
Micro Focus
OpenFusion CORBA Services

Version 5.0.1

Log Service Guide

ii

Micro Focus
The Lawn
22-30 Old Bath Road
Newbury, Berkshire RG14 1QN
UK

http://www.microfocus.com
Copyright © Micro Focus 2009-2016. All rights reserved.

MICRO FOCUS, the Micro Focus logo, and Micro Focus product names are
trademarks or registered trademarks of Micro Focus Development Limited
or its subsidiaries or affiliated companies in the United States, United
Kingdom, and other countries. All other marks are the property of their
respective owners.

2016-04-15

OpenFusion CORBA Services Log Service Guide iii

Contents

Preface .. vii
About the Log Service Guide..vii

Intended Audience...vii
Organisation ...vii
Conventions..vii

Contacting Micro Focus ..viii
Further Information and Product Support ...viii
Information We Need ... ix
Contact information ... ix

Part I Log Service
Description.. 3

Overview ... 3
Benefits... 3
OMG Standard Features...4
OpenFusion Features... 4

Instrumentation ... 4
Dependencies on Other Services... 5

Concepts and Architecture.. 5
Basic Architecture... 5

Log Types.. 5
Log Factories ... 7
Log Networks... 9

Components and Features.. 9
Log Records... 9
Log Generated Events ... 10
Lifecycle Operations.. 10
Log Management.. 11
Quality of Service ... 14
Log Features Comparison .. 14

Using Specific Features ... 15
Introduction ... 15

Import statements.. 16
The Basics and the BasicLog... 16

Creating a BasicLog .. 17
Import Statements ... 17
Initialisation... 17
Log Creation and Configuration .. 17
Locating the Log... 19
BasicLog Exceptions.. 19

Creating a Client for the BasicLog ... 20
Import Statements ... 20
Client Initialisation.. 20
Preparing the Data ... 21
Sending the Data ... 21
Querying the Log Records.. 23
Client Exceptions for the BasicLog... 24

The NotifyLog and Event-style Events .. 25
Creating a NotifyLog ... 25

Import Statements ... 25
NotifyLog Initialisation... 26

iv OpenFusion CORBA Services Log Service Guide

NotifyLog Creation and Configuration...26
Locating the NotifyLog ...28
NotifyLog Exceptions ...28

Creating a Supplier Client for the NotifyLog ..29
Import Statements..30
Supplier Client Initialisation..30
The Client as an Event Supplier...31
Sending Events...33
Terminating the Supplier Client ...33
Supplier Client Exceptions ..34

Creating a Consumer Client for the NotifyLog..34
Import Statements..35
Consumer Client Initialisation ...35
The Client as an Event Consumer ..36
Retrieving Records ..37
Cleanup...39
Exceptions ...39

NotifyLog, Structured Events and More...39
Creating a NotifyLog..39

Import Statements..40
NotifyLog Initialisation ...40
NotifyLog Creation and Configuration...40
Filtering...42
Registering with the Naming Service..45
NotifyLog Exceptions ...45

Creating a Supplier Client for the NotifyLog ..46
Import Statements..46
Supplier Client Initialisation..46
Structured Events in Brief ..48
Creating and Sending the Events ..49
Supplier Client Exceptions ..51

Creating a Consumer Client for the NotifyLog..51
Import Statements..51
Consumer Client Initialisation ...52
Setting a Proxy Filter...53
Receiving the Structured Events..54
Retrieving Log Records ..55
Cleanup...56
Consumer Client Exceptions ...56

Monitoring Log Generated Events ..56
Import Statements..57
Monitor Client Initialisation...57
Receiving the Generated Events ..58
Monitor Client Exceptions ...58

Supplemental Information...59
Exceptions..59

Part II Configuration and Management
Log Service Configuration..63

Overview..63
Common Properties ...63

LogFactorySingleton Configuration ...63
CORBA Properties..63

OpenFusion CORBA Services Log Service Guide v

Persistence Properties ... 65
General Properties .. 66

ProcessSingleton Configuration ... 68

Log Service Manager ... 71
Overview ... 71
Using the Log Service Manager ... 71

Log Object Settings... 72
Log... 72
Alarms .. 73
Scheduling .. 73
Miscellaneous... 73
Channel .. 74
Events .. 75

Create a New Log ... 75
Copy Logs ... 76
Destroy Logs.. 76
Browser .. 76
Settings .. 77
Operations... 77

Part III Appendices
Using the Naming Service to Locate a Log 81

Creating a Name Binding ... 81
Obtaining the Object with Resolve ... 82

Using with JacORB .. 83
Index... 85

vi OpenFusion CORBA Services Log Service Guide

OpenFusion CORBA Services Log Service Guide vii

Preface
About the Log Service Guide

The Log Service Guide is included with the OpenFusion Log Service’
Documentation Set. The Log Service Guide explains how to use the
OpenFusion Log Service.

The Log Service Guide is intended to be used with the System Guide,
Notification Service Guide and other OpenFusion Log Service documents
included with the product distribution; refer to the Product Guide for a
complete list of OpenFusion documents.

Intended Audience
The Log Service Guide is intended to be used by users and developers
who wish to integrate the OpenFusion Log Service into products which
comply with OMG or J2EE standards for object services. Readers who use
this guide should have a good understanding of the relevant programming
languages (such as Java, IDL) and of the relevant underlying technologies
(J2EE, CORBA).

Organisation
The Log Service Guide is organised into two main sections. The first
section describes the OpenFusion Log Service. This section provides:

• a high level description and list of main features

• explanation of the architecture and concepts

• how to use specific features

• detailed explanations of the main interfaces and how to use them

• other information which is needed to use the service

The second section, “Configuration and Management”, gives information on
configuring and managing the Log Service using the OpenFusion
Administration Manager, together with detailed descriptions of properties
specific to the Log Service. This section should be read in conjunction with
the System Guide.

Conventions
The conventions listed below are used to guide and assist the reader in
understanding the Log Service Guide.

Item of special significance or where caution needs to be taken.

Item contains helpful hint or special information.

Information applies to Windows systems only.

Information applies to Unix based systems (e.g. Solaris) only.

C language specific

C++ language specific

Java language specific

i
WIN

UNIX

C
C++
Java

viii OpenFusion CORBA Services Log Service Guide

Hypertext links are shown as blue.

Items shown as cross-references, such as “Contact information”’, act as
hypertext links; click on the reference to go to the item.

Courier fonts indicate programming code and file names.

Extended code fragments are shown in shaded boxes
:

Italics and Italic Bold indicate new terms or emphasise an item.

Bold indicates user related actions, e.g. File | Save from a menu.

Steps in a task are numbered:

1 One of several steps required to complete a task.

Contacting Micro Focus
Our Web site gives up-to-date details of contact numbers and addresses.

Further Information and Product Support
Additional technical information or advice is available from several sources.

The product support pages contain a considerable amount of additional
information, such as:

• The Product Updates section of the Micro Focus SupportLine Web site,
where you can download fixes and documentation updates.

• The Examples and Utilities section of the Micro Focus SupportLine Web
site, including demos and additional product documentation.

To connect, enter http://www.microfocus.com in your browser to go to the
Micro Focus home page, then click Support.

Note:

Some information may be available only to customers who have
maintenance agreements.

If you obtained this product directly from Micro Focus, contact us as
described on the Micro Focus Web site, http://www.microfocus.com. If you
obtained the product from another source, such as an authorized
distributor, contact them for help first. If they are unable to help, contact
us.

Also, visit:

• The Micro Focus Community Web site, where you can browse the
Knowledge Base, read articles and blogs, find demonstration programs
and examples, and discuss this product with other users and Micro Focus
specialists.

• The Micro Focus YouTube channel for videos related to your product.

% Commands or input which the user enters on the
command line of their computer terminal

 NameComponent newName[] = new NameComponent[1];

 // set id field to “example” and kind field to an empty string
 newName[0] = new NameComponent (“example”, ““);

http://www.microfocus.com

OpenFusion CORBA Services Log Service Guide ix

Information We Need
However you contact us, please try to include the information below, if you
have it. The more information you can give, the better Micro Focus
SupportLine can help you. But if you don't know all the answers, or you
think some are irrelevant to your problem, please give whatever
information you have.

• The name and version number of all products that you think might be
causing a problem.

• Your computer make and model.

• Your operating system version number and details of any networking
software you are using.

• The amount of memory in your computer.

• The relevant page reference or section in the documentation.

• Your serial number. You can find this by either logging into your order via
the Electronic Product Distribution email or via the invoice with the order.

Contact information
Our Web site gives up-to-date details of contact numbers and addresses.

Additional technical information or advice is available from several sources.

The product support pages contain considerable additional information,
including the Product Updates section of the Micro Focus SupportLine Web
site, where you can download fixes and documentation updates. To
connect, enter http://www.microfocus.com in your browser to go to the
Micro Focus home page, then click Support.

If you are a Micro Focus SupportLine customer, please see your SupportLine
Handbook for contact information. You can download it from our Web site or
order it in printed form from your sales representative. Support from Micro
Focus may be available only to customers who have maintenance
agreements.

You may want to check in particular:

• https://supportline.microfocus.com/productdoc.aspx. (documentation
updates and PDFs)

To subscribe to Micro Focus electronic newsletters, use the online form at:
http://www.microfocus.com/Resources/Newsletters/infocus/newsletter-
subscription.asp

http://www.microfocus.com
https://supportline.microfocus.com/productdoc.aspx
http://www.microfocus.com/Resources/Newsletters/infocus/newsletter-subscription.asp

x OpenFusion CORBA Services Log Service Guide

Part I
Log Service

In this part
This part contains the following:

Description page 3

Using Specific Features page 15

Supplemental Information page 59

OpenFusion CORBA Services Log Service Guide 3

Description
Overview

The OpenFusion Log Service is one of a range of services and interfaces
included with the OpenFusion CORBA Services product.

The service can be used stand-alone or with other OpenFusion Log Service’
interfaces and services.

OpenFusion Log Service is standards based, meaning it is fully compliant
with recognised industry standards and specifications, and supports
portability and interoperability, and conforms with the OMG’s Telecom Log
Service Specification (which is, itself, an extension of the
telecommunication industry’s ITU-T X.735 specification for logging events).

The Telecom Log Service can log and query any type of Notification or Event
Service-based event, including Event Style, Structured, and Typed events.
The Telecom Log Service can also log data received from clients which have
no knowledge of events.

The OpenFusion Log Service conforms to the OMG’s Telecom Log Service
Specification (which is, itself, an extension of the telecommunication
industry’s ITU-T X.735 specification for logging events). The OpenFusion
Log Service supports the Basic and Notify Log functionality of the OMG
specification.

This version of the OpenFusion Log Service is a subset of the Telecom Log
Service specification and only supports Basic and Notify Logs using push
mode.

Benefits
Some of the benefits of using the Log Service include:

• The ability to store and selectively query events and Any data

• The performance, scalability and control benefits of an event channel
architecture, including decoupled asynchronous and synchronous event
transmission

• Ease of maintenance when adding or removing event suppliers and
consumers

• Ease of integration and use with the Notification Service

• Efficient use of network bandwidth between the suppliers and consumers

The OpenFusion Log Service is widely used in the telecommunications,
finance, transport, travel and energy industries for applications which
require logging of client generated events, such as faults, errors, or alarms.
The Log Service can be used for storing and retrieving a variety of
information in a central location, such as:

• Audit trails of alarms for Operational Support Systems (OSS)

• Audit trails of diagnostics

• Configuration and management information

i

4 OpenFusion CORBA Services Log Service Guide

OMG Standard Features
This release of the OpenFusion Log Service includes the standard OMG
features, such as:

• The ability to selectively store and query any Notification Service-based
events

• The ability to store data, sent as Anys, from clients which have no
knowledge of events

• Decoupling event transmission from suppliers to consumers by using
event channels and proxies. The events may be unstructured (simple
data), structured (containing details about the event)

• Push event communication model for basic events

• Leverage of the Notification Service’s Quality of Service (QoS) support

• Support for multiple suppliers and consumers

• Provision of filters and the Extended Trader Constraint Language for
controlling event transmission to and from clients using the service and
for controlling which events are saved to the persistent store

• The ability to forward events to consumers (such as applications or other
log objects), which can be used to create log networks with log-and-
forward ability

• The ability to report (using self generated events) when the state or
condition of a log changes

OpenFusion Features
The OpenFusion Log Service provides many enhancements over the
standard OMG specification. These enhancements include:

• Provision of external graphical user interfaces, as part of the OpenFusion
Graphical Tools, for run time administration of the service

• Rich administrative interface

• Support for persisting events to commercial databases

• Provisions for improved performance and scalability, such as:

• Multi-threading

• Provision of persistence for events, channels and connections to
selected commercial databases through the use of optimized stored
procedures

• Automatic service activation on demand

• Provision of service monitoring functions, instrumentation (described
below)

Instrumentation
OpenFusion provides both general and service-specific instrumentation
features which can be used for system monitoring, which in turn aids in
problem identification, performance tuning, etc. OpenFusion
Instrumentation consists of a set of properties that can be monitored either
using the Administration Manager (one of the OpenFusion Graphical Tools)
or remotely using SNMP.

In addition to properties that are read-only at run time, OpenFusion
provides some properties that can be set and reset at run time as required,

OpenFusion CORBA Services Log Service Guide 5

such as when a particular threshold value is reached or a time period has
elapsed. Note that there is virtually no performance overhead involved in
using any of the OpenFusion Instrumentation features.

Dependencies on Other Services
The Log Service needs the OpenFusion Notification Service to be installed.

The Log Service examples included in this guide use the OpenFusion
Naming Service. Although the Log Service itself does not require this
service, the Naming Service is highly recommended.

Concepts and Architecture
There are numerous situations where it is necessary or desirable to be able
to dynamically store information about a running system and its
components: it may not be sufficient for a system to simply respond to
events which occur. It may also be necessary to have a record of those
events. The Log Service enables records of events to be stored which can
later be retrieved for analysis.

Basic Architecture
The main component of the Telecom Log Service is the log or log object.
Log objects store events and data as log records. Logs can transmit events
from suppliers to consumers, like event or notification channels do. Logs
can also report their own state or condition through the generation and
transmission of their own events.

There are different types of log. All but one of these types can forward
events to consumer clients and generate their own events. Further, logs
allow clients, which have no knowledge of events or notifications, to store
Any-based data directly to the log’s persistent store.

Logs can also:

• Be linked together as networks, similar to the federation of event
channels

• Support the copy and destroy Lifecycle operations

Logs are created with log factories. Log factories also perform other
functions, such as transmitting log generated events to clients (when
required).

Log Types
The Telecom Log Service Specification defines five log types. The
OpenFusion implements two of these, the BasicLog and NotifyLog. All log
types are inherited from an abstract Log interface. Four of the types also
inherit from one of four event channel types (Event, Typed Event, Notify, or
Typed Notify).

This release of the OpenFusion Log Service only supports Basic and Notify
Logs (described below): descriptions of the other log types as supported by
the full Telecom Log Service Specification are included for information and
general understanding.

The five log types are:

1 BasicLog - allows event unaware clients to store Anys directly to the
log’s persistent store. BasicLogs do not support event forwarding nor can

i

6 OpenFusion CORBA Services Log Service Guide

they generate events which report the log’s state. BasicLogs only inherit
from the Log interface.

2 EventLog - receives, saves to its persistent store, and forwards untyped
Event Style events. EventLog can generate its own events which report
the log’s state. EventLog inherits from both Log and
CosEventChannelAdmin::EventChannel.

3 TypedEventLog - receives, saves to its persistent store, and forwards
typed Event Style events (Anys). TypedEventLog can generate its own
events which report the log’s state. TypedEventLog inherits from both
Log and CosTypedEventChannelAdmin::TypedEventChannel.

4 NotifyLog - receives, saves to its persistent store, and forwards
untyped events (including structured events). NotifyLog can filter events
and generate its own events which report the log’s state. NotifyLog
inherits from both EventLog and
CosNotifyChannelAdmin::EventChannel.

5 TypedNotifyLog - receives, saves to its persistent store, and forwards
typed events. TypedNotifyLog can generate its own events which report
the log’s state and filter events. NotifyLog inherits from both
TypedEventLog and
CosTypedNotifyChannelAdmin::TypedEventChannel.

Figure 1 Log Types and Inheritance

All logs, except for the BasicLog, inherit the architectural components of
event channels. Figure 2 and Figure 3 show the basic architectures for event
channel-based and notification channel-based logs, respectively.

The Log inheritance hierarchy, shown in Figure 1, allows clients to access a
log directly or through one of their underlying services, namely Event
Service, Typed Event Service, Notification Service, and Typed Notification
Service.

Further, a client can ‘widen’ a log to any of its bases classes. For example, a
NotifyLog could be widened to a Log for use with event unaware
applications.

A summary of the different features for each log type is listed in Table 2,
Features of Different Log Types, on page 14.

LogEvent
Channel

Typed
Event

Channel

Basic LogEvent Log
Typed

Event Log

Typed
Notify

Channel

Typed
Notify Log

Notify
Channel

Notify Log

i

OpenFusion CORBA Services Log Service Guide 7

Figure 2 Basic Architecture of Event Channel-based Log Types

Figure 3 Basic Architecture of Notify Channel-based Log Types

Log Factories
Logs are created by log factories. Log factories perform several functions,
including:

• Log creation

• Performing as a log collection manager

• Generating log events

• Transmitting log events to subscribed consumers

Log factory interfaces are inherited from the LogMgr interface plus either a
ConsumerAdmin or NotifyConsumerAdmin interface (with the exception of
the BasicLogFactory) as shown in Figure 4.

Direction of Event Flow

Consumer
Admin
Object

Supplier
Admin
Object

Event
Channel

Supplier
Proxy

Proxy Pull
Consumer

Supplier
Proxy

Proxy Push
Consumer

Event
Consumer

Push
Supplier

Pull
Supplier

Event
Consumer

Log
Persistent

Store

Event
Unaware

Writer
Log

Direction of Event Flow

Consumer
Admin
Object

Supplier
Admin
Object

Event
Channel

Supplier
Proxy

Proxy Pull
Consumer

Supplier
Proxy

Proxy Push
Consumer

Event
Consumer

Push
Supplier

Pull
Supplier

Event
Consumer

Log
Persistent

Store

Event
Unaware

Writer
Log

Admin
Filter

Proxy
Filter

Proxy
Filter

Admin
Filter

Proxy
Filter

Proxy
Filter

Log
Filter

8 OpenFusion CORBA Services Log Service Guide

There are five different log factory types; each type corresponds to the log
type that it creates:

1 BasicLogFactory - simply creates BasicLogs: they cannot emit nor
forward log events since they only inherit from the LogMgr interface.

2 EventLogFactory - creates EventLogs plus emits log events as untyped
events. EventLogFactory inherits from both LogMgr and
CosEventChannelAdmin::ConsumerAdmin.

3 TypedEventLogFactory - creates TypedEventLogs plus emits log events
as untyped events. TypedEventLogFactory inherits from both LogMgr and
CosEventChannelAdmin::ConsumerAdmin.

4 NotifyLogFactory - creates NotifyLogs plus emits log events as
untyped events, which can be filtered. NotifyLogFactory inherits from
both LogMgr and CosNotifyChannelAdmin::ConsumerAdmin.

5 TypedNotifyLogFactory - creates TypedNotifyLogs plus emits log
events as untyped events, which can be filtered. TypedNotifyLogFactory
inherits from both LogMgr and CosNotifyChannelAdmin::
ConsumerAdmin.

The LogMgr interface is an abstract interface which provides the following
operations common to all log factory interfaces:

• Listing logs that have been created or copied

• Listing logs by their id

• Looking up logs by their id and returning a reference to the log

The LogMgr also provides log factories with log collection manager
functionality.

Figure 4 Log Factory Types and Inheritance

Log factories which inherit from the ConsumerAdmin or
NotifyConsumerAdmin interfaces enable clients to receive log generated
events. Log generated events contain information about the state or
condition of a log. These events are transmitted by the factory that created
the log. A log factory transmits log generated events via its Consumer
Admin object for all of the logs it has created, as shown in Figure 5 below.

LogMgr

EventLog
Factory

Consumer
Admin

Notify
Consumer

Admin

BasicLog
Factory

TypedEvent
LogFactory

NotifyLog
Factory

TypedNotify
LogFactory

OpenFusion CORBA Services Log Service Guide 9

Figure 5 Log Generated Event Transmission

Log Networks
Logs can be formed into networks by connecting one log’s consumer side
(ConsumerAdmin interface) to the other logs’ supplier side
(SupplierAdmin interface), then forwarding events from each log to the
others.

Components and Features

Log Records
Events or data sent to a log is stored as a log record in the log’s persistent
store. Events travel to the log’s persistent store via the log’s event channel;
data sent from event-unaware clients is written directly to the persistent
store.

There are two types of log record, LogRecord and TypedLogRecord.
LogRecord is supported by all log interfaces. TypedLogRecord is only
supported by the typed log interfaces. A typed log can be stored as a (non-
typed) LogRecord, subject to the operations that a client uses to retrieve it.

A LogRecord consists of:

• id - a unique id number for the individual record

• time - a time stamp of when the event was logged (i.e. stored)

• attr_list (attribute list) - a user-defined list of attributes, which are not
part of the event received by the log, containing log record related
information; this information can be queried or modified

• info - the event or data stored as an Any, noting that structured or typed
events can be wrapped in a CORBA Any before the event is stored

A TypedLogRecord consists of:

• id - a unique id number for the individual record

• time - a time stamp of when the event was logged (i.e. stored)

• attr_list (attribute list) - a user-defined list of attributes containing log
record related information

Direction of Log Generated Event Flow

Consumer
Admin
Object

Supplier
Proxy

Supplier
Proxy

Log Event
Consumer

Log

Log

Log Event
Consumer

Log Factory

Log

10 OpenFusion CORBA Services Log Service Guide

• interface_id - repository id of the interface that sent the typed event

• operation_name - name of the operation that emitted the typed event

• arg_list - argument list that contains the event data

Features

Log records can be queried, retrieved, or deleted according to each record’s
id, log time, attributes, or event contents. Details of working with log
records is described in “Using Specific Features”.

Log Generated Events
Logs which inherit from an event channel are able to generate their own
events (referred to as log events) which can be transmitted to consumer
clients. Log generated events are not transmitted directly to consumers, but
through the log factory that created the log. Log factories are also able to
generate events.

Logs or log factories generate the following events:

• ObjectCreation - when a log is created

• ObjectDeletion - when a log is deleted

• ThresholdAlarm - the log’s persistent store approaches its defined
capacity or wrapping condition (wrapping is when the oldest records in
the log are deleted in order to free space for new records)

• AttributeValueChange - when certain log attributes change (listed in Table
1 on page 13)

• StateChange - a log’s administrative or operational state changes (see
“Log Management” below)

• ProcessingErrorAlarm - generated by the log factory when one of its logs
generates an error

Consumers can receive log generated events by subscribing to the log
factory.

Lifecycle Operations
Log supports the copy and destroy Lifecycle operations.

There are two versions of the copy operation. The first, copy, creates an
empty log, generates an id, and initializes the new logs attributes to the
same values as the log on which it was invoked. The second version,
copy_with_id, likewise creates a empty log with its attributes initialized to
the same values as the log on which it was invoked, but gives the log an id
supplied as a parameter - provided the id does not already exist.

The destroy() method disconnects any consumers or suppliers connected
to the log’s event or notify channel, then destroys the logs and its log
records. destroy() is inherited from
CosEventChannelAdmin::EventChannel.

However, if an event or notification-based client terminates, then it must
disconnect itself from the log (by destroying the relevant proxy object),
since the log has no means of knowing that the client no longer exists.
Accordingly, the client should call its associated proxy’s disconnect method.
For example, if the client is a push supplier connected to a
ProxyPushConsumer (suppliers connect to consumer proxies, consumers
connect to supplier proxies), then the disconnect_push_consumer()

OpenFusion CORBA Services Log Service Guide 11

method for its ProxyPushConsumer object should be called prior to
termination.

This need to remove proxy objects when a client terminates also applies to
filter and other, similar objects - if a client or application creates an object,
then it is responsible for removing the object, otherwise these “hanging” or
unattached objects will remain in the system and will be a source of
memory leaks.

Log Management
Logs have management operations for monitoring and setting their
behaviour. Most of these operations are common to all logs; the event- and
notify-based logs have additional operations for management of their
particular features (listed under “Additional Management Operations”).

Several of the management operations cause AttributeValueChange events
to be generated. The operations or changes which generate
AttributeValueChange events are listed in Table 1 on page 13.

Common Management Operations

The management capabilities which are common to all logs fall into two
groups: those which can only obtain them and those which can change and
obtain settings, values, and attributes.

Read-Only Settings

The following log settings, values, and attributes can only be obtained or
read:

• id - the log’s id

• Factory id - the id of the log factory that created the log

• Operational state - whether a log is operational or not (due to a run time
problem, for example)

Read and Write Settings

The following log settings, values and attributes can be set as well as read:

• Administrative state - turns logging on or off and termed unlocked and
locked:

• When unlocked, log records are allowed to be created, retrieved, and
deleted subject to the values of other states or settings

• When locked, log records are allowed to be retrieved, and deleted, but
new records are not allowed to be created

• The administrative state does not affect the forwarding of events

• Maximum log size - the maximum size, in bytes, that a log is allowed to
store:

• Avalue of zero (0) sets the size as unlimited

• Log full actions - what actions should be performed when the maximum
log size (the size of its persistent store) has been reached. Possible
actions are:

• Wrap, whereby the oldest records in the log are deleted in order to free
space for new records

• Halt, whereby no more records will be logged and all incoming events
are discarded

i

12 OpenFusion CORBA Services Log Service Guide

• Log capacity alarm threshold - the level of the log’s storage capacity at
which an alarm is triggered to warn clients:

• The alarm threshold is set as a percentage of the maximum log size

• The alarm threshold can be used to warn clients that the oldest records
may be overwritten soon when the log full action is set to wrap; the
alarm is triggered each time the log wraps

• When the log full action is set to halt, the alarm can warn clients that
the log will soon stop accepting events, provided:

• The client is registered to receive a ThresholdAlarm event (with the
log’s factory) and

• The alarm threshold has been set to a value lower than 100% of the
max log size

• Log duration - the period of time period during which a log will store
events, and where:

• The administrative and operational states are, respectively, unlocked
and enabled

• If the duration’s stop value is set to zero (0), then the duration is
indefinite

• The duration is sufficiently long to avoid a race condition occurring
between the activation of the log and the receiving of events

• The default log duration is for the lifetime of the log (i.e. from the time
the log is created until it is destroyed)

• Log duration does not affect the status of event forwarding

• Log scheduling - the fine-grained time intervals that a log will store
records of events, and where:

• The administrative and operational states are, respectively, unlocked
and enabled

• Time intervals can be specified according to minutes, hours, days, and
weeks

• The time intervals must be within the log duration time interval

• The default is disabled, which means that the log can store records at
any time

• Log scheduling does not affect the status of event forwarding

• Availability status - whether the combination of various states and
conditions allows or enables events to be logged and/or retrieved; a log
is available for logging if all of the following states are true:

• The log is not full (i.e. the capacity of log store has not been reached)

• The administrative state is unlocked

• The operational state is enabled

• The current time is within the log duration time

• The current time is within the log’s scheduled time(s)

• Log record lifetime - the maximum length of time, in seconds, that a log
record is retained:

• This is used to remove old, stale records from the log’s store

• The default lifetime value is zero (0), which allows records to remain
indefinitely and until the log is destroyed

OpenFusion CORBA Services Log Service Guide 13

• Quality of service - Quality of Service properties specific to logs (see
“Quality of Service” on page 14); logs can also use the Notification
Service’s QoS properties provided by a log’s inherited event or notify
channel

Additional Management Operations

Logs which inherit from the event or notify channels provide additional
management capabilities.

EventLog and TypedEventLog provide management of log forwarding.

NotifyLog and TypedNotifyLog provide management of log forwarding plus
filtering of events:

• Received from suppliers and forwarded to consumers

• Sent to the log record stores

These operations (for reading and setting) are briefly described below:

• Log record filtering - sets the filter to be used for filtering log records (as
distinct from the filters used by the log’s channel for filtering incoming
and forwarded events):

• Logs do not have a log record filter when they are created and
therefore log all events (until a log record filter is set)

• Forwarding state - controls whether a log will forward incoming events
from all suppliers to all consumers which are currently connected:

• The default is set to on (forward all events)

Attribute Change Events

The following table lists properties or settings which cause
AttributeValueChange events to be generated.

Table 1 Settings Generating AttributeValueChange Events

Setting or Value Condition Generating Event

log full action when set

log size when set

log duration when set

log scheduling when week mask is set

max record lifetime when set

log-specific quality of service when log QoS set (excludes QoS inherited from
event or notify channels)

log capacity alarm threshold when set

forwarding state when set

log filter when set

14 OpenFusion CORBA Services Log Service Guide

Quality of Service
The Log Service provides Quality of Service (QoS) properties specifically for
logs. In addition, logs which inherit from the Notify or TypedNotify channels
can use the Notification Service’s QoS framework (refer to the OMG
Notification Service Specification or the OpenFusion Notification Service
Guide).

The OMG specifies three Log specific QoS levels:

• QoSNone - no quality of service is promised

• QoSFlush - log records are made persistent:

• The QoSFlush property does not affect the persistence setting for
events which are forwarded by the log

• QoSReliability - all log records are guaranteed to be available

The OpenFusion implementation of the Log Service provides
QoSReliability as the default (and only) Log-specific QoS level: this level
guarantees that all log records sent to a log will be available and enables log
records to be recovered if, for example, the system crashes.

Also, the OpenFusion NotifyLog inherits from the OpenFusion Notification
Service, including all of its standard OMG and OpenFusion extended QoS
properties.

Log Features Comparison
The following table provides a summary of the different features for each
log type.

i

Table 2 Features of Different Log Types

Log Type
write (in-
bound)

store
(log record)

forward
(out-bound)

emit log
events QoS

BasicLog write operation no filtering no no log QoS

EventLog untyped events
push-pull
model
no filtering

no filtering untyped events
push-pull
model
no filtering

yes
no filtering

log QoS

TypedEvent
Log

typed events
push-pull
model
no filtering

no filtering typed events
push-pull
model
no filtering

yes
no filtering

log QoS

NotifyLog untyped events
structured
events.
push-pull
model
event filtering

log filter untyped events
structured
events.
push-pull
model
filtering

yes
event filtering

log QoS

Notification
QoS

TypedNotify
Log

typed events
push-pull
model
event filtering

log filter typed events
push-pull
model
filtering

yes
event filtering

log QoS

Notification
QoS

OpenFusion CORBA Services Log Service Guide 15

Using Specific Features
Introduction

The main tasks which are normally performed when using logs include:

• Creation of the log for storing records of data or events sent by clients

• Creation of clients which supply the data or events

• Creation of clients which use the log’s records

It may also be necessary to perform other tasks, such as:

• Creating a client which can receive events sent via the log

• Creating a client which can receive events generated by the log, itself

• Enabling the log to record only selected events or only for specific time
periods

• Manage the log, in terms of its reliability, size, lifetime, etc.

• Perform necessary clean-up operations

These tasks depend on the particular capabilities and implementation
requirements of the type of log used (either BasicLog or NotifyLog).

This section, “Using Specific Features”, describes how the specific features and
requirements for the BasicLog and NotifyLog types can be used to achieve
the relevant tasks listed above. The section is organised into a sequence of
topics which:

• Describes basic aspects common to both log types

• Highlights aspects which are specific to the simple BasicLog, then
progressing to Notification-based logs

• Progressively introduces methods of performing specific tasks

Each topic uses examples to illustrate how tasks can be achieved. Additional
examples, complete with source code and descriptions of how to compile
and run them, are supplied separately as part of the OpenFusion product
distribution.

Note

• All of the example code used in this section requires that the OpenFusion
Log and Naming Services are installed and running.

• There is little or no error-checking provided in the examples for the sake
of clarity. Code to deal with exceptions has generally been omitted,
again, for clarity and brevity, appreciating that exceptions must be
properly caught and handled in a working system.

• Full details of the OpenFusion Log Service API is provided in the
OpenFusion IDL Documentation.

i

16 OpenFusion CORBA Services Log Service Guide

Import statements
The following packages are required to be imported into classes which use
the log types listed below.

This list is not exhaustive: additional packages may also be required,
depending on requirements and the specific features of each service which
are used.

BasicLog

Classes which create the log or clients which access the log:
org.omg.DsLogAdmin.*

NotifyLog

Classes which create the log:
org.omg.DsLogAdmin.*
org.omg.DsNotifyLogAdmin.*
org.omg.CosNotification.*

Clients which access the log:
org.omg.DsLogAdmin.*
org.omg.DsNotifyLogAdmin.*
org.omg.CosNotification.*
org.omg.CosNotifyComm.*
org.omg.CosNotifyChannelAdmin.*

OpenFusion Extensions

The following package is needed when using the OpenFusion Log Service
extensions:

com.prismt.cos.CosLogging.LogExtensions.*

The Basics and the BasicLog
This topic explains how to:

1 Create a BasicLog and perform rudimentary configuration of its record
storage availability and behaviour.

2 Use the Naming Service to easily locate specific log instances by clients.

3 Create an event-unaware client which supplies the log with data.

4 Create a client which can query log records containing specific, desired
information.

The BasicLog possesses features which are common to all logs. This log
type is also relatively simple and straight-forward to use, since it inherits
only from the Log interface. Consequently, it is a convenient log type to use
for learning about the basic aspects of all log types.

An example application is employed here to demonstrate how to use a
BasicLog. The application consists of two component programs: one creates
a log, the other sends data to the log, then queries the log’s records.

OpenFusion CORBA Services Log Service Guide 17

Creating a BasicLog
The first example program creates, configures and instantiates a BasicLog
as a CORBA object. The program also uses the Naming Service to associate
or bind the log object to a name object: this name object is subsequently
used by the client program to obtain a reference (i.e. IOR) to the log object,
thereby enabling the client to communicate with the log.

Import Statements
The example BasicLog creation program uses the services and associated
APIs listed below. Applications or classes that use these services or APIs
must include the import statements shown below.

OpenFusion Orb Adaptor
com.prismt.orb.ORBAdapter

BasicLog
org.omg.DsLogAdmin.*

Naming Service
org.omg.CosNaming.*
org.omg.CosNaming.NamingContextPackage.*
org.omg.CosNaming.NamingContextExt.*
org.omg.CosNaming.NamingContextExtPackage.*

Initialisation
The program declares orb and log objects, plus an
org.omg.CORBA.IntHolder, logId. The logId is used to hold the log’s id
(generated by the log factory which creates the log).

OpenFusion’s ORB-vendor independent abstraction layer is used to initialise
and manage the orb object: the ORBAdapter.init method initialises the
ORB:

After the orb object has been initialised, the steps required for creating the
BasicLog object can performed.

Log Creation and Configuration
A log is created by a log factory’s create() method. The create() method
requires some configuration information, including the record store’s
maximum size and what happens when the store is full (i.e. overwrite the
oldest records or reject new ones).

Any configuration properties or settings not explicitly set when the log is
created are set to default values. All of a log’s configuration properties or
settings can be changed after the log is created using various Log methods,
such as set_interval(). It is usually necessary to change one or more
configuration properties, since many of the default settings disable
potentially useful or required control mechanisms.

org.omg.CORBA.ORB orb = null;
BasicLog log = null;
org.omg.CORBA.IntHolder logId = null;

orb = ORBAdapter.init (args);
 System.out.println (“got orb”);

18 OpenFusion CORBA Services Log Service Guide

The following steps describe how to create and configure a BasicLog object.

1 Obtain a BasicLog factory.

The following example code obtains a CORBA object for a
BasicLogFactory using the ORB’s resolve_initial_references()
method, then narrows the object to a BasicLogFactory. Code should be
included to test if the factory was not created, for example when the Log
Service is not running.

2 Create the log.

A BasicLog is created with the BasicLogFactory.create() method. In
this example, the log, called log, will be created with a record store
having a maximum size of 10,000 bytes and which will overwrite the
oldest records when full (set using wrap.value). The record store size
used here is for illustrative purposes only: the size used in a real
environment should reflect the approximate size (in bytes) of the records
to be stored multiplied by the number of records the log is required to
hold.

The logId variable (an IntHolder) is used to hold the log’s id value
(assigned by the create() method).

3 Configure the log.

Administrative or other property settings can now be set, as required. It
is recommended that the log’s ability to record data or events be disabled
whenever an administrative or similar property is set using
set_administrative_state() with AdministrativeState.locked.

The example uses the log’s set_interval() method to set the length of
time that the log will be allowed to store records. This method takes a
TimeInterval parameter; TimeInterval has two values, start and
stop, which define the beginning and end times of the interval.
TimeInterval is based on Gregorian time: any time value used should
be relative to the start of the Gregorian calendar, i.e. the 15th of October
1582. This time can easily be obtained using Java’s GregorianCalander
and Date classes as shown in the example.

When all necessary properties have been set, then re-enable record
storing using set_administrative_state() with
AdministrativeState.unlocked.

// Create a BasicLog using the BasicLogFactory
org.omg.CORBA.Object object =
 orb.resolve_initial_references (“BasicLogFactory”);
 System.out.println (“initial references BasicLog factory”);
BasicLogFactory factory = BasicLogFactoryHelper.narrow (object);
 System.out.println (“resolved BasicLog factory.”);
if(factory == null)
{
 System.out.println (“BasicLog factory not found.”);
 System.exit(1);
}

// create a log which will remove oldest records when its
// size of 10,000 bytes is exceeded
logId = new org.omg.CORBA.IntHolder();
log = factory.create(wrap.value, 10000, logId);

// lock the log prior to setting its operational interval
log.set_administrative_state(AdministrativeState.locked);

// Set length of time for log to accept data
GregorianCalendar calendar = new GregorianCalendar();
Date beginning = calendar.getGregorianChange();

OpenFusion CORBA Services Log Service Guide 19

Locating the Log
Any client or application which uses a CORBA object must be able to obtain
a reference to it using its IOR. One method is to save its IOR to a file, then
have the client read the file in order to obtain the IOR. However, from the
viewpoint of a distributed system, this method is very crude and has
obvious failings, such as “How does the client locate the file containing the
IOR?”.

An alternate, much preferred method is to use the Naming Service to locate
the object on behalf of the client. The Naming Service associates objects
with a name: this association is called a name binding and can be used by
clients to efficiently obtain a reference to the object. The only prerequisites
for using name bindings are that the Naming Service must be running and
the object must be bound to a name before clients try to use it.

This example binds the log object to a name using the Naming Service:
clients can then use the name to locate the log. Describing how to use the
Naming Service and create name bindings is outside the scope of this topic.
For convenience however, a brief description is provided in the Appendix
“Using the Naming Service to locate a Log”. Refer to the OpenFusion Naming
Service Guide for complete details on using the Naming Service.

The log object can now be located, from clients located anywhere in the
system, using the context’s resolve() method (described below under
“Creating a Client for the BasicLog”).

BasicLog Exceptions
The example code shown above, which creates the BasicLog object and
Naming Service name binding, must either throw or catch the exceptions
listed below. Log exception details, for this and all other examples, are
described in “Exceptions”.

ORB
org.omg.CORBA.ORBPackage.InvalidName

long basetime = - beginning.getTime();
long now = System.currentTimeMillis();

TimeInterval interval = new TimeInterval();
interval.start = now + basetime;
interval.start *= 10000; // convert to 100ns

// Stop logging from now plus duration
interval.stop = now + basetime + duration;
interval.stop *= 10000; // convert to 100ns
log.set_interval(interval);

// unlock the log after setting the operational interval
log.set_administrative_state(AdministrativeState.unlocked);

// bind the log object to a name with Naming Service
org.omg.CORBA.Object namingService = null;
NamingContextExt rootContext = null;
NameComponent basicLog[];

namingService = orb.resolve_initial_references (“NameService”);
rootContext = NamingContextExtHelper.narrow(namingService);
basicLog = new NameComponent[1];

basicLog[0] = new NameComponent(“BasicLog”, “log”);
rootContext.rebind(basicLog, log);

System.out.println(“BasicLog created.”);

20 OpenFusion CORBA Services Log Service Guide

BasicLog (including Interval)
org.omg.DsLogAdmin.InvalidLogFullAction
org.omg.DsLogAdmin.InvalidTime
org.omg.DsLogAdmin.InvalidTimeInterval

Naming Service
org.omg.CosNaming.NamingContextPackage.InvalidName
org.omg.CosNaming.NamingContextPackage.NotFound
org.omg.CosNaming.NamingContextPackage.CannotProceed

Creating a Client for the BasicLog
The following client program repeatedly sends data to a BasicLog instance
and then queries the log’s records to selectively obtain the records of data
previously sent. The client utilises separate threads, via J2SE’s Timer and
TimerTask classes, to send data and query the log.

Import Statements
The program uses the services and associated APIs listed below.
Applications or classes that use these services or APIs must include the
import statements shown below.

OpenFusion Orb Adaptor
com.prismt.orb.ORBAdapter

BasicLog
org.omg.DsLogAdmin.*

Naming Service
org.omg.CosNaming.*
org.omg.CosNaming.NamingContextPackage.*
org.omg.CosNaming.NamingContextExt.*
org.omg.CosNaming.NamingContextExtPackage.*

J2SE’S Timer and TimerTask
java.util.*
java.util.TimerTask

Client Initialisation
The program declares orb and log objects, plus an org.omg.CORBA.Any
array, data, which will contain the data that will be sent to the log. Since
the Naming Service will be used to retrieve the log object, variables
required to retrieve the Naming Service instance’s context and name
component for the log are also declared.

As mentioned above, this example uses threads provided by the Timer and
TimerTask classes. Two Timer objects, sendTimer and receiveTimer,
are declared. These thread objects respectively send data and queries at set
intervals for a fixed duration of time, as defined by the interval and
duration variables. The delay variable sets a time delay, in milliseconds,
for the commencement of the query thread. Please note that Timer and
TimerTask are not the only approaches which can be used to send data or
events to a log using threads.

org.omg.CORBA.ORB orb = null;
org.omg.CORBA.Object obj = null;

BasicLog log = null;
org.omg.CORBA.Any[] data;

NamingContextExt rootContext = null;

OpenFusion CORBA Services Log Service Guide 21

The example client obtains references to and performs initialisation of the
ORB, Naming Service instance, naming context, and name component in a
similar manner as was performed by the previous program which created
the log.

A reference to the log is obtained by passing a NameComponent object
(containing the log’s id and kind values) to the context’s resolve()
method, then narrowing the object to the BasicLog type (resolve()
returns an Object type).

Preparing the Data
The BasicLog type can not accept events - it can only accept data which is
sent in an array of type Any. The following code creates an Any array and
initialises it with four different primitive types: string, double, long and
char. If a single data element is to be sent, then an Any array with one
element should be used.

Sending the Data
The example code shown below:

• Checks that a log is available to accept records

• Writes data to the log

The client sends data to the log every two seconds for five minutes: the
frequency and duration is controlled by the Timer.schedule() method in
combination with the client’s implementation of TimerTask.run(). The
run() method is executed by schedule() according to the delay and
interval values. run() has been implemented so that it exits when a
timeout value, stopTime, is reached.

It should be remembered that the use of Timer and TimerTask.run() is a
client specific approach to controlling when the log is accessed. (Details for

NameComponent basicLog[];

private Timer sendTimer;
private Timer receiveTimer;

private final long duration = 3 * 60 * 1000; // activity time in
millisecs
private final long interval = 2000; // 2 seconds
private final long delay = 2000;

// obtain reference to the orb
orb = ORBAdapter.init(args);

// obtain reference to log using Naming Service
obj = orb.resolve_initial_references(“NameService”);
rootContext = NamingContextExtHelper.narrow(obj);
basicLog = new NameComponent[1];
basicLog[0] = new NameComponent(“BasicLog”, “log”);
obj = rootContext.resolve(basicLog);
log = BasicLogHelper.narrow(obj);

// initialise sample data to be logged
data = new org.omg.CORBA.Any[4];

for(int i = 0;i < data.length;i++)
{
 data[i]= orb.create_any();
}
data[0].insert_string(“Hello world!”);
data[1].insert_double(42.424242);
data[2].insert_long(123456789);
data[3].insert_char(‘a’);

i

22 OpenFusion CORBA Services Log Service Guide

using Timer and TimerTask are provided in Oracle Corporation’s J2SE API
documentation and the Java Tutorials, available on Oracle’s web site).

The following code is taken from the client’s TimerTask.run()
implementation.

The get_availability_status().off_duty value is used to determine if
the log is available to store records: the client uses this method to test to
whether it can write data to the log. A log can become off duty, that is
unavailable to receive data or events, for several reasons, including:

• The log’s operational state is disabled

• The log’s administrative state is locked (refer to the code showing
log.set_administrative_state(AdministrativeState.locked)
under “Log Creation and Configuration” above)

// thread for sending data
 class Sender extends TimerTask
 {
 long stopTime = System.currentTimeMillis() + duration;

 public void run()
 {
 if((System.currentTimeMillis() < stopTime) &&
 (log.get_availability_status().off_duty == false))
 {
 try
 {
 log.write_records(data);
 System.out.println (“\nWrote “ + data.length + “ records”);
 }
 catch (org.omg.DsLogAdmin.LogFull ex)
 {
 System.err.println(“Log is full.”);
 System.exit(1);
 }
 catch (org.omg.DsLogAdmin.LogLocked ex)
 {
 System.err.println(“Log is locked.”);
 System.exit(1);
 }
 catch (org.omg.DsLogAdmin.LogDisabled ex)
 {
 System.err.println(“Log is disabled.”);
 System.exit(1);
 }
 catch (org.omg.DsLogAdmin.LogOffDuty ex)
 {
 System.err.println(“Log is off duty.”);
 System.exit(1);
 }
 }
 else
 {
 if(log.get_availability_status().off_duty)
 {
 System.out.println(“The log is off duty “ +
 “- cannot log data.”);
 }
 if(System.currentTimeMillis() >= stopTime)
 {
 System.out.println(“Finished sending data.\n”);
 sendTimer.cancel();
 }
 }
 } // end run
 } // end inner class Sender

OpenFusion CORBA Services Log Service Guide 23

• The current time is outside the log’s duration time (refer to the code
showing log.set_interval(interval) under “Log Creation and
Configuration” above)

• The current time is outside the log’s scheduled times (scheduled times are
set using the Log’s set_week_mask() method)

Provided the log is available, the data (as an array of Anys) is sent to the
log by simply using:

log.write_records(data);

Each Any in the array will be stored as a separate record; if the array
contains four elements, then four records will be stored.

Querying the Log Records
The code from the example client shown below:

• Creates a simple query which retrieves selected log records

• Retrieves information from the record

The client begins querying the log’s records two minutes after it starts
sending data, every two seconds for eight minutes: the frequency and
duration is controlled using the same approach that is used for sending the
data, that is by using Timer.schedule() and a TimerTask.run()
implementation as explained under “Sending the Data” above.

A query consists of two elements:

• Aconstraint expression, stated according to a supported grammar and
constraint language, e.g. EXTENDED_TCL, and

• Making the query using Log’s query() method with the constraint
expression, grammar, and iterator parameters (query() sets the iterator
via an interator holder)

The query will return a LogRecord array of those records which satisfy the
conditions defined in the constraint.

A LogRecord is a structure containing the following elements:

• id - a unique number which is assigned by the log

• time - the time the log was created (based on the Gregorian calendar,
expressed in 100 nanosecond units (IDL type TimeT)

• attr_list - an (optional) attribute list of user defined name-value pairs
which can provide information about the date or event, but which is not
part of the data, as such

• info - the actual data or event being stored

1 Creating a Query Expression

A LogRecord array is created to hold records which are returned by the
query. The default grammar (the OpenFusion Log Service uses
EXTENDED_TCL) is assigned to a string which will be passed to query().
The constraint expression states, in this case, that only records that
contain the string “Hello World!” should be retrieved. Note the single
quotes surrounding the 'Hello world!' data string. The query()
method returns the number of query results (via IteratorHolder).

// thread for querying log records
class Receiver extends TimerTask
{
 // initialise sample query
 LogRecord[] records;

24 OpenFusion CORBA Services Log Service Guide

2 Sending the Query

The following code executes the query, saves the result to the
LogRecord array, called records, then retrieves and prints the id
number and the data which was stored in the last record stored in
records.

The query is called within a try-catch block in order to catch the
InvalidGrammar and InvalidConstraint exceptions.

Client Exceptions for the BasicLog
The code used in the example client program must throw or catch the
following exceptions.

ORB
org.omg.CORBA.ORBPackage.InvalidName

BasicLog (including Write and Query Related)
org.omg.DsLogAdmin.LogDisabled
org.omg.DsLogAdmin.LogOffDuty
org.omg.DsLogAdmin.LogFull
org.omg.DsLogAdmin.LogLocked
org.omg.DsLogAdmin.InvalidGrammar
org.omg.DsLogAdmin.InvalidConstraint

 String grammar = default_grammar.value;
 String constraint = “$.info == ‘Hello world!’”;
 IteratorHolder iter = new IteratorHolder();

 long stopTime = System.currentTimeMillis() + duration;

 public void run()
 {
 if(System.currentTimeMillis() < stopTime)
 {
 try
 {
 records = log.query (grammar, constraint, iter);
 if (records.length >= 1)
 {
 int last = records.length - 1;
 System.out.println (“The last log record\’s id is: “ +
 records[last].id + “ and contains “ +
 records[last].info);
 } else
 {
 System.out.println (“No records in log store.\n”);
 }
 }
 catch (org.omg.DsLogAdmin.InvalidGrammar ex)
 {
 System.err.println (“Invalid grammar.”);
 System.exit (1);
 }
 catch (org.omg.DsLogAdmin.InvalidConstraint ex)
 {
 System.err.println (“Invalid constraint.”);
 System.exit (1);
 }
 }
 else
 {
 System.out.println(“Finished querying log records.\n”);
 receiveTimer.cancel();
 }
 }
} //end inner class Receiver

OpenFusion CORBA Services Log Service Guide 25

Naming Service
org.omg.CosNaming.NamingContextPackage.NotFound
org.omg.CosNaming.NamingContextPackage.CannotProceed
org.omg.CosNaming.NamingContextPackage.InvalidName

The NotifyLog and Event-style Events
This topic describes the essential aspects for working with the NotifyLog.
Understanding these aspects is a precursor to understanding the NotifyLog’s
more powerful features. The topic explains how to:

1 Create an NotifyLog and perform initial configuration for this log type.

2 Set log scheduling using the set_week_mask() method.

3 Create a client which supplies the log with Event-style events.

4 Create a client which receives Event-style events forwarded by the log
and also retrieves the latest log records.

5 Perform clean-up operations when terminating NotifyLog clients.

The NotifyLog inherits from both the Log interface and the Notification
Service’s event channel interfaces. (see Figure 1, Log Types and Inheritance)
Consequently, it is more complex than the BasicLog and requires an
understanding of the Notification Service’s proxies and channels.
Developing an understanding of proxies and channels is important generally
since they are used by all log types except the BasicLog.

An example application consisting of three program components is used
here to demonstrate how to create and interact with a NotifyLog. The three
component model used by the example application reflects an architecture
which may likely be used in a working environment.

Creating a NotifyLog
This example program creates, configures and instantiates a NotifyLog as a
CORBA object. The program also uses the Naming Service to bind the log
object to a name, as was used in the BasicLog example program, to
facilitate location of the log by the application’s client programs.

Import Statements
This example NotifyLog creation program uses the services and associated
APIs listed below. Applications or classes that use these services or APIs
must include the import statements shown below.

OpenFusion Orb Adaptor
com.prismt.orb.ORBAdapter

NotifyLog
org.omg.DsLogAdmin.*
org.omg.DsNotifyLogAdmin.*
org.omg.CosNotification.*

Naming Service
org.omg.CosNaming.*
org.omg.CosNaming.NamingContextPackage.*
org.omg.CosNaming.NamingContextExt.*
org.omg.CosNaming.NamingContextExtPackage.*

26 OpenFusion CORBA Services Log Service Guide

NotifyLog Initialisation
The orb object for the program is declared and initialised in the same
manner as was shown under “The Basics and the BasicLog”.

NotifyLog Creation and Configuration
A NotifyLog is created by obtaining a reference to a NotifyLogFactory,
then using the factory to create a NotifyLog object with the requisite
configuration information. The NotifyLogFactory’s create_with_id()
method requires:

• The record store’s maximum size, in bytes

• Whether to wrap (overwrite the oldest records) or reject new records
when the record store is full (halt.value)

• The levels when alarms are generated as the record store becomes full,
expressed as a percentage of the record store’s maximum size

• The initial Quality of Service (QoS) property settings

• The initial Admin property settings

It is possible to avoid setting the QoS or Admin properties by passing zero
length Property arrays to the create methods.

Any remaining configuration properties which are required to be set to non-
default values can be set after the log is created.

The OMG specifies three Log specific QoS levels: QoSNone, QoSFlush, and
QoSReliability. The OpenFusion implementation of the Log Service
provides QoSReliability as the default (and only) Log-specific QoS level:
this level guarantees that all log records sent to a log will be available and
enables log records to be recovered if, for example, the system crashes.

Also, the OpenFusion NotifyLog inherits from the OpenFusion Notification
Service, including all of its standard OMG and OpenFusion extended QoS
properties.

1 Obtain a NotifyLog factory.

The following example code obtains a CORBA object for a
NotifyLogFactory using the ORB’s resolve_initial_references()
method, then narrows the object to a NotifyLogFactory. Code should
be included to test whether the factory was successfully created.

orb = ORBAdapter.init(args);

org.omg.CORBA.Object object =
 orb.resolve_initial_references(“NotifyLogFactory”);
NotifyLogFactory factory = NotifyLogFactoryHelper.narrow(object);

if(factory == null)
{
 System.out.println(“Can not resolve initial reference “ +
 “of NotifyLogFactory. “);
 System.exit(1);
}

i

OpenFusion CORBA Services Log Service Guide 27

2 Create the log.

The NotifyLog is created with EventLogFactory.create_with_id(). In
this example, the NotifyLog, called log, will:

a Have a record store having a maximum size of 10,000 bytes. The size
used in a real environment should reflect the approximate size (in
bytes) of each record to be stored multiplied by the number of records
the log is required to hold.

b Overwrite the oldest records when full (using wrap.value)

c Generate alarms when the log is 25, 50, and 75 percent full (defined
with an array of shorts called thresholds)

The logId variable (an IntHolder) is used to hold the log’s id value
(which is assigned by create_with_id()).

Note that factory.find_log(logId) is used to determine if a log with
the same id already exists - if does, then it is destroyed (with
destroy()).

destroy() removes the log, with its log store, and disconnects any
clients which are connected to the log: it should be used to remove the
log, but with caution, since the careless use of destroy() could result
with the unintentional loss of records.

3 Configure the log.

The process for configuring a NotifyLog is similar to the process shown
above for the BasicLog. This example shows how to configure the
intervals that a log is allowed to store records using WeekMask. WeekMask
is more flexible than TimeInterval (used in the BasicLog example),
such that multiple start and stop times can be set to occur on specified
days of the week. (WeekMask uses 24 hour time in the range of 0-23
hours and 0-59 minutes, as opposed to the Gregorian time used by
TimeInterval.)

The following code creates a schedule that allows the log to store records
on Mondays, Tuesdays, Wednesdays, Thursdays, and Fridays, for two
intervals, from 0900 to 1200 and from 1300 to 1700, each day. After the
day and time values are set, log.set_week_mask(masks) is called to
set the schedule.

Note that the log’s administrative state is locked while the WeekMask is
being set. This is done in order to stop records being stored while the

NotifyLog log = null;
int logId = 0;
short[] thresholds = {25, 50, 75};

Property[] qos = new Property[0];
Property[] admin = new Property[0];

// create new log, replacing existing log having same id if it exists
org.omg.CORBA.Object corbaObj = null;
corbaObj = factory.find_log(logId);
if (corbaObj != null)
{
 System.out.println(“Existing log found and being replaced.”);
 log = NotifyLogHelper.narrow(corbaObj);
 log.destroy();
}

log = factory.create_with_id(logId, wrap.value, 10000,
 thresholds, qos, admin);

i

28 OpenFusion CORBA Services Log Service Guide

properties are being changed.

Locating the NotifyLog
This example, like the BasicLog example, uses the Naming Service to
facilitate the locating of the log object by clients. The code used here is
nearly identical to the equivalent code used for the BasicLog example,
however the id value of the NameComponent has been changed to
“NotifyLogA” in order to distinguish this log object from the BasicLog
object used previously and the NotifyLog object to be used in the “NotifyLog,
Structured Events and More” example on page 39. (Although “NotifyLogA” is
used here, any string value could be used, provide the id and kind
combination is unique within the naming context.)

NotifyLog Exceptions
The example code shown above must either throw or catch the exceptions
listed below. Log exception details, for this and all other examples, are
described in “Exceptions”.

ORB and General (connecting to services)
org.omg.CORBA.ORBPackage.InvalidName

NotifyLog and Duration
org.omg.DsLogAdmin.LogIdAlreadyExists
org.omg.DsLogAdmin.InvalidLogFullAction
org.omg.DsLogAdmin.InvalidTime
org.omg.DsLogAdmin.InvalidTimeInterval
org.omg.DsLogAdmin.InvalidThreshold
org.omg.DsLogAdmin.InvalidMask
org.omg.CosNotification.UnsupportedQoS

// lock the log prior to setting its operational interval
log.set_administrative_state(AdministrativeState.locked);

// Set length of days and times for log to accept data
WeekMaskItem[] masks = new WeekMaskItem[1];
masks[0] = new WeekMaskItem();
masks[0].days = (short) (Monday.value | Tuesday.value |
Wednesday.value
 | Thursday.value | Friday.value);
masks[0].intervals = new Time24Interval[2];

masks[0].intervals[0] = new Time24Interval();
masks[0].intervals[0].start = new Time24((short) 9, (short) 0);
masks[0].intervals[0].stop = new Time24((short) 12, (short) 0);

masks[0].intervals[1] = new Time24Interval();
masks[0].intervals[1].start = new Time24((short) 13, (short) 0);
masks[0].intervals[1].stop = new Time24((short) 17, (short) 30);

log.set_week_mask(masks);

// unlock the log after setting the operational interval
log.set_administrative_state(AdministrativeState.unlocked);

// bind log object to a name using the Naming Service
org.omg.CORBA.Object namingService = null;
NamingContextExt rootContext = null;
NameComponent notifyLog[];

namingService = orb.resolve_initial_references (“NameService”);
rootContext = NamingContextExtHelper.narrow(namingService);
notifyLog = new NameComponent[1];
notifyLog[0] = new NameComponent(“NotifyLogA”, “log”);
rootContext.rebind(notifyLog, log);
System.out.println(“NotifyLogA created”);

OpenFusion CORBA Services Log Service Guide 29

org.omg.CosNotification.UnsupportedAdmin

Naming Service
org.omg.CosNaming.NamingContextPackage.InvalidName
org.omg.CosNaming.NamingContextPackage.NotFound
org.omg.CosNaming.NamingContextPackage.CannotProceed

Creating a Supplier Client for the NotifyLog
The following supplier client program repeatedly sends Event-style events
to a NotifyLog instance. This example client utilises J2SE’s Timer and
TimerTask classes to control how long and at what interval to send the
events.

The most important difference between this client and the client used for
the BasicLog example is that this client connects to the log as an event
supplier - that is, it supplies events to the NotifyLog’s event channel via a
proxy (remembering that the NotifyLog inherits, via the NotifyChannel,
from the EventChannel - as well as from Log). The client for the BasicLog
wrote data directly to the log store, whereas this client sends events to the
NotifyLog’s event channel; the log, itself, writes the events to the record
store, as well as forwarding them to consumer clients.

Accordingly, the supplier client uses two CosNotify interfaces (see “Import
Statements” below), plus it must implement PushSupplierOperations.

Classes which implement any of the Operations interfaces must use
com.prismt.orb.ObjectAdapter methods. Accordingly, unlike the
previous examples, this client uses ObjectAdapter instead of ORBAdapter
to connect with and initialise the ORB. However, there may be situations in
working applications where methods from both ObjectAdapter and
ORBAdapter are needed.

The PushSupplierOperations methods which are required to be
implemented by the supplier are disconnect_push_supplier() and
subscription_change(). These are callback methods which enables the
NotifyLog’s event channel to respectively inform the client that it has been
disconnected or that there has been a subscription change. (Note that the
Notification Service does not currently implement the NotifyPublish or
NotifySubscribe interfaces, and so will never call the
subscription_change() or offer_change() methods.)

// PushSupplierOperations callback method
public void disconnect_push_supplier()
{
 System.out.println (“Disconnected by proxy”);
} // end disconnect_push_supplier

public void subscription_change(org.omg.CosNotification.EventType[]
added,
 org.omg.CosNotification.EventType[] removed)
 {
 System.out.println (“Supplier subscription changed”);
 } // end subscription_change

i

30 OpenFusion CORBA Services Log Service Guide

Import Statements
The example supplier program uses the services and associated APIs listed
below. Applications or classes that use these services or APIs must include
the import statements shown below.

OpenFusion Orb Adaptor
com.prismt.orb.ObjectAdapter

NotifyLog
org.omg.DsLogAdmin.*
org.omg.DsEventLogAdmin.*
org.omg.CosEventComm.*
org.omg.CosEventChannelAdmin.*

Naming Service
org.omg.CosNaming.*
org.omg.CosNaming.NamingContextPackage.*
org.omg.CosNaming.NamingContextExt.*
org.omg.CosNaming.NamingContextExtPackage.*

J2SE’S Timer and TimerTask
java.util.*
java.util.TimerTask

Supplier Client Initialisation
The program declares, as in the previous examples, orb and log objects,
plus an org.omg.CORBA.Any, called event, which is the Event-style event
that will be sent to the log. A ProxyPushConsumer object is also declared,
since the program will connect to the consumer client via the log’s push
consumer proxy (see “The Client as an Event Supplier” and “Creating a Consumer
Client for the NotifyLog”).

Since the Naming Service will be used to retrieve the log object, associated
variables required to locate the log via the Naming Service are also declared
(refer to “The Basics and the BasicLog” and the Appendix “Using the Naming
Service to locate a Log” for details).

Like the previous examples, the Timer and TimerTask classes control the
interval and duration when events are sent, as specified by the interval
and duration variables.

// event suppliers must implement supplier operations
public class NotifySupplierA implements PushSupplierOperations
{
 org.omg.CORBA.ORB orb = null;
 org.omg.CORBA.Object obj = null;

 NotifyLog log = null;
 org.omg.CORBA.Any event;
 ProxyPushConsumer consumerProxy = null;

 NamingContextExt rootContext = null;
 NameComponent notifyLog[];

 private Timer sendTimer;

 private final long duration = 3 * 60 * 1000; // 3 seconds in
millisecs
 private final long interval = 2000; // 2 seconds
 private final long delay = 0;

OpenFusion CORBA Services Log Service Guide 31

The client program then:

• Initialises the ORB

• Establishes the client as a transient CORBA object

• Obtains a reference to the NotifyLog instance using the Naming Service

• Establishes itself as a PushSupplier and

• Obtains a reference to the log’s push consumer proxy, thereby connecting
itself to the log (described under “The Client as an Event Supplier” below)

When these tasks are completed, the client informs the ORB that it is ready
to accept incoming requests (the only requests that might be received by
this example will be from disconnect_push_supplier()).

The Client as an Event Supplier
Any client which sends or receives events to or from an event channel must
be narrowed to an (Event Service) supplier or consumer type. Further,
suppliers and consumers will use one of two models to send or receive
events: push or pull.

• The push model is the only model supported by the OpenFusion Log
Service implementation since it model which is typically or generally
used. Briefly:

• push suppliers actively push events to the event channel

• push consumers passively receive events sent by the channel, i.e. a push
consumer will receive any event that is sent to it by the event channel

• pull suppliers have their events pulled from them by the channel, i.e. the
supplier must supply an event (if it has one), whenever the channel
makes a request

• pull consumers actively pull events from the event channel, i.e. they
retrieve events whenever they want them

Our supplier client is a PushSupplier. Its consumer client, described
below, is a PushConsumer.

orb = ObjectAdapter.init(args);

// instantiate this client as a transient CORBA object
ObjectAdapter.createTransient(this);

// obtain reference to log using Naming Service
obj = orb.resolve_initial_references (“NameService”);
rootContext = NamingContextExtHelper.narrow(obj);
notifyLog = new NameComponent[1];
notifyLog[0] = new NameComponent(“NotifyLogA”, “log”);
log = NotifyLogHelper.narrow(rootContext.resolve(notifyLog));

// establish this object as a push supplier and
// connect to the log’s proxy consumer
PushSupplier supplier =
 PushSupplierHelper.narrow(ObjectAdapter.getObject(this));
SupplierAdmin supplierAdmin = log.default_supplier_admin();
org.omg.CORBA.IntHolder id = new org.omg.CORBA.IntHolder();
ProxyConsumer proxy =
 supplierAdmin.obtain_notification_push_consumer(
 ClientType.ANY_EVENT, id);

consumerProxy = ProxyPushConsumerHelper.narrow(proxy);
consumerProxy.connect_any_push_supplier(supplier);

// enable incoming requests, without blocking, for log callbacks
ObjectAdapter.ready(false);

i

32 OpenFusion CORBA Services Log Service Guide

Clients connect to an event channel through a proxy: the proxy represents
the consumer or supplier object(s) that a client intends to transmit events
to or receive events from: a supplier connects to a consumer proxy, and
visa versa.

The proxy, in combination with an event channel, enables a client to
connect transparently with any number of other clients, without the need to
obtain a reference to each client that is added to the system.

A detailed discussion of these issues is beyond the scope of this topic,
however the OMG’s Event Service Specification and the OpenFusion
Notification Service Guide provide a complete description of push and
pull models, suppliers, consumers, proxies and related topics.

Connecting a Client to an Event Channel
A connection between a client and an event channel requires the following:

1 Narrow the client to the appropriate type, for example:
PushSupplier supplier =
PushSupplierHelper.narrow(ObjectAdapter.getObject(this));

where this, in this example, is the client itself

2 Obtain a reference to the channel’s admin object for the respective
supplier or consumer. Since the log is a subtype of a notification channel
(which is a subtype of an event channel), call
NotifyLog.default_supplier_admin() to obtain the channel’s default
supplier admin object:
 SupplierAdmin supplierAdmin =

log.default_supplier_admin();

3 Obtain a reference from the admin object to the proxy (remembering
that suppliers connect to consumer proxies and visa versa):
ProxyConsumer proxy =

supplierAdmin.obtain_notification_push_consumer(
ClientType.ANY_EVENT, id);

ProxyPushConsumer consumerProxy =
ProxyPushConsumerHelper.narrow(proxy);

4 Connect the client to the proxy:
consumerProxy.connect_any_push_supplier(supplier);

5 Inform the ORB that the client is ready to supply events:
ObjectAdapter.ready(false);

i

OpenFusion CORBA Services Log Service Guide 33

Sending Events
The client sends a series of Event-style events, Anys, to the log. Like the
BasicLog example, the time interval and duration of when the events are
sent is controlled by Timer and an implementation of the abstract
TimerTask class’ run() method.

The TimerTask implementation, Sender.run() shown below, uses
stopSendingTime to define when to stop sending events; the num variable
is used to provide a data value for each event and is incremented each time
an event is sent.

Provided the current time is earlier than stopSendingTime and the log’s
off_duty property is false, then a num value will be inserted into each
event. The event is then sent to the log via the log’s consumer proxy,
consumerProxy.push(event).

An org.omg.CosEventComm.Disconnected exception is thrown if the
client becomes disconnected from the proxy.

Terminating the Supplier Client
Before an event-based client terminates it must destroy any proxy objects
that it has created. If these proxies are not destroyed, then they will
become a source of leakage. Also, logs have no means of knowing if a client
terminates unless the proxy is destroyed: it is therefore the client’s
responsibility to disconnect from a log by destroying the proxy. A client
disconnects from event-based logs and destroys the associated proxy using
an appropriate proxy disconnect method.

// thread for sending data
class Sender extends TimerTask
{
 // data value to be placed in each event
 int num = 0;

 long stopSendingTime = System.currentTimeMillis() + duration;

public void run()
{
 if((System.currentTimeMillis() < stopSendingTime) &&
 (log.get_availability_status().off_duty == false))
 {
 try
 {
 num++;
 event = orb.create_any();
 event.insert_long(num);
 consumerProxy.push(event);
 System.out.println (“Event sent with value “ + num + “.”);
 }
 catch (org.omg.CosEventComm.Disconnected ex)
 {
 System.exit(1);
 }
 }
 else
 {
 if(log.get_availability_status().off_duty)
 {
 System.out.println(“The log is off duty “ +
 “- cannot log event.”);
 }
 if(System.currentTimeMillis() >= stopSendingTime)
 {
 System.out.println(“Finished sending events.\n”);
 }

34 OpenFusion CORBA Services Log Service Guide

The OMG naming convention for disconnecting a proxy is the reverse of its
equivalent connection method, whereby the supplier part of the method’s
name is replaced by consumer - which can be confusing. The easiest means
of clarifying the convention is by example:

• A push supplier called supplier connects to a ProxyPushConsumer
instance called consumerProxy using
connect_push_supplier(supplier)

• A push supplier called supplier disconnects from a ProxyPushConsumer
instance called consumerProxy using disconnect_push_consumer()

The example client disconnects from the proxy when Sender.run() has
finished sending events.

Supplier Client Exceptions
The example code shown above, which creates a NotifyLog supplier client
and uses a Naming Service name binding, must either throw or catch the
exceptions listed below.

ORB
org.omg.CORBA.ORBPackage.InvalidName

NotifyLog
org.omg.CosNotifyChannelAdmin.AdminLimitExceeded
org.omg.CosEventChannelAdmin.AlreadyConnected

Naming Service
org.omg.CosNaming.NamingContextPackage.InvalidName
org.omg.CosNaming.NamingContextPackage.NotFound
org.omg.CosNaming.NamingContextPackage.CannotProceed

Creating a Consumer Client for the NotifyLog
The example consumer client program:

• Passively receives events, which have been forwarded by the log from the
supplier

• Retrieves the most recent ten records that the log is storing at a point in
time five minutes from the time the consumer client was invoked

The client is implemented as a push consumer, able to passively accept
events pushed to it by the log’s event channel (see “The Client as an Event
Supplier”). In many ways, the consumer client is similar to the supplier:

• They both implement org.omg.CosEventComm’s callback operations.
Notwithstanding that the consumer client is a push consumer and not a
push supplier, it implements the PushConsumerOperations instead of
the PushSupplierOperations - and with one additional, important
difference: there is an additional callback method, push(), which must
be implemented and which receives the events transmitted by the
channel.

 // cleanup - destroy proxy, stop incoming requests
 consumerProxy.disconnect_push_consumer();
 ObjectAdapter.shutdown();

 // stop thread
 sendTimer.cancel();
 }
 } // end run
} // end inner class Sender

i

OpenFusion CORBA Services Log Service Guide 35

• They both use a proxy to communicate with the log; the proxy, a
ProxyPushSupplier in the consumer’s case, is obtained using methods
similar to those that were used by the supplier client

• They both use the Naming Service to locate the log object

Import Statements
The program uses the services and associated APIs listed below.
Applications or classes that use these services or APIs must include the
import statements shown below.

ORB
com.prismt.orb.ObjectAdapter

NotifyLog and for Time values
org.omg.DsLogAdmin.*
org.omg.DsNotifyLogAdmin.*
org.omg.CosNotification.EventType
org.omg.CosNotifyComm.*
org.omg.CosNotifyChannelAdmin.*
java.util.GregorianCalendar
java.util.Date

Naming Service
org.omg.CosNaming.*
org.omg.CosNaming.NamingContextPackage.*
org.omg.CosNaming.NamingContextExt.*
org.omg.CosNaming.NamingContextExtPackage.*

Consumer Client Initialisation
This client declares approximately the same type of objects and variables as
declared for the supplier client, with the exception that Timer is not used -
since the PushConsumerOperations.push() method (implemented by the
client) receives events whenever they arrive. (Compare this with the
suppler client initialisation code shown under “Supplier Client Initialisation”).

The following code example shows, as in the supplier client example, that
the ORB is initialised, the client is declared as a transient CORBA object, a
reference to the NotifyLog object is obtained using the Naming Service, and
the client makes itself available to receive requests.

org.omg.CORBA.ORB orb = null;
org.omg.CORBA.Object obj = null;

NotifyLog log = null;
org.omg.CORBA.Any event;
ProxyPushSupplier supplierProxy;

NamingContextExt rootContext = null;
NameComponent notifyLog[];

private final long duration = 3 * 60 * 1000; // 3 minutes in millisecs

orb = ObjectAdapter.init(args);

// instantiate this client as a transient CORBA object
ObjectAdapter.createTransient(this);

// obtain reference to log using Naming Service
obj = orb.resolve_initial_references(“NameService”);
rootContext = NamingContextExtHelper.narrow(obj);
notifyLog = new NameComponent[1];
notifyLog[0] = new NameComponent(“NotifyLogA”, “log”);

36 OpenFusion CORBA Services Log Service Guide

After the client is established as a PushConsumer, it is connected to the
log’s supplier proxy using:

PushConsumer consumer =
PushConsumerHelper.narrow(ObjectAdapter.getObject(this));

ConsumerAdmin consumerAdmin = log.default_consumer_admin();
org.omg.CORBA.IntHolder id = new org.omg.CORBA.IntHolder();

ProxySupplier proxy = consumerAdmin.obtain_notification_push_supplier
(ClientType.ANY_EVENT, id);

supplierProxy = ProxyPushSupplierHelper.narrow(proxy);
supplierProxy.connect_any_push_consumer(consumer);

The Client as an Event Consumer
Similarly, as for the clients which are supplying the events, the consumer
clients connect to an event channel through a proxy using the push model
(remembering that the OpenFusion implementation only supports the push
model). The steps required to establish an event consumer are the same as
those for establishing an event supplier (see “The Client as an Event Supplier”),
except that:

• AConsumerAdmin object is used to obtain a supplier proxy

• The consumer connects to the supplier proxy using
obtain_push_supplier() for the push model and
obtain_pull_supplier() for the pull model

• The push() callback method is the method that will retrieve events when
using the push model - the developer must implement this method to suit
their particular requirements

log = NotifyLogHelper.narrow(rootContext.resolve(notifyLog));

// establish this object as a push consumer and
// connect to the log’s proxy supplier
PushConsumer consumer =
 PushConsumerHelper.narrow(ObjectAdapter.getObject(this));

ConsumerAdmin consumerAdmin = log.default_consumer_admin();
org.omg.CORBA.IntHolder id = new org.omg.CORBA.IntHolder();

ProxySupplier proxy =
 consumerAdmin.obtain_notification_push_supplier (
 ClientType.ANY_EVENT, id);

supplierProxy = ProxyPushSupplierHelper.narrow(proxy);
supplierProxy.connect_any_push_consumer(consumer);

// enable incoming requests, without blocking, for log callbacks
ObjectAdapter.ready(false);

OpenFusion CORBA Services Log Service Guide 37

Receiving Events
The consumer client’s push() method implementation, shown below,
receives the events which have been forwarded by the NotifyLog.

This particular implementation extracts a long from the event using the
event’s extract_long() method, then displays the value.

Note that the log’s forwarding state must be set to on (which is the default
value) in order for the log to forward events to the consumer. If this state is
off, it can be set to on using:

 log.set_forwarding_state(ForwardingState.on)

Retrieving Records
The Log.retrieve() method (inherited by all log types) retrieves a
sequential list of records, based on the time that the first or last record in
the list was placed in the record store. Note that retrieve() uses
Gregorian time.

retrieve() takes three parameters (listed in order):

• from_time - the Gregorian time, in 100 nanosecond units, from when the
first record in the required list was stored

• how_many - the number of records to retrieve: if this value is positive,
then the records will be retrieve in a positive direction from the oldest
record to the newest; if the value is negative, then the newest record will
be retrieved first followed by the next newest and so forth in a negative
direction

• i - an iterator holder which is returned by retrieve() reporting the number
of records which have been returned; the iterator can be declared as null
if this value is not needed

// PushConsumerOperations callback methods
public void disconnect_push_consumer()
{
 System.out.println (“Disconnected by proxy.”);
} // end disconnect_push_consumer

public void push(org.omg.CORBA.Any event)
{
 System.out.println(“Event received contains: “ +
event.extract_long());
} // end push

public void offer_change(EventType[] added, EventType[] removed)
{
 System.out.println (“Consumer offer changed.”);
} // end offer_change

38 OpenFusion CORBA Services Log Service Guide

The code example below retrieves the latest ten records which have been
stored in the log: the from_time parameter is set to the current time and
the how_many parameter is set to -10. This will retrieve records starting
with the record which was stored at the current time and then work
backwards, retrieving successively older records. The retrieved records will
be held in a LogRecord array.

The client then displays the time the retrieved records were stored, along
with their event data (held in the record’s info field).

// array for retrieved records
LogRecord[] records;

IteratorHolder iter = new IteratorHolder();

// establish current time and convert ms to 100 ns
GregorianCalendar calendar = new GregorianCalendar();
long basetime = - calendar.getGregorianChange().getTime();
long currentTime = (System.currentTimeMillis () + basetime) * 10000;

System.out.println(
 “\nRetrieving the latest 10 records backwards from the current time.”);
records = log.retrieve(currentTime, -10, iter);
if (records.length < 1)
{
 System.out.println(“No records retrieved.\n”);
}
else
{
 // display information for each retrieved record
 System.out.println (“\n------------------------------\n” +
 “ID\tTime\t\t\t\tInfo”);
 for(int i = 0; i < records.length; i++)
 {
 System.out.println(records[i].id +
 “\t” + new Date(records[i].time/10000 - basetime) +
 “\t” + records[i].info);
 }
 System.out.println (“------------------------------”);
}

OpenFusion CORBA Services Log Service Guide 39

Cleanup
Before the client terminates it must destroy the proxy it is connected to and
stop receiving requests from the ORB: left-over proxies which are not
destroyed contribute to resource leakage.

Exceptions
The example code shown above, which creates a NotifyLog consumer client
and uses a Naming Service name binding, must either throw or catch the
exceptions listed below.

ORB
org.omg.CORBA.ORBPackage.InvalidName

NotifyLog
org.omg.CosNotifyChannelAdmin.AdminLimitExceeded
org.omg.CosEventChannelAdmin.TypeError
org.omg.CosEventChannelAdmin.AlreadyConnected

Naming Service
org.omg.CosNaming.NamingContextPackage.InvalidName
org.omg.CosNaming.NamingContextPackage.CannotProceed
org.omg.CosNaming.NamingContextPackage.NotFound

NotifyLog, Structured Events and More
This topic introduces some of the NotifyLog’s more advanced features and
explains how to:

1 Set Quality of Service (QoS) and Administration properties not covered in
“The NotifyLog and Event-style Events”.

2 Use a log filter for storing only selected records.

3 Use a filter on the log’s notification channel to filter events sent to
consumer clients.

4 Implement a supplier client which

a creates and sends structured events to the log

b sets a QoS property for its proxy.

5 Implement a consumer client which can

a receive structured events forwarded by the log

b retrieve information held in the NotifyLog’s record store.

6 Monitor events generated by the log and log factory.

Creating a NotifyLog
This example shows how to create a NotifyLog which will use structured
events. This example extends information provided in the previous BasicLog
and NotifyLog topics, especially regarding items which are specific to using
structured events.

supplierProxy.disconnect_push_supplier();
ObjectAdapter.shutdown();

40 OpenFusion CORBA Services Log Service Guide

Import Statements
The example NotifyLog creation program uses the services and associated
APIs listed below. Applications or classes that use these services or APIs
must include the import statements shown below.

ORB
com.prismt.orb.ORBAdapter

NotifyLog
org.omg.DsLogAdmin.*
org.omg.DsNotifyLogAdmin.*
org.omg.CosNotification.*
org.omg.CosNotifyFilter.Filter;
import org.omg.CosNotifyFilter.FilterFactory;
import org.omg.CosNotifyFilter.ConstraintExp;
import org.omg.CosNotifyFilter.InvalidConstraint;
import org.omg.CosNotifyFilter.InvalidGrammar

Naming Service
org.omg.CosNaming.*
org.omg.CosNaming.NamingContextPackage.*
org.omg.CosNaming.NamingContextExt.*
org.omg.CosNaming.NamingContextExtPackage.*

NotifyLog Initialisation
The ORB object for the program is declared and initialised in the same
manner as described in “The Basics and the BasicLog”. Like the previous
examples, the Naming Service is used to facilitate location of the log object
and therefore Naming Service objects are also declared.

NotifyLog Creation and Configuration
A NotifyLog object, called log, is created using the create_with_id()
method, as similarly shown under “The NotifyLog and Event-style Events”.
Additional QoS and Admin properties to those used in the “The NotifyLog and
Event-style Events” are configured and set.

As shown in the following code extract, the log object in this example is
assigned an id of 10. A test is made to determine if a log with an id of 10
already exists: this examples replaces the existing log: a working
application may decide to simply change the value of logId and create a
new, different log.

org.omg.CORBA.ORB orb = null;

org.omg.CORBA.Object namingService = null;
NamingContextExt rootContext = null;
NameComponent notifyLog[];

orb = ORBAdapter.init(args);

org.omg.CORBA.Object object =
 orb.resolve_initial_references(“NotifyLogFactory”);
NotifyLogFactory factory = NotifyLogFactoryHelper.narrow(object);

if(factory == null)
{
 System.out.println(“Can not resolve initial reference “ +
 “of NotifyLogFactory.”);
 System.exit(1);
}

NotifyLog log = null;

OpenFusion CORBA Services Log Service Guide 41

The QoS and Admin properties are now defined using two Property arrays,
qos and admin:

• The ConnectionReliability and EventReliability properties are
both set to Persistent to ensure the reliability of the notify channel
connection and that events can be recovered in case of a system failure

• MaxQueueLength is set to limit the channel’s event queue buffer to hold a
maximum of 100 events

• MaxConsumers is set to limit (to 10) the maximum number of consumers
that can be connected at one time to the log

The log record size, threshold levels, and log full behaviour are set.

Note that the halt behaviour specified when the record store is full requires
clients, which supply events to the log, to test for a log full condition (using
Log.get_availability_status().log_full): an exception is thrown if
a supplier attempts to send an event to a log when the record store is full
and halt has been specified.

int logId = 10;

// If Notify log with specified id exists, remove it, then
// create a new one with an id of 0, which discards oldest events
// when full, has a size limit of 50,000 bytes, and generates
// threshold alarms when 25%, 50%, and 75% capacity reached.
org.omg.CORBA.Object corbaObj = null;
corbaObj = factory.find_log(logId);
if (corbaObj != null)
{
 System.out.println(“Existing log found and being replaced.”);
 log = NotifyLogHelper.narrow(corbaObj);
 log.destroy();
}

// Log QoS set automatically to guarantee log availability
// Notification QoS set to guarantee connection and
// event reliability
Property[] qos = new Property[2];
qos[0] = new Property();
qos[0].name = ConnectionReliability.value;
qos[0].value = orb.create_any();
qos[0].value.insert_short(Persistent.value);

qos[1] = new Property();
qos[1].name = EventReliability.value;
qos[1].value = orb.create_any();
qos[1].value.insert_short(Persistent.value);

// Notification Admin set to have a maximum queue length of
// 100 events and a maximum of 10 consumers
Property[] admin = new Property[2];
admin[0] = new Property();
admin[0].name = MaxQueueLength.value;
admin[0].value = orb.create_any();
admin[0].value.insert_long(100);

admin[1] = new Property();
admin[1].name = MaxConsumers.value;
admin[1].value = orb.create_any();
admin[1].value.insert_long(10);

// set values for threshold alarms
short[] thresholds = {25, 50, 75};

// create the log
log = factory.create_with_id(logId, halt.value, 50000,
 thresholds, qos, admin);

42 OpenFusion CORBA Services Log Service Guide

The remaining log properties can now be set. The following code sets the
maximum record life to five hours (in units of one second) and ensures that
the log will forward events to consumers.

Note that the log’s administrative state has not yet been unlocked, since a
filter will be added to the log: the administrative state will be unlocked after
the filter has been added.

Filtering
Structured events which are sent to NotifyLogs can be filtered in order to
remove unwanted events. Filtering can be used to control event
transmission and to improve overall performance. For example, unwanted
events:

• Can be stopped from entering the event channel, thereby improving the
log channel’s effective bandwidth and performance

• Can be prevented from being placed in the record store, thereby
conserving resources

• Can be filtered out on a consumer-by-consumer basis, providing fine-
grained control and performance tuning on the client-side of the log’s
event channel

Logs are able to filter events in one of two ways: on the event channel or
immediately before events are received by the record store, which are
referred to here, respectively, as channel-based filtering or log-based
filtering. Both of these methods are briefly described below.

Example code for performing log-based filtering is provided as a part of the
example NotifyLog creation program. Example code for performing channel-
based filtering is provided under “Creating a Consumer Client for the NotifyLog”,
as a part of the example consumer program, and demonstrates how to
create a filter on a consumer-by-consumer basis.

Filtering support is provided by the CosNotifyFilter module and related
interfaces, inherited from the Notification Service. Developers who use
filters should have a good understanding of CosNotifyFilter and should refer
to the sections in the OMG’s Notification Service Specification and the
OpenFusion Notification Service Guide which describe the Filter,
FilterFactory, and FilterAdmin interfaces. (In addition to the standard
Filter interface described here, there is also a MappingFilter interface:
information on Mapping Filters is provided in the referenced texts.)

Although a detailed discussion of filtering is beyond the scope of this
manual, basic information and guidance on creating and managing filters
are provided on this topic under “Creating a Consumer Client for the NotifyLog”.

The Filter Object

Filtering is performed with a filter object. A filter can be added to a proxy
object, channel admin object, or to a log itself. A single filter object can be
added to more than one of these objects at a time: for example a single
filter can be used by several proxies, or by a proxy and an admin - however
this can lead to unmanageable deployment situations (see warning note
shown immediately below).

// enable log forwarding and set the maximum log record lifetime
// to 5 hours in seconds - prevent any logging while doing so
log.set_administrative_state(AdministrativeState.locked);

log.set_forwarding_state(ForwardingState.on);
log.set_max_record_life (60 * 60 * 5);

i

OpenFusion CORBA Services Log Service Guide 43

Filter objects should be destroyed when the objects that use them are
destroyed, otherwise they will become a source of memory leakage.
However, care must be taken when destroying filter objects that are used
by multiple admin/proxy/log objects in order to avoid inadvertently
destroying a filter which is still in use.

Filter Location

The events which are filtered depend on where the filter is added, as
follows:

• consumer proxy (connects to a supplier) - filters the events received
directly from the supplier and therefore events sent to the channel, log,
and all supplier proxies (and their associated consumers) are filtered

• supplier proxy (connects to a consumer) - filters the events received from
the channel before being sent to the proxy’s consumer

• supplier admin - filters all events received from all consumer proxies
connected to the supplier admin and therefore filters events sent to the
log and all supplier proxies

• consumer admin - filters all events received from the channel and
therefore filters events sent to any supplier proxies connected to the
consumer admin

• log - only filters the events received from the channel which are sent to
the log’s record store

Main Filter Components

The main components of a filter are an array of constraint expressions and
a set of methods which are used to manage the filter.

A constraint expression defines the criteria by which events are filtered. The
expression is written using the Notification Service’s constraint language:
the service’s default grammar is the Extended Trader Constraint Language,
ETCL. Filtering is performed on the event header and filterable body
components of structured events.

The essential filter methods to be familiar with include:

• those which add, modify, and remove constraints, that is:

• add_constraints()

• modify_constraints()

• get_constraints()

• get_all_constraints()

• remove_all_constraints()

• the destroy() method which destroys the filter object

Filter Creation

Filters are created as follows:

1 Obtain a reference to a FilterFactory from an event channel or the log
using its default_filter_factory() method:
FilterFactory factory = Admin.default_filter_factory();

or
 FilterFactory factory = log.default_filter_factory();

2 Create the filter using the factory’s create_filter() method, passing it
a string defining the grammar to be used - this is normally
default_grammar.value, which is the Notification Service’s default
grammar, “EXTENDED_TCL”:

44 OpenFusion CORBA Services Log Service Guide

Filter filter =
factory.create_filter(default_grammar.value).

3 Create one or more constraint expressions, of type ConstraintExp, then
create a ConstraintExp array containing the constraints. A constraint
expression consists of two elements:

a a two element array, of type EventType, containing the domain_name
and type_name components of the structured event’s fixed header -
this identifies the type of event to be filtered

b an expression, using the same grammar that was passed to
create_filter(), which defines the filtering criteria, e.g. “$.switch
== ‘open’”, which means that a property called switch must contain
a value of ‘open’ in order to be passed through the filter

For example, a simple constraint expression could be constructed as
follows:
EventType[] type = {“teleco”, “mobile”};
ConstraintExp exp =
 new ConstraintExp(type,

 “$.filterable_data(switch) == ‘open’”);

ConstraintExp[] expressions = {exp};

This would allow structured events to pass through the filter which have a
fixed header with a domain_name of ‘telco’, type_name of ‘mobile’,
and a filterable body property called switch which contains a value of
‘open’.

4 Add the constraints array to the filter using its add_constraints()
method:

filter.add_constraints(expressions);

5 Associate the filter to the required object(s), noting that:

a if the filter is to be used as a channel-based filter, i.e. associated with
an admin or proxy object, then the add_filter() method should be
used:

FilterID id = Admin.add_filter(filter);

and where add_filter() returns a unique id (a long); this id is
needed by the remove_filter() and get_filter() methods.

b if the filter is to be used as a log-based filter, i.e. filter the events sent
only to the record store, then the set_filter() method should be
used:

log.set_filter(filter);

The following code example demonstrates how to create a log-based
filter.

// filter out all events sent to the record store except where
// the “number” property is an even number (value of 0)
FilterFactory filterFactory = log.default_filter_factory();
Filter filter = filterFactory.create_filter(default_grammar.value);

EventType type = new EventType(“software”, “example”);
EventType[] types = {type};
ConstraintExp exp =
 new ConstraintExp(types, “$.filterable_data(number) == 0”);

ConstraintExp[] expressions = {exp};
filter.add_constraints(expressions);
log.set_filter(filter);

OpenFusion CORBA Services Log Service Guide 45

(Note that the code shows the log’s administrative state being unlocked
after setting the filter since configuration of the log is complete at this
stage.)

Filter Removal and Destruction

Removing a filter disassociates the filter from an object. Removing a filter
does not destroy it - the filter can still be referenced by other objects which
the filter has been added to.

Destroying a filter actually destroys it and releases any resources used by
the filter. No object will be able to use the filter after the filter has been
destroyed.

• A filter is removed by calling the remove_filter() method from the
object it is to be removed from, e.g. Admin.remove_filter(id), where
id is the FilterID of the filter to be removed.

• A filter is destroyed by calling its destroy() method, e.g.
filter.destroy().

A filter does not need to be removed from objects before it is destroyed, i.e.
it is not a prerequisite to call remove_filter() before calling destroy().

Registering with the Naming Service
Continuing with the log creation example, the final operation is to bind the
log instance to a name using the Naming Service. The id component of the
name is defined as "NotifyLog" in order to distinguish it from the other logs
used in the examples.

NotifyLog Exceptions
The example code shown above must either throw or catch the exceptions
listed below.

ORB (and connecting to services)
org.omg.CORBA.ORBPackage.InvalidName

NotifyLog
org.omg.DsLogAdmin.LogIdAlreadyExists
org.omg.DsLogAdmin.InvalidLogFullAction
org.omg.DsLogAdmin.InvalidThreshold
org.omg.CosNotification.UnsupportedAdmin
org.omg.CosNotification.UnsupportedQoS
org.omg.CosNotifyFilter.InvalidGrammar
org.omg.CosNotifyFilter.InvalidConstraint

Naming Service
org.omg.CosNaming.NamingContextPackage.InvalidName
org.omg.CosNaming.NamingContextPackage.NotFound
org.omg.CosNaming.NamingContextPackage.CannotProceed

log.set_administrative_state(AdministrativeState.unlocked);

// register the log object with the Naming Service
namingService = orb.resolve_initial_references (“NameService”);
rootContext = NamingContextExtHelper.narrow(namingService);
notifyLog = new NameComponent[1];
notifyLog[0] = new NameComponent(“NotifyLogB”, “log”);
rootContext.rebind(notifyLog, log);
System.out.println(“NotifyLogB created”);

46 OpenFusion CORBA Services Log Service Guide

Creating a Supplier Client for the NotifyLog
The supplier client example for the NotifyLog shows how to:

• establish a structured push supplier client which can send structured
events to a NotifyLog

• set a Quality of Service (QoS) property for the client’s proxy

• create a structured event which contains header information which can be
filtered by the log and consumer clients

• handle the situation where the log’s record store is full and refuses to
store events

The structure of this supplier client example is similar to the supplier client
for the example that uses event-style events: events are created and sent
at regular intervals for a fixed duration (using the Timer and TimerTask
thread mechanism). Note that the creation of the structured event varies in
many ways from the creation of the simple event-style event.

Import Statements
The program uses the services and associated APIs listed below.
Applications or classes that use these services or APIs must include the
import statements shown below.

ORB
com.prismt.orb.ObjectAdapter

NotifyLog
org.omg.DsLogAdmin.*
org.omg.DsNotifyLogAdmin.*
org.omg.CosNotifyComm.*
org.omg.CosNotifyChannelAdmin.*
org.omg.CosNotification.*
com.prismt.cos.CosNotification.NotificationExtensions.*

Naming Service
org.omg.CosNaming.*
org.omg.CosNaming.NamingContextPackage.*
org.omg.CosNaming.NamingContextExt.*
org.omg.CosNaming.NamingContextExtPackage.*

J2SE’S Timer and TimerTask
java.util.Timer.*
java.util.TimerTask

Supplier Client Initialisation
As with the previous examples, objects and variables are declared which are
necessary to connect to the ORB, log, proxy, Naming Service, etc. Note that
since this client will be sending structured events using the push model, a
reference to a structured push consumer proxy, a
StructuredProxyPushConsumer, will therefore need to be obtained
.
// structured push suppliers must implement
StructuredPushSupplierOperations
public class NotifySupplierB implements
StructuredPushSupplierOperations
{
 org.omg.CORBA.ORB orb = null;
 org.omg.CORBA.Object obj = null;

OpenFusion CORBA Services Log Service Guide 47

Also, as in the previous examples, a reference to the ORB is obtained and
the client is instantiated as a transient CORBA object:

A reference to the desired NotifyLog instance is obtained using the Naming
Service, as before:

The client will now establish itself as a structured push supplier and connect
to the consumer proxy, as shown in the code given below. Note that
Notification Service’s API is used to do this. Briefly, the procedure
accommodates the features of the Notification Service, such as the
provision of multiple channels, ability to handle different event types and
transmission models (resulting in numerous proxy types), plus provision of
Quality of Service. In particular, note that

• The NotifyLog’s default supplier admin object is obtained (using
default_supplier_admin()), since NotifyLog can have multiple
channels and admin objects, and

• The StructuredProxyPushConsumer which will be used is obtained by
narrowing the more general ProxyConsumer proxy and using
ClientType.STRUCTURED_EVENT to identify which type of proxy will be
created.

The example code also sets the MaxInactivityInterval for the proxy in
order to demonstrate how to set a QoS property for a proxy. Although it is
not necessary to set QoS properties when connecting to a proxy, setting
this particular QoS property is useful as a mechanism for destroying a proxy
when its associated client does not or can not explicitly destroy the proxy
itself, such as when the client is terminated by a Ctrl-C executed on the
command line, i.e. this mechanism can prevent the service filling up with
‘dead’ proxies.

MaxInactivityInterval destroys the proxy when there has been no
activity detected by the client after a fixed time interval. The time-out for
the interval is reset each time client activity is detected.

 NotifyLog log = null;
 StructuredProxyPushConsumer pushConsumerProxy = null;

 NamingContextExt rootContext = null;
 NameComponent notifyLog[];

 private Timer sendTimer;

 private final long duration = 3 * 60 * 1000; // activity time in
millisecs
 private final long interval = 1000; // 1 second

orb = ObjectAdapter.init(args);

// instantiate this client as a transient CORBA object
ObjectAdapter.createTransient(this);

// obtain reference to log using Naming Service
obj = orb.resolve_initial_references (“NameService”);
rootContext = NamingContextExtHelper.narrow(obj);
notifyLog = new NameComponent[1];
notifyLog[0] = new NameComponent(“NotifyLogB”, “log”);
log = NotifyLogHelper.narrow(rootContext.resolve(notifyLog));

// establish this object as a structured push supplier
StructuredPushSupplier supplier =

StructuredPushSupplierHelper.narrow(ObjectAdapter.getObject(this));

// obtain the log’s structured push consumer proxy and connect to it

48 OpenFusion CORBA Services Log Service Guide

After the client is connected to the proxy and the QoS properties set, the
ORB is notified that it is able to accept callbacks using
ObjectAdapter.ready(false). The supplier is now ready to create and
send structured events.

Structured Events in Brief
A structured event consists of two main parts:

• An event header which contains a fixed header and variable header; these
contain:

• event domain (domain_name) - the domain of a particular vertical
industry where the event type is defined, such as telecommunications,
finance, transportation, etc.

• event type (type_name) - the type of particular event within the
domain, for example StockQuote within the finance domain

• event name (event_name) - a unique name for the particular event
instance being transmitted

• QoS property settings as a list of name-value pairs

• An event body containing:

• a filterable_body which is a list of name-value pairs which are used
to filter the event

• a remainder_of_body which is the event itself, an Any

SupplierAdmin supplierAdmin = log.default_supplier_admin();
org.omg.CORBA.IntHolder id = new org.omg.CORBA.IntHolder();

ProxyConsumer proxyConsumer =
 supplierAdmin.obtain_notification_push_consumer(
 ClientType.STRUCTURED_EVENT, id);

pushConsumerProxy =
 StructuredProxyPushConsumerHelper.narrow(proxyConsumer);

// set proxy’s MaxInactivityInterval QoS to timeout after
// 20 seconds if this supplier is prematurely terminated
Property[] qos = new Property[1];
qos[0] = new Property();
qos[0].name = MaxInactivityInterval.value;
qos[0].value = orb.create_any();
qos[0].value.insert_ulonglong(10000 * 1000 * 5);

pushConsumerProxy.set_qos(qos);

// connect to the proxy
pushConsumerProxy.connect_structured_push_supplier(supplier);

// enable incoming requests, without blocking, for log callbacks
ObjectAdapter.ready(false);

OpenFusion CORBA Services Log Service Guide 49

Figure 6 Structured Event

Creating and Sending the Events
The following code example is the client’s implementation of the
TimerTask’s run() method. This method creates and sends a series of
structured events to the NotifyLog instance for a fixed duration (determined
by comparing the value returned by System.currentTimeMillis() with
the value held in stopSendingTime).

The code example shows how to:

• Define the domain name ("software"), event type ("example") and
event name ("Notify Log") fields of the structured event’s fixed header

• Create and define two filterable properties ("number" and "time") in the
filterable body header

• Define and add an event to the event’s remainder_of_body

• Send the event to the proxy

The fixed header will be used by the log filter and consumer client’s proxy to
identify the event; the properties in the filterable body will be used to filter
the event.

Points to Note
• A check is made, before an event is created and sent, to ensure that the

log’s record store is not full - this is in addition to checking that the log is
not off duty. This additional check, that the log is not full, is necessary
since the particular log instance which will receive the events is
configured to reject events when the record store is full: this
configuration will cause a LogFull exception to be thrown when trying to
store an event when the store is full: using
log.get_availability_status().log_full in the if() expression
avoids this exception being thrown.

• In order to provide an example mechanism for filtering, a counter is
incremented each time an event is sent: if the value of the counter is

domain_name

event_name

type_name

name1

...

value1

name2 value2

namen valuen

name1

...

value1

name2 value2

namen valuen

remainder_of_body Remaining body

Variable header

Fixed header

Filterable body fields

Event header

Event body

50 OpenFusion CORBA Services Log Service Guide

even, then a 0 (zero) is assigned to the event’s number property (held in
the event’s filterable body); if the counter is odd, a 1 is assigned. The log
and consumer will use these values to filter the events:
counter++;
num = counter % 2;
...
event.filterable_data[0] = new Property();
event.filterable_data[0].name = "number";
event.filterable_data[0].value = orb.create_any();
event.filterable_data[0].value.insert_long(num);

• pushConsumerProxy.disconnect_structured_push_consumer() is
called when run() has stopped sending events; this is used to destroy
the proxy (since it is no longer needed).

public void run()
{
 // check timeout and record store availability
 if((System.currentTimeMillis() < stopSendingTime) &&
 (log.get_availability_status().off_duty == false) &&
 (log.get_availability_status().log_full == false))
 {
 try
 {
 counter++;
 num = counter % 2; // determine if counter is odd or event
 // create the structured event to be sent to the log
 StructuredEvent event = new StructuredEvent();

 // create header
 EventType type = new EventType(“software”, “example”);
 FixedEventHeader fixedHeader =
 new FixedEventHeader(type, “Notify Log”);
 Property variableHeader[] = new Property[0];
 event.header = new EventHeader(fixedHeader, variableHeader);

 // create a filterable body containing properties to hold
 // the event’s number and the time it was sent
 event.filterable_data = new Property[2];

 event.filterable_data[0] = new Property();
 event.filterable_data[0].name = “number”;
 event.filterable_data[0].value = orb.create_any();
 event.filterable_data[0].value.insert_long(num);

 event.filterable_data[1] = new Property();
 event.filterable_data[1].name = “time”;
 event.filterable_data[1].value = orb.create_any();

 // add a message to the body
 event.remainder_of_body = orb.create_any();
 event.remainder_of_body.insert_string(“Your Message Here.”);

 // add the time that event is sent
 event.filterable_data[1].value.insert_ulonglong(
 System.currentTimeMillis());

 // send the event
 pushConsumerProxy.push_structured_event(event);

 System.out.println (“The number value of the event sent is
“ +
 event.filterable_data[0].value.extract_long() + “.”);
 }
 catch (org.omg.CosEventComm.Disconnected ex)
 {
 System.out.println(“Disconnected”);
 System.exit(1);

OpenFusion CORBA Services Log Service Guide 51

Supplier Client Exceptions
The example code shown above must either throw or catch the exceptions
listed below.

ORB
org.omg.CORBA.ORBPackage.InvalidName

NotifyLog
org.omg.CosEventChannelAdmin.AlreadyConnected
org.omg.CosEventComm.Disconnected
org.omg.CosNotifyChannelAdmin.AdminLimitExceeded
org.omg.CosNotification.UnsupportedQoS

Naming Service
org.omg.CosNaming.NamingContextPackage.InvalidName
org.omg.CosNaming.NamingContextPackage.NotFound
org.omg.CosNaming.NamingContextPackage.CannotProceed

Creating a Consumer Client for the NotifyLog
The consumer client sets a filter on the proxy which connects it to the log’s
notify channel, receives events which are allowed to pass through the filter,
and retrieves the last ten records held in the log’s record store.

This example consumer is similar to the supplier in terms of obtaining a
connection to the log, and similar to the log creation example in terms of
creating a filter. Since this example builds on previous ones, only the
relevant differences will be shown or highlighted.

Import Statements
The program uses the services and associated APIs listed below.
Applications or classes that use these services or APIs must include the
import statements shown below.

OpenFusion Orb Adaptor
com.prismt.orb.ObjectAdapter

 }
 }
 else
 {
 if(log.get_availability_status().off_duty)
 {
 System.out.println(“The log is off duty “ +
 “- cannot log event.”);
 }
 if(log.get_availability_status().log_full)
 {
 System.out.println(“The log is full “ +
 “- cannot log event.”);
 }
 if(System.currentTimeMillis() >= stopSendingTime)
 {
 System.out.println(“Supplier finished sending events.\n”);
 }

 // cleanup - destroy proxy, stop incoming requests
 pushConsumerProxy.disconnect_structured_push_consumer();
 ObjectAdapter.shutdown();

 // stop thread
 sendTimer.cancel();
 }
} // end run

52 OpenFusion CORBA Services Log Service Guide

NotifyLog and for Time values
org.omg.DsLogAdmin.*
org.omg.DsNotifyLogAdmin.*
org.omg.CosNotifyComm.*
org.omg.CosNotifyChannelAdmin.*
org.omg.CosNotification.*

org.omg.CosNotifyFilter.Filter
org.omg.CosNotifyFilter.FilterFactory
org.omg.CosNotifyFilter.ConstraintExp
org.omg.CosNotifyFilter.InvalidConstraint
org.omg.CosNotifyFilter.InvalidGrammar

java.util.GregorianCalendar
java.util.Date

Naming Service
org.omg.CosNaming.*
org.omg.CosNaming.NamingContextPackage.*
org.omg.CosNaming.NamingContextExt.*
org.omg.CosNaming.NamingContextExtPackage.*

Consumer Client Initialisation
The consumer performs similar initialisation steps to the previous examples,
and as shown in the code examples below. Note that the consumer uses a
proxy of type StructuredProxyPushSupplier (which is obtained by
narrowing a ProxySupplier with a client type of STRUCTURED_EVENT).

org.omg.CORBA.ORB orb = null;
org.omg.CORBA.Object obj = null;

NotifyLog log = null;

StructuredProxyPushSupplier pushSupplierProxy = null;
Filter filter = null;

org.omg.CORBA.Any event;

NamingContextExt rootContext = null;
NameComponent notifyLog[];

private final long duration = 3 * 60 * 1000; // activity time in
millisecs

orb = ObjectAdapter.init(args);

 // instantiate this client as a transient CORBA object
 ObjectAdapter.createTransient (this);

 // obtain reference to log using Naming Service
 obj = orb.resolve_initial_references (“NameService”);
 rootContext = NamingContextExtHelper.narrow(obj);
 notifyLog = new NameComponent[1];
 notifyLog[0] = new NameComponent(“NotifyLogB”, “log”);
 log = NotifyLogHelper.narrow(rootContext.resolve(notifyLog));

 // establish this object as a structured push consumer
 StructuredPushConsumer consumer =

StructuredPushConsumerHelper.narrow(ObjectAdapter.getObject(this));

 // obtain the log’s structured push supplier proxy and connect to it
 ConsumerAdmin consumerAdmin = log.default_consumer_admin();

OpenFusion CORBA Services Log Service Guide 53

Setting a Proxy Filter
After obtaining the proxy, the client creates and adds a filter to it. This filter
is configured to only accept events which have a property called number (in
the filterable body) which has a value of 1 (i.e. odd numbered events - see
“Points to Note” on page 49).

Points to Note
• A filter factory is used to create the filter; this factory is obtained from the

log.

• The domain name and type name of the events to be filtered are used to
create an EventType object, called type in the example. The EventType
is added to an EventType array, which is used by a ConstraintExp
object to identify which events to filter. A constraint expression, also
used by the ConstraintExp object, defines the type of header, property
name, and condition used to test the value of the property.

• The add_filter() method is used to add the filter to the proxy, and not
the set_filter() method which is used for an log-based filter

The client is now ready to receive events after having configured and added
the filter to the proxy.

 org.omg.CORBA.IntHolder id = new org.omg.CORBA.IntHolder();

 ProxySupplier proxySupplier =
 consumerAdmin.obtain_notification_push_supplier(
 ClientType.STRUCTURED_EVENT, id);

 pushSupplierProxy =
 StructuredProxyPushSupplierHelper.narrow(proxySupplier);

try
{
 // set filter on proxy to only accept events where
 // the “number” property is an odd number (value of 1)
 FilterFactory filterFactory = log.default_filter_factory();
 filter = filterFactory.create_filter(default_grammar.value);

 EventType type = new EventType(“software”, “example”);
 EventType[] types = {type};
 ConstraintExp exp =
 new ConstraintExp(types, “$.filterable_data(number) == 1”);

 ConstraintExp[] expressions = {exp};
 filter.add_constraints(expressions);
 pushSupplierProxy.add_filter(filter);
}
catch (org.omg.CosNotifyFilter.InvalidGrammar ex)
{
 System.out.println(“InvalidGrammar”);
 System.exit(1);
}
catch (org.omg.CosNotifyFilter.InvalidConstraint ex)
{
 System.out.println(“InvalidConstraint”);
 System.exit(1);
}

54 OpenFusion CORBA Services Log Service Guide

Receiving the Structured Events
The NotifyLog consumer receives events similarly to the previous consumer
example that used event-style events, noting the differences in the proxy
type and version of connection methods.

The client also ensures that the forwarding state for the log is enabled.

The push_structured_event callback method is responsible for
processing any events which are received from the supplier via the log’s
notify channel. The example implementation extracts the data values held
in the filterable data part of received events, as well as extracting the data
held in the remainder_of_body. The only events which should be received
by push_structured_event will be those whose number property has a
value of 1.

// connect to the proxy
pushSupplierProxy.connect_structured_push_consumer(consumer);

// ensure that log is enabled to forward records
ForwardingState state = log.get_forwarding_state();
if (state == ForwardingState.off)
{
 log.set_forwarding_state(ForwardingState.on);
}

// thread for receiving events
// events are received via push_structured_event(),
// the PushConsumerOperations callback method
System.out.println(“Will receive structured events for “ +
 duration / 60000 + “ minutes from now.”);
synchronized(this)
{
 try
 {
 this.wait(duration);
 }
 catch(java.lang.InterruptedException ex)
 {
 return;
 }
}

System.out.println(“Finished getting structured events.”);

// StructuredPushConsumerOperations callback methods
public void disconnect_structured_push_consumer()
{
 System.out.println (“Disconnected by proxy”);
} // end disconnect_push_consumer

public void push_structured_event(
 org.omg.CosNotification.StructuredEvent event)
{
 Property[] filterable_data;
 org.omg.CORBA.Any remainder_of_body = orb.create_any();

 filterable_data = event.filterable_data;
 int len = filterable_data.length ;

 System.out.println(“\nNotifyConsumer received event containing:”);
 for(int j = 0 ; j < len ; j++)
 {
 if(filterable_data[j].name.equals(“time”))
 {
 System.out.println(“ filterable_data[“ + j + “] “ +
 “time: “ +
 new
Date((long)filterable_data[j].value.extract_ulonglong()).

OpenFusion CORBA Services Log Service Guide 55

Retrieving Log Records
The client retrieves the log records as structured events, in addition to
receiving the events sent through the log’s channel. The following example
shows how the structured event records are retrieved and information
extracted from them. The value of the filterable body’s (filterable_data)
number property should be 0, since the filter for the log’s record store was
set to only accept events containing this value in the number property.

 toString());
 } else
 {
 System.out.println(“ filterable_data[“ + j + “] “ +
 filterable_data[j].name + “: “ +
 filterable_data[j].value);
 }
 }

 remainder_of_body = event.remainder_of_body ;
 System.out.println(“ remainder_of_body = “ + remainder_of_body);
} // end push

public void offer_change(EventType[] added, EventType[] removed)
{
 System.out.println (“Consumer offer changed”);
} // end offer_change

// array for retrieved records
LogRecord[] records;
IteratorHolder iter = new IteratorHolder();

// establish current time and convert ms to 100 ns
GregorianCalendar calendar = new GregorianCalendar();
long basetime = - calendar.getGregorianChange().getTime();
long currentTime = (System.currentTimeMillis () + basetime) * 10000;

System.out.println(
 “\nRetrieving the latest 10 records backwards from the current
time.”);
records = log.retrieve(currentTime, -10, iter);
if (records.length < 1)
{
 System.out.println (“No records retrieved.\n”);
}
else
{
 // display information for each retrieved record
 System.out.println (“\n------------------------------” +
 “Retrieved records listed below.”);
 for(int i = 0; i < records.length; i++)
 {
 org.omg.CORBA.Any info = orb.create_any();
 StructuredEvent se;
 Property[] filterable_data;
 org.omg.CORBA.Any remainder_of_body = orb.create_any();

 se = StructuredEventHelper.extract(records[i].info);

 filterable_data = se.filterable_data;
 int len = filterable_data.length ;

 System.out.println(“\nrecord id: “ +records[i].id);

 for(int j = 0 ; j < len ; j++)
 {
 if(filterable_data[j].name.equals(“time”))
 {
 System.out.println(“ filterable_data[“ + j + “] “ +
 “time: “ +

56 OpenFusion CORBA Services Log Service Guide

Cleanup
When the client is finished receiving events, it destroys the proxy’s filter,
disconnects from (and destroys) the proxy, then notifies the ORB it is
unable to accept requests.

Consumer Client Exceptions
The example code shown above must either throw or catch the exceptions
listed below.

ORB
org.omg.CORBA.ORBPackage.InvalidName

NotifyLog
org.omg.CosEventChannelAdmin.AlreadyConnected
org.omg.CosNotifyChannelAdmin.AdminLimitExceeded
org.omg.CosEventChannelAdmin.TypeError

Naming Service
org.omg.CosNaming.NamingContextPackage.InvalidName
org.omg.CosNaming.NamingContextPackage.NotFound
org.omg.CosNaming.NamingContextPackage.CannotProceed

Monitoring Log Generated Events
The following example monitor client shows how events which have been
generated by a log and it’s log factory can be received and monitored.

The client is similar to a standard NotifyLog consumer client, but with the
following notable differences:

• An event channel, as opposed to a notify channel, is used to transmit and
receive the events (note the differences of their relative import
statements - see “Import Statements” on page 51 and “Import Statements” on
page 57): generated events are transmitted as Event-style events (Anys)
using an event channel.

• The client connects to the log factory’s proxy (instead of the log): all
generated events, whether from the factory or the log, are transmitted
by the factory that created the log.

 new
Date((long)filterable_data[j].value.extract_ulonglong()).
 toString());
 } else
 {
 System.out.println(“ filterable_data[“ + j + “] “ +
 filterable_data[j].name + “, “ +
 filterable_data[j].value);
 }

 }
 remainder_of_body = se.remainder_of_body ;
 System.out.println(“ remainder_of_body = “ +
 remainder_of_body);
 }
 System.out.println (“------------------------------”);
}

public void cleanup()
{
 filter.destroy();
 pushSupplierProxy.disconnect_structured_push_supplier();
 ObjectAdapter.shutdown();
}

OpenFusion CORBA Services Log Service Guide 57

• The client does not need to obtain a reference to the log object, but to the
factory that creates it. Therefore, there is no need to use the Naming
Service or other mechanism to locate the log object. In fact, a client may
likely be instantiated and active before the log is created: this will occur if
the client intends to monitor log creation events generated by the log
factory.

Import Statements
The program uses the services and associated APIs listed below.
Applications or classes that use these services or APIs must include the
import statements shown below.

OpenFusion Orb Adaptor
com.prismt.orb.ObjectAdapter

NotifyLog and for Time values
org.omg.DsLogNotification.*

org.omg.DsLogAdmin.*
org.omg.DsNotifyLogAdmin.*

org.omg.CosNotification.EventType;
import org.omg.CosNotifyComm.*;
import org.omg.CosNotifyChannelAdmin.*

java.util.GregorianCalendar
java.util.Date

Monitor Client Initialisation
The client implements PushConsumerOperations and is initialised similarly
to previous NotifyLog client, but note that a reference is obtained to the log
factory and not to a log.

orb = ObjectAdapter.init(args);

 // instantiate this client as a transient CORBA object
 ObjectAdapter.createTransient(this);

 // obtain reference to log factory
 obj = orb.resolve_initial_references(“NotifyLogFactory”);

 NotifyLogFactory factory = NotifyLogFactoryHelper.narrow(obj);
 if(factory == null)
 {
 System.out.println(“\nLog factory not available\n”);
 System.exit(1);
 }

 // establish this object as a push consumer
 PushConsumer consumer =
 PushConsumerHelper.narrow(ObjectAdapter.getObject(this));

 // obtain the log factory’s push supplier proxy and connect to it
 org.omg.CORBA.IntHolder id = new org.omg.CORBA.IntHolder();
 ProxySupplier proxy =
 factory.obtain_notification_push_supplier(ClientType.ANY_EVENT,
id);
 pushSupplierProxy = ProxyPushSupplierHelper.narrow(proxy);
 pushSupplierProxy.connect_any_push_consumer(consumer);

 // set base time for date and time converstion from TimeT
 basetime = - new
GregorianCalendar().getGregorianChange().getTime();

58 OpenFusion CORBA Services Log Service Guide

Receiving the Generated Events
The push() callback method receives the generated events. The example
implementation of this method, shown below, extracts and displays the
property values for the various generated events.

An important aspect of retrieving generated events is that it may not be
possible to determine the property type for a particular event in advance,
since certain events can contain different types depending on the situation
which generated the event. For example, AttributeValueChange can
contain different types, e.g. a long or omg.org::CORBA::Object,
depending on which attribute has changed, as shown in the output
generated by the above code:

Monitor Client Exceptions
The example code shown above must either throw or catch the exceptions
listed below.

ORB
org.omg.CORBA.ORBPackage.InvalidName

NotifyLog
org.omg.CosEventChannelAdmin.AlreadyConnected
org.omg.CosNotifyChannelAdmin.AdminLimitExceeded
org.omg.CosEventChannelAdmin.TypeError

// StructuredPushConsumerOperations callback methods
public void disconnect_structured_push_consumer()
{
 System.out.println (“Disconnected by proxy”);
} // end disconnect_push_consumer

AttributeValueChange
 id: 10
 time: Wed Oct 30 13:35:40 GMT 2002
 type: 8
 value type: long

AttributeValueChange
 id: 10
 time: Wed Oct 30 13:35:41 GMT 2002
 type: 6
 value type: omg.org::CORBA::Object

OpenFusion CORBA Services Log Service Guide 59

Supplemental
Information

Exceptions
A brief description of the Log Service exceptions is provided in Table 3
below. These exceptions are defined in the DsLogAdmin module.

However, there are additional exceptions for those log types which inherit
from the Event and Notification Services. These exceptions are described in
the OpenFusion Notification Service Guide.

Table 3 Log Service Exceptions

Exception Reason

InvalidParam Invalid parameter supplied.

InvalidThreshold Invalid threshold value supplied when setting an
alarm threshold. Valid values are expressed as
percentages between 0 and 100, non-inclusive.

InvalidTime The TimeInterval’s or Time24Interval’s
stop time is set earlier than the current time, or
when a Time24 structure contains invalid values.

InvalidTimeInterval The start time is set later than the stop time.

InvalidMask The days bit field of a WeekMaskItem contains an
illegal value.

LogIdAlreadyExists Raised when creating a new log and a log with the
same id already exists.

InvalidGrammar The grammar specified is not supported.

InvalidConstraint The supplied constraint does not conform to the
specified grammar and is invalid.

LogFull An attempt is made to store a record when the
record store is full and the log full behaviour is set to
halt.

LogOffDuty An attempt is made to store a record when the log is
off duty.

LogLocked An attempt is made to store a record when the log is
locked.

LogDisabled An attempt is made to store a record when the log is
disabled.

InvalidRecordId An attempt is made to retrieve or delete a log record
that does not exist.

InvalidAttribute The log attribute is invalid.

InvalidLogFullAction The specified log full action is not supported.

UnsupportedQoS The specified QoS property is not supported or
invalid.

i

60 OpenFusion CORBA Services Log Service Guide

Part II
Configuration and

Management

In this part
This part contains the following:

Log Service Configuration page 63

Log Service Manager page 71

OpenFusion CORBA Services System Guide 63

Log Service Configuration
Overview

The configuration of Singleton properties specific to the Log Service is
described in this section. These properties appear in the Administration
Manager, a graphical user interface (GUI) based administration tool
included with the OpenFusion Graphical Tools.

The Administration Manager can be used to set the Singleton properties.
These properties can also be set programatically, generally as described in
the service description sections.

Details for configuring Persistence, Logging, CORBA, Java and System
properties for the Log Service are described in the System Guide.

Common Properties
Instances of some common properties are used by a number of different
OpenFusion Log Service’ interfaces and services. Settings for these property
instances appear in the Administration Manager’s Object Hierarchy for the
service’s Singleton node. This small group of properties is included in this
section in order to facilitate configuration of the Service while using the
Administration Manager. These properties include:

• IOR Name Service Entry

• IOR URL

• IOR File Name

• Resolve Name

• IOR Name Service

LogFactorySingleton Configuration
This section lists the properties for each of the Log Factory Singletons:

• BasicLogFactorySingleton

• NotifyLogFactorySingleton

Each Singleton must be configured separately but they have identical
properties as defined in this section.

CORBA Properties

IOR Name Service Entry
The Naming Service entry for the Singleton.

Property Name Object.Name

Property Type FIXED

Data Type STRING

Accessibility READ/WRITE

Mandatory NO

64 OpenFusion CORBA Services System Guide

IOR URL
The IOR URL property specifies the location of an Interoperable Object
Reference (IOR) for the Service, using the Universal Resource Locator (URL)
format. This information is used when a client attempts to resolve a
reference to the Service. Some examples are:

file:/usr/users/openfusion/servers/NameService.ior

http://www.microfocus.com/of/servers/NameService.ior

corbaloc::server.microfocus.com/NameService

OpenFusion supports URLs in Corbaloc, Corbaname, file, FTP and HTTP URL
formats, although some ORBs do not support all of these mechanisms.
Consult your ORB documentation for specific details.

IOR File Name
The IOR File Name option specifies the name and location of the IOR file for
the Singleton. If this property is not set, the IOR file name will be:

<INSTALL>/domains/<domain>/<node>/<service>/<singleton>/
<singleton>.ior

where <INSTALL> is the OpenFusion installation path. See the System
Guide for details of the domains directory structure.

Resolve Name
The ORB Service resolution name used to resolve calls to the Singleton.

Property Name IOR.URL

Property Type FIXED

Data Type URL

Accessibility READ/WRITE

Mandatory NO

Property Name IOR.File

Property Type FIXED

Data Type FILE

Accessibility READ/WRITE

Mandatory NO

Property Name ResolveName

Property Type FIXED

Data Type STRING

Accessibility READ/WRITE

Mandatory YES

OpenFusion CORBA Services System Guide 65

IOR Name Service
The name of the Naming Service which will be used to resolve the Singleton
object.

Persistence Properties

Enable Write Ahead Log
When the write-ahead log is enabled, information that is normally written to
the underlying database is written to a log file instead. When the log file
reaches a specific size (defined by the Write Ahead Log Maximum Size
property), the database is updated and the log file is reused. The location of
the log file is defined by the Write Ahead Log Directory property and must
be held locally on the machine running the Service.

The write-ahead log may increase performance when persistent events are
required, particularly when events are being delivered quickly.

The write-ahead log is enabled when this property is set TRUE (checked). By
default, the write-ahead log is disabled. It can be safely enabled unless your
system is not set up to allow files to be written to the local machine.

Write Ahead Log Directory
The directory used to contain write-ahead log files. This directory must be
local to the host running the Service. The default location is:

<INSTALL>/domains/<domain>/<node>/LogService/data

where <INSTALL> is the OpenFusion installation path. See the System
Guide for details of the domains directory structure.

Property Name IOR.Server

Property Type FIXED

Data Type STRING

Accessibility READ/WRITE

Mandatory NO

Property Name DB.WAL

Property Type STATIC

Data Type BOOLEAN

Accessibility READ/WRITE

Mandatory NO

Property Name DB.WAL.Dir

Property Type STATIC

Data Type DIRECTORY

Accessibility READ/WRITE

Mandatory YES

66 OpenFusion CORBA Services System Guide

Write Ahead Log Maximum Size
The maximum number of entries that can be stored in the write-ahead log
before flushing (writing to the underlying database) takes place.

Database Plugin Class
The database plugin class used for persistent storage of logs. If a custom
log store plugin is used, the class should be specified here.

If this property is left blank, the default OpenFusion database plugin
implementations will be used.

General Properties

Enable Event Queueing
Indicates if a queue should be used before the events have been sent to
persistent storage. This property can accelerate the speed of saving events
when using slow storage.

File Queueing Directory
Indicates the directory where the queue is located.

Property Name DB.WAL.MaxSize

Property Type STATIC

Data Type INTEGER

Accessibility READ/WRITE

Mandatory NO

Property Name DB.Plugin

Property Type STATIC

Data Type STRING

Accessibility READ/WRITE

Mandatory NO

Property Name Queue.Enable

Property Type STATIC

Data Type BOOLEAN

Accessibility READ/WRITE

Mandatory NO

Property Name Queue.Dir

Property Type STATIC

Data Type DIRECTORY

Accessibility READ/WRITE

Mandatory NO

OpenFusion CORBA Services System Guide 67

Initial Number of Logs
The specific properties for each Singleton are:

• Initial Number of Basic Logs

• Initial Number of Notify Logs

This property determines the initial number of logs (of the appropriate type)
created when the Service is run for the first time.

Maximum Number of Queue Files
Indicates how many files can be used to save the queued events where the
maximum number of queue file multiplied by the maximum queue file size
is the maximum size that the queue can use.

Maximum Queue File Size
The maximum size of the file which the queued events are saved to.

Max Records Returned From Query
Sets the maximum number of records that will be in the RecordList returned
by a query operation. The default value is 100.

If the query returns more records than the maximum set for the RecordList,
the additional records can be obtained using the Iterator.

Property Name InitialLogs

Property Type STATIC

Data Type INTEGER

Accessibility READ/WRITE

Mandatory NO

Property Name Queue.MaxFiles

Property Type STATIC

Data Type INTEGER

Accessibility READ/WRITE

Mandatory NO

Property Name Queue.MaxFileSize

Property Type STATIC

Data Type INTEGER

Accessibility READ/WRITE

Mandatory NO

Property Name MaxRecordsReturnedFromQuery

Property Type STATIC

Data Type INTEGER

Accessibility READ-WRITE

Mandatory NO

68 OpenFusion CORBA Services System Guide

Order query results
When set to TRUE (checked), the records returned by a query will be
ordered by time, earliest records first. By default, this property is FALSE
and query results are unordered.

Only the records returned in the RecordList will be ordered in this way.
Additional records returned by the Iterator may or may not be ordered.
(The Max records returned from query property, above, sets how many
records will be returned in the RecordList.)

Ordering is performed in memory so if a large number of records are
returned, a correspondingly large amount of memory will be used.

ProcessSingleton Configuration
IOR Name Service Entry
The Naming Service entry for the Singleton.

IOR URL
The IOR URL property specifies the location of an Interoperable Object
Reference (IOR) for the Service, using the Universal Resource Locator (URL)
format. This information is used when a client attempts to resolve a
reference to the Service. Currently only http and file URLs are supported,
for example:

file:/usr/users/openfusion/ProcessSingleton.ior

http://www.abigbank.com/openfusion/ProcessSingleton.ior

Property Name OrderQueryResults

Property Type STATIC

Data Type BOOLEAN

Accessibility READ-WRITE

Mandatory OPTIONAL

Property Name Object.Name

Property Type FIXED

Data Type STRING

Accessibility READ/WRITE

Mandatory NO

Property Name IOR.URL

Property Type FIXED

Data Type URL

Accessibility READ/WRITE

Mandatory NO

OpenFusion CORBA Services System Guide 69

IOR File Name
The IOR File Name option specifies the name and location of the IOR file for
the Singleton. If this property is not set, the IOR file name will be:

<INSTALL>/domains/<domain>/<node>/<service>/<singleton>/
<singleton>.ior

where <INSTALL> is the OpenFusion installation path. See the System
Guide for details of the domains directory structure.

IOR Name Service
The name of the Naming Service which will be used to resolve the Singleton
object.

Property Name IOR.File

Property Type FIXED

Data Type FILE

Accessibility READ/WRITE

Mandatory NO

Property Name IOR.Server

Property Type FIXED

Data Type STRING

Accessibility READ/WRITE

Mandatory NO

70 OpenFusion CORBA Services System Guide

OpenFusion CORBA Services System Guide 71

Log Service Manager
Overview

The following tasks can be carried out from the Log Service Manager:

• Create Log objects.

• Configure Log objects.

• Run queries that return specified Log records.

• View, edit, and delete Log records.

• Add and remove attributes belonging to a Log record.

Using the Log Service Manager
To start the Log Service Manager, right-click either the
(BasicLogFactorySingleton, or NotifyLogFactorySingleton in the Object
Hierarchy and select Log Manager from the pop-up menu. See
“Administration Manager” for details.

The Log Service Manager is shown in Figure 7.

Figure 7 Log Service Manager

72 OpenFusion CORBA Services System Guide

Nodes in the Log Service Manager are identified by different icons. These
icons are shown in Table 4.

Log Object Settings
The Log Manager has six tabbed panels with settings configuring Log
objects and capturing Log Service events. Not all Log Managers have all six
panels. These panels are described in the following sections. All settings
must be correctly configured before a new Log object can be created (see
“Create a New Log”).

Log
The Log panel is used by all Log Factories. The following properties must be
set on the Log panel:

Full Action
The action to be taken when a log is full. Available actions are:

• Halt - No further log records will be written to the persistent log record
store. The administrative state of the log will be changed to Locked.

• Wrap - The oldest logs are deleted to make space for the new ones.

Administrative State
This can be either:

• Locked - The Log Service will not write any log records to the persistent
store.

• Unlocked - The Log Service can write log records to the persistent store.

Maximum Size
The maximum size of the log, in bytes, kilobytes, or Megabytes.

To specify a size in kilobytes, append kb to the number. To specify a size in
Megabytes, append Mb to the number. For example: 100Kb, 100Mb. If no
suffix is appended, a value in bytes is assumed. Note that case is not
significant, so KB, kb, and Kb are all valid suffixes.

A value of zero means that there is no maximum limit to the log size.

Regardless of what units are specified for the property, they will be
converted to bytes and displayed as such.

Record Lifetime
The length of time, in seconds, minutes, hours, or days, that a log record
will exist in the log store before it is automatically deleted.

To specify a lifetime in minutes, append m to the number. To specify a
lifetime in hours, append h to the number. To specify a lifetime in days,
append d to the number. If no suffix is appended, a value in seconds is

Table 4 Log Service Object Icons

Icon Node

Log Factory
The root node of the Log Service hierarchy. The description next
to this icon indicates which Log Factory is being browsed.

Log
A representation of a Log object.

OpenFusion CORBA Services System Guide 73

assumed. Note that case is not significant, so D and d are both valid
suffixes.

A value of zero means that log records never expire.

Regardless of what units are specified for the property, they will be
converted to seconds and displayed as such.

Alarms
The Alarms panel is used by all Log Factories.

The Alarms panel allows unique threshold values to be added to logs. An
alarm threshold must be an integer value between 1 and 100. If several
thresholds are entered, each must be a different value.

To add a threshold, enter the value in the Enter value field and click the Add
button.

To remove a threshold, select the threshold in the list and click the Remove
button.

To set the range of thresholds as the defaults for all logs, click the Set As
Defaults button. All values are stored together as a set of defaults.

To re-use previously set default values, click the Use Defaults button. Note
that it is possible to restore previous defaults and then add or delete
thresholds in this instance without altering the default set (although
changes could be saved as new defaults).

Scheduling
The Scheduling panel is used by all Log Factories. These settings allow a
schedule to be set up for starting and stopping logging activity.

Current setting
The current setting can be:

• Default
• Custom

If the Default setting is selected, the default Start time of Immediately and
Stop time of Never are used, and these settings cannot be changed. To
manually configure the schedule, select the Custom setting.

Start and Stop
If the Custom setting is selected, the Start and Stop times must be
manually configured. Enter the required times and click the Apply button.

Week Mask
For fine-grained scheduling, a week mask can be set up. This allows
different start and stop times to be set for different days of the week.

Miscellaneous
These settings are used only by the Notify Log Factory.

Forwarding State
Select whether log forwarding is On or Off:

• On: The log will forward incoming events from all suppliers to all
consumers currently connected.

• Off: The log will not forward incoming events from suppliers to any
consumers.

74 OpenFusion CORBA Services System Guide

Filter Constraints
Filter constraints are only available for Notify and TypedNotify Logs.

To enter a filter constraint, type the filter expression into the Value field and
click the Add button.

To delete a filter constraint, select the entry in the list and click the Remove
button.

To edit a filter constraint, select the constraint in the list so that it is
displayed in the Value field. Edit the constraint value as required, then click
the Replace button. The new constraint replaces the previous one in the
list. If Add is clicked instead of Replace, the modified constraint is added to
the list as a new constraint and the existing constraint will remain in the list.

Filter constraints added here will be applied to any future logs that are
created with the Log Service Manager. The filter will not be applied to any
logs created programmatically or to any logs which were created in the Log
Service Manager before the filter was added.

To set a filter constraint on an existing log, select the log in the tree view.
Select the Settings tab and the Misc tab, and add the filter constraint as
described above. This filter will apply to the selected log only.

Channel
These settings are used only by the Notify Log Factory. This panel allows
Quality of Service (QoS) and Administrative settings to be set for the log.
The following properties can be set:

QoS Settings

• AcknowledgeLevel
• AcknowledgeMode
• ConnectionReliability
• DeadLetterDrop
• DiscardPolicy
• DisconnectCallback
• EventReliability
• EventIDSupported
• LazyAcknowledgeInterval
• MaximumBatchSize
• MaxEventsPerConsumer
• MaxInactivityInterval
• MaxReconnectEvents
• MultipleReceiversSupported
• OrderPolicy
• PacingInterval
• Priority
• ReconnectInterval
• StartTimeSupported
• StopTimeSupported
• ThreadIdleTime
• ThreadPoolSize
• Timeout

Administrative Properties

• MaxQueueLength
• MaxConsumers
• MaxSuppliers
• RejectNewEvents

OpenFusion CORBA Services System Guide 75

Events
This panel is used only by the Notify Log Factory and displays information
about the events stored in the Log.

The following details are displayed:

• Event
• Time
• Log
• Details

The types of events generated by Log Factories and Logs are as follows:

• StateChange: Generated when a Log’s admin or operational state is
changed.

• ObjectCreation: Generated when a Log is created.

• ObjectDeletion: Generated when a Log is deleted.

• ThresholdAlarm: Generated when a Log threshold has been exceeded.

• AttributeValueChange: Generated when any of the following Log
attributes are changed:

• Capacity alarm threshold
• Log full action
• Max Log size
• Start time
• Stop time
• Week mask
• Filter
• Max record life
• Quality of Service (QoS)

Create a New Log
To create a new Log object, right-click on the Log Factory root node and
select Create from the pop-up menu.

This will create a new Log object as a child of the root node, but only if all
properties have been properly configured. (See “Log Object Settings”.)

The Create With ID option does the same thing as the Create option but
prompts for a Log ID. A valid unique ID must be entered for the Log object
to be created.

The Log node in the Log Factory hierarchy displays the Log’s unique number
and description. To view information about a log, select the log in the
hierarchy. Details are displayed in the right-hand pane, as shown in Figure 8.

76 OpenFusion CORBA Services System Guide

Figure 8 Viewing Log Details

Copy Logs
To make a copy of the Log object, right-click on the Log object in the
hierarchy and select Copy from the pop-up menu.

The new Log object is added to the Log Factory hierarchy and retains all the
configuration settings of the original.

The Copy with ID option does the same thing as the Copy option but
prompts for a Log ID. A valid unique ID must be entered for the copy of the
Log object to be created. The ID cannot be the same as the original Log.

Destroy Logs
To remove a Log object from the Log Factory hierarchy and from the Log
Service, right-click the Log object and select Destroy from the pop-up
menu.

Browser
The Browser panel displays information about the current status of the Log
Service. The following details are displayed:

• Current Log Size.

• Number of Records.

• Maximum Log Size.

• The percentage of the allocated Log Capacity currently in use (also
summarised in a pie chart).

• Operational Status (Enabled or Disabled).

• Administrative Status (Locked or Unlocked).

• Availability Status.

• Number of Connected Consumers.

• Number of Connected Suppliers.

For details of these properties, see “Log Object Settings”.

OpenFusion CORBA Services System Guide 77

Settings
The Settings panel allows Log object properties to be changed. The panel
contains properties on five tabbed panels, corresponding to the properties
that can be set when a new Log is created, as follows:

• Log (page 72).
• Alarms (page 73).
• Scheduling (page 73).
• Misc (page 73).
• Channel (page 74).

Changes to a property in a text box are not applied to the Log object until
focus is moved to another property in the same panel. Navigating to
another panel without doing this will cause the change to be lost. (This does
not apply to properties which are set with a check box or drop-down list.)

Operations
The Operations panel is used to retrieve and display selected Log records.

Five different retrieval actions can be performed on the Operations panel.
Select which action to perform from the Operation drop-down list:

• Query
• Retrieve
• Match
• Delete
• Set Attributes

Query
The Query operation selects and displays records that match a query string.

1 Use the Grammar drop-down list to select the query language,
EXTENDED_TCL (ETCL). Refer to the Notification Service documentation
for details of ETCL.
The database plugin used for Log persistence may restrict the choice of
grammar.

2 Enter the query string in the Constraint field.

3 Click the execute button to run the query. Each returned record is
displayed in the Record Details table.

4 Select a record to display the record’s attributes in the Attribute Details
table.

Records can be individually deleted by selecting them and using the Delete
button. Deleted records are removed from the Log Service.

Attributes can be added or deleted from the record using the Add and
Remove buttons.

Retrieve
The Retrieve operation selects and displays a specified number of log
records.

• Enter a positive number in the Records to return field to return records
starting at the specified time.

• Enter a negative number in the Records to return field to return records
immediately prior to the specified time.

78 OpenFusion CORBA Services System Guide

For example, with 30 March 2001 12:00 as the date:

• Records to return - 50 will retrieve the first 50 records logged after 12:00
on 30 March 2001.

• Records to return -50 will retrieve the last 50 records logged before
12:00 on 30 March 2001.

Each returned record is displayed in the Record Details table. Records can
be individually deleted by selecting them and using the Delete button.
Deleted records are removed from the Log Service.

Select a record to display the record’s attributes in the Attribute Details
table. Attributes can be added or deleted from the record using the Add and
Remove buttons.

Match
The Match operation is similar to the Query operation but instead of
returning a list of Log messages, it returns a count of messages.

Delete
The Delete operation deletes all records that match a query string.

1 Use the Grammar drop-down list to select the query language,
EXTENDED_TCL (ETCL). Refer to the Notification Service documentation
for details of ETCL.
The database plugin used for Log persistence may restrict the choice of
grammar.

2 Enter the query string in the Constraint field.

3 Click the execute button to delete all matching Log records.

A pop-up message box will report the number of records deleted by the
query.

Warning: deleted Log records can not be recovered.

Set Attributes
The Set Attributes operation allows a batch update of attributes for all Log
records which match a query string.

1 Click the Add button to add an attribute to the Attribute Details table.

2 Enter a Name, Value, and Type for the attribute.

3 Repeat steps 1 and 2 to add more attributes to the table.

4 Use the Grammar drop-down list to select the query language,
EXTENDED_TCL (ETCL). Refer to the Notification Service documentation
for details of ETCL.
The database plugin used for Log persistence may restrict the choice of
grammar.

5 Enter the query string in the Constraint field.

6 Click the execute button to run the query.

Each Log record retrieved by the query is automatically updated to
include the attributes added to the Attribute Details table.

A pop-up message box will report the number of records updated by the
query.

Warning: this change can not be undone.

Part III
Appendices

In this part
This part contains the following:

Using the Naming Service to locate a Log page 81

Using with JacORB page 83

OpenFusion CORBA Services System Guide 81

Using the Naming Service to
Locate a Log
Distributed CORBA objects can be readily located using the Naming Service.
The Naming Service associates a name with an object. This name can then
be used to efficiently locate the object. The association between an object
and a name is called a name binding.

The Naming Service stores name bindings in a hierarchical arrangement
called a naming context. As well as organising name bindings, contexts are
used to manage the bindings, including their creation and destruction. The
top-most context is called the root context and may contain child contexts,
as well as name bindings. The entire arrangement of root context, child
contexts, and name bindings is called a naming graph.

Creating a Name Binding
In order to create a name binding, a reference to the root context (or child
context) where it will be stored must be obtained. The name itself is stored
in a NameComonent object, which is then added to the context. The
following code, taken from “Locating the Log”, shows the basic approach to
binding a log object to a name.

The OpenFusion Naming Service Guide provides complete details on
using contexts and name bindings.

The object to be bound and an int holder are declared. The initialisation of
the orb object is not shown. The name binding is then created as described
in the steps given below
.

1 Declare a CORBA object which will be resolved to the Naming Service, a
root context object (of type NamingContextExt), and an array of type
NameComponent. The NameComponent array is used to contain the name
which will be used to identify the log object.

2 Resolve the Naming Service object using the standard CORBA
resolve_initial_references() method, then narrow the Naming
Service object to a root context using
NamingContextExtHelper.narrow(). Initialise the NameComponent
array, basicLog, to hold the name identifying the log.

org.omg.CORBA.ORB orb = null;
BasicLog log = null;
org.omg.CORBA.IntHolder logId = null;

// bind the log object to a name with Naming Service
org.omg.CORBA.Object namingService = null;
NamingContextExt rootContext = null;
NameComponent basicLog[];

namingService = orb.resolve_initial_references (“NameService”);
rootContext = NamingContextExtHelper.narrow(namingService);
basicLog = new NameComponent[1];

basicLog[0] = new NameComponent(“BasicLog”, “log”);
rootContext.rebind(basicLog, log);

System.out.println(“BasicLog created.”);

i

82 OpenFusion CORBA Services System Guide

3 Assign a new name component to basicLog, using two String
parameters defining its id and type. The id and type can be any desired
string, or even contain NULL values, provided NULL is not used for both
id and type. Also, the id-type combination must be unique within the
context. Finally, bind the log object to the name component using root
context’s bind() or rebind() methods. The bind method will throw an
exception if the name component is already bound to an object; rebind
will replace an existing binding or create a new binding if one does not
exist. An object can be bound to more than one name component, but
one name component can not be bound to more than one object.

4 A name binding can be removed using the root context’s unbind()
method. If a context is empty (that is, it does not contain any name
bindings or child contexts), it can be destroyed using the context’s
destroy() method.

Removing a name binding does not destroy the object that the name is
bound to.

The log object can now be located, from clients located anywhere in the
system, using the context’s resolve() method described below.

Obtaining the Object with Resolve
Clients can now obtain a reference to the log by using the resolve()
method. This is referred to as resolving the object.

An object can be resolved by simply passing a NameComponent object
(containing the log’s id and kind values) to the context’s resolve()
method, then narrowing the object to the BasicLog type (resolve()
returns an Object type).

i

// obtain reference to the orb
orb = ORBAdapter.init(args);

// obtain reference to log using Naming Service
obj = orb.resolve_initial_references(“NameService”);
rootContext = NamingContextExtHelper.narrow(obj);
basicLog = new NameComponent[1];
basicLog[0] = new NameComponent(“BasicLog”, “log”);
obj = rootContext.resolve(basicLog);
log = BasicLogHelper.narrow(obj);

OpenFusion CORBA Services System Guide 83

Using with JacORB
If the OpenFusion Log Service’s NotifyLog is used with the NotifyLog with
JacORB, then JacORB’s compactTypecodes property must be turned off by
setting it to 0 (zero). The compactTypecodes property is located in JacORB’s
jacorb.properties file. The default location of the jacorb.properties file is the
install/classes directory.

The property should be changed from:
jacorb.compactTypecodes=2

to:
jacorb.compactTypecodes=0

84 OpenFusion CORBA Services System Guide

OpenFusion CORBA Services Log Service Guide 85

A
AcknowledgeLevel (QoS property) 74
AcknowledgeMode (QoS property) 74
add_constraints 43, 44
add_filter 44, 53
Administration Manager 4
Administrative Properties 74
Administrative State 10, 11, 18, 72

locked 11, 18
Set 18
unlocked 11, 18

Administrative State (log setting) 72
Alarms 73
Architecture 5, 7
arg_list 10
attr_list 9, 23
Attribute Change Events 13
AttributeValueChange 10, 11, 13, 75
Availability Status 12, 22

B
BasicLog 5, 6, 16, 17, 20

Creating 17
Creating a Client 20

BasicLog (including Interval) 20
BasicLog (including Write and Query
Related) 24

BasicLogFactory 8, 18
BasicLogFactorySingleton 63, 71

Configuration 63
Benefits 3
bind 17, 82
Browser 76

C
Callback Operations 29, 34, 36

Push 58
push_structured_event 54

Capacity 10
Channel 9, 74
child context 81
Cleanup 39, 56
Client

Connecting to an Event Channel 32
Event Consumer 36
Event Supplier 31
Terminating 33

Clients 16
ClientType 47
Concepts 5
Configuration 17, 26, 40, 49
ConnectionReliability (QoS property) 74
Constraint Expression 23, 43, 44
Context 19
copy 5, 10
Copy Logs 76
copy_with_id 10
CORBA Properties 63

CosEvent 29
Create 17, 25, 27
create_filter 43
Current setting 73
Current setting (Log Scheduling) 73

D
Data, Sending 21
Database Plugin Class (property) 66

Basic Log Factory 66
DB.Plugin (property) 66
DB.WAL (property) 65
DB.WAL.Dir (property) 65
DB.WAL.MaxSize (property) 66
DeadLetterDrop (QoS property) 74
Default

Values 17, 37
Default Grammar 43
Delete 78
Dependencies (on Other Services) 5
Dependencies on Other Services 5
Destroy 5, 10
destroy 27, 33, 43, 45, 82
Destroy Logs 76
DiscardPolicy (QoS property) 74
disconnect_push_supplier 29, 31
DisconnectCallback (QoS property) 74
documentation

.pdf format ix
updates on the web ix

Duration 12, 20

E
Enable Event Queueing (property) 66
Enable Write Ahead Log (property) 65
Event

Filtering 53
Event Channel 5, 9, 29, 31, 32, 41
Event Header 48
Event Supplier 29
EventIDSupported (QoS property) 74
EventLog 6, 25, 30, 39

Creating 25
Creating a Consumer Client 34
Creating a Supplier Client 46
Duration 28
Time Values 35

EventLogFactory 8, 26
EventReliability (QoS property) 74
Events 75

Creating and Sending 49
Filtering 42
Forwarding 13, 37
Receiving 37, 54
Sending 33
Working with 25

EventType 44, 53
Exceptions 19, 24, 28, 34, 39, 45, 51, 56, 58, 59
EXTENDED_TCL

Index

 86 OpenFusion CORBA Services Log Service Guide

SeeExtended Trader Constraint
Language

F
Factories

Log 5, 7
Factory Id 11
Features 14

Comparison 14
File Queueing directory (property) 66
Filter 42

add constraints 43, 44
Add Event Filter 44, 53
Constraints 74
Create 43
Creation 43
Location 43
Removal and Destruction 45
Set Record Filter 44, 53

filter
get 44
remove 45

Filter Factory 53
filterable_body 48
filterable_data 55
Filtering 6, 11, 13, 42, 53
Fixed Header 44, 48
Forwarding 5, 11
Forwarding State 13, 37, 73
Full Action 72
Full Action (property) 72

G
General Properties 66
Generated Events 5, 6, 10, 56, 58

Monitoring 56
Receiving 58

generated events
AttributeValueChange 13
ObjectCreation 10
ObjectDeletion 10
ProcessingErrorAlarm 10
StateChange 10
ThresholdAlarm 10, 12

get_availability_status 41
get_filter 44
Grammar 23, 43
Gregorgian Calander 18, 23, 27, 37

H
halt 11, 26, 41
Header 44, 48

I
id 9, 11, 23, 24
info 9, 23
Inheritance

Hierarchy 6, 8
Initial Number of Logs (property) 67
InitialLogs (property) 67
Instrumentation 4

interface_id 10
IOR File Name 69
IOR File Name (property) 69
IOR Name Service 69
IOR Name Service (property) 65, 69
IOR Name Service Entry 68
IOR Name Service Entry (property) 63, 68
IOR URL 68
IOR URL (property) 68
IOR.File (property) 64, 69
IOR.Server (property) 65
IOR.URL (property) 64, 68

L
LazyAcknowledgeInterval (QoS
property) 74

Lifecycle Operations 10
Lifetime 12, 72
Locating the Log 19, 28
locked 11, 18
Log 5, 9, 72

BasicLog 5, 6
Configuration 17, 26, 40, 49
Create 17, 25, 27
EventLog 6, 25
Factories 5, 7
Generated Events 5, 6, 10, 56, 58
Locating 19, 28
Management 11
Maximum Log Size 11, 17
NotifyLog 5, 6
TypedEventLog 6
TypedNotifyLog 6
Types 5, 6, 7, 8

Features 14
Log Capacity Alarm Threshold 12
Log Clients 16
Log Creation 16, 75
Log Creation and Configuration 17, 26, 40
Log Duration 12, 20
Log Factories 7
Log Factory 72
Log Full Actions 11, 27

halt 11, 26, 41
wrap 11

Log Generated Events 10
Monitoring 56

Log Management 11
Log Networks 9
Log Object 5
Log Object Settings 72
Log Record 9, 12, 17, 23, 24, 41

filtering 13
Lifetime 12
retrieve 23, 24, 30, 36, 37, 55

Log Records
Retrieving 37, 55

Log Scheduling 12
Log Service

Configuration 63
Exceptions 59

OpenFusion CORBA Services Log Service Guide 87

Manager 71
Supplemental Info 59
Using Specific Features 15

Log Service Manager
Using 71

Log Types 5
LogFactorySingleton Configuration 63
LogMgr 7
LogRecord 9

M
Main Filter Components 43
Management 11

Additional Operations 13
Management Operations

Common 11
Match 78
Max records returned from query
(property) 67

MaxConsumers (admin property) 74
MaxEventsPerConsumer (QoS
property) 74

Maximum Log Size 11, 17
Maximum number of queue file
(property) 67

Maximum queue file size (property) 67
Maximum Size 72
Maximum Size (log setting) 72
MaximumBatchSize (QoS property) 74
MaxInactivityInterval (QoS property) 74
MaxQueueLength (admin property) 74
MaxReconnectEvents (QoS property) 74
MaxRecordsReturnedFromQuery
(property) 67

MaxSuppliers (admin property) 74
MultipleReceiversSupported (QoS
property) 74

N
Name Binding 81

Creating 81
NameComponent 21, 28
Naming Graph 81
Naming Service 20, 56, 81

bind 17, 82
Child Context 81
Context 19
Name Binding 81
Naming Graph 81
Resolve 81, 82
resolve 19
Root Context 81

Notification Service
Introduction 3
Service Dependencies 5

NotifyLog 5, 6, 16, 40, 45, 46, 51, 56, 58
Creating 39
Creating a Consumer Client 51
Creating a Supplier Client 29
Structured Events 39
Time Values 52, 57

NotifyLogFactory 8, 26
NotifyLogFactorySingleton 63, 71

O
Object.Name (property) 63, 68
ObjectAdapter 29, 48
ObjectCreation 10, 75
ObjectDeletion 10, 75
obtain_push_supplier 36
OMG

Standard Features 4
OpenFusion

Enhancements 4
Extensions 16
Features 4
Orb Adaptor 17, 20, 25, 30, 51, 57

operation_name 10
Operations 77
ORB 17
Orb Abstraction Layer 17
orb abstraction layer 29, 48
Orb Adaptor 17, 20, 25, 30, 51, 57
ORBAdapter

Also see ObjectAdapter
Order query results (property) 68
OrderPolicy (QoS property) 74
OrderQueryResults (property) 68

P
PacingInterval (QoS property) 74
PDF documentation ix
Persistence Properties 65
Priority (QoS property) 74
ProcessingErrorAlarm 10
ProcessSingleton Configuration 68
Properties

Common 63
General 66

Proxies 32
Proxy

See Proxies
Proxy Filter, Setting a 53
Pull Model 31, 32, 36
Push 31, 33, 35, 36, 58
Push Model 31, 32, 36
push_structured_event 54
PushSupplierOperations 29, 34

Q
QoS

See Quality of Service
QoS Settings 74

Log Factories 74
QoSFlush 14, 26
QoSNone 14, 26
QoSReliability 14, 26
Quality of Service 13, 14, 47

QoSFlush 14, 26
QoSNone 14, 26
QoSReliability 14, 26

Query 4, 20, 23, 24, 77

 88 OpenFusion CORBA Services Log Service Guide

Querying the Log Records 23

R
Read and Write Settings 11
Read-Only Settings 11
Receiving Events 37, 54
Receiving Generated Events 58
ReconnectInterval (QoS property) 74
Record

See Log Record
record

See Log Record
Record Lifetime 72
Record Lifetime (log setting) 72
Registering with the Naming Service 45
RejectNewEvents (admin property) 74
remainder_of_body 48, 49, 54
remove_filter 45
Repository Id 10
Resolve 81, 82
resolve 19
ResolveName (property) 64
Retrieve 23, 24, 30, 36, 37, 55, 77
Retrieving Log Records 37, 55
root context 81

S
Scheduling 12, 73
Sending Data 21
Sending Events 33
Set Attributes 78
set_administrative_state 18
set_filter 44, 53
set_interval 17, 18, 23
set_week_mask 23, 27
Setting, Current 73
Settings 77

Log Object 72
Singletons

BasicLogFactorySingleton 63
SNMP 4
Start and Stop 73
Start and Stop (log scheduling) 73
Starting Log Service Manager 71
StartTimeSupported (QoS property) 74
StateChange 10, 75
StopTimeSupported (QoS property) 74
Structured Event 6, 43, 49

header 44, 48
Structured Events 39, 48
Structured Push Supplier 47
StructuredProxyPushSupplier 52

T
ThreadIdleTime (QoS property) 74
ThreadPoolSize (QoS property) 74
ThresholdAlarm 10, 12, 75
Time 9, 18, 23
TimeInterval 18, 27
Timeout (QoS property) 74
Timer 20, 30, 46

TimerTask 20, 30, 46
TypedEventLog 6
TypedEventLogFactory 8
TypedLogRecord 9

arg_list 10
interface_id 10
operation_name 10

TypedNotifyLog 6
TypedNotifyLogFactory 8
Types

Log 5, 6, 7, 8

U
unlocked 11, 18
Using the Log Service Manager 71

V
Values

Default 17, 37
Variable Header 48

W
Week Mask 27, 73
Week Mask (Log Scheduling) 73
WeekMask 27
wrap 11
Write 21, 22, 23
Write Ahead Log 65
Write Ahead Log Directory (property) 65
Write Ahead Log Maximum Size
(property) 66

Write Data 21, 22, 23
write_records 23

	Contents
	Preface
	About the Log Service Guide
	Intended Audience
	Organisation
	Conventions

	Contacting Micro Focus
	Further Information and Product Support
	Information We Need
	Contact information

	Log Service
	Description
	Overview
	Benefits
	OMG Standard Features
	OpenFusion Features
	Instrumentation
	Dependencies on Other Services

	Concepts and Architecture
	Basic Architecture
	Log Types
	Log Factories
	Log Networks

	Components and Features
	Log Records
	Log Generated Events
	Lifecycle Operations
	Log Management

	Quality of Service
	Log Features Comparison

	Using Specific Features
	Introduction
	Import statements

	The Basics and the BasicLog
	Creating a BasicLog
	Import Statements

	Initialisation
	Log Creation and Configuration

	Locating the Log
	BasicLog Exceptions

	Creating a Client for the BasicLog
	Import Statements
	Client Initialisation
	Preparing the Data
	Sending the Data
	Querying the Log Records
	Client Exceptions for the BasicLog

	The NotifyLog and Event-style Events
	Creating a NotifyLog
	Import Statements
	NotifyLog Initialisation
	NotifyLog Creation and Configuration
	Locating the NotifyLog
	NotifyLog Exceptions

	Creating a Supplier Client for the NotifyLog
	Import Statements
	Supplier Client Initialisation
	The Client as an Event Supplier
	Sending Events
	Terminating the Supplier Client
	Supplier Client Exceptions

	Creating a Consumer Client for the NotifyLog
	Import Statements
	Consumer Client Initialisation
	The Client as an Event Consumer
	Retrieving Records
	Cleanup
	Exceptions

	NotifyLog, Structured Events and More
	Creating a NotifyLog
	Import Statements
	NotifyLog Initialisation
	NotifyLog Creation and Configuration
	Filtering
	Registering with the Naming Service
	NotifyLog Exceptions

	Creating a Supplier Client for the NotifyLog
	Import Statements
	Supplier Client Initialisation
	Structured Events in Brief
	Creating and Sending the Events
	Supplier Client Exceptions

	Creating a Consumer Client for the NotifyLog
	Import Statements
	Consumer Client Initialisation
	Setting a Proxy Filter
	Receiving the Structured Events
	Retrieving Log Records
	Cleanup
	Consumer Client Exceptions

	Monitoring Log Generated Events
	Import Statements
	Monitor Client Initialisation
	Receiving the Generated Events
	Monitor Client Exceptions

	Supplemental Information
	Exceptions

	Configuration and Management
	Log Service Configuration
	Overview
	Common Properties

	LogFactorySingleton Configuration
	CORBA Properties
	Persistence Properties
	General Properties

	ProcessSingleton Configuration
	Log Service Manager
	Overview
	Using the Log Service Manager
	Log Object Settings
	Log

	Alarms
	Scheduling
	Miscellaneous
	Channel
	Events
	Create a New Log
	Copy Logs
	Destroy Logs
	Browser
	Settings
	Operations

	Appendices
	Using the Naming Service to Locate a Log
	Creating a Name Binding
	Obtaining the Object with Resolve

	Using with JacORB
	Index

