rapidly 
loaded, removed from memory, and reloaded).

•     When the Naming Service is being used with purging enabled, clients 
must always perform operations such as resolve from the root context, 
to avoid problems arising from attempts to resolve naming contexts 
which have been removed from memory.

Details of purging and memory management options are given in 
“Supplemental Information”.

Load Balancing Concepts
The purpose of load balancing is to optimise the use of available resources 
in order to minimise the time between the issue of a request for a service 
and the performance of that service.

Frequent requests from many clients for a particular kind of service can be 
satisfied by any one of several servers which are capable of providing that 
service, without any client needing to know at the time of the request which 
servers are available to fulfil the request.

An example illustrates the principle: a printing service distributing print jobs 
to multiple printers. In order to provide the best service to users, the 
service allocates print jobs to the available printers according to predefined 
algorithms or policies.

The policies used may be simple or sophisticated. In the simplest case, 
where the available printers have identical capabilities, print jobs are 
allocated to each printer in turn as they are received (a round robin policy); 
the total number of printing requests is divided equally amongst the 
available printers. A sophisticated system would implement different 
policies to take account of the capabilities of individual printers and the 
characteristics of specific printing requests. It could, for example, allocate a 
print job based on the size of the job and the speeds of the available 
printers.



OpenFusion CORBA Services Naming Service Guide 11

Load Balancing in OpenFusion
This section describes a proprietary load balancing solution which is specific 
to the OpenFusion Naming Service.

Load balancing is implemented in OpenFusion as a Quality of Service option 
which enables the service to bind multiple objects to the same name. It 
uses a delegate style, which means that the application interface can be 
separated from the control or management interface. The alias provides the 
application interface; it then makes local calls to methods on the load 
balancer object instead of implementing the interface itself.

When a new load balancer is required, the OpenFusion 
LoadBalancingFactory is used to create it. The LoadBalancingFactory 
is normally co-located with the OpenFusion Naming Service, and starts 
automatically with it. A policy is specified when the load balancer is created, 
but it can be changed dynamically if required.

The servers which are to be managed by the load balancer are then 
registered with it.

The load balancer and the alias are both bound into the Naming Service. 
These bindings refer to the same object, but the Naming Service recognises 
the difference between them.

Details of the LoadBalancingFactory and LoadBalancer interfaces are 
described in “API Definitions”.

A load balancer can be applied to implementation of the printing service 
example mentioned earlier.

A client sends a print job requiring a laser printer to the printing service, 
and the printing service queries the laser printer load balancer via its alias. 
The load balancer uses its current policy to determine which printer the job 
should be sent to, and returns that printer to the printing service. The 
printing service then sends the job to the selected printer. This is illustrated 
in Figure 2.

Figure 2  Load Balancing

i

Load
Balancer

Laser_1

Laser_2

Laser_n

Laser_
printer
(alias)

PrintService
daemon

Naming Service

Print
Job

Laser_n

get Laser_printer

Client



12 OpenFusion CORBA Services Naming Service Guide

OpenFusion load balancing is supplied with a number of standard policies 
for allocating requests to servers. These are designed to suit many common 
situations, but user-defined algorithms can be developed and plugged in if 
none of those is appropriate in a specific case. There is a complete list of the 
standard policies, together with details of the LoadBalancerPlugin 
interface, in “API Definitions”.

The policy used by a load balancer can also be changed through the 
Administration Manager.

It is easy to add objects to and remove them from a load balancer. In the 
example, a printer can be excluded if it goes off-line (when it runs out of 
toner, for example) and then reinstated (when the toner cartridge is 
replaced) or another printer can be added to the pool, without having to 
stop and re-start or otherwise affect the printing service.

Instrumentation
OpenFusion provides both general and service-specific instrumentation 
features which can be used for system monitoring, which in turn aids in 
problem identification, performance tuning, and so on. OpenFusion 
instrumentation consists of a set of properties that can be monitored either 
using the Administration Manager or remotely using SNMP.

In addition to properties that are read-only at runtime, OpenFusion provides 
some properties that can be set and reset at runtime as required, such as 
when a particular threshold value is reached or a time period has elapsed. 
Note that there is virtually no performance overhead involved in using any 
of the OpenFusion instrumentation features.

Fail-over 
Fail-over is the ability of the OpenFusion Naming Service to activate a 
backup server if the master server fails, to improve reliability. Note that this 
functionality is currently only available when OpenFusion is running with the 
OpenFusion JacORB or VisiBroker ORB.

To implement fail-over, the following Service configuration is required:

•     Two Naming Services, each registered with the same process ID.

•     Each Naming Service must be configured to see the same data.

•     One Naming Service must be marked as the System Master (by setting 
the System Master property for the NamingSingleton in the 
Administration Manager).

The fail-over options must be configured through the Administration 
Manager before the Naming Service is started.

Replication 
Replication is the duplication of data across two or more databases. The 
duplication and synchronisation is normally performed by the database 
itself, and is therefore transparent to the Naming Service. This enables two 
or more Naming Services to use the same data, but from physically distinct 
databases, which may help improve performance.



OpenFusion CORBA Services Naming Service Guide 13

Using Specific Features
This section describes how to use the Naming Service with illustrative 
examples in Java.
It first shows how to create and destroy naming contexts and name 
bindings, how to retrieve the contents of a naming context, and how to 
resolve a binding to an object. The load balancing features of the 
OpenFusion Naming Service are demonstrated later.
The available operations are listed in “API Definitions”, which includes 
additional information which is useful in developing applications for the 
OpenFusion Naming Service.
The exceptions raised by the OpenFusion Naming Service and Load 
Balancer are listed in “Supplemental Information”.
An example application using the service, complete with source code and a 
description of how to compile and run it, is supplied elsewhere as part of the 
product distribution.

Note
•     No CORBA system exceptions are caught in any of these examples; code 

to deal with them has been omitted for the sake of clarity and brevity. 
These exceptions must of course be properly caught and handled in a 
working system.

•     The following libraries must be imported into any application using the 
OpenFusion Naming Service:

•    The following import statements should also be added when load
balancing is enabled:

Obtaining the Root Context
Before any objects or naming contexts can be added to (bound) or found 
(resolved) in the Naming Service, the root or initial context must be 
obtained. This is achieved by using resolve_initial_references:

i

import org.omg.CosNaming.*;
import org.omg.CosNaming.NamingContextPackage.*;
import org.omg.CosNaming.NamingContextExt.*;
import org.omg.CosNaming.NamingContextExtPackage.*;

import com.prismt.cos.CosNaming.NamingExtensions.*;
import com.prismt.cos.CosNaming.NamingExtensions.LoadBalancerPackage.*;

org.omg.CORBA.Object obj = null;
org.omg.CORBA.ORB orb = null;
NamingContextExt rootContext = null;

orb = ObjectAdapter.init (args);

try
{
   obj = orb.resolve_initial_references (“NameService”);
   rootContext = NamingContextExtHelper.narrow (obj);
}
catch (org.omg.CORBA.ORBPackage.InvalidName ex)
{
   System.err.println (“Failed to resolve NameService”);
   System.exit (1);
}



14 OpenFusion CORBA Services Naming Service Guide

Naming Context Creation and Destruction
The NamingContext interface provides two NamingContext creation 
operations and a single destroy operation, defined in IDL as:

The new_context operation creates a new NamingContext object which is 
not bound to any other Naming Context:

The bind_new_context operation creates a new Naming Context and binds 
it using the supplied name.

The destroy operation requests the destruction of a NamingContext. The 
Naming Context must be empty. After destroy is invoked, no further 
operations can be invoked on the object reference of the Naming Context.

Bindings to a destroyed context are not removed. To do so would require a 
context to know about all of its parents as well as its children. An attempt to 
resolve a binding to a destroyed context will throw the CORBA.INV_OBJREF 
exception. Accordingly, bindings to a naming context should be removed 
before it is destroyed.

Binding and Unbinding Operations
The NamingContext interface provides five bind operations and a single 
unbind operation, defined in IDL as:

The bind operations allow binding to occur between a name and either a 
generic CORBA object or a Naming Context. In order to bind a CORBA 
object, the name to bind against must be correctly constructed. Given a 
name with n components, the first n - 1 components must resolve to a 
bound NamingContext. However, the simplest case involves a name with 

NamingContext new_context ();

NamingContext bind_new_context (in Name n)
raises (NotFound, CannotProceed, InvalidName, AlreadyBound);

void destroy () raises (NotEmpty);

NamingContext newContext = rootContext.new_context ();

newContext.destroy ();

void bind (in Name n, in Object obj)
raises (NotFound, CannotProceed, InvalidName, AlreadyBound);

void rebind (in Name n, in Object obj)
raises (NotFound, CannotProceed, InvalidName);

void bind_context (in Name n, in NamingContext nc)
raises (NotFound, CannotProceed, InvalidName, AlreadyBound);

void rebind_context (in Name n, in NamingContext nc)
raises (NotFound, CannotProceed, InvalidName);

NamingContext bind_new_context (in Name n)
raises (NotFound, CannotProceed, InvalidName, AlreadyBound);

void unbind (in Name n)
raises (NotFound, CannotProceed, InvalidName);



OpenFusion CORBA Services Naming Service Guide 15

only one component. The following code creates a new name with a single 
component and uses it to bind an object:

The rebind operation is identical to the bind operation except that the 
AlreadyBound exception is not thrown; an existing binding with the same 
name is replaced by the new binding.

The bind_context operation adds a NamingContext object so that it 
becomes part of the graph of Naming Contexts used for resolving compound 
names. Note that a NamingContext can be also be added using the bind 
operation but that the NamingContext will not become part of the graph of 
Naming Contexts and will not be used for resolving compound names.

The rebind_context operation is identical to the bind_context operation 
except that the AlreadyBound exception is not thrown; an existing binding 
with the same name is replaced by the new binding.

The bind_new_context operation is equivalent to creating a new 
NamingContext and then adding it using bind_context:

The above examples use a compound name. The first component resolves 
to a NamingContext added with bind_context.

The unbind operation removes a name binding. It does not matter which of 
the bind operations was used to create the binding. The following example 
destroys bindings created with the previous example:

NameComponent newName[] = new NameComponent[1];

// set id field to “example” and kind field to an empty string
newName[0] = new NameComponent (“example name”, “”);

rootContext.bind (newName, demoObject);

NameComponent newName[] = new NameComponent[1];
newName[0] = new NameComponent (“example2”, “”);

rootContext.bind_context (newName, namingContextObject);

NameComponent newName[] = new NameComponent[2];
newName[0] = new NameComponent (“example2”, “”);
newName[1] = new NameComponent (“example3”, “context”);

NamingContext newContext = rootContext.bind_new_context (newName);

NameComponent comp[] = new NameComponent[2];
comp[0] = new NameComponent (“example2”, “”);
comp[1] = new NameComponent (“example3”, “context”);

rootContext.unbind (comp);



16 OpenFusion CORBA Services Naming Service Guide

Accessing Naming Context Contents
Two operations are available for accessing the contents of Naming 
Contexts, defined in IDL as:

The resolve operation takes a name and returns the object, if any, bound 
to that name.

The list operation provides a means of accessing the entire content of a 
Naming Context. The list operation is the only means of determining the 
name bindings held by an arbitrary context. This operation returns results 
using two mechanisms: a BindingList, which is a sequence of bindings, 
and a BindingIterator which provides an iterator object to access the 
bindings.

The following example has two parts. The first part retrieves only the first 
five objects in a naming context using BindingList; the second part 
continues retrieving objects until the end of the list is reached using 
BindingIterator:

BindingIterator Operations
The BindingIterator interface provides two operations to access bindings 
and one destroy operation, defined in IDL as:

The previous example showed the use of the next_one operation. This 
operation returns true when the binding argument contains a valid binding.

The next_n operation returns the number of bindings specified by the 
how_many variable in a BindingList sequence. The sequence is then 

Object resolve (in Name n)
raises (NotFound, CannotProceed, InvalidName);

void list (in unsigned long how_many, out BindingList bl, 
out BindingIterator bi);

NameComponent comp[] = new NameComponent[1];
comp[0] = new NameComponent (“example”, “”);
obj = rootContext.resolve (comp);

BindingIteratorHolder iter = new BindingIteratorHolder ();
BindingListHolder list = new BindingListHolder ();
rootContext.list (5, list, iter);

for (int i = 0; i < list.value.length; i++)
{
   System.out.println (“list entry “ + i);
   System.out.print   (“ name length: “);
   System.out.println (list.value[i].binding_name.length);
   System.out.print   (“ name id: “);
   System.out.println (list.value[i].binding_name[0].id);
   System.out.print   (“ name kind: “);
   System.out.println (list.value[i].binding_name[0].kind);
   System.out.print   (“ bind type: “);
   System.out.println (list.value[i].binding_type);
}

BindingHolder binding = new BindingHolder ();

while (iter.value != null && iter.value.next_one (binding))
{
   obj = rootContext.resolve (binding.value.binding_name);
}

boolean next_one (out Binding b);
boolean next_n (in unsigned long how_many, out BindingList bl);
void destroy ();



OpenFusion CORBA Services Naming Service Guide 17

accessed in the same way as the BindingList returned from a 
NamingContext list operation.

The following code fragment repeats the example of the list operation 
using the next_one operation to iterate through the contents:

Naming Context Extension Operations
The following examples show the use of the Interoperable Naming Service 
extension.

In a similar manner to the above, the initial NamingContextExt object is 
obtained by using the resolve_initial_references operation.

The name component is transformed into a stringified name. The extension 
provides the convenience operation resolve_str to resolve the stringified 
object.

BindingIteratorHolder iter = new BindingIteratorHolder ();
BindingListHolder list = new BindingListHolder ();
rootContext.list (5, list, iter);

for (int i = 0; i < list.value.length; i++)
{
   System.out.println (“list entry “ + i);
   System.out.print   (“ name length: “);
   System.out.println (list.value[i].binding_name.length);
   System.out.print   (“ name id: “);
   System.out.println (list.value[i].binding_name[0].id);
   System.out.print   (“ name kind: “);
   System.out.println (list.value[i].binding_name[0].kind);
   System.out.print   (“ bind type: “);
   System.out.println (list.value[i].binding_type);
}

BindingHolder binding = new BindingHolder ();

while (iter.value != null && iter.value.next_one (binding))
{
   obj = rootContext.resolve (binding.value.binding_name);
}

NamingContextExt rootExtContext = null;

try
{
   obj = orb.resolve_initial_references (“NameService”);
   rootExtContext = NamingContextExtHelper.narrow (obj);
}
catch (org.omg.CORBA.ORBPackage.InvalidName ex)
{
   System.err.println (“Failed to resolve NameService”);
   System.exit (1);
}

org.omg.CORBA.Object res;
NameComponent newName[] = new NameComponent[2];
newName[0] = new NameComponent (“example2”, “”);
newName[1] = new NameComponent (“example2”, “”);

String stringified = new String (rootExtContext.to_string (newName));
System.out.println (“Stringified name is: “ + stringified);

try
{
   res = rootExtContext.resolve_str (stringified);

   if (res != null)
   {
      System.out.println (“Object: “ + res.toString ());
   }



18 OpenFusion CORBA Services Naming Service Guide

It is also possible to convert back to a CORBA NameComponent and use that 
to resolve the object.

It is also possible to form a URL with a stringified name as shown below. 
This is an aid to portability and allows access to CosNaming via a standard 
URL naming scheme.

The following example shows how a corbaloc string is generated. The IOR 
key is then used in a narrow operation to resolve the service.

}
catch (org.omg.CORBA.UserException ex)
{
   System.out.println (“Resolve Exception: “ + ex);
}

NameComponent copy[] = rootExtContext.to_name (stringified);
org.omg.CORBA.Object copyobj = rootExtContext.resolve (copy);

// The resulting URL address can then be used to resolve within
// a naming service.
System.out.println
(
   “to_url: “
   + rootExtContext.to_url (“rir:”, stringified)
);

// The Corbaloc string that is generated can be used to resolve the
// service.
System.out.println (“Root IOR: “ + orb.object_to_string (rootContext));

// These operations are OpenFusion specific.

NamingContextExt newCtx = null;
IORDecoder decoder = new IORDecoder (rootContext);
StringBuffer locstr = new StringBuffer (“corbaloc::”);

locstr.append (decoder.getHost ());
locstr.append (“:”);
locstr.append (decoder.getPort ());
locstr.append (“/”);
locstr.append
   (StringUtil.encode (StringUtil.byteToString (decoder.getKey ())));

// StringBuffer locstr now contains the address. Attempt to resolve
// to check.
// Cannot use orb.string_to_object as no hooks are available to
// add support for INS extensions.
newCtx = NamingContextExtHelper.narrow
   (ORBAdapter.stringToObject (locstr.toString ()));

if (newCtx != null)
{
   System.out.println
   (
      “Successfully resolved context: “ +
      ORBAdapter.objectToString (newCtx)
   );
}
else
{
   System.err.println (“Failed to resolve NameService”);
}



OpenFusion CORBA Services Naming Service Guide 19

The following example shows how a corbaname string may be used, for 
example:

corbaname:rir:#name/in/name.service

or

corbaname:iiop:server.microfocus.com:14005/

escaped_octal_key_string#name/in/name.service

The URL denotes an object bound into the Name Service at host 
server.microfocus.com on port 14005. The key string would be used to 
resolve to the NamingContext and then the stringified name is resolved 
against that to yield an object reference.

Using the LoadBalancingFactory
The initial LoadBalancingFactory is retrieved using the 
resolve_initial_references operation:

It is used to create the LoadBalancer as shown below. The policy that the 
load balancer will use initially is specified when it is created, but this can be 
changed dynamically if required. The objects that are being added to the 
LoadBalancer are CORBA NamingContext objects.

// The Corbaname string that is generated can be used to resolve the
// service.
System.out.println (“Root IOR: “ + orb.object_to_string (rootContext));

// These operations are OpenFusion specific.

NamingContextExt newCtx = null;
IORDecoder decoder = new IORDecoder (rootContext);
StringBuffer corbaname = new StringBuffer (“corbaname:iiop:”);

corbaname.append (decoder.getHost ());
corbaname.append (“:”);
corbaname.append (decoder.getPort ());
corbaname.append (“/”);
corbaname.append
   (StringUtil.encode (StringUtil.byteToString (decoder.getKey ())));
corbaname.append (“#example name”);

// StringBuffer corbaname now contains the NamingContext. Attempt to
// resolve to check.
// Cannot use orb.string_to_object as no hooks are available to
// add support for INS extensions.
newCtx = NamingContextExtHelper.narrow
   (ORBAdapter.stringToObject (corbaname.toString ()));

if (newCtx != null)
{
   System.out.println
      (“Context IOR: “ + ORBAdapter.objectToString (newCtx));
}
else
{
   System.err.println (“Failed to resolve NameService”);
}

obj = orb.resolve_initial_references (“LoadBalancingFactory”);
lbfactory = LoadBalancingFactoryHelper.narrow (obj);

lb = lbfactory.createLoadBalancer (“Roundrobin”);
lb.add (ctx1);
lb.add (ctx2);
lb.add (ctx3);



20 OpenFusion CORBA Services Naming Service Guide

Manipulating Objects in the LoadBalancer
Objects may be added as shown above, or they can be directly retrieved via 
the get operation of the LoadBalancer interface.

The list operation displays all objects currently bound into the 
LoadBalancer. Objects may be also be removed from the LoadBalancer.

The remove operation allows objects to be removed from the 
LoadBalancer. The required parameter is the CORBA object that is to be 
removed. For instance, the client may use the list operation and then 
iterate over those results to remove all the elements from the 
LoadBalancer.

Using the LoadBalancer with the Naming Service
Remember that the client must perform two binds: one for the 
LoadBalancer and one for the LoadBalancerAlias. They refer to the 
same object but this separation allows the Load Balancing object to be 
dynamically changed even after it has been bound into the Naming Service 
because the Naming Service can distinguish between them.

Then, the client may either resolve the lbobj to get the LoadBalancer, or 
the lbalias to perform the actual load balancing. For example, the alias 
below is retrieved. This code simply prints the objects it resolves. Contexts 
1, 2, and 3 are returned when Round Robin has been selected. It then 
loops and returns context 1 again.

In contrast, in the following code LoadBalancer is retrieved and the 
objects bound into it are listed.

System.out.println (“LoadBalancer retrieved: “ + lb.get ());

org.omg.CORBA.Object elements[] = lb.list ();

lb.remove (anobject);

// lbobj and lbalias are NameComponents.
rootContext.bind (lbobj, lb);
rootContext.bind (lbalias, lb.getAlias ());

for (int i=0; i<4; i++)
{
   obj = rootContext.resolve (lbalias);

   System.out.println (“Resolved: “ + obj);
   try
   {
      NamingContextExt ctx = NamingContextExtHelper.narrow (obj);
      System.out.println (“Resolved name context: “ + ctx);
   }
   catch (org.omg.CORBA.BAD_PARAM e)
   {
      System.err.println
      (
         “Unable to narrow the object. Maybe LoadBalancing “ +
         “is not enabled in the name service?”
      );
      break;
   }
}

org.omg.CORBA.Object newlb = rootContext.resolve (lbobj);
lb = LoadBalancerHelper.narrow (newlb);

// List
org.omg.CORBA.Object initiallist[] = lb.list ();



OpenFusion CORBA Services Naming Service Guide 21

Customizing the LoadBalancer
The LoadBalancer enables the client to use different algorithms (policies) 
when returning objects. A standard set of policies is supplied and 
automatically loaded. It is possible to design further plugins and either add 
these dynamically or configure them to be loaded at runtime. The 
alternative is to pass the class name to the addPlugin method. The plugin 
should implement the LoadBalancerPlugin interface as the example 
below shows.

The plugin may be added dynamically to the LoadBalancer. The policies of 
that plugin are then available for use, and can be selected dynamically.

public class LoadBalancingTestPlugin implements LoadBalancerPlugin
{
   // Must have a public no-args constructor.
   public LoadBalancingTestPlugin () throws PluginFailure
   {
   }

   public org.omg.CORBA.Object get
   (
      LoadBalancer reference,
      org.omg.CORBA.Object[] objects,
      java.lang.String policy
   )
      throws PluginFailure
   {
      // Always return second object bound
      if (objects.length < 2)
      {
         // Not enough objects bound to get the second object
         throw new PluginFailure ();
      }
      else
      {
         return objects[1];
      }
   }

   public java.lang.String[] getSupportedPolicies ()
   {
      return new String [] { “TEST_POLICY” };
   }
}

System.out.println (“Adding the TestPlugin”);
try
{
   lb.addPlugin
      (“com.prismt.cos.CosNaming.examples.LoadBalancingTestPlugin”);
}
catch (InvalidPlugin e)
{
   System.out.println (“Caught exception: “ + e);
   System.exit (1);
}

// Set the policy to that of the new plugin.
System.out.println (“Setting a new policy”);
try
{
   lb.setPolicy (“TEST_POLICY”);
}



22 OpenFusion CORBA Services Naming Service Guide



OpenFusion CORBA Services Naming Service Guide 23

Worked Example
This section contains a simple example application which demonstrates the 
way in which various features of the OpenFusion Naming Service are used 
together.

No CORBA system exceptions are caught in any of the following examples: 
code to deal with exceptions has been omitted for the sake of clarity and 
brevity. These exceptions must, of course, be properly caught and handled 
in a working system.

The exceptions raised by the OpenFusion Naming Service and Load Balancer 
are listed in “Supplemental Information”.

Example Client
1 Obtain the Naming Service Root Context

The initial Naming Context object is obtained by using the 
resolve_initial_references operation:

2 Add a new binding

The addition of a new binding requires a name to identify the binding. In 
this example, there is only one name context, so the name consists of 
only one component. The following code allocates a name with a 
maximum sequence length of one:

The first component of the name sequence must now be set:

Note that both the id and kind fields are always used when matching 
names. The kind field has no defined meaning within the Naming 
Service, so it is available for use by applications running on top of the 
Naming Service.

Assuming the existence of an object reference, demoObject, the object 
can now be bound:

i

org.omg.CORBA.Object obj = null;
org.omg.CORBA.ORB orb = null;
NamingContextExt rootContext = null;

orb = ObjectAdapter.init (args);

try
{
   obj = orb.resolve_initial_references (“NameService”);
   rootContext = NamingContextExtHelper.narrow (obj);
}
catch (org.omg.CORBA.ORBPackage.InvalidName ex)
{
   System.err.println (“Failed to resolve NameService”);
   System.exit (1);
}

NameComponent newName[] = new NameComponent[1];

// set id field to “example” and kind field to an empty string
newName[0] = new NameComponent (“example”, “”);

// obtain demoObject reference ...

rootContext.bind (newName, demoObject);



24 OpenFusion CORBA Services Naming Service Guide

3 List the contents of a naming context

The list operation allows the contents of a Naming Context to be 
examined, with resulting name bindings returned via either a 
BindingList CORBA sequence or a BindingIterator object. In the 
following example, the BindingList is not used and all of the contents 
are returned using the iterator. Note that even though a zero length list is 
specified in the first argument of the list command, a valid (empty) 
sequence is still returned.

Once a name binding is obtained, the resolve operation returns the 
object associated with the binding. The resulting object may be a 
NamingContext which, if it was bound using bind_context or 
bind_new_context, will have a bind_type of ncontext.

BindingIteratorHolder bi = new BindingIteratorHolder ();
BindingListHolder bl = new BindingListHolder ();
NamingContextExt childContext = null;

rootContext.list (0, bl, bi);

BindingHolder binding = new BindingHolder ();
while (bi.value != null && bi.value.next_one (binding))
{
   try
   {
      obj = rootContext.resolve (binding.value.binding_name);
      if (binding.value.binding_type == BindingType.ncontext)
      {
         childContext = NamingContextExtHelper.narrow (obj);
         // do something with childContext
      }
      else
      {
         // do something with obj
      }
   }
   catch (org.omg.CORBA.UserException ex)
   {
      System.err.println (“resolve exception “ + ex);
   }
}



OpenFusion CORBA Services Naming Service Guide 25

API Definitions
This section describes selected interfaces and related aspects of the service. 
The complete IDL API is provided elsewhere as part of the product 
distribution.
The OpenFusion Naming Service provides most of its functionality through a 
single interface called NamingContext. A second interface, 
BindingIterator, provides support for enumerating the contents of 
Naming Contexts.

OMG Standard API Definitions

NamingContext Interface
The NamingContext interface provides operations to create, modify and 
examine name bindings within a naming context. The interface also 
provides operations to create and destroy naming contexts.

A compound name can be supplied when NamingContext operations take a 
name as a parameter. When a compound name is supplied, the operation is 
applied to the Naming Context identified by the compound name’s 
components, excluding the last component. The last component identifies 
the binding within the selected Naming Context.

Three operations support the creation and destruction of Naming Contexts:

Table 2 Binding and Unbinding Operations 

Operation Description

bind Creates a binding between a name and an object.

rebind Creates a binding between a name and an object, replacing 
any existing binding with the same name.

bind_context Creates a binding between a name and a Naming Context.

rebind_context Creates a binding between a name and a Naming Context, 
replacing any existing binding with the same name.

bind_new_context Creates and binds a new Naming Context.

unbind Removes a name binding from a context.

Table 3 Naming Context Creation and Destruction 

Operation Description

new_context Creates a new NamingContext object. This context is 
not bound to any other context.

bind_new_context Creates a new NamingContext object and binds it using 
the supplied name.

destroy Requests the destruction of the NamingContext.



26 OpenFusion CORBA Services Naming Service Guide

Two operations access the contents of a Naming Context:

NamingContextExt Interface
The NamingContextExt interface provides operations to use URLs and 
stringified names.

Conversions from URLs in the corbaloc and corbaname formats to objects 
are handled by CORBA::ORB::string_to_object but most ORBs currently 
do not support this functionality. However, the OpenFusion 
ORBAdapter::stringToObject operation does support this, and may be 
used instead. It is part of the com.prismt.orb package.

BindingIterator Interface
The BindingIterator interface provides two operations to access name 
bindings, and one destroy operation.

Table 4 Accessing Naming Context Contents 

Operation Description

resolve Retrieves the object bound to a particular name.

list Returns a list of name bindings associated with the Naming 
Context in the form of a sequence and a 
BindingIterator.

Table 5 NamingContextExt Operations 

Operation Description

to_string Accepts a compound name and returns a stringified 
name.

to_name Accepts a stringified name and returns a compound 
name.

to_url Accepts a URL address component and a stringified 
name and returns a URL.

resolve_str A convenience operation that accepts a stringified 
name and performs a resolve in the same manner 
as NamingContext::resolve.

insToComponent Converts an INS stringified name to a CORBA Name 
Component array.

componentToIns Converts a CORBA Name Component array to an INS 
stringified name.

Table 6 BindingIterator Operations 

Operation Description

next_one This operation returns the next binding. If there are no more 
bindings, false is returned.

next_n This operation returns at most the requested number of bindings.

destroy This operation destroys the iterator.



OpenFusion CORBA Services Naming Service Guide 27

OpenFusion API Extensions 

LoadBalancingFactory Interface
The LoadBalancingFactory is colocated with the Naming Service and is 
therefore automatically started with the Naming Service. One operation 
creates a LoadBalancer object.

LoadBalancer Interface
A LoadBalancer is an object that may be bound into the Naming Service. 
This may have zero or more CORBA Objects placed inside it. The 
LoadBalancer is defined in IDL by:

The LoadBalancer implementation is known as delegate style.

The LoadBalancer should be bound when the client wishes to bind a 
LoadBalancer object that may be directly retrieved from the 
NameService. The LoadBalancer interface is used for control operations 
(such as adding objects or changing policies within the load balancer itself).

This applies whether or not Load Balancing has been enabled in the service.

Alternatively, the OpenFusion Naming Service will attempt to return an 
object bound into the LoadBalancer when a LoadBalancerAlias is bound 
and Load Balancing is enabled. The alias may be retrieved by the getAlias 
function shown above. The LoadBalancerAlias interface is used by 
applications to retrieve an object to perform a specific task.

The client therefore performs two binds: one for the LoadBalancerAlias 
and one for the LoadBalancer. Both refer to the same object but the 
Naming Service can distinguish between them. This separation allows the 
LoadBalancer object to be dynamically changed even after it has been 
bound into the Naming Service. For instance, LoadBalancer objects may 
be removed, added or their policy changed without the need for creating 
new LoadBalancerAlias objects.

Table 7 LoadBalancingFactory Operations 

Operation Description

createLoadBalancer Creates and returns a new LoadBalancer object. The 
policy parameter is used to choose the initial policy for 
the LoadBalancer.

interface LoadBalancer
{
…
    /**
      * This operation allows the LoadBalancer to retrieve 
      * the alias object
      */
      LoadBalancerAlias getAlias ();
};
interface LoadBalancerAlias : LoadBalancer
{
};



28 OpenFusion CORBA Services Naming Service Guide

LoadBalancer Standard Policies
The Load Balancing interfaces have been exposed as configurable plugins, 
thereby allowing developers to write their own load balancing mechanisms 
should the default policies not be sufficient. The standard OpenFusion plugin 
contains the following policies:

RemoveCurrent
The RemoveCurrent version of each policy unbinds each object from the 
load balancer after it has been returned. This means that the load balancer 
contains a diminishing number of objects; calls made after the last object 
has been returned cause the NoneBound exception to be thrown.

These policies are useful when resources (objects to return) cannot be re-
used once allocated or committed (returned by the load balancer), or 
require special processing before being re-used (triggered by the 
NoneBound exception).

Table 8 LoadBalancer Operations 

Operation Description

add Adds an object to the LoadBalancer.

get Retrieves an object from the LoadBalancer according to 
the specified policy.

remove Removes the matching object from the LoadBalancer.

list Returns a list of all the objects within the LoadBalancer.

setPolicy Resets the current policy.

addPlugin Adds a new plugin. The parameter should be a fully specified 
Java class name.

getAlias Returns the delegate LoadBalancerAlias.

Table 9 LoadBalancer Standard Policies 

Policy Name Description

Random Returns the object references in a 
random order.

RoundRobin Returns the object references in a 
sequential loop.

FirstBound Returns the object reference that was 
first bound to the name.

Random_Active Returns a random active object.

RoundRobin_Active Returns only active objects sequentially.

FirstBound_Active Returns the first bound active object.

Random_RemoveCurrent Returns objects in a random order 
removing each as it does so.

FirstBound_RemoveCurrent Returns the first bound object and 
removes it.

Random_Active_RemoveCurrent Returns a random active object and 
removes it.

FirstBound_Active_RemoveCurrent Returns a first bound active object and 
removes it.



OpenFusion CORBA Services Naming Service Guide 29

Combining RoundRobin with RemoveCurrent has the same effect as 
combining FirstBound with RemoveCurrent and therefore has not been 
included.

Note that the name in the first column of the table is the name that should 
be passed to setPolicy in order to select one of the default policies. These 
default names are defined in NamingExtensions.idl as const strings.

LoadBalancerPlugin Interface
The LoadBalancerPlugin Interface is illustrated in Figure 3.

Figure 3  LoadBalancerPlugin Interface
Plugins must implement the LoadBalancerPlugin interface in the 
com.prismt.cos.CosNaming package. The LoadBalancer instantiates 
plugins listed in the property Load Balancing Plugin in the 
Administration Manager. This property is a comma-separated list of fully 
qualified class names. Each class must have a public, no argument 
constructor so that it can be instantiated by the LoadBalancer.

JNDIObject Interface
The Naming Service can display non-CORBA objects it finds in the JNDI 
hierarchy. In this situation, a CORBA JNDIObject will be created in order to 
display the object. The JNDIObject contains two read-only attributes:

•    readonly attribute string stringifiedObject;

•    readonly attribute string className;

For example, the attributes of a String stored in JNDI would contain the 
stringified value of the object and the classname java.lang.String.

The OpenFusion JNDI implementation is described in Part II, “Java Naming 
and Directory”. Full details of the specification and descriptions of the 
standard features of the JNDI API and SPI are available from Oracle 
Corporation.

Table 10 LoadBalancerPlugin Operations 

Operation Description

get Returns the appropriate object to the LoadBalancer 
implementation. There are two parameters: first, an 
array of CORBA objects denoting the available objects in 
the LoadBalancer, and secondly, a String policy. 
The policy parameter allows one policy to be chosen 
when the plugin supports multiple policies. The plugin 
throws a PluginFailure exception when an error 
occurs.

getSupportedPolicies Returns an array of Strings containing the names of 
the policies that the plugin will support. These names 
directly correspond to the name that is used by the client 
when choosing a policy for use.

i

LoadBalancerPlugin

get()
getSup portedPol ic ies()

<<Interface>>



30 OpenFusion CORBA Services Naming Service Guide



OpenFusion CORBA Services Naming Service Guide 31

Supplemental Information
This section includes additional information which is necessary or useful for 
developing applications which use the Naming Service.
Administration properties and instrumentation are described first, then how 
to access them. There is a brief description of the relationship between the 
Naming Service and JNDI, followed by notes about using LDAP with the 
Naming Service. Purging and memory management features are described 
next, then XML import and export; finally there are lists of the exceptions 
that may be thrown.

Administration Properties and Instrumentation
Behaviour and performance of the Naming and Load Balancing Services can 
be controlled both programmatically and from the Administration Manager.

Please refer to  Configuration and Management for details of controls and 
parameters for administering the OpenFusion Naming Service and Load 
Balancing. These properties can all be accessed using SNMP.

Java Naming & Directory Interface (JNDI)
The Java Naming and Directory Interface (JNDI) API is a generic API for 
accessing naming and directory services. The OpenFusion Naming Service is 
layered on top of JNDI. This allows it to access the OpenFusion service 
provider (which supports JDBC and Memory persistence) and also the 
Oracle LDAP provider. Clients may access either transparently or use the 
OpenFusion JNDI SPI independently of the CORBA service.

Whenever the OpenFusion Naming Service starts, it automatically creates a 
basic jndi.properties file, which contains only the minimum information 
necessary to run the service. These settings can be overridden and 
additional properties specified by means of a Java hashtable.

The OpenFusion JNDI implementation is described in the JNDI Guide.

Please refer to the relevant Oracle documentation for details of JNDI 
standard functionality.

Lightweight Directory Access Protocol (LDAP)
The OpenFusion Naming Service is implemented in Java for platform 
independence. It is layered on top of JNDI, and can therefore utilise Oracle 
Corporation’s JNDI LDAP service provider. This makes it useful for those 
organisations which use LDAP as their enterprise directory service; it can 
use standard LDAP authentication mechanisms.

It is assumed that the LDAP Server schemas are up to date. For details of 
LDAP configuration and functionality, please refer to the relevant Oracle 
documentation at:

http://docs.oracle.com/javase/jndi/tutorial/basics/prepare/content.html

http://docs.oracle.com/javase/jndi/tutorial/basics/prepare/content.html


32 OpenFusion CORBA Services Naming Service Guide

Purging Options
It is important to be aware of the differences between purging and memory 
management. Memory management is related to caching, and is performed 
without reference to the status of an object. The purging mechanism is part 
of the OpenFusion Naming Service and its handling of objects depends 
explicitly on their status.

Purging is the deletion of invalid object references and purgeable objects 
from a service. Object references are regarded as invalid when they are not 
active and not persistent.

These features can be enabled and controlled with properties specified in 
the Administration Manager.

Purge on Load
When this option is selected, invalid object references are removed when 
contexts are first accessed after a server has been restarted.

Purge on List
When this option is selected, invalid object references are removed from a 
naming context when the list operation is performed on the context.

If either Purge option is enabled, a List operation which encounters an 
invalid context will automatically unbind the context and then re-try. A 
warning message is printed in the log file when a binding to an invalid 
context is removed in this way.

Purge Class Plugin
If used, this property must contain the name of a Java class, which can be 
publicly instantiated, that implements the 
com.prismt.openfusion.plugin.Purgable interface. This interface has 
one operation:

public boolean isPurgable (org.omg.CORBA.Object obj)

This class is used to determine whether or not to purge objects from the 
Naming Service. Typically a client will implement this operation to 
determine whether its object is persistent or transient and hence may be 
purged. This service will also check the active/inactive state.

If no class is specified for this property, the ORBAdapter.isValid method 
is used. This will successfully determine the state of objects created using 
the OpenFusion framework, but it will not work reliably for foreign objects 
(objects created in non-OpenFusion environments or on other ORBs).

Memory Management
Memory Management is the removal of objects from memory. The objects 
can be naming contexts as well as client and server objects. They are re-
loaded on demand.

Memory Management is a caching option that can be enabled in the 
OpenFusion Naming Service. When enabled, cache purging can be 
performed either at regular intervals, or when the number of bound objects 
reaches a specified limit.

i



OpenFusion CORBA Services Naming Service Guide 33

Object Purging
Object cache properties cannot be specified unless this option is enabled. 
When it is enabled, then the properties Object Cache Minimum Size, 
Object Cache Maximum Size, and Object Cache Purging Interval 
can be specified.

Object Cache Minimum Size
This is an integer value which specifies the minimum number of objects to 
keep in the cache. The default value is 0, which means that the cache is 
always completely flushed.

Object Cache Maximum Size
This is an integer value which specifies the maximum number of objects to 
hold in the cache; if not 0, it must be greater than the value specified for 
Object Cache Minimum Size. The default value is 0, which means that no 
object caching is performed.

When the cache is full, objects are removed using a least-recently-used 
algorithm until the value amount specified in Object Cache Minimum 
Size is reached.

Object Cache Purging Interval
This is an integer value which specifies the time interval in seconds between 
cache flushing operations. The default value is 0, which means that periodic 
flushing does not occur; the cache is only flushed when full. For any other 
value, cache flushing occurs at the specified intervals whether or not the 
maximum cache size has been reached.

When the cache is purged, objects are removed using a least-recently-used 
algorithm until the value amount specified in Object Cache Minimum 
Size is reached.

Note
•    Care must be taken when specifying memory management properties to

avoid values which could result in thrashing (objects being rapidly
loaded, removed from memory, and reloaded).

•    When the Naming Service is being used with purging enabled, clients
must always perform operations such as resolve from the root context,
to avoid problems arising from attempts to resolve naming contexts
which have been removed from memory.

XML Export and Import
The OpenFusion Naming Service can both export and import XML files 
containing a representation of a naming hierarchy. This is performed at the 
command line; a specific naming hierarchy of a single Naming Service 
instance is handled with a single command.

To export a naming hierarchy to an XML file, use this command:
run com.prismt.cos.CosNaming.xml.ExportXML <options>

To import a naming hierarchy from an XML file, use this command:
run com.prismt.cos.CosNaming.xml.ImportXML <options>

The options for both commands are described in the tables.

The options can occur in any order.



34 OpenFusion CORBA Services Naming Service Guide

The -n parameter specifying the XML file to use must be present.

The -c parameter specifies the name of the naming context that will be the 
root of the exported or imported naming hierarchy. This must be a valid INS 
name. If this parameter is not specified then the root of the naming 
hierarchy is used.

The Naming Service to use is determined in one of four ways. The resolve 
name of the service can be given, or its IOR can be given directly (with the 
-i option) or indirectly (with the -f option). If none of these is given, then 
the resolve name "NameService" is used.

Naming hierarchies can also be exported and imported using the 
OpenFusion Naming Service Manager as described in “Naming Service 
Manager”.

Exporting and Importing Cyclics
This section shows how the OpenFusion Naming Service handles cyclics 
(bindings which refer to a parent or grandparent context) when they occur 
in naming hierarchies included in XML exports and imports.

Figure 4 illustrates the principles of exporting and importing hierarchies with 
a straightforward example within a single Naming Service instance. The 
shaded hierarchy is exported (the context labelled B is the hierarchy root 
nominated with the -c option on the export command), and then re-
imported and attached to B (with the -c option on the import command). 
Naming contexts are transient CORBA objects, so when the hierarchy is 
imported new contexts B1, C1 and D1 are created. Note that the imported 
hierarchy cannot be attached to A because the new context B1 will of course 
have the same name as the existing context B (each reference within a 
context must be to a unique name; we assume that B doesn’t already 
contain a reference to another context or object with the same name as 
itself). The cyclic reference is created as intended and the integrity of the 
naming graph is maintained. Note that the new cyclic reference is to B1 and 
not to B.

Option Description

-n namingHierarchyFile name of XML file to export naming hierarchy into

resolveName the resolve name of the Naming Service

-c targetNamingContext the name of the naming context that is to be the root 
of the exported naming hierarchy

-f namingIORFile the name of a file containing the IOR of the Naming 
Service

-i namingIOR the IOR of the Naming Service

Option Description

-n namingHierarchyFile name of XML file to import naming hierarchy from

resolveName the resolve name of the Naming Service

-c targetNamingContext the name of the naming context that is to be the root 
of the imported naming hierarchy

-f namingIORFile the name of a file containing the IOR of the Naming 
Service

-i namingIOR the IOR of the Naming Service



OpenFusion CORBA Services Naming Service Guide 35

 

Figure 4  Naming Hierarchy Export and re-Import

Exceptions
The exceptions raised by the Naming Service are listed in Table 11.

Naming
Service

Root A

Step 1: Export

(cyclic)

B

C

D

A

Step 2:
Import

(cyclic)

B1

C1

D1

Naming
Service

Root

(cyclic)

B

C

D

Table 11 Naming Service Exceptions 

Name Purpose

AlreadyBound Indicates an object is already bound to the specified 
name. Only one object can be bound to a particular name 
in a context.

CannotProceed Indicates that the implementation has given up for some 
reason. The client, however, may be able to continue the 
operation at the returned naming context.
One possible reason for this exception is that a Name 
Server holding one or more of the name bindings within a 
compound name is currently unavailable.

InvalidName Indicates that the name is invalid. This implementation 
disallows zero length names only.

NotEmpty Indicates that a naming context has bindings. 

NotFound Indicates that the name does not identify a binding or 
that the binding is not of the type required for the 
requested operations.



36 OpenFusion CORBA Services Naming Service Guide

The exceptions raised by the Load Balancer are listed in Table 12. 
Table 12 Load Balancer Exceptions

Name Purpose

NoneBound No objects are bound into the LoadBalancer.

InvalidPolicy The specified policy is invalid.

InvalidPlugin The specified class name is invalid.

ObjectNotFound The object does not exist in the LoadBalancer.

PluginFailure The plugin has failed for some reason.
This exception is returned when a custom plugin has 
itself determined that it has failed.



Part II          
Java Naming and

Directory

In this part
This part contains the following:

Description page 39

OpenFusion SPI Implementation page 43

Using Specific Features page 47

Supplemental Information page 49





39
  �������	


Description 
The Java Naming and Directory Interface (JNDI) is an Application 
Programming Interface (API) and Service Provider Interface (SPI), defined 
by Oracle, that provides naming and directory functionality to Java 
applications whilst remaining independent of any specific directory 
implementation.
This guide describes the OpenFusion implementation of the JNDI specification 
rather than the standard functionality defined by Oracle.
Full details of the specification and descriptions of the standard features of 
the JNDI API and SPI are available from Oracle. Although this guide contains 
brief descriptions of the basic features of JNDI and its underlying concepts, it 
assumes that readers are familiar with Oracle’s standard documents and 
have copies available for reference.
This guide demonstrates how to use the OpenFusion SPI independently of the 
OpenFusion CORBA Naming Service, but accessing data written by the 
Naming Service. The OpenFusion SPI supports persistence in memory and 
JDBC databases.

Overview

Oracle JNDI Standard Features
The basic features of the JNDI specification include the ability to:

•    Give meaningful names to objects (name bindings)

•    Find names which have been bound to objects (resolve)

•    Group names in logical hierarchies (naming contexts)

•    Group distributed naming hierarchies (federation)

•    Access data through different directory services using a standard interface

OpenFusion Enhancements
Advantages of OpenFusion JNDI over the basic Oracle specification include:

•    Improved, more robust multi-user access

•    Speed improvements, including write caching



40 OpenFusion CORBA Services Naming Service Guide

Concepts and Architecture

Standard JNDI
The purpose of JNDI is to provide the ability to associate meaningful names 
with objects to make it easy to access those objects. A name binding is an 
association of a name with an object reference as a name-value pair.

Name bindings are grouped in hierarchies called naming contexts. A naming 
context is an object containing zero or more name bindings. Each name 
binding within a naming context refers to either another naming context (a 
subcontext) or an object. An hierarchy of contexts, subcontexts and objects 
is known as a graph. A context allows a client to perform various operations 
upon the objects bound within it.

A naming system is a set of many contexts of the same type. JNDI enables 
different naming systems to be connected together (federation).

The process of finding a name and retrieving the associated object 
reference is called resolving the name.

The JNDI architecture is illustrated in Figure 5, which shows the relationships 
between JNDI, Java applications, and object directory services.

Figure 5  JNDI Architecture
JNDI-compliant applications can use generic calls on different directory 
services, such as Lightweight Directory Access Protocol (LDAP) servers, 
which plug in to the SPI. A Java client uses the API specifying the 
appropriate service provider in order to interact with the directory service.

OpenFusion CORBA Naming Service clients can access either the 
OpenFusion service provider or the Oracle LDAP provider transparently. It is 
also possible to use the OpenFusion JNDI SPI independently of the CORBA 
service.

The Initial Context
In the JNDI, all naming and directory operations are performed relative to a 
context. Unlike the CosNaming Service, there is no absolute root. 
Therefore, the JNDI defines an initial context, InitialContext, which 

JNDI   SPI

RMI LDAP NDS CORBA . . .

JAVA APPLICATION

JNDI   API

JNDI   NAMING MANAGER



OpenFusion CORBA Services Naming Service Guide 41

provides a starting point for naming and directory operations. This is 
retrieved through the NamingManager interface as shown below:

A service provider must be specified in order to use the JNDI. This is part of 
the standard JNDI configuration. However, further configuration information 
may need to be supplied depending upon the service provider.

JNDI properties can be configured by application resource files, 
environment parameters passed via a hashtable (as above), system 
properties or applet parameters in JNDI, with those specified in the 
hashtable taking priority. See also “Supplemental Information”.

Naming Systems
A naming system maps names to objects within a directory service. The 
underlying directory service determines the syntax the JNDI client must use 
in the name, as a naming context represents a node within that directory 
service. For example, the OpenFusionSPI follows a left-to-right naming 
convention while the LDAP SPI uses a right-to-left notation.

The API methods that accept a name have two overloads: one that accepts 
a Name argument and one that accepts a string name. Name is an interface 
that represents a generic name; that is, an ordered sequence of zero or 
more components.

References and Addresses
Different SPIs may restrict what they can store directly, whereas the JNDI 
API does not carry any restrictions on what sort of objects may be stored. 
For instance, the CosNaming SPI only accepts org.omg.CORBA.Object (or 
its subclasses). JNDI defines a Reference for use when the serialized form of 
an object cannot be directly stored in the directory. A reference to an object 
contains one or more addresses, or communication end points, and 
information on how to construct a copy of this object. The JNDI will attempt 
to turn references looked up from the directory into the Java objects they 
represent. JNDI clients therefore present the illusion of directly storing Java 
objects in the directory.

initialctx = NamingManager.getInitialContext (env);



42 OpenFusion CORBA Services Naming Service Guide



OpenFusion CORBA Services Naming Service Guide 43

OpenFusion SPI 
Implementation
The OpenFusion SPI implements the javax.naming.Context and 
javax.naming.Reference interfaces as described in the specification 
published by Adobe Corporation, except for one operation: the 
javax.naming.Context interface does not implement the operation 
getNameInNameSpace. This is because the OpenFusion SPI supports cyclic 
references in the name hierarchy, and a distinct fully qualified name does 
not make sense in this case. (A cyclic reference is one where a context 
contains a binding which refers back to a parent or grandparent context, 
which may be in a different naming system.) This feature was included in 
order to support the OpenFusion CORBA Naming Service.

Names
The naming scheme of the provider is very similar to that of the CosNaming 
interoperable Naming Service (INS) specification and the Adobe CosNaming 
SPI.

The naming scheme is left-to-right, slash-separated, case sensitive and 
hierarchical. String names accepted by the SPI should be JNDI composite 
names in which each component is the stringified JNDI escaped form of a 
CosNaming::NameComponent. The stringified form of a CosNaming::Name 
is defined in the INS specification. Quoting problems may arise when the 
JNDI syntax defines meta-characters and the underlying provider has its 
own syntax. These can lead to many levels of escaping.

Two options are available:

•     A Name may be returned by nameParser.parse(), where nameParser 
is a value obtained from the service provider

•     The class com.prismt.cos.CosNaming.OFNamingConverter may be 
used

The name parser will return a compound name as the example below 
shows.

String strname = “A\\.\\/B”;
NameParser parser = rootctx.getNameParser (“”);
Name jndiname = parser.parse (strname);

subctx = (Context)rootctx.lookup (jndiname);



44 OpenFusion CORBA Services Naming Service Guide

The class com.prismt.cos.CosNaming.OFNamingConverter implements 
the interface shown in Figure 6. Note that this class carries out validity 
checks on the data passed to it.

Figure 6  OFNamingConverter Interface

Java Objects
The OpenFusion SPI supports storage of the following types of Java objects 
using JDBC to store to disk or memory:

•    Serializable 

•    Referenceable

•    References 

Note that any type of Java object may be stored when the provider is 
configured to use memory-based persistence and StoreAnyObject is set to 
true.

Supplied Factories

Storing CORBA Objects
The OpenFusion CORBA Naming Service stores CORBA objects in the 
OpenFusion SPI using the following factories, which implement DirState 
and DirObject:

com.prismt.cos.CosNaming.CORBAStateFactory
com.prismt.cos.CosNaming.CORBAObjectFactory

OFNamingConvert er

OFNamingConverter()
convertCOStoJNDI(name : String) : Name
convertCOStoJNDI(n : NameComponent[]) : Name
convertJNDItoCOS(n : Name) : NameComponent[]
convertJNDItoCOS(name : String) : NameComponent[]

(from CosNaming )

NamingConverter

convertCOStoJNDI(name : String) : Name
convertCOStoJNDI(n : NameComponent[]) : Name
convertJNDItoCOS(n : Name) : NameComponent[]
convertJNDItoCOS(n : String) : NameComponent[]

(from CosNam in g)

<<Interface>>

LDAPNamingConverter

LDAPNamingConverter()
makeNewDN()
prependBase()
setCurrentUUID()
convertCOStoJNDI()
convertCOStoJNDI()
convertJNDItoCOS()
convertJNDItoCOS()
escapeS tring()

(from CosNaming)



OpenFusion CORBA Services Naming Service Guide 45

Storing RMI-IIOP Objects
To store RMI-IIOP objects in the OpenFusion JNDI, an additional 
StateFactory is required. This works in conjunction with the 
CORBAStateFactory and CORBAObjectFactory factories. The client must 
set the properties either programmatically or as system properties, as 
follows.

Programmatically

As System Properties:

Federation
The OpenFusion SPI supports federation. The JNDI specification defines the 
method of ’hooking’ together naming systems so that the aggregate system 
can process composite names (names that span the naming systems).

The federation method uses:

•    Weak separation. The context does not necessarily treat the separator as
a naming system boundary. When processing a composite name, it
consumes as many leading components as appropriate for the underlying
naming system.

•    Next Naming System pointers (junctions). The OpenFusion SPI supports
dynamic implicit NNS pointers.

Note that the naming system is non-terminal: components from the naming 
system can appear anywhere in the composite name. Also the OpenFusion 
SPI cannot determine the naming system boundary syntactically but it can 
determine it dynamically.

env.put(javax.naming.Context.OBJECT_FACTORIES, 
"com.prismt.cos.CosNaming.CORBAObjectFactory");
env.put(javax.naming.Context.STATE_FACTORIES,"com.prismt.j2ee.jndi.RMIStateFactory")
;

 -Djava.naming.factory.state=com.prismt.j2ee.jndi.RMIStateFactory
 -Djava.naming.factory.object=com.prismt.cos.CosNaming.CORBAObjectFactory



46 OpenFusion CORBA Services Naming Service Guide



OpenFusion CORBA Services Naming Service Guide 47

Using Specific Features 
This section provides some example Java code which demonstrates the use 
of the OpenFusionSPI. 
Further source code examples are supplied elsewhere as part of the product 
distribution.
Detailed instructions for using JNDI can be found in the JNDI Tutorial 
published by Adobe Corporation.
It is possible to use the SPI to access data written by the Naming Service 
(assuming that the Naming Service has been configured to use the 
OpenFusionSPI). The following describes how to configure JNDI for access 
to Naming Service data written under JDBC.
It is recommended that close is always called in order to clean up and free 
resources used by the OpenFusionSPI.

JDBC-based Persistence
The OpenFusion Naming Service uses the JNDI root UUID (Universally 
Unique Identifier) and a SID (Service ID) value to establish access to the 
data in the database. These values must be set in order to access the data. 
It is possible for a standalone JNDI client to just set the root UUID. In this 
case, the SID value is set internally to be the same as the UUID.

When logging is enabled for the Naming Service and the level is set to INFO, 
these values are output to the log file, and can be retrieved from there if 
required. Typical log file entries are shown below:

INFO - Process ID: 0ba57cb0-4dae-11d4-ada7-ce8c9fa68378

INFO - Server ID: 0ba57cb0-4dae-11d4-ada7-ce8c9fa68378

INFO - Common: database = com.prismt.jdbc.Database@16304c8

INFO - initSID: database = com.prismt.jdbc.Database@16304c8

INFO - NamingService UUID is 0d68b080-4dae-11d4-ada7-ce8c9fa6837

The second and fifth lines are the ones containing the necessary 
information. These values can then be passed into the JNDI environment 
using a hashtable:

// Set the UUID.
env.put (“com.prismt.j2ee.jndi.OpenFusionSPI.UUID”,
         args[0]);
// Set the SID.
env.put (“com.prismt.j2ee.jndi.OpenFusionSPI.SID”,
         args[1]);



48 OpenFusion CORBA Services Naming Service Guide

 Accessing Data
The hierarchy can be browsed and modified once the root context is located. 

A JNDI client may bind a non-CORBA object into the Naming Service 
hierarchy. 

The Naming Service detects that this is not a CORBA object when a CORBA 
client attempts to look it up. The service will display the JNDI object when it 
has been configured to view them. Otherwise, the service will log the 
following warning messages:

WARN - unable to process non-CORBA object. The object is a 
java.lang.String

WARN - ignoring element with the name of StringObject 
because it is a non-CORBA object

initialctx = NamingManager.getInitialContext (env);

Enumeration e = initialctx.list (“”);

while (e.hasMoreElements ())
{
   NameClassPair np = (NameClassPair)e.nextElement ();
   System.out.println
   (
      “\tFound name “ + np.getName () +
      “ of class “ +  np.getClassName ()
   );
   System.out.println
      (“\tResolve: “ + initialctx.lookup (np.getName ()));
}



OpenFusion CORBA Services Naming Service Guide 49

Supplemental Information
Refer to the Java documentation for JNDI specification details.

Configuration Properties
JNDI properties can be configured by means of a Java hashtable. Properties 
specified by this means are merged with any properties specified in the 
jndi.properties file, with those specified in the hashtable taking priority.

The location of the jndi.properties file is specified by

com.prismt.j2ee.jndi.OpenFusionSPI.JNDIPropertiesFile

If this is not specified, then the jndi.properties file is not written.

Extra configuration information on top of the standard JNDI environment 
may be needed, depending upon the naming/directory service and the SPI. 
Default values are used when the environment has not been configured; for 
example, JDBC.URL is set storing to the user’s home directory.

When the OpenFusion CORBA Naming Service starts, it can automatically 
create a jndi.properties file in the location specified. This file contains only 
the JNDI settings relevant to the current Naming Service configuration 
(normally specified using the OpenFusion Administration Manager) to 
ensure that JNDI clients are configured to access the OpenFusion CORBA 
Naming Service hierarchy. Any existing jndi.properties file in the specified 
location is overwritten.

Standard Properties
The OpenFusion service provider supports these standard JNDI properties:

INITIAL_CONTEXT_FACTORY
This is the fully qualified class name of the factory class that creates the 
initial context for the provider, for example:

env.put(Context.INITIAL_CONTEXT_FACTORY,
"com.prismt.cos.CosNaming.jndi.OpenFusionCtxFactory")

OBJECT_FACTORIES
This is a colon-separated list of fully qualified class names of object factory 
classes. The factories are responsible for creating objects from the 
information returned by the provider.

STATE_FACTORIES
This is a colon-separated list of fully qualified class names of state factory 
classes. The factories are responsible for creating and transforming an 
object into an acceptable form for storage.

Provider-specific Properties
The following properties are specific to the OpenFusion SPI.

The following prefix must be included with all of these properties:

com.prismt.j2ee.jndi.OpenFusionSPI

i



50 OpenFusion CORBA Services Naming Service Guide

For example, the fully-qualified JDBC.User option is:

com.prismt.j2ee.jndi.OpenFusionSPI.JDBC.User=“myUserName”

General
JndiPropetiesFile
The location of the jndi.properties file. If this is left blank, the 
jndi.properties file will not be created. The default is blank.

The jndi.properties file is useful for JNDI client applications that need to 
connect to the Naming Service hierarchy.

The OpenFusion JMS Manager requires a valid jndi.properties file. See 
the Java Message Service Guide for details.

When more than one Naming Service is used, each one must be configured 
to use a different jndi.properties file.

JndiOFPropetiesFile
The location that the of.jndi.properties file will be written to. If this is 
left blank, the file will not be created. The default is blank.

The of.jndi.properties file can be used by JBoss (and other application 
servers) to access the OpenFusion JNDI properties. As an alternative to 
using this file, properties could be hard coded or passed to an application as 
command-line parameters.

Persistence
JDBC.User
This is the name of the database user with create rights on the database.

JDBC.Password
This is the password of the database user named in JDBC.User.

JDBC.URL
This is the URL for the JDBC Connection to the database. 

For memory-based persistence the URL string to should be:

JDBC:hsqldb:.

noting HSQLDB is used for memory-based persistence and that a “.” must 
follow the last colon of the URL string.

JDBC.Type
The choices for the JDBC Type are Oracle, Sybase, SQL Server and 
Informix.

JDBC.Driver
This is the name of the JDBC Driver used to connect to the database. This is 
given in the form:

jdbc:oracle:thin:@ultra2:1526:EXPL

where ultra2:1526 is the server name and port number (for example).

JDBC.AutoCreate
If the tables for the chosen database (selected using JDBC.Type) do not 
exist, then they are automatically created. The default value for HSQLDB is 



OpenFusion CORBA Services Naming Service Guide 51

True and for all other databases the default value is False, where True 
sets automatic table creation on.

Caching
The following properties are relevant to caching. Note that if write caching is 
required then read caching must also be enabled. To disable write caching, 
both TimedWrite and BatchedWrite must be set to 0. To disable read 
caching, both ReadCache.Min and ReadCache.Max must be set to 0.

TimedWrite
This is an integer value which specifies the time interval in seconds between 
cached writes. The default value is 0, which means that writes are not 
cached.

BatchedWrite
This is an integer value which specifies the time interval in milliseconds 
between batched writes. The default value is 0, which means that writes are 
not batched.

ReadCache.Min
This is an integer value which specifies the minimum number of objects to 
keep in the read cache. The default value is 0, which means that the cache 
is always completely flushed.

ReadCache.Max
This is an integer value which specifies the maximum number of objects to 
hold in the read cache; if not 0, it must be greater than the value specified 
for ReadCache.Min. The default value is 0, which means that no read 
caching is performed.

ReadCache.Int
This is an integer value which specifies the time interval in seconds between 
read cache flushing operations. The default value is 0, which means that 
periodic flushing does not occur; the cache is only flushed when full. For any 
other value, cache flushing occurs at the specified intervals whether or not 
the maximum cache size has been reached.

UUID and SID
UUID 
This is the context identifier. It must be specified in order for data to remain 
persistent across sessions when persistence is set to File and JDBC. By 
default a new UUID is generated for each instance.

SID
This is the Service ID. It is a UUID used internally by the OpenFusion 
Naming Service. It is required when access to the Naming hierarchy is 
desired.

// Create a hashtable for the environment
Hashtable env = new Hashtable ();

// Use file based persistence
env.put
   (“com.prismt.j2ee.jndi.OpenFusionSPI.JDBC.URL”, “jdbc:hsqldb:/tmp”);
// Use a read cache.
env.put (“com.prismt.j2ee.jndi.OpenFusionSPI.ReadCache”, “100”);
// Set the UUID.
env.put
(



52 OpenFusion CORBA Services Naming Service Guide

The provider generates a new UUID when the UUID option is not specified. 
However, this represents the starting point for the hierarchy, much like an 
LDAP server URL. Note that the data cannot be retrieved when this is not 
specified in future sessions.

Exceptions
JNDI has an hierarchy of exceptions that may be thrown. Clients may catch 
NamingException or any of its derived classes.

Full details of the standard exceptions are available in the JNDI API 
documentation available from Oracle Corporation.

   “com.prismt.j2ee.jndi.OpenFusionSPI.UUID”,
   “8e82d2c0-1d04-11d4-844f-a0b231700aae”
);

// Set inital context
env.put
(
   javax.naming.Context.INITIAL_CONTEXT_FACTORY,
   “com.prismt.j2ee.jndi.OpenFusionCtxFactory”
);

try
{
   // Get the root context
   rootctx = NamingManager.getInitialContext (env);
}



Part III          
Configuration and

Management

In this part
This part contains the following:

Naming Service Configuration page 55

Naming Service Manager page 69

The Purgable Interface page 75





OpenFusion CORBA Services Naming Service Guide 55

Naming Service 
Configuration
The configuration of Singleton properties specific to the Naming Service is 
described in this section. These properties appear in the Administration 
Manager, a graphical user interface (GUI) based administration tool 
included with the OpenFusion Graphical Tools.
The Administration Manager can be used to set the Singleton properties. 
These properties can also be set programmatically, generally as described 
in the service description sections.
Details for configuring Persistence, Logging, CORBA, Java and System 
properties for the Naming Service are described in the System Guide.

NameSingleton Configuration

CORBA Properties

IOR Name Service Entry
The Naming Service entry for the Singleton.

Property Name Object.Name

Property Type FIXED

Data Type STRING

Accessibility READ/WRITE

Mandatory NO



56 OpenFusion CORBA Services Naming Service Guide

IOR URL
The IOR URL property specifies the location of an Interoperable Object 
Reference (IOR) for the Service, using the Universal Resource Locator (URL) 
format. This information is used when a client attempts to resolve a 
reference to the Service. Some examples are:

file:/usr/users/openfusion/servers/NameService.ior

http://www.microfocus.com/of/servers/NameService.ior

corbaloc::server.microfocus.com/NameService

The Naming Service supports URLs in Corbaloc, Corbaname, file, FTP and 
HTTP URL formats, although some ORBs do not support all of these 
mechanisms. Consult your ORB documentation for specific details.

IOR File Name
The IOR File Name option specifies the name and location of the IOR file for 
the Singleton. If this property is not set, the IOR file name will be:
<INSTALL>/domains/<domain>/<node>/<service>/<singleton>/
<singleton>.ior

where <INSTALL> is the OpenFusion installation path. See the System 
Guide for details of the domains directory structure.

Resolve Name
The ORB Service resolution name used to resolve calls to the Singleton

Property Name IOR.URL

Property Type FIXED

Data Type URL

Accessibility READ/WRITE

Mandatory NO

Property Name IOR.File

Property Type FIXED

Data Type FILE

Accessibility READ/WRITE

Mandatory NO

Property Name ResolveName

Property Type FIXED

Data Type STRING

Accessibility READ/WRITE

Mandatory YES



OpenFusion CORBA Services Naming Service Guide 57

IOR Name Service
The name of the Naming Service which will be used to resolve the Singleton 
object.

Lightweight Directory Access Protocol (LDAP)
The Naming Service uses Oracle Corporation’s JNDI (Java Naming and 
Directory Interface) LDAP provider. This allows the Naming Service to be 
stored in a standard LDAP server. Caching is not supported under the LDAP 
persistence option.

LDAP User
The administrator of the LDAP server may want each user to have their own 
login name and password. This property specifies the user name. The user 
name should be in the fully qualified LDAP format, for example:

uid=RNCross,ou=People,o=prismtechnologies.com

LDAP Password
The administrator of the LDAP server may want each user to have their own 
login name and password. This property specifies the password.

Property Name IOR.Server

Property Type FIXED

Data Type STRING

Accessibility READ/WRITE

Mandatory NO

Property Name DB.LDAP.User

Property Type STATIC

Data Type STRING

Accessibility READ/WRITE

Mandatory YES

Property Name DB.LDAP.Password

Property Type STATIC

Data Type PASSWORD

Accessibility READ/WRITE

Mandatory YES



58 OpenFusion CORBA Services Naming Service Guide

LDAP URL
The URL specifies the location within the LDAP server where the Naming 
Service should store its persistent data. The data will not appear in the 
traditional hierarchical format due to limitations of the LDAP storage 
mechanism.

An example URL is:

ldap://excalibur.microfocus.com:2809/ou=OpenFusion Naming 
Service,o=microfocus.com

LDAP Trace
Output hexadecimal dump of the incoming and outgoing LDAP ASN.1 BER 
packets from the LDAP server.

LDAP Security
LDAP Authentication Mechanism. The security method may be:

•    None: anonymous bind.

•    Simple: clear-text password.

•    SASL: Simple Authentication and Security Layer, defined in RFC2222.

The administrator must enable all privileges upon the target location in the 
LDAP hierarchy when anonymous bind is selected. The LDAP v3 protocol 
uses the SASL to support pluggable authentication. This means that the 
LDAP client and server can be configured to negotiate and use possibly non-
standard and/or customized mechanisms for authentication, depending on 
the level of protection desired by the client and the server. The LDAP v2 
protocol does not support the SASL.

Property Name DB.LDAP.URL

Property Type STATIC

Data Type STRING

Accessibility READ/WRITE

Mandatory YES

Property Name DB.LDAP.Trace

Property Type FIXED

Data Type BOOLEAN

Accessibility READ/WRITE

Mandatory YES

Property Name DB.LDAP.Security

Property Type STATIC

Data Type ENUM

Accessibility READ/WRITE

Mandatory YES



OpenFusion CORBA Services Naming Service Guide 59

LDAP SASL Mechanism Names
A list of mechanisms should be entered in the configuration tool when the 
SASL option is chosen, for example:

DIGEST-MD5 CRAM-MD5

This specifies that DIGEST-MD5 authentication is to be used, or that 
CRAM-MD5 authentication is to be used when the SASL mechanism is 
unavailable. An AuthenticationNotSupportedException will be thrown 
when neither is available.

Persistence Options
The Naming Service provides two extra persistence options and a read 
cache for the caching of naming contexts.

The different kinds of caching available to the Naming Service are:

•    No Cache (Read Through / Write Through). This is automatically used for
failover.

•    Read Cache / Write Through.

•    Read Cache / Timed Writes with the value in seconds.

•    Read Cache / Batched Writes.

•    Read Cache / Batched and Timed Writes.

Read Cache Flush Interval
The interval, in seconds, between read cache flush operations. A least-
recently-used algorithm is employed to reduce the size of the cache to the 
level of the Read Cache Minimum Size.

The default value is 0 (zero), which indicates no timed cache flush will be 
performed.

Property Name DB.LDAP.SASL

Property Type STATIC

Data Type STRING

Accessibility READ/WRITE

Mandatory YES

Property Name DB.ReadCache.Int

Property Type DYNAMIC

Data Type INTEGER

Accessibility READ/WRITE

Mandatory YES



60 OpenFusion CORBA Services Naming Service Guide

Read Cache Maximum Size
The maximum number of objects that the read cache will be allowed to 
hold. A value of zero means that there is no read cache. When the cache 
reaches the read limit size, a least-recently-used algorithm is employed to 
reduce the size of the cache to the level of the Read Cache Minimum Size.

The default value is 500.

The Read Cache Maximum Size must be set greater than zero if a write 
cache is required, as it is not possible to have a write cache without a read 
cache.

Read Cache Minimum Size
The minimum number of objects which will be left in the cache when it is 
cleared. The default value is 0 (zero).

Write Cache Write Interval
The write interval option refers to the delay (in seconds) between saving 
object state changes within a server, and writing this information to 
persistent store. This option is a performance optimization feature as it can 
be used to prevent the service making a lot of small updates to the 
persistent store.

A value of zero indicates no delay. Changes are written immediately to the 
persistent store if both the Write Cache Write Interval and Write Cache 
Batch Size are set to zero.

The default value for this property is zero. Increasing the write interval 
value may improve performance when the data held by a service is 
changing rapidly.

Property Name DB.ReadCache.Max

Property Type DYNAMIC

Data Type INTEGER

Accessibility READ/WRITE

Mandatory YES

Property Name DB.ReadCache.Min

Property Type DYNAMIC

Data Type INTEGER

Accessibility READ/WRITE

Mandatory YES

Property Name DB.WriteInterval

Property Type DYNAMIC

Data Type INTEGER

Accessibility READ/WRITE

Mandatory YES



OpenFusion CORBA Services Naming Service Guide 61

Write Cache Batch Size
The Write Batch Size option specifies the maximum number of updates that 
will be buffered before the data is written to persistent storage. Just as for 
the write interval option, the write batch size option is also a performance 
optimization feature.

A value of zero indicates that the updates are not buffered but are written 
immediately to the datastore. Increasing this property value may improve 
performance when the data held by a service is changing rapidly.

The Read Cache Maximum Size must be set greater than zero if a write 
cache is required, as it is not possible to have a write cache without a read 
cache.

The effect of setting both the Write Interval and Write Batch Size to values 
greater than zero is that of batched timed writes.

Naming Data Storage Type
This property sets the persistent storage type. The type can be:

•    Default

•    LDAP

If Default is selected, the data store will default to the location of the service 
data (using JDBC). See the System Guide for details.

Instrumentation Properties
The interfaces for setting the instrumentation properties are given below. 
For information on managing instrumentation, see Instrumentation in the 
System Guide.

Count of resolve operations
The number of resolve operations since the Service started or was last 
reset.

Property Name DB.WriteBatch

Property Type DYNAMIC

Data Type INTEGER

Accessibility READ/WRITE

Mandatory YES

Property Name DB.NameDataPersistence

Property Type STATIC

Data Type ENUM

Accessibility READ/WRITE

Mandatory YES

Property Name ResolveCount

Property Type DYNAMIC

Data Type COUNTER

Accessibility READ/WRITE

Mandatory NO



62 OpenFusion CORBA Services Naming Service Guide

Count of rebind context in service
The number of rebind contexts in service since the Service started or was 
last reset.

Count of context bind operations
The number of context binds in service since the Service started or was last 
reset.

Count of unbind operations
The number of unbinds in service since the Service started or was last reset.

Count of rebind operations
The number of rebinds in service since the Service started or was last reset.

Property Name ReBindContextCount

Property Type DYNAMIC

Data Type COUNTER

Accessibility READ/WRITE

Mandatory NO

Property Name BindContextCount

Property Type DYNAMIC

Data Type COUNTER

Accessibility READ/WRITE

Mandatory NO

Property Name UnBindCount

Property Type DYNAMIC

Data Type COUNTER

Accessibility READ/WRITE

Mandatory NO

Property Name ReBindCount

Property Type DYNAMIC

Data Type COUNTER

Accessibility READ/WRITE

Mandatory NO



OpenFusion CORBA Services Naming Service Guide 63

Count of bind operations
The number of binds in service since the Service started or was last reset.

General Properties

JNDI ContextFactory Cache Flush Interval
The internal ContextFactory cache can be purged to prevent the possibility 
of memory leaks. This property specifies the interval, in seconds, between 
ContextFactory cache flush operations. A value of zero indicates that no 
timed cache flush will take place.

JNDI ContextFactory Cache Flush Interval is used in conjunction with the 
JNDI ContextFactory Cache Maximum Size and JNDI ContextFactory Cache 
Minimum Size properties to determine the purging behaviour.

JNDI ContextFactory Cache Maximum Size
The maximum number of contexts allowed in the ContextFactory cache. 
When the cache exceeds this size, contexts are purged according to a least-
recently-used algorithm

JNDI ContextFactory Cache Minimum Size
The size that the ContextFactory cache will be reduced to following a cache 
flush. For example, if this property is set to 10 then all but 10 contexts will 
be purged during a flush operation.

Property Name BindCount

Property Type DYNAMIC

Data Type COUNTER

Accessibility READ/WRITE

Mandatory NO

Property Name jndiCtxCacheInt

Property Type STATIC

Data Type INTEGER

Accessibility READ/WRITE

Mandatory YES

Property Name jndiCtxCacheMax

Property Type STATIC

Data Type INTEGER

Accessibility READ/WRITE

Mandatory YES

Property Name jndiCtxCacheMin

Property Type STATIC

Data Type INTEGER

Accessibility READ/WRITE

Mandatory YES



64 OpenFusion CORBA Services Naming Service Guide

JNDI Properties File
The location of the jndi.properties file. If this is left blank, the 
jndi.properties file will not be created.

The jndi.properties file is useful for JNDI client applications that need to 
connect to the Naming Service hierarchy.

The OpenFusion JMS Manager requires a valid jndi.properties file. See 
the Java Message Service Guide for details.

When more than one Naming Service is used, each one must be configured 
to use a different jndi.properties file.

JNDI OF Properties File
The location that the of.jndi.properties file will be written to. If this is 
left blank, the file will not be created.

The of.jndi.properties file can be used by JBoss (and other application 
servers) to access the OpenFusion JNDI properties. As an alternative to 
using this file, properties could be hard coded or passed to an application as 
command-line parameters.

JNDI Root ID
This option allows the root ID used by the JNDI hierarchy to be manually 
configured. This is useful when used in conjunction with the Server 
Persistent ID (SID) property (see the System Guide) as these are then 
known values that may be passed to JNDI client programs. These clients 
can then access the Naming Service persistent data.

Property Name jndiPropertiesFile

Property Type STATIC

Data Type STRING

Accessibility READ/WRITE

Mandatory NO

Property Name jndiOFPropertiesFile

Property Type STATIC

Data Type STRING

Accessibility READ/WRITE

Mandatory NO

Property Name JNDIID

Property Type STATIC

Data Type UUID

Accessibility READ/WRITE

Mandatory NO



OpenFusion CORBA Services Naming Service Guide 65

Enable Load Balancing
This allows load balancing to be performed by the Naming Service.

View Non-Corba Objects
This allows the Naming Service to browse a JNDI hierarchy even when 
non-CORBA objects (such as java.lang.String) have been stored. The 
Naming Service will log and ignore any non-CORBA objects it encounters 
when this option is disabled.

Purge on List
Invalid object references (that is, those object references which are not 
active and not persistent) are removed from a naming context when the list 
operation is performed on the context and Purge on List is selected.

Purge on Load
Invalid object references (that is, those object references which are not 
active and not persistent) are removed when contexts are first accessed 
after a server has been restarted and Purge on Load is selected.

Property Name LoadBalancing

Property Type DYNAMIC

Data Type BOOLEAN

Accessibility READ/WRITE

Mandatory YES

Property Name ViewNonCorba

Property Type DYNAMIC

Data Type BOOLEAN

Accessibility READ/WRITE

Mandatory YES

Property Name Clean.List

Property Type DYNAMIC

Data Type BOOLEAN

Accessibility READ/WRITE

Mandatory YES

Property Name Clean.Load

Property Type DYNAMIC

Data Type BOOLEAN

Accessibility READ/WRITE

Mandatory YES



66 OpenFusion CORBA Services Naming Service Guide

Purge Class Plugin
This should be a publicly instantiable Java class that implements the 
com.prismt.openfusion.plugin.Purgable interface. This interface has 
one operation:

public boolean isPurgable (org.omg.CORBA.Object obj)

This class is used to determine whether or not to purge objects from the 
Naming Service. Typically, a client will code this operation to determine 
whether their object is persistent or transient and hence may be purged. 
This service will also check the active/inactive state. The 
ObjectAdapter.isTransient method is the default used when a class is 
not specified. This will successfully determine the persistent state for 
objects created using the OpenFusion framework, but it will not work for 
foreign objects.

Purging is the deletion of invalid object references and purgable objects 
from a service. Object references are regarded as invalid when they are not 
active and not persistent. The OpenFusion Naming Service can most easily 
determine whether an object is purgable if the 
com.prismt.openfusion.plugin.Purgable interface is implemented. 
See the OpenFusion Naming Service Guide for further details.

System Master
This property should be set to true (checked) if this is the master naming 
service for a system. There can be only one master naming service.

Property Name Clean.PurgeClass

Property Type DYNAMIC

Data Type STRING

Accessibility READ/WRITE

Mandatory NO

Property Name Resolver

Property Type STATIC

Data Type BOOLEAN

Accessibility READ/WRITE

Mandatory YES



OpenFusion CORBA Services Naming Service Guide 67

LoadBalancingFactorySingleton Configuration

IOR Name Service Entry
The Naming Service entry for the Singleton.

IOR URL
The IOR URL property specifies the location of an Interoperable Object 
Reference (IOR) for the Service, using the Universal Resource Locator (URL) 
format. This information is used when a client attempts to resolve a 
reference to the Service. Currently only http and file URLs are supported, 
for example:

file:/usr/users/openfusion/servers/NameService.ior

http://www.microfocus.com/openfusion/servers/
NameService.ior

IOR File Name
The IOR File Name option specifies the name and location of the IOR file for 
the Singleton. If this property is not set, the IOR file name will be:
<INSTALL>/domains/<domain>/<node>/<service>/<singleton>/
<singleton>.ior

where <INSTALL> is the OpenFusion installation path. See the System 
Guide for details of the domains directory structure.

Property Name Object.Name

Property Type FIXED

Data Type STRING

Accessibility READ/WRITE

Mandatory NO

Property Name IOR.URL

Property Type FIXED

Data Type URL

Accessibility READ/WRITE

Mandatory NO

Property Name IOR.File

Property Type FIXED

Data Type FILE

Accessibility READ/WRITE

Mandatory NO



68 OpenFusion CORBA Services Naming Service Guide

Resolve Name
The ORB Service resolution name used to resolve calls to the Singleton

IOR Name Service
The name of the Naming Service which will be used to resolve the Singleton 
object.

Load Balancing Plugin
Plugin class used to implement load balancing. This should be a publicly 
instantiable Java class.

Load Balancing Timeout
This property is used when an Active policy is selected. It controls the 
length of time that the ORB will attempt to communicate with an object 
before regarding it as inactive. The default value is zero.

Property Name ResolveName

Property Type FIXED

Data Type STRING

Accessibility READ/WRITE

Mandatory YES

Property Name IOR.Server

Property Type FIXED

Data Type STRING

Accessibility READ/WRITE

Mandatory NO

Property Name Classnames

Property Type FIXED

Data Type STRING

Accessibility READ/WRITE

Mandatory NO

Property Name Timeout

Property Type DYNAMIC

Data Type INTEGER

Accessibility READ/WRITE

Mandatory YES



OpenFusion CORBA Services Naming Service Guide 69

Naming Service Manager
Use the Naming Service Manager to:

•     Browse the Naming Service hierarchy.

•     Add or delete naming contexts.

•     Bind CORBA objects to the Naming Service.

•     Launch other managers and browsers.

•     Export and import the hierarchy as XML files (this function can also be 
performed from the command line).

Running the Naming Service Manager
The Naming Service Manager can only be started if the Naming Service has 
been started. To start the Naming Service Manager, right-click on a running 
NameSingleton in the Administration Manager’s Object Hierarchy and select 
Naming Service Manager from the pop-up menu. See the System Guide for 
details.

Alternatively, start the Naming Service Manager from the command line 
with the following command:

Using the Naming Service Manager
The Naming Service Manager shows the naming hierarchy as a graphical 
tree view. Figure 7 illustrates how OpenFusion CORBA objects might be 
registered in the Naming Service Manager. 

Figure 7  Naming Service Manager

% run 
com.prismt.cos.treebrowser.naming.NamingServiceBrowser 
-name NameService



70 OpenFusion CORBA Services Naming Service Guide

Each object in the Naming Service is represented by an icon in the tree 
view. The object is labelled with its Id and/or Kind (if specified), in one of 
the following formats:

•     {id,kind}
•     id
•     {,kind}

When an object is selected (highlighted) in the tree view, its details are 
shown in the properties pane to the right of the tree view.

An object’s IOR can be selected in the properties pane and copied to the 
clipboard.



OpenFusion CORBA Services Naming Service Guide 71

Object Icons
Different objects in the Naming Service Manager are identified by different 
icons in the tree view. These icons are shown in Table 13.

Tool Bar Buttons
The Naming Service Manager adds new buttons to the tool bar. These 
buttons are only available when the Naming Service Manager is active. The 
new tool bar buttons are shown in Table 14.

The buttons are disabled if a leaf node or an invalid naming context is 
selected in the naming hierarchy.

Adding a Naming Context
A new naming context must be added as a child of an existing naming 
context (or the root context) in the naming hierarchy. A naming context 
cannot be added as a child of a bound CORBA or non-CORBA object.

To add a new naming context to the naming hierarchy:

1 Right-click on the parent naming context.

2 Select Add New Context from the pop-up menu.

Table 13 Naming Service Object Icons

Icon Node

Root Context
The Naming Service root node represents the current 
instance of the Naming Service.

Naming Context
Represents an OpenFusion CORBA naming context.

CORBA Object
Represents a CORBA object binding. This must 
always be a leaf node in the hierarchy.

Non-CORBA Object
Represents a non-CORBA object binding. This must 
always be a leaf node in the hierarchy.

Invalid Naming Context
Represents a naming context which has been 
invalidated as a result of a linked object being 
destroyed.

Table 14 Naming Service Manager Tool Bar

Button Function

Load Naming XML
Load Naming Service information from an XML file.

Save Naming XML
Save Naming Service information in an XML file.



72 OpenFusion CORBA Services Naming Service Guide

3 Enter the Id and Kind of the new naming context in the New Context 
dialog box. Both of these fields are optional.

4 Click the OK button.

The new naming context is added to the naming hierarchy as a child of the 
selected parent naming context.

Binding OpenFusion Services
When a Service is started in the Administration Manager, each of its 
Singletons will attempt to bind to the Naming Service if it is configured to do 
so (see below), and if the Naming Service is running when the Service 
starts.

This occurs each time the Service is started. (Persistent objects remain 
registered when the Service is stopped, with a Status of Inactive/
Persistent.) If the bind is successful, entries for the Singletons are added 
to the Naming Service Manager hierarchy. To see any newly-started 
objects, right-click on the root node of the Naming Service Manager and 
select Refresh Node from the pop-up menu.

OpenFusion Singletons that register themselves in this way are bound 
directly under the Naming Service root context.

If a Singleton is to register itself with a running Naming Service when it is 
started, it must be configured to do so, as follows:

•    The IOR Name Service Entry property of the Singleton must contain a
valid INS name to identify the Singleton.

•    The IOR Name Service property must contain the name of the Naming
Service it is to bind to. (This should be NameService for the OpenFusion
Naming Service.)

•    The Use Xbootclasspath property of the Service containing the Singleton
must be set to true.

Binding Objects
An object must be added as a child of an existing naming context (or the 
root context) in the naming hierarchy. An object cannot be added as a child 
of a bound CORBA or non-CORBA object (bound objects are always leaf 
nodes in the hierarchy).

An object’s IOR is used to bind the object into the naming hierarchy. The 
IOR of an existing object must be copied to the clipboard before the object 
can be bound into the naming context. See the System Guide for details of 
querying objects in the Object Browser and copying the object’s IOR to the 
clipboard.

Once the required object’s IOR is copied, follow these steps to bind the 
object:

1 Right-click on the naming context that the object will be bound to.

2 Select Paste New Binding from the pop-up menu.

3 Enter an Id and Kind for the bound object. Both of these fields are 
optional.

4 Click the OK button.

The new object is added to the naming hierarchy as a child of the selected 
parent naming context.



OpenFusion CORBA Services Naming Service Guide 73

It is possible to bind a naming context object as either an object or a 
naming context. If it is bound as an object, it becomes a leaf node and will 
not be used for name resolution.

Deleting a Naming Context or Object Binding
To delete a naming context or object binding from the naming hierarchy, 
right-click on the node and select Delete from the pop-up menu. Click the 
DELETE button in the Warning dialog box.

Deleting an object binding will not remove the underlying object; only its 
resolution through the Naming Service will be affected.

When a naming context is deleted, all of its children (naming contexts and 
object bindings) are also removed from the hierarchy.

Exporting XML
Any portion of the naming hierarchy can be exported to an XML file.

1 Select the naming context that is to be exported. Every node under the 
selected naming context is exported. To export the entire hierarchy, 
select the root node.

2 Right-click on the selected naming context and select Export xml from 
the pop-up menu. Alternatively, click the Save Naming XML tool bar 
button.

3 Select a file location and enter a file name in the Save Naming XML dialog 
box.

The XML Export will fail if the tree being exported contains any invalid 
naming contexts.

The XML export can also be performed from the command line. The 
command line method is preferred when dealing with very large naming 
hierarchies (where the export operation may take a considerable time).

Importing XML
An XML file containing a previously-exported section of the naming 
hierarchy can be re-imported into the naming hierarchy.

The imported branch of the naming hierarchy must be added to an existing 
naming context node.

As an exported branch of the naming hierarchy can be imported into a 
completely different location, this is a convenient way to move or replicate 
large sections of the naming hierarchy:

1 Select the naming context that the imported branch will be added under.

2 Right-click on the selected naming context and select Import xml from the 
pop-up menu. Alternatively, click the Load Naming XML tool bar button.

3 Use the Load Naming XML dialog box to select a previously exported XML 
file to import.

The contents of the imported file are added to the naming hierarchy in the 
selected location.

The XML import can also be performed from the command line. The 
command line method is preferred when dealing with very large naming 
hierarchies (where the import operation may take a considerable time).



74 OpenFusion CORBA Services Naming Service Guide

Launching Managers and Browsers
Other OpenFusion graphical tools can be launched from the Naming Service 
Manager.

The right-click menu options of each object in the naming hierarchy include 
options for launching browsers and managers specific to that object.

For example, a bound NotificationSingleton object has a menu option to 
launch the Notification Service Manager.

CORBA Object Browser
All nodes include an option to launch the CORBA Object Browser. See the 
System Guide for details. The CORBA Object Browser can be used to view 
naming contexts as well as CORBA objects.

Naming Service Manager
Naming contexts include an option to launch a new instance of the Naming 
Service Manager. The new instance is rooted at the selected naming 
context.

This is not a new instance of the Naming Service. The new manager is 
simply a new view of the selected portion of the Naming Service.



OpenFusion CORBA Services Naming Service Guide 75

The Purgable Interface
The purgable interface is an OpenFusion plugin intended to be used to 
assist in the determination of whether an object is inactive and can be 
safely removed.

Purge Class Plugin
This is a property of the NameSingleton which can be specified through the 
Administration Manager (see the System Guide). If used, this property 
must contain the name of a publicly instantiable Java class that implements 
the com.prismt.openfusion.plugin.Purgable interface.

Using the Purgable Interface
This interface has one operation:

public boolean isPurgable (org.omg.CORBA.Object obj)

The class specified as the Purge Class Plugin is used to determine whether 
or not to purge objects from the Naming Service. Typically a client will 
implement this operation to determine whether its object is persistent or 
transient and hence may be purged. This service will also check the active/
inactive state.

If no class is specified for this property, the ORBAdapter.isValid method 
is used (an object is valid if it is active or not transient). This will 
successfully determine persistent state for objects created using the 
OpenFusion framework, but it will not work reliably for foreign objects 
(objects created in non-OpenFusion environments or on other ORBs).

The following pseudocode illustrates how the interface is used.

MyPurgable implements Purgable
{
if ’mine’

test & return
else

return ! ORBAdapter.isValid(obj)
}

 

The if ’mine’ is a test which first establishes whether the client object is 
one that OpenFusion cannot determine the status of (for example, an object 
from a C++ orb). If it is, then its status is determined by the test & 
return clause; otherwise the default OpenFusion check of the object’s 
status is performed. If the isValid() check is not included, then no 
checking is performed on OpenFusion created objects and the Naming 
Service will only purge the client objects.



76 OpenFusion CORBA Services Naming Service Guide



Part IV          
Appendix

In this part
This part contains the following:

Command Line Management Tool page 79





OpenFusion CORBA Services Naming Service Guide 79

Command Line Management 
Tool
The Naming Service Command Line Management Tool, nsMgrTool, 
provides management capabilities which are not available in the GUI-based 
Administration Manager, namely the ability to manage Naming Service 
instances which reside in diverse OpenFusion installations and domains 
(refer to the Administration Manager section of the System Guide for a 
description of domains and their related directory hierarchy).

An example of a Domains hierarchy (as it would appear in the 
Administration Manager) and its associated directory structure is shown in 
Figure 8

Figure 8  Example Domains Hierarchy and Directories

Features
Operations which nsMgrTool can perform include:

•    Viewing and managing running Naming Service instances located in local
or remote installations

•    Creating and listing the contents of naming contexts for those instances

•    Binding and unbinding objects to contexts and name objects

•    Resolving named objects

•    Destroying contexts and name objects

The Command Line Management Tool, as its name indicates, can be run 
directly from the command line or as part of a shell or batch script.



80 OpenFusion CORBA Services Naming Service Guide

Configuration
The command line tool must be able to locate and access either the 
NameSingleton.ior file or a file containing the corbaloc URL for the 
Naming Service instance it is required to manage. Alternatively, the tool 
may be provided with the Name Service instance IOR or corbaloc URL. The 
NS_LOCATION environment variable is used to pass one of those values to 
the command line tool. File locations can use either a file or HTTP address 
(described below).

The NS_LOCATION environment variable must be set before running the 
command line tool. 

If the http protocol is used, then a Tomcat object must be added to the 
specific Naming Service instance to be managed.

A Tomcat object can be added to a Naming Service instance by using the 
Administration Manager’s pop-up menu command Add | Java Object | 
TomcatObject for the instance - see Tomcat Web Server Integration in the 
System Guide for details.

Using the file Protocol
When using the file protocol, set NS_LOCATION to:

file:///<path>

where <path> is the complete pathname to the NameSingleton.ior file or 
a file containing the corbaloc URL of the Name Service instance.

When using Windows to access an OpenFusion installation located on a 
remote host, the remote host’s file space must be available as a mapped 
drive in Windows Explorer (see Example 1, Windows version, below).

Example 1 Setting NS_LOCATION using the file protocol
Referring to the example installation shown in Figure 8, NS_LOCATION is set 
to manage a Naming Service instance called NameService5, located on a 
host called ultra5, in the user-defined MicroFocus domain (note that a 
mapped drive is used for the Windows version):

Using the http Protocol
When using the http protocol, set NS_LOCATION to:

http://<host>:<port>/NameService/domains/<domain>/<node>/
<service_name>/NameSinglton/NameSingleton.ior

where 

<host> is the host or machine name of the OpenFusion installation where 
the Naming Service instance resides

% export NS_LOCATION=file:///var/usr/local/MicroFocus/
OpenFusion/domains/MicroFocus/ultra5/NameService5/
NameSingleton/NameSingleton.ior

> set NS_LOCATION=file:///m:/MicroFocus/OpenFusion/
domains/MicroFocus/ultra5/NameService5/NameSingleton/
NameSingleton.ior

i

WIN

UNIX

WIN



OpenFusion CORBA Services Naming Service Guide 81

<port> is the port address of the Naming Service instance’s Tomcat 
object; the default port address used by Tomcat is 8080,

<domain> is the domain defined under the installation’s Domains item,

<node> is the node name (the host machine) under the domain,

<service_name> is the service name for the Naming Service instance

Example 2 Setting NS_LOCATION using the http protocol
Referring to the example installation shown in Figure 8, NS_LOCATION is set 
to manage a Naming Service instance called NameService5, located on a 
remote host called ultra5, in the user-defined MicroFocus domain: 

Using IOR and corbaloc URL
NS_LOCATION can be also set directly to the IOR or the corbaloc URL of 
the Name Service instance, for example:

or

Note 

Setting the NS_LOCATION environment variable to the corbaloc URL may 
require escaping of certain characters.

% export NS_LOCATION=http://ultra5:8080/NameService/
domains/MicroFocus/ultra5/NameService5/NameSingleton/
NameSingleton.ior

> SET NS_LOCATION=http://ultra5:8080/NameService/
domains/MicroFocus/ultra5/NameService5/NameSingleton/
NameSingleton.ior

% export NS_LOCATION=corbaloc:iiop:160.45.110.41:38693/
OpenFusion.NameService.NameSingleton/NameSingleton.ior

% set NS_LOCATION=corbaloc:iiop:160.45.110.41:38693/
OpenFusion.NameService.NameSingleton/NameSingleton.ior

% export 
NS_LOCATION=IOR:000000000000002B49444C3A6F6D672E6F72672F436F...

% set 
NS_LOCATION=IOR:000000000000002B49444C3A6F6D672E6F72672F436F...

UNIX

WIN

UNIX

WIN

UNIX

WIN

i



82 OpenFusion CORBA Services Naming Service Guide

Running
After setting the NS_LOCATION environment variable, described above, 
nsMgrTool is run using the commands listed in Table 15, Command Line 
Management Tool Commands, as follows:

nsMgrTool is located in the bin sub-directory where OpenFusion is 
installed.

Note
•     The required OpenFusion Naming Service instance must be running in 

order for the tool to work.

•     The commands must be entered in the order they are listed in Table 15.

% nsMgrTool <commands>

Table 15 Command Line Management Tool Commands

Command Description

-h, -?, -help Displays the list of commands (described below)

-l <path> This lists the contents specified by the path. 
If the path resolves to a context, its contents are 
displayed. 
If the path resolves to an object, then the object is 
displayed. 
If no path is specified, then the contents of the root 
naming context are displayed. 
The path argument should be in the form of a string. 
Example: -l Videos/Films

-create [path] This creates a new naming context. If an element of the 
path does not exist then it is created automatically, e.g. if 
the path entered was Videos/Sport/Football and 
only the Videos context existed, then a context would 
be created for Sport (under Videos) and for 
Football (under Videos/Sport). If a path is not 
supplied an unbound Naming Context is created and the 
object reference string is displayed to the user.
Example: -create Videos/Sport 

-bind <-c | -o> <-p path> 
<IOR> | 

-bind <-c | -o> <-p path> 
<-f filename>

This option binds a given IOR as a context or object to 
the specified path. The IOR can either be provided 
directly or can be read from a file. If the IOR does not 
resolve to a context, then it is bound as an object. 
Example: -bind -c -p Videos/Films/ET -f /
filedir/filename.ior 

Items shown in < > are required; items shown in [ ] are optional; + indicates one or more items



OpenFusion CORBA Services Naming Service Guide 83

Example 3 Managing a Naming Context
The following example shows a naming object called test, located in a 
Naming Service instance called NameService5, being created, bound, 
resolved, and destroyed. This example assumes that the NS_LOCATION 
environment variable was set as shown in Example 1 or Example 2, above. 
The example shows the UNIX command line; the tool works identically in 
Windows, except that Windows users should substitute the forward-slashes 
with back-slashes for file paths only - context paths should always use 
forward slashes.

The -create command creates a naming context called test. An object is 
then bound (and automatically created) in this context, using the IOR 
defined in a file called client.ior.

The -resolve command, in this example, is used to retrieve the IOR bound 
to myObject and save it to a file call test.ior. The myObject object is 
then destroyed.

-resolve [path] Returns the object reference string for the specified path. 
If a path is not specified, then the object reference string 
for the root context is returned. The object reference 
string is in the format:
IOR:000000000000002B49444C3A6F6D672E67... 
Example: -resolve Videos/Films 

-destroy [-r] <path> This unbinds and destroys the context or object specified 
by the path. If the path refers to a context the context is 
only destroyed if it is empty. If it is not empty and the -r 
argument has not been set, then it is not destroyed and a 
message is displayed. If the -r argument has been set, 
then the context and its contents are unbound and 
destroyed recursively. 
Example: -destroy -r Videos/Films

-unbind <path> This option unbinds the context or object for the path 
specified. The unbind will fail if the path relates to a 
context and the context is not empty.
Example: -unbind Videos/Films/ET 

Table 15 Command Line Management Tool Commands

Command Description

Items shown in < > are required; items shown in [ ] are optional; + indicates one or more items

% nsMgrTool -create test
% nsMgrTool -bind -o test/myObject -f /var/user/

application/client.ior
% nsMgrTool -resolve test/myObject > test.ior
% nsMgrTool -destroy test/myObject



84 OpenFusion CORBA Services Naming Service Guide



OpenFusion CORBA Services Naming Service Guide 85

A
Access

Naming Service Data 39, 51
Adding

Naming Context 71
Address

Object Reference 41
Alias 11
Applet parameters 41
Applications

Java 40

B
BindContextCount (property) 62
BindCount (property) 63
Binding

Name 39, 40
Object 48

Binding a CORBA Object 72
Binding OpenFusion Services 72
BindingIterator Interface 26

C
Cache

Disabling 51
Enabling 51
Flushing 51
Properties 51

Caching 9
Classnames (property) 68
Clean.List (property) 65
Clean.Load (property) 65
Clean.PurgeClass (property) 66
Client

CORBA 48
CORBA Naming Service 40
Java 40
JNDI 41, 47, 48

Component
Name 41

Composite name 43
Compound name 43
Configuration

JNDI 41
Naming Service 49
Service provider dependence 41

Context
Identifier 51
Initial 40, 49
Naming 39, 40
Root 48
Sub- 40

Convention
Name 41

CORBA
Client 48
Naming Service 39, 43
Object 41

CORBA Object
Binding 72

Corbaloc 7
Corbaname 8

file 8
http 8

CosNaming
SPI 41, 43

Count of binds in service (property) 63
Count of context binds in service 
(property) 62

Count of rebind context in service 
(property) 62

Count of rebinds in service (property) 62
Count of resolve operations (property) 61
Count of unbinds in service (property) 62
Create rights, JDBC database 50
Cyclic reference 43
Cyclics, exporting and importing 34

D
Data

Accessing Naming Service 39
Database types 50
DB.LDAP.Password (property) 57
DB.LDAP.SASL (property) 59
DB.LDAP.Security (property) 58
DB.LDAP.Trace (property) 58
DB.LDAP.URL (property) 58
DB.LDAP.User (property) 57
DB.NameDataPersistence (property) 61
DB.ReadCache.Int (property)

Naming Service 59
DB.ReadCache.Max (property)

Naming Service 60
DB.ReadCache.Min (property)

Naming Service 60
DB.WriteBatch (property)

Naming Service 61
DB.WriteInterval (property)

Naming Service 60
Delegate 11
Delete

Naming Context 73
Object Binding 73

Directory service (objects within) 41
Directory services 40
documentation

.pdf format ix
updates on the web ix

Driver, JDBC 50

E
Enable Load Balancing 65
Environment

JNDI 47, 49
Parameters 41

Escaping in strings 43
Examples

Index



 86 OpenFusion CORBA Services Naming Service Guide

Naming Service 21, 23
Exceptions 35, 52
Export

XML 73
Exporting and Importing Cyclics 34

F
Factories

Supplied 44
Factory Classes

Object 49
State 49

Fail-over 12
Federation 5, 39, 40, 45
Flushing, cache 51

G
Generated UUID 51, 52
Graph (hierarchy) 40

H
Hashtable 41, 47, 49
Hierarchy of naming contexts 39, 40

I
Identifier

Context 51
UUID 51

Importing XML 73
Initial context 40, 49
INITIAL_CONTEXT_FACTORY 49
INS (Interoperable Naming Service) 43
Instrumentation 12

Naming Service Properties 61
Interoperable Naming Service (INS) 6
IOR 7
IOR File Name (property) 56, 67
IOR Name Service (property) 57, 68
IOR Name Service Entry (property) 67
IOR URL (property) 56, 67
IOR.File (property) 56, 67
IOR.URL (property) 56, 67

J
Java

Applications 40
Client 40
Objects 41, 44

Java Naming & Directory Interface 
(JNDI) 8, 31

javax.naming.Context (interface) 43
JDBC

Create rights 50
Database type 50
Database URL 50
Database user 50
Driver 50

JMX
Instrumentation Properties 61

JNDI
Client 47

Configuration 41
Environment 47, 49
Object 48
OF Properties File 64
Properties 41, 49
Properties File 64
Root ID 64
Root ID option 64
Specification 43
Standard properties 49
Tutorial (Oracle) 47

JNDI ContextFactory Cache Flush Interval 
(properties) 63

JNDI ContextFactory Cache Maximum 
Size (property) 63

JNDI ContextFactory Cache Minimum Size 
(property) 63

jndi.properties file, location of 49
jndiCtxCacheInt (property) 63
jndiCtxCacheMax (property) 63
jndiCtxCacheMin (property) 63
JNDIID (property) 64
JNDIObject Interface 29
jndiOFPropertiesFile (property) 64
jndiPropertiesFile (property) 64

L
LDAP 31, 57
LDAP (Lightweight Directory Access 
Protocol) 40
Server URL 52

LDAP Password (property) 57
LDAP SASL Mechanism Names 
(property) 59

LDAP Security (property) 58
LDAP Trace (property) 58
LDAP URL (property) 58
LDAP User (property) 57
Lightweight Directory Access Protocol 57
Load

Naming XML 71
Load Balancing

Concepts 10
Implementation 11
Policies 12, 28

Load Balancing Plugin (property) 68
Load Balancing Timeout (property) 68
LoadBalancer Interface 27
LoadBalancerPlugin Interface 28, 29
LoadBalancing (property) 65
LoadBalancingFactory 11
LoadBalancingFactory Interface 27
LoadBalancingFactorySingleton 
Configuration 67

Log file 47

M
Memory Management 32

Concepts 9
Memory-based persistence 44
Messages, warning 48



OpenFusion CORBA Services Naming Service Guide 87

Meta-characters 43

N
Name

Binding 39, 40
Component 41
Composite 43
Compound 43
Conventions 41
Resolving 39, 40
String 41
Stringified 43
Syntax 41, 43
Validity checks 44

Name (interface) 41
Name Components 6
NameService option

Purge Class Name 32
Purge on Load 32

NameSingleton Configuration 55
Naming Context 4

Adding 71
Deleting 73

Naming context 39, 40
Naming context hierarchy 39
Naming Data Storage Type 61
Naming scheme 43
Naming Service 48, 49, 51

Access to 51
BindingIterator Interface 26
Configuration 49, 55
Contexts 4
CORBA 39, 43
Corbaloc 7
Corbaname 8

file 8
http 8

Data, accessing 47
example

BindingIterator 16
client 23
LoadBalancer, customizing 21
LoadBalancer, manipulating 
objects 20

LoadBalancer, using 20
LoadBalancingFactory, using 19
naming context contents, 
accessing 16

naming context, extension 17
Interoperable 43
IOR 7
JNDIObject Interface 29
LoadBalancer Interface 27
LoadBalancerPlugin Interface 28, 29
LoadBalancingFactory Interface 27
Manager 69
Naming context 4
NamingContext Interface 25
NamingContextExt Interface 26
URL 7

Naming System 40, 41

Federation 40
NamingManager (interface) 41

O
Object

CORBA 41
Factories 49
Java 41, 44
JNDI 48
Non-CORBA 48
Reference 44
Referenceable 44
Serializable 41, 44
Stored in directory 41

Object Binding 72
Deleting 73

Object Cache Maximum Size option 33
Object Cache Minimum Size option 33
Object Cache Purging Interval option 33
Object Purging option 33
OBJECT_FACTORIES 49
Object.Name (property) 55, 67
Obtaining the Root Context 13
OMG Standard API Definitions 25

P
Parameters

Applet 41
Environment 41

PDF documentation ix
Persistence

Across sessions 51
JDBC 47
Memory 44
Multiple forms of 3, 8

Persistence Options
NameSingleton 59

Policies 10
Prefix

Properties 49
Properties

JNDI 41
OpenFusion SPI 49
System 41

Purgable interface 75
Purge Class Name option 32
Purge Class Plugin 66, 75
Purge on List (property) 65
Purge on Load (property) 65
Purge on Load option 32
Purging

Concepts 9

Q
Quoting in strings 43

R
Read Cache Flush Interval (property) 59
Read Cache Maximum Size (property) 60
Read Cache Minimum Size (property) 60
ReBindContextCount (property) 62



 88 OpenFusion CORBA Services Naming Service Guide

ReBindCount (property) 62
Reference

Cyclic 43
Stored 41

Referenceable object 44
References to objects 44
Replication 12
Resolve a name 39, 40
Resolve Name (property) 56, 68
ResolveCount (property) 61
ResolveName (property) 56, 68
Resolver (property) 66
Restrictions

SPI 41
Root context 48
Root Context, obtaining 13
Root UUID 47

S
Save

Naming XML 71
Serializable object 41, 44
Service provider 40

LDAP 40
OpenFusion 40

Services, directory 40
SID (Service ID) 47, 51
Singletons

LoadBalancingFactorySingleton 67
NameSingleton 55

SNMP 12
Specification

JNDI 43
SPI

CosNaming 41, 43
Restrictions 41

Starting
Naming Service Manager 69

STATE_FACTORIES 49
String

Escaping within 43
Name 41
Quoting in 43

Stringified name 43
Stringified Names 6
Subcontext 40
Supplied factories 44
Syntax

Name 41, 43
System Master (property) 66
System, Naming 40

T
Timeout (property)

Load Balancing Singleton 68
Tool Bar

Naming Service Manager 71

U
UnBindCount (property) 62
URL 7

JDBC database 50
UUID (Universally Unique Identifier) 47, 51

Generated 51, 52

V
Validity checks on names 44
View Non-Corba Objects (property) 65
ViewNonCorba (property) 65
VisiBroker 12

W
Warning messages 48
Write Cache Batch Size (property)

Naming Service 61
Write Cache Write Interval (property) 60

X
Xbootclasspath 72
XML Export and Import 33


	Contents
	Preface
	About the Naming Service Guide
	Intended Audience
	Organisation
	Conventions

	Contacting Micro Focus
	Further Information and Product Support
	Information We Need
	Contact information


	Naming Service
	Description
	Overview
	OMG Standard Features
	OpenFusion Enhancements

	Concepts and Architecture
	OMG Standard
	Naming Contexts
	Federation
	Name Components
	Interoperable Naming Service (INS)
	Stringified Names
	Interoperable Object Reference (IOR)
	URLs


	OpenFusion Enhancements
	Java Naming and Directory Interface (JNDI)
	Multiple Forms of Persistence
	Caching
	Purging and Memory Management
	Purging
	Memory Management

	Load Balancing Concepts
	Load Balancing in OpenFusion
	Instrumentation
	Fail-over
	Replication


	Using Specific Features
	Obtaining the Root Context
	Naming Context Creation and Destruction
	Binding and Unbinding Operations
	Accessing Naming Context Contents
	BindingIterator Operations
	Naming Context Extension Operations
	Using the LoadBalancingFactory
	Manipulating Objects in the LoadBalancer
	Using the LoadBalancer with the Naming Service
	Customizing the LoadBalancer
	Worked Example
	Example Client
	API Definitions
	OMG Standard API Definitions
	NamingContext Interface
	NamingContextExt Interface
	BindingIterator Interface

	OpenFusion API Extensions
	LoadBalancingFactory Interface
	LoadBalancer Interface
	LoadBalancer Standard Policies
	LoadBalancerPlugin Interface
	JNDIObject Interface

	Supplemental Information
	Administration Properties and Instrumentation
	Java Naming & Directory Interface (JNDI)
	Lightweight Directory Access Protocol (LDAP)
	Purging Options
	Memory Management
	XML Export and Import
	Exporting and Importing Cyclics

	Exceptions

	Java Naming and Directory
	Description
	Overview
	Oracle JNDI Standard Features
	OpenFusion Enhancements

	Concepts and Architecture
	Standard JNDI
	The Initial Context
	Naming Systems
	References and Addresses

	OpenFusion SPI Implementation
	Names
	Java Objects
	Supplied Factories
	Storing CORBA Objects
	Storing RMI-IIOP Objects

	Federation
	Using Specific Features
	JDBC-based Persistence
	Accessing Data
	Supplemental Information
	Configuration Properties
	Standard Properties
	Provider-specific Properties
	General
	Persistence
	Caching



	Exceptions

	Configuration and Management
	Naming Service Configuration
	NameSingleton Configuration
	CORBA Properties
	Lightweight Directory Access Protocol (LDAP)
	Persistence Options
	Instrumentation Properties
	General Properties

	LoadBalancingFactorySingleton Configuration
	Naming Service Manager
	Running the Naming Service Manager
	Using the Naming Service Manager
	Object Icons
	Tool Bar Buttons
	Adding a Naming Context
	Binding OpenFusion Services
	Binding Objects
	Deleting a Naming Context or Object Binding
	Exporting XML
	Importing XML
	Launching Managers and Browsers
	CORBA Object Browser
	Naming Service Manager


	The Purgable Interface
	Purge Class Plugin
	Using the Purgable Interface

	Appendix
	Command Line Management Tool
	Features
	Configuration
	Using the file Protocol
	Using the http Protocol
	Using IOR and corbaloc URL
	Running


	Index


