
OpenFusion®

CORBA Services
Version 5

 Naming Service
�������	

OpenFusion
CORBA Services
NAMING SERVICE GUIDE
Part Number: OFCOR-NAMG-5 Doc Issue 20, 16 September 2012
PRISMTECH

Copyright Notice
© 2012 PrismTech Limited. All rights reserved.

This document may be reproduced in whole but not in part.

The information contained in this document is subject to change without notice and
is made available in good faith without liability on the part of PrismTech Limited or
PrismTech Corporation.

All trademarks acknowledged.
ii
Naming Service Guide

�������	

CONTENTS

Table of Contents
List of Figures ix

Preface
About the Naming Service Guide. xi
Contacts .xii

The Naming Service
Chapter 1 Description 2

1.1 Overview . 2
1.1.1 OMG Standard Features . 2
1.1.2 OpenFusion Enhancements . 3
1.2 Concepts and Architecture . 3
1.2.1 OMG Standard. 3
1.2.1.1 Naming Contexts . 3
1.2.1.2 Federation . 5
1.2.1.3 Name Components . 5
1.2.1.4 Interoperable Naming Service (INS) . 6
1.2.1.5 Stringified Names . 6
1.2.2 OpenFusion Enhancements . 8
1.2.2.1 Java Naming and Directory Interface (JNDI). 8
1.2.2.2 Multiple Forms of Persistence . 9
1.2.2.3 Caching . 9
1.2.2.4 Purging and Memory Management . 10
1.2.2.5 Load Balancing Concepts . 11
1.2.2.6 Load Balancing in OpenFusion . 11
1.2.2.7 Instrumentation . 13
1.2.2.8 Fail-over . 14
1.2.2.9 Replication . 14

Chapter 2 Using Specific Features 16
2.1 Obtaining the Root Context . 17
2.2 Naming Context Creation and Destruction . 17
2.3 Binding and Unbinding Operations . 18
2.4 Accessing Naming Context Contents . 19
2.5 BindingIterator Operations . 20
2.6 Naming Context Extension Operations . 21
2.7 Using the LoadBalancingFactory . 23
2.8 Manipulating Objects in the LoadBalancer . 24
v
Naming Service Guide

�������	

Table of Contents
2.9 Using the LoadBalancer with the Naming Service 24
2.10 Customizing the LoadBalancer . 25

Chapter 3 Worked Example 28
3.1 Example Client . 28

Chapter 4 API Definitions 30
4.1 OMG Standard API Definitions . 30
4.1.1 NamingContext Interface . 30
4.1.2 NamingContextExt Interface. 31
4.1.3 BindingIterator Interface . 32
4.2 OpenFusion API Extensions . 32
4.2.1 LoadBalancingFactory Interface . 32
4.2.2 LoadBalancer Interface . 32
4.2.3 LoadBalancer Standard Policies . 34
4.2.4 LoadBalancerPlugin Interface . 35
4.2.5 JNDIObject Interface. 35

Chapter 5 Supplemental Information 38
5.1 Administration Properties and Instrumentation. 38
5.2 Java Naming & Directory Interface (JNDI) . 38
5.3 Lightweight Directory Access Protocol (LDAP) . 39
5.4 Purging Options . 39
5.5 Memory Management . 40
5.6 XML Export and Import . 41
5.6.1 Exporting and Importing Cyclics . 42
5.7 Exceptions . 44

Java Naming and Directory Interface
Chapter 6 Description 48

6.1 Overview . 48
6.1.1 Sun’s JNDI Standard Features. 48
6.1.2 OpenFusion Enhancements . 48
6.2 Concepts and Architecture . 49
6.2.1 Standard JNDI . 49
6.2.2 The Initial Context. 50
6.2.3 Naming Systems . 50
6.2.4 References and Addresses . 50

Chapter 7 OpenFusion SPI Implementation 52
7.1 Names. 52
7.2 Java Objects . 53
vi
Naming Service Guide �������	

Table of Contents
7.3 Supplied Factories . 54
7.3.1 Storing CORBA Objects . 54
7.3.2 Storing RMI-IIOP Objects. 54
7.4 Federation . 54

Chapter 8 Using Specific Features 56
8.1 JDBC-based Persistence. 56
8.2 Accessing Data . 57

Chapter 9 Supplemental Information 58
9.1 Configuration Properties . 58
9.1.1 Standard Properties . 58
9.1.2 Provider-specific Properties. 59
9.1.2.1 General . 59
9.1.2.2 Persistence . 59
9.2 Exceptions . 62

Configuration and Management
Chapter 10 Naming Service Configuration 66

10.1 Common Properties . 66
10.2 NameSingleton Configuration . 66
10.2.1 CORBA PropertiesOR Name Service Entry . 66
10.2.2 Lightweight Directory Access Protocol (LDAP) . 68
10.2.3 Persistence Options . 70
10.2.4 Instrumentation Properties. 73
10.2.5 General Properties . 75
10.3 LoadBalancingFactorySingleton Configuration . 79

Chapter 11 Naming Service Manager 82
11.1 Running the Naming Service Manager. 82
11.2 Using the Naming Service Manager . 82
11.2.1 Object Icons . 84
11.2.2 Tool Bar Buttons . 84
11.2.3 Adding a Naming Context . 85
11.2.4 Binding OpenFusion Services . 85
11.2.5 Binding Objects . 86
11.2.6 Deleting a Naming Context or Object Binding . 86
11.2.7 Exporting XML . 86
11.2.8 Importing XML . 87
11.2.9 Launching Managers and Browsers. 87
11.2.9.1 CORBA Object Browser . 88
11.2.9.2 Naming Service Manager . 88
vii
Naming Service Guide

�������	

Table of Contents
Chapter 12 The Purgable Interface 90
12.1 Purge Class Plugin . 90
12.2 Using the Purgable Interface . 90

Appendix A Command Line Management Tool 94
Features . 94
Configuration. 95

Index 104
viii
Naming Service Guide �������	

List of Figures
Figure 1 Simple Naming Graph . 4
Figure 2 Load Balancing . 13
Figure 3 LoadBalancerPlugin Interface . 35
Figure 4 Naming Hierarchy Export and re-Import . 43
Figure 5 JNDI Architecture . 49
Figure 6 OFNamingConverter Interface . 53
Figure 7 Naming Service Manager . 83
Figure 8: Example Domains Hierarchy and Directories 94
ix
Naming Service Guide�������	

List of Figures
x
Naming Service Guide

�������	

Preface
About the Naming Service Guide

The Naming Service Guide is included with the OpenFusion CORBA Services’
Documentation Set. The Naming Service Guide explains how to use the OpenFusion
Naming Service.
The Naming Service Guide is intended to be used with the System Guide and other
OpenFusion CORBA Services documents included with the product distribution;
refer to the Product Guide for a complete list of documents.

Intended Audience
The Naming Service Guide is intended to be used by users and developers who wish
to integrate the OpenFusion CORBA Services into products which comply with
OMG or J2EE standards for object services. Readers who use this guide should have
a good understanding of the relevant programming languages (e.g. Java, IDL) and
of the relevant underlying technologies (e.g. J2EE, CORBA).

Organisation
The Naming Service Guide is organised into three main sections. The first two
sections describe the OpenFusion Naming Service and JNDI, respectively. These
sections provide
• a high level description and list of main features

• explanation of the architecture and concepts

• how to use specific features

• detailed explanations of the main interfaces and how to use them

• other information which is needed to use the component

The last section, Configuration and Management, provides information on
configuring and managing the OpenFusion Naming Service using the OpenFusion
Graphical Tools. This section includes detailed descriptions of properties specific to
the service, plus instructions on using the OpenFusion Graphical Tools’ Browsers
and Managers. This section should be read in conjunction with the System Guide.

Conventions
The conventions listed below are used to guide and assist the reader in
understanding the Naming Service Guide.
Item of special significance or where caution needs to be taken.
Item contains helpful hint or special information.i
xi
Naming Service Guide

�������	

Preface
Information applies to Windows (e.g. NT, 2000, XP) only.
Information applies to Unix based systems (e.g. Solaris) only.
Hypertext links are shown as blue italic underlined.
On-Line (PDF) versions of this document: Cross-references, e.g. ‘see Contacts on
page xii’, act as hypertext links; click on the reference to go to the item.

Courier fonts indicate programming code and file names.
Extended code fragments are shown in shaded boxes:

Italics and Italic Bold are used to indicate new terms, or emphasise an item.
Arial Bold is used to indicate user related actions, e.g. File | Save from a menu.

Step 1: One of several steps required to complete a task.

Contacts
PrismTech can be reached at the following contact points for information and
technical support.

Web: http://www.prismtech.com
Technical questions: crc@prismtech.com (Customer Response Center)
Sales enquiries: sales@prismtech.com

% Commands or input which the user enters on the
command line of their computer terminal

 NameComponent newName[] = new NameComponent[1];

 // set id field to “example” and kind field to an empty string
 newName[0] = new NameComponent (“example”, ““);

WIN
UNIX

USA Corporate Headquarters European Head Office
PrismTech Corporation
400 TradeCenter
Suite 5900
Woburn, MA
01801
USA

Tel: +1 781 569 5819

PrismTech Limited
PrismTech House
5th Avenue Business Park
Gateshead
NE11 0NG
UK

Tel: +44 (0)191 497 9900
Fax: +44 (0)191 497 9901
xii
Naming Service Guide

�������	

http://www.prismtech.com
mailto: crc@prismtech.com
mailto: sales@prismtech.com

THE NAMING SERVICE

CHAPTER

1 Description
The OpenFusion Naming Service and OpenFusion JNDI are part of a range of
services and interfaces included with the OpenFusion CORBA Services product.
The OpenFusion Naming Service can be used stand-alone or with other
OpenFusion CORBA Services’ interfaces and services.
The OpenFusion Naming Service and OpenFusion JNDI are standards based and
fully compliant with recognised industry standards and specifications, supporting
portability and interoperability.
The OpenFusion Naming Service provides a straightforward way of finding and
using objects, by associating meaningful names with them. The Naming Service can
then be used like a white pages telephone directory to find an object and obtain its
Object Reference, without complex programming or using proprietary ORB
mechanisms.
The Naming Service can also be used in any CORBA-compliant distributed-object
system to create and maintain a directory of other services.

1.1 Overview
1.1.1 OMG Standard Features

The OpenFusion Naming Service is wholly compliant with the OMG specification.
The basic features of the OMG specification include the ability to:
• give meaningful names to objects (name bindings)
• find names which have been bound to objects (resolve)
• group names in logical hierarchies (naming contexts)
• group distributed naming hierarchies (federation)
• retrieve lists of names and step through them (iteration)
The OMG also specifies an Interoperable Naming Service (INS), which extends the
Naming Service to add interoperability and portability across ORBs and
applications. Features of the INS include:
• a way to find and use a common initial naming context
• support for URL-style names
2
 The Naming Service�������	

 1.2 Concepts and Architecture

1.1.2 OpenFusion Enhancements
The OpenFusion implementation of the Naming Service includes several
enhancements. This extended service is layered on top of the OMG-defined Naming
Service and INS, and does not affect the use of these standard services.
Enhancements include:
• multiple forms of persistence
• caching
• purging and memory management
• load balancing
• additional instrumentation (service monitoring functions)

1.2 Concepts and Architecture
1.2.1 OMG Standard

The Naming Service associates meaningful names with objects. An association
between a name and an object’s Interoperable Object Reference (IOR) is called a
binding or name binding.
Name bindings are grouped in hierarchies called naming contexts. A naming context
is an object containing zero or more name bindings. Each name binding within a
naming context refers to either another naming context or a CORBA object.
There is no limit to the number of different names that can be bound to the same
object or naming context, or to the number of bindings that a naming context can
contain.
Resolving a name is the process of locating an object or naming context by reading
a name binding and retrieving the associated object reference.
Iteration is the process of retrieving a list of bindings from a naming context, and
looking at each binding in turn.

1.2.1.1 Naming Contexts
A naming context is a set of name bindings where each name is unique within that
context; the same name may, however, appear in other naming contexts. Naming
contexts can be bound to other naming contexts to create naming hierarchies.
A very simple hierarchy of naming contexts is shown in Figure 1. It illustrates the
fact that a given binding within a naming context can point to either an object or
another naming context, and that a single object can be referenced by more than one
name. These hierarchies are known as naming graphs.
3
The Naming Service

�������	

 1.2 Concepts and Architecture

Figure 1 Simple Naming Graph
An object is referenced using an initial naming context, which is also referred to as
the root context. This is followed by a sequence of one or more name components.
Such a sequence is known as a compound name. Each name component resolves to
the next naming context in a chain until the last name component resolves to the
required object. In Figure 1, objects A, B and D are bound directly to the root
context, so their names have only one component (these are simple names); objects
C and E have names with three components. The full compound name for object C
can be represented like this:

NamingContext2/NamingContext4/ObjectC

Object E can be accessed via two different names.
The service specification also permits a naming context to contain a binding which
refers to a parent or grandparent further up the graph. For example, in Figure 1
Naming Context 4 could contain a binding to Naming Context 2. This kind of
reference is sometimes referred to as cyclic.

Root
Naming
Context

Naming
Context 2

Naming
Context 3

Naming
Context 4

CORBA
object

B

CORBA
object

A

CORBA
object

C

CORBA
object

D CORBA
object

E

n

name 1
name 2
name 3
.
.
name

n

name 1
name 2
name 3
.
.
name

n

name 1
name 2
name 3
.
.
name

n

name 1
name 2
name 3

.

.
name
4
The Naming Service�������	

 1.2 Concepts and Architecture

The root context is always implicit in a compound name; a special operation,
resolve_initial_references, is performed once to obtain the root context,
and all subsequent resolve operations depend on that.
Although it is not a requirement of the service specification, it is convenient and
customary to have a single root naming context.

1.2.1.2 Federation
The OpenFusion Naming Service has the ability to link many distributed naming
systems in a naming graph so that they appear as a single namespace. This is known
as federation, and it enables large heterogeneous systems of names and naming
contexts to be implemented. Clients using the Naming Service do not need to be
aware of the physical location of a server, or of the way in which it is implemented;
the link from a naming context to an object can cross several different ORBs
running on different systems.

1.2.1.3 Name Components
Each name component has id and kind fields (sometimes referred to as attributes),
represented by IDL strings. These strings are composed of ISO Latin-1 characters
(excluding the ASCII NUL, 00h) and the combined length can be up to 255
characters.
The Naming Service always matches names using both fields, so it is acceptable for
either field to be zero-length or to contain an empty string provided that uniqueness
within a naming context is maintained. Table 1 shows valid combinations of id and
kind values.

Note that although it is technically possible for both fields to contain empty strings,
this is not normally recommended, as it can be confusing to resolve to an empty
name.

Table 1 Name Component Fields

Id Kind
name1 <empty>
name2 kind1
<empty> <empty>
<empty> kind2
5
The Naming Service

�������	

 1.2 Concepts and Architecture

1.2.1.4 Interoperable Naming Service (INS)
The Interoperable Naming Service extends the basic Naming Service. It implements
the NamingContextExt interface, which is derived from the standard
NamingContext interface. This interface introduces an interoperable stringified
form of the CosNaming::Name and other URL formats in order to facilitate the
interpretation of object references.

1.2.1.5 Stringified Names
Names are sequences of name components, which are not human-readable and can
be difficult for applications to deal conveniently with. A syntax for stringified
names is therefore defined, and operations are provided to convert a name in
sequence form to its equivalent stringified form and vice versa.
A stringified name has components separated by forward slashes; the id and kind
fields within each component are separated by dots. The dot is omitted when the
kind field is empty unless the id field is also empty, in which case the name
component is comprised of a single dot. Similarly, if there is no dot in a stringified
name component, then that component is taken to be an id field only (the associated
kind field is empty).
For example, the stringified name ’name1/name2.kind1/./.kind2’ contains
all the valid field combinations shown in Table 1, Name Component Fields.
A backslash must be used as an escape character if it is necessary for a name to
contain a slash, backslash or dot.

1.2.1.5.1 Interoperable Object Reference (IOR)
A CORBA object is uniquely identified by its Interoperable Object Reference
(IOR). The IOR is the CORBA 2.x compliant format for a standard representation of
an object reference for all ORB vendors.

1.2.1.5.2 URLs
The exchange of IORs through non-electronic means is difficult because of their
length and the way that binary information is encoded. The corbaloc URL scheme
provides URLs that are familiar to people and are similar to FTP or HTTP URLs. A
corbaname URL is similar to a corbaloc URL except that a corbaname URL
also contains a stringified name that identifies a binding in a naming context. The
corbaloc and corbaname schemes allow service addresses to be exchanged more
easily throughout organizations. These schemes are also used to allow arbitrary
object references to be specified for an initial service, although some ORBs do not
6
The Naming Service�������	

 1.2 Concepts and Architecture

currently support these bootstrapping mechanisms. For example, the following line
of code shows the OpenFusion Notification Service being referenced with a
corbaloc URL:

The available URL formats are: IOR, Corbaloc, Corbaname, file, FTP and HTTP.

IOR
The string form of an IOR (IOR:<hex_octets>) is a valid URL. The IOR URL is
robust and insulates the client from the encapsulated transport information and
object key used to reference the object. This URL format is independent of the
Naming Service.

Corbaloc
The corbaloc URL scheme provides stringified object references that are more
easily manipulated than IORs. This URL format is independent of the Naming
Service.
A corbaloc URL contains:
• one or more protocol identifiers
• protocol-specific components
There are currently two protocols defined: Internet Inter-ORB protocol (IIOP) and
resolve_initial_references (RIR). The RIR scheme allows for access to the
ORB’s configured initial references. The IIOP scheme is defined for use in TCP/IP
and DNS centric environments such as the Internet. This protocol contains:
• one or more address(es) with an optional IIOP version number and an optional

port
• an object key
For example:

This means that at host 10.1.1.123, on port 14005, it is possible to resolve the
object reference denoted by the key. The key has been escaped to map away from
octet values that cannot be directly part of a URL.

-ORBInitRef
NotificationService=corbaloc::server.prismtechnologies.com/NotificationService

corbaloc::10.1.1.123:14005/%00PMC%00%00%00%04%00%00%00%252cb9b780-7
803-11d3-a8ae-fef54d18874b%00%00%00%00%00%00%00%10-%9Er0x%03%11%D3%
A8%AE%FE%F5M%18%87K

corbaloc::1.1@server.prismtechnologies.com,10.1.1.123:14005/%00PMC%
00%00%00%04%00%00%00%252cb9b780-7803-11d3-a8ae-fef54d18874b%00%00%0
0%00%00%00%00%10-%9Er0x%03%11%D3%A8%AE%FE%F5M%18%87K
7
The Naming Service

�������	

 1.2 Concepts and Architecture

This means that, at host server.prismtechnologies.com (using IIOP version
1.1) or, at the host denoted by the IP address 10.1.1.123 on port 14005 the key
can be resolved as described above.
Port 2809 is used if a port is not specified.

Corbaname
A corbaname URL is similar to a corbaloc URL. However, a corbaname URL
also contains a stringified name that identifies a binding in a naming context. For
example:

The first URL specifies that an object (of type NamingContext) can be found at
ho s t server.prismtechnologies.com u s i n g t h e o b j e c t k e y
00PMC%06%00%04%00%00. The second URL uses the resolve initial references
syntax to return a reference to a NamingContext. The stringified name
a/string/path/to/obj is then used as the argument to a resolve operation on
that NamingContext. The URL denotes the object reference that results from that
lookup.

file
The file format (file://) should specify a file containing either a URL or an IOR.

FTP
The FTP format (ftp://) should, as above, specify a file containing a URL or an
IOR. However, in this case, the file should be accessible via ftp.

HTTP
This format (http://) should specify an HTTP URL that returns an object URL or
an IOR.

1.2.2 OpenFusion Enhancements
The OpenFusion Naming Service is implemented in Java for platform
independence.

1.2.2.1 Java Naming and Directory Interface (JNDI)
The Java Naming and Directory Interface (JNDI) is a generic API for accessing
naming and directory services; the OpenFusion Naming Service is layered on top of
JNDI. This enables it to access the OpenFusion service provider and also the Sun

corbaname::server.prismtechnologies.com/%00PMC%06%00%04%00%00#a/str
ing/path/to/obj
corbaname:rir:#a/string/path/to/obj

i

8
The Naming Service�������	

 1.2 Concepts and Architecture

Lightweight Directory Access Protocol (LDAP) provider. Clients may access either
transparently, or use the OpenFusion JNDI SPI independently of the CORBA
service.
The OpenFusion JNDI implementation is described in the JNDI Guide.
Please refer to the relevant Sun Microsystems documentation for details of JNDI
and LDAP standard functionality.

1.2.2.2 Multiple Forms of Persistence
The OpenFusion Naming Service has been layered on top of the Java Naming and
Directory Interface (JNDI). This enables it to store its persistent data in memory or
databases. It can also utilize Sun’s JNDI Lightweight Directory Access Protocol
(LDAP) provider, using standard LDAP authentication mechanisms.
Persistent data in memory is provided by configured the JDBC hsqldb data source to
perform memory based persistence.
Database persistence is implemented using Java Database Connectivity (JDBC).
OpenFusion currently supports Oracle, Sybase and Informix on both Unix and
Windows NT, plus Microsoft SQL Server on Windows NT only. Because the
OpenFusion Naming Service supports persistence on enterprise quality,
high-availability database systems, it is fully scalable.
The Naming Service can view non-CORBA objects found in JNDI and standard
JNDI clients can access a persistent Naming Service hierarchy.
The persistence mechanism must be configured before the Naming Service is
started; this is normally done with the Administration Manager. The OpenFusion
Naming Service can create a jndi.properties file whenever it starts, which contains
the minimum information required to allow another JNDI client to access the
Naming Service hierarchy. JNDI properties can be configured by application
resource files, environment parameters passed via a hashtable, system properties or
applet parameters in JNDI, with those specified in the hashtable taking priority.
The OpenFusion JNDI implementation is described in the JNDI Guide.

1.2.2.3 Caching
Several tunable caching policies are supported by the OpenFusion Naming Service,
to help optimise performance. Available policies are:
• No cache (Read through and Write through)
• Read cache and Write through
• Read cache and Timed write
• Read cache and Batched write
• Read cache and Timed Batched write
9
The Naming Service

�������	

 1.2 Concepts and Architecture

plus
• minimum, maximum and interval
The read cache is purged as necessary using a least-recently-used algorithm when it
reaches a user-defined size limit.
The minimum policy sets the minimum number of objects which will be left in the
cache when it is cleared. The default value is zero (0).
The maximum policy sets the maximum number of objects which a cache will be
allowed to hold. The default value is five hundred (500)
The interval policy sets the length of time, in seconds, that the cache is cleared,
subject to the minimum policy described above. The default value is zero, which
disables the interval policy.
The caching options are dynamic, so they can be changed whilst the service is
running. This is normally done with the Administration Manager. Purging and
Memory Management options are also described in Supplemental Information on
page 38.

Care must be taken when specifying caching properties to avoid values which could
result in thrashing (objects being rapidly loaded, removed from memory, and
reloaded).

1.2.2.4 Purging and Memory Management
It is important to be aware of the differences between purging and memory
management. Memory management is related to caching, and is performed without
reference to the status of an object. The purging mechanism is part of the
OpenFusion Naming Service and its handling of objects depends explicitly on their
status.
These features can be enabled and controlled with properties specified in the
Administration Manager. Please refer to Supplemental Information on page 38 for
more information.

1.2.2.4.1 Purging
Purging is the deletion of invalid object references and purgable objects from a
service. Object references are regarded as invalid when they are not active and not
persistent. The OpenFusion Naming Service can most easily determine whether an
object is purgable if the com.prismt.openfusion.plugin.Purgable interface
is implemented.

1.2.2.4.2 Memory Management
Memory Management is the removal of objects from memory. The objects can be
naming contexts as well as client and server objects. They are re-loaded on demand.

i

10
The Naming Service�������	

 1.2 Concepts and Architecture

The purging and memory management options must be configured through the
Administration Manager before the Naming Service is started.

Note
• Care must be taken when specifying memory management properties to avoid

values which could result in thrashing (objects being rapidly loaded, removed
from memory, and reloaded).

• When the Naming Service is being used with purging enabled, clients must
always perform operations such as resolve from the root context, to avoid
problems arising from attempts to resolve naming contexts which have been
removed from memory.

Details of purging and memory management options are given in Supplemental
Information on page 38.

1.2.2.5 Load Balancing Concepts
The purpose of load balancing is to optimise the use of available resources in order
to minimise the time between the issue of a request for a service and the
performance of that service.
Frequent requests from many clients for a particular kind of service can be satisfied
by any one of several servers which are capable of providing that service, without
any client needing to know at the time of the request which servers are available to
fulfil the request.
An example illustrates the principle: a printing service distributing print jobs to
multiple printers. In order to provide the best service to users, the service allocates
print jobs to the available printers according to predefined algorithms or policies.
The policies used may be simple or sophisticated. In the simplest case, where the
available printers have identical capabilities, print jobs are allocated to each printer
in turn as they are received (a round robin policy); the total number of printing
requests is divided equally amongst the available printers. A sophisticated system
would implement different policies to take account of the capabilities of individual
printers and the characteristics of specific printing requests. It could, for example,
allocate a print job based on the size of the job and the speeds of the available
printers.

1.2.2.6 Load Balancing in OpenFusion
This section describes a proprietary load balancing solution which is specific to the
OpenFusion Naming Service. As an alternative solution, OpenFusion also offers an
implementation of the proposed OMG specification for Load Balancing. This is
described in the Load Balancing Service Guide.

i

11
The Naming Service

�������	

 1.2 Concepts and Architecture

Load balancing is implemented in OpenFusion as a Quality of Service option which
enables the service to bind multiple objects to the same name. It uses a delegate
style, which means that the application interface can be separated from the control
or management interface. The alias provides the application interface; it then makes
local calls to methods on the load balancer object instead of implementing the
interface itself.
When a new load balancer is required, the OpenFusion LoadBalancingFactory
is used to create it. The LoadBalancingFactory is normally co-located with the
OpenFusion Naming Service, and starts automatically with it. A policy is specified
when the load balancer is created, but it can be changed dynamically if required.
The servers which are to be managed by the load balancer are then registered with it.
The load balancer and the alias are both bound into the Naming Service. These
bindings refer to the same object, but the Naming Service recognises the difference
between them.
Details of the LoadBalancingFactory and LoadBalancer interfaces are
described in API Definitions on page 30.
A load balancer can be applied to implementation of the printing service example
mentioned earlier.
A client sends a print job requiring a laser printer to the printing service, and the
printing service queries the laser printer load balancer via its alias. The load
balancer uses its current policy to determine which printer the job should be sent to,
and returns that printer to the printing service. The printing service then sends the
job to the selected printer. This is illustrated in Figure 2.
12
The Naming Service�������	

 1.2 Concepts and Architecture

Figure 2 Load Balancing
OpenFusion load balancing is supplied with a number of standard policies for
allocating requests to servers. These are designed to suit many common situations,
but user-defined algorithms can be developed and plugged in if none of those is
appropriate in a specific case. There is a complete list of the standard policies,
together with details of the LoadBalancerPlugin interface, in API Definitions on
page 30.
The policy used by a load balancer can also be changed through the Administration
Manager.
It is easy to add objects to and remove them from a load balancer. In the example, a
printer can be excluded if it goes off-line (when it runs out of toner, for example)
and then reinstated (when the toner cartridge is replaced) or another printer can be
added to the pool, without having to stop and re-start or otherwise affect the printing
service.

1.2.2.7 Instrumentation
OpenFusion provides both general and service-specific instrumentation features
which can be used for system monitoring, which in turn aids in problem
identification, performance tuning, and so on. OpenFusion instrumentation consists
of a set of properties that can be monitored either using the Administration Manager
or remotely using SNMP.

Load
Balancer

Laser_1

Laser_2

Laser_n

Laser_
printer
(alias)

PrintService
daemon

Naming Service

Print
Job

Laser_n

get Laser_printer

Client
13
The Naming Service

�������	

 1.2 Concepts and Architecture

In addition to properties that are read-only at runtime, OpenFusion provides some
properties that can be set and reset at runtime as required, such as when a particular
threshold value is reached or a time period has elapsed. Note that there is virtually
no performance overhead involved in using any of the OpenFusion instrumentation
features.

1.2.2.8 Fail-over
Fail-over is the ability of the OpenFusion Naming Service to activate a backup
server if the master server fails, to improve reliability. Note that this functionality is
currently only available when OpenFusion is running with the OpenFusion JacORB
or VisiBroker ORB from Inprise.
To implement fail-over, the following Service configuration is required:
• Two Naming Services, each registered with the same process ID.
• Each Naming Service must be configured to see the same data.
• One Naming Service must be marked as the System Master (by setting the

System Master property for the NamingSingleton in the Administration
Manager).

The fail-over options must be configured through the Administration Manager
before the Naming Service is started.

1.2.2.9 Replication
Replication is the duplication of data across two or more databases. The duplication
and synchronisation is normally performed by the database itself, and is therefore
transparent to the Naming Service. This enables two or more Naming Services to
use the same data, but from physically distinct databases, which may help improve
performance.
14
The Naming Service�������	

 1.2 Concepts and Architecture

15
The Naming Service

�������	

CHAPTER

2 Using Specific Features
This section describes how to use the Naming Service with illustrative examples in
Java.
It first shows how to create and destroy naming contexts and name bindings, how to
retrieve the contents of a naming context, and how to resolve a binding to an object.
The load balancing features of the OpenFusion Naming Service are demonstrated
later.
The available operations are listed in API Definitions on page 30, which includes
additional information which is useful in developing applications for the
OpenFusion Naming Service.
The exceptions raised by the OpenFusion Naming Service and Load Balancer are
listed in Supplemental Information on page 38.
An example application using the service, complete with source code and a
description of how to compile and run it, is supplied elsewhere as part of the
product distribution.

Note
• No CORBA system exceptions are caught in any of these examples; code to deal

with them has been omitted for the sake of clarity and brevity. These exceptions
must of course be properly caught and handled in a working system.

• The following libraries must be imported into any application using the
OpenFusion Naming Service:

• The following import statements should also be added when load balancing is
enabled:

import org.omg.CosNaming.*;
import org.omg.CosNaming.NamingContextPackage.*;
import org.omg.CosNaming.NamingContextExt.*;
import org.omg.CosNaming.NamingContextExtPackage.*;

import com.prismt.cos.CosNaming.NamingExtensions.*;
import
com.prismt.cos.CosNaming.NamingExtensions.LoadBalancerPackage.*;

i

16
 The Naming Service�������	

 2.1 Obtaining the Root Context

2.1 Obtaining the Root Context
Before any objects or naming contexts can be added to (bound) or found (resolved)
in the Naming Service, the root or initial context must be obtained. This is achieved
by using resolve_initial_references:

2.2 Naming Context Creation and Destruction
The NamingContext interface provides two NamingContext creation operations
and a single destroy operation, defined in IDL as:

The new_context operation creates a new NamingContext object which is not
bound to any other Naming Context:

The bind_new_context operation creates a new Naming Context and binds it
using the supplied name.
The destroy operation requests the destruction of a NamingContext. The
Naming Context must be empty. After destroy is invoked, no further operations
can be invoked on the object reference of the Naming Context.

Bindings to a destroyed context are not removed. To do so would require a context
to know about all of its parents as well as its children. An attempt to resolve a
binding to a destroyed context will throw the CORBA.INV_OBJREF exception.
Accordingly, bindings to a naming context should be removed before it is destroyed.

org.omg.CORBA.Object obj = null;
org.omg.CORBA.ORB orb = null;
NamingContextExt rootContext = null;

orb = ObjectAdapter.init (args);

try
{
 obj = orb.resolve_initial_references (“NameService”);
 rootContext = NamingContextExtHelper.narrow (obj);
}
catch (org.omg.CORBA.ORBPackage.InvalidName ex)
{
 System.err.println (“Failed to resolve NameService”);
 System.exit (1);
}

NamingContext new_context ();

NamingContext bind_new_context (in Name n)
raises (NotFound, CannotProceed, InvalidName, AlreadyBound);

void destroy () raises (NotEmpty);

NamingContext newContext = rootContext.new_context ();

newContext.destroy ();
17
The Naming Service

�������	

 2.3 Binding and Unbinding Operations

2.3 Binding and Unbinding Operations
The NamingContext interface provides five bind operations and a single unbind
operation, defined in IDL as:

The bind operations allow binding to occur between a name and either a generic
CORBA object or a Naming Context. In order to bind a CORBA object, the name to
bind against must be correctly constructed. Given a name with n components, the
first n - 1 components must resolve to a bound NamingContext. However, the
simplest case involves a name with only one component. The following code creates
a new name with a single component and uses it to bind an object:

The rebind operation is identical to the bind operation except that the
AlreadyBound exception is not thrown; an existing binding with the same name is
replaced by the new binding.
The bind_context operation adds a NamingContext object so that it becomes
part of the graph of Naming Contexts used for resolving compound names. Note
that a NamingContext can be also be added using the bind operation but that the
NamingContext will not become part of the graph of Naming Contexts and will
not be used for resolving compound names.

void bind (in Name n, in Object obj)
raises (NotFound, CannotProceed, InvalidName, AlreadyBound);

void rebind (in Name n, in Object obj)
raises (NotFound, CannotProceed, InvalidName);

void bind_context (in Name n, in NamingContext nc)
raises (NotFound, CannotProceed, InvalidName, AlreadyBound);

void rebind_context (in Name n, in NamingContext nc)
raises (NotFound, CannotProceed, InvalidName);

NamingContext bind_new_context (in Name n)
raises (NotFound, CannotProceed, InvalidName, AlreadyBound);

void unbind (in Name n)
raises (NotFound, CannotProceed, InvalidName);

NameComponent newName[] = new NameComponent[1];

// set id field to “example” and kind field to an empty string
newName[0] = new NameComponent (“example name”, ““);

rootContext.bind (newName, demoObject);

NameComponent newName[] = new NameComponent[1];
newName[0] = new NameComponent (“example2”, ““);

rootContext.bind_context (newName, namingContextObject);
18
The Naming Service�������	

 2.4 Accessing Naming Context Contents

The rebind_context operation is identical to the bind_context operation
except that the AlreadyBound exception is not thrown; an existing binding with
the same name is replaced by the new binding.
The bind_new_context opera t ion is equivalent to creat ing a new
NamingContext and then adding it using bind_context:

The above examples use a compound name. The first component resolves to a
NamingContext added with bind_context.
The unbind operation removes a name binding. It does not matter which of the
bind operations was used to create the binding. The following example destroys
bindings created with the previous example:

2.4 Accessing Naming Context Contents
Two operations are available for accessing the contents of Naming Contexts,
defined in IDL as:

The resolve operation takes a name and returns the object, if any, bound to that
name.

The list operation provides a means of accessing the entire content of a Naming
Context. The list operation is the only means of determining the name bindings
held by an arbitrary context. This operation returns results using two mechanisms: a
BindingList, which is a sequence of bindings, and a BindingIterator which
provides an iterator object to access the bindings.
The following example has two parts. The first part retrieves only the first five
objects in a naming context using BindingList; the second part continues
retrieving objects until the end of the list is reached using BindingIterator:

NameComponent newName[] = new NameComponent[2];
newName[0] = new NameComponent (“example2”, ““);
newName[1] = new NameComponent (“example3”, “context”);

NamingContext newContext = rootContext.bind_new_context (newName);

NameComponent comp[] = new NameComponent[2];
comp[0] = new NameComponent (“example2”, ““);
comp[1] = new NameComponent (“example3”, “context”);

rootContext.unbind (comp);

Object resolve (in Name n)
raises (NotFound, CannotProceed, InvalidName);

void list (in unsigned long how_many, out BindingList bl,
out BindingIterator bi);

NameComponent comp[] = new NameComponent[1];
comp[0] = new NameComponent (“example”, ““);
obj = rootContext.resolve (comp);

BindingIteratorHolder iter = new BindingIteratorHolder ();
19
The Naming Service

�������	

 2.5 BindingIterator Operations

2.5 BindingIterator Operations
The BindingIterator interface provides two operations to access bindings and
one destroy operation, defined in IDL as:

The previous example showed the use of the next_one operation. This operation
returns true when the binding argument contains a valid binding.
The next_n operation returns the number of bindings specified by the how_many
variable in a BindingList sequence. The sequence is then accessed in the same
way as the BindingList returned from a NamingContext list operation.
The following code fragment repeats the example of the list operation using the
next_one operation to iterate through the contents:

BindingListHolder list = new BindingListHolder ();
rootContext.list (5, list, iter);

for (int i = 0; i < list.value.length; i++)
{
 System.out.println (“list entry “ + i);
 System.out.print (“ name length: “);
 System.out.println (list.value[i].binding_name.length);
 System.out.print (“ name id: “);
 System.out.println (list.value[i].binding_name[0].id);
 System.out.print (“ name kind: “);
 System.out.println (list.value[i].binding_name[0].kind);
 System.out.print (“ bind type: “);
 System.out.println (list.value[i].binding_type);
}

BindingHolder binding = new BindingHolder ();

while (iter.value != null && iter.value.next_one (binding))
{
 obj = rootContext.resolve (binding.value.binding_name);
}

boolean next_one (out Binding b);
boolean next_n (in unsigned long how_many, out BindingList bl);
void destroy ();

BindingIteratorHolder iter = new BindingIteratorHolder ();
BindingListHolder list = new BindingListHolder ();
rootContext.list (5, list, iter);

for (int i = 0; i < list.value.length; i++)
{
 System.out.println (“list entry “ + i);
 System.out.print (“ name length: “);
 System.out.println (list.value[i].binding_name.length);
 System.out.print (“ name id: “);
 System.out.println (list.value[i].binding_name[0].id);
 System.out.print (“ name kind: “);
 System.out.println (list.value[i].binding_name[0].kind);
 System.out.print (“ bind type: “);
 System.out.println (list.value[i].binding_type);
}

20
The Naming Service�������	

 2.6 Naming Context Extension Operations

2.6 Naming Context Extension Operations
The following examples show the use of the Interoperable Naming Service
extension.
In a similar manner to the above, the initial NamingContextExt object is obtained
by using the resolve_initial_references operation.

The name component is transformed into a stringified name. The extension provides
the convenience operation resolve_str to resolve the stringified object.

It is also possible to convert back to a CORBA NameComponent and use that to
resolve the object.

BindingHolder binding = new BindingHolder ();

while (iter.value != null && iter.value.next_one (binding))
{
 obj = rootContext.resolve (binding.value.binding_name);
}

NamingContextExt rootExtContext = null;

try
{
 obj = orb.resolve_initial_references (“NameService”);
 rootExtContext = NamingContextExtHelper.narrow (obj);
}
catch (org.omg.CORBA.ORBPackage.InvalidName ex)
{
 System.err.println (“Failed to resolve NameService”);
 System.exit (1);
}

org.omg.CORBA.Object res;
NameComponent newName[] = new NameComponent[2];
newName[0] = new NameComponent (“example2”, ““);
newName[1] = new NameComponent (“example2”, ““);

String stringified = new String (rootExtContext.to_string (newName));
System.out.println (“Stringified name is: “ + stringified);

try
{
 res = rootExtContext.resolve_str (stringified);

 if (res != null)
 {
 System.out.println (“Object: “ + res.toString ());
 }
}
catch (org.omg.CORBA.UserException ex)
{
 System.out.println (“Resolve Exception: “ + ex);
}

NameComponent copy[] = rootExtContext.to_name (stringified);
21
The Naming Service

�������	

 2.6 Naming Context Extension Operations

It is also possible to form a URL with a stringified name as shown below. This is an
aid to portability and allows access to CosNaming via a standard URL naming
scheme.

The following example shows how a corbaloc string is generated. The IOR key is
then used in a narrow operation to resolve the service.

The following example shows how a corbaname string may be used, for example
corbaname:rir:#name/in/name.service

org.omg.CORBA.Object copyobj = rootExtContext.resolve (copy);

// The resulting URL address can then be used to resolve within
// a naming service.
System.out.println
(
 “to_url: “
 + rootExtContext.to_url (“rir:”, stringified)
);

// The Corbaloc string that is generated can be used to resolve the
// service.
System.out.println (“Root IOR: “ + orb.object_to_string
(rootContext));

// These operations are OpenFusion specific.

NamingContextExt newCtx = null;
IORDecoder decoder = new IORDecoder (rootContext);
StringBuffer locstr = new StringBuffer (“corbaloc::”);

locstr.append (decoder.getHost ());
locstr.append (“:”);
locstr.append (decoder.getPort ());
locstr.append (“/”);
locstr.append
 (StringUtil.encode (StringUtil.byteToString (decoder.getKey ())));

// StringBuffer locstr now contains the address. Attempt to resolve
// to check.
// Cannot use orb.string_to_object as no hooks are available to
// add support for INS extensions.
newCtx = NamingContextExtHelper.narrow
 (ORBAdapter.stringToObject (locstr.toString ()));

if (newCtx != null)
{
 System.out.println
 (
 “Successfully resolved context: “ +
 ORBAdapter.objectToString (newCtx)
);
}
else
{
 System.err.println (“Failed to resolve NameService”);
}

22
The Naming Service�������	

 2.7 Using the LoadBalancingFactory

or
corbaname:iiop:server.prismtechnologies.com:14005/
escaped_octal_key_string#name/in/name.service

T h e U R L d e n o t e s a n o b j e c t b o u n d i n t o t h e N a m e S e r v i c e a t h o s t
server.prismtechnologies.com on port 14005. The key string would be used
to resolve to the NamingContext and then the stringified name is resolved against
that to yield an object reference.

2.7 Using the LoadBalancingFactory
T h e i n i t i a l LoadBalancingFactory i s r e t r i e v e d u s i n g t h e
resolve_initial_references operation:

// The Corbaname string that is generated can be used to resolve the
// service.
System.out.println (“Root IOR: “ + orb.object_to_string
(rootContext));

// These operations are OpenFusion specific.

NamingContextExt newCtx = null;
IORDecoder decoder = new IORDecoder (rootContext);
StringBuffer corbaname = new StringBuffer (“corbaname:iiop:”);

corbaname.append (decoder.getHost ());
corbaname.append (“:”);
corbaname.append (decoder.getPort ());
corbaname.append (“/”);
corbaname.append
 (StringUtil.encode (StringUtil.byteToString (decoder.getKey ())));
corbaname.append (“#example name”);

// StringBuffer corbaname now contains the NamingContext. Attempt to
// resolve to check.
// Cannot use orb.string_to_object as no hooks are available to
// add support for INS extensions.
newCtx = NamingContextExtHelper.narrow
 (ORBAdapter.stringToObject (corbaname.toString ()));

if (newCtx != null)
{
 System.out.println
 (“Context IOR: “ + ORBAdapter.objectToString (newCtx));
}
else
{
 System.err.println (“Failed to resolve NameService”);
}

obj = orb.resolve_initial_references (“LoadBalancingFactory”);
lbfactory = LoadBalancingFactoryHelper.narrow (obj);
23
The Naming Service

�������	

 2.8 Manipulating Objects in the LoadBalancer

It is used to create the LoadBalancer as shown below. The policy that the load
balancer will use initially is specified when it is created, but this can be changed
dynamically if required. The objects that are being added to the LoadBalancer are
CORBA NamingContext objects.

2.8 Manipulating Objects in the LoadBalancer
Objects may be added as shown above, or they can be directly retrieved via the get
operation of the LoadBalancer interface.

The list operation displays all objects currently bound into the LoadBalancer.
Objects may be also be removed from the LoadBalancer.

The remove operation allows objects to be removed from the LoadBalancer. The
required parameter is the CORBA object that is to be removed. For instance, the
client may use the list operation and then iterate over those results to remove all
the elements from the LoadBalancer.

2.9 Using the LoadBalancer with the Naming Service
Remember that the client must perform two binds: one for the LoadBalancer and
one for the LoadBalancerAlias. They refer to the same object but this separation
allows the Load Balancing object to be dynamically changed even after it has been
bound into the Naming Service because the Naming Service can distinguish
between them.

Then, the client may either resolve the lbobj to get the LoadBalancer, or the
lbalias to perform the actual load balancing. For example, the alias below is
retrieved. This code simply prints the objects it resolves. Contexts 1, 2, and 3 are
returned when Round Robin has been selected. It then loops and returns context 1
again.

lb = lbfactory.createLoadBalancer (“Roundrobin”);
lb.add (ctx1);
lb.add (ctx2);
lb.add (ctx3);

System.out.println (“LoadBalancer retrieved: “ + lb.get ());

org.omg.CORBA.Object elements[] = lb.list ();

lb.remove (anobject);

// lbobj and lbalias are NameComponents.
rootContext.bind (lbobj, lb);
rootContext.bind (lbalias, lb.getAlias ());

for (int i=0; i<4; i++)
{
 obj = rootContext.resolve (lbalias);

 System.out.println (“Resolved: “ + obj);
 try
24
The Naming Service�������	

 2.10 Customizing the LoadBalancer

In contrast, in the following code LoadBalancer is retrieved and the objects bound
into it are listed.

2.10 Customizing the LoadBalancer
The LoadBalancer enables the client to use different algorithms (policies) when
returning objects. A standard set of policies is supplied and automatically loaded. It
is possible to design further plugins and either add these dynamically or configure
them to be loaded at runtime. The alternative is to pass the class name to the
addPlugin method. The plugin should implement the LoadBalancerPlugin
interface as the example below shows.

 {
 NamingContextExt ctx = NamingContextExtHelper.narrow (obj);
 System.out.println (“Resolved name context: “ + ctx);
 }
 catch (org.omg.CORBA.BAD_PARAM e)
 {
 System.err.println
 (
 “Unable to narrow the object. Maybe LoadBalancing “ +
 “is not enabled in the name service?”
);
 break;
 }
}

org.omg.CORBA.Object newlb = rootContext.resolve (lbobj);
lb = LoadBalancerHelper.narrow (newlb);

// List
org.omg.CORBA.Object initiallist[] = lb.list ();

public class LoadBalancingTestPlugin implements LoadBalancerPlugin
{
 // Must have a public no-args constructor.
 public LoadBalancingTestPlugin () throws PluginFailure
 {
 }

 public org.omg.CORBA.Object get
 (
 LoadBalancer reference,
 org.omg.CORBA.Object[] objects,
 java.lang.String policy
)
 throws PluginFailure
 {
 // Always return second object bound
 if (objects.length < 2)
 {
 // Not enough objects bound to get the second object
 throw new PluginFailure ();
 }
 else
 {
 return objects[1];
 }
25
The Naming Service

�������	

 2.10 Customizing the LoadBalancer

The plugin may be added dynamically to the LoadBalancer. The policies of that
plugin are then available for use, and can be selected dynamically.

 }

 public java.lang.String[] getSupportedPolicies ()
 {
 return new String [] { “TEST_POLICY” };
 }
}

System.out.println (“Adding the TestPlugin”);
try
{
 lb.addPlugin
 (“com.prismt.cos.CosNaming.examples.LoadBalancingTestPlugin”);
}
catch (InvalidPlugin e)
{
 System.out.println (“Caught exception: “ + e);
 System.exit (1);
}

// Set the policy to that of the new plugin.
System.out.println (“Setting a new policy”);
try
{
 lb.setPolicy (“TEST_POLICY”);
}

26
The Naming Service�������	

 2.10 Customizing the LoadBalancer

27
The Naming Service

�������	

CHAPTER

3 Worked Example
This section contains a simple example application which demonstrates the way in
which various features of the OpenFusion Naming Service are used together.
No CORBA system exceptions are caught in any of the following examples: code to
deal with exceptions has been omitted for the sake of clarity and brevity. These
exceptions must, of course, be properly caught and handled in a working system.
The exceptions raised by the OpenFusion Naming Service and Load Balancer are
listed in Supplemental Information on page 38.

3.1 Example Client
Step 1: Obtain the Naming Service Root Context

T h e i n i t i a l N a m in g C o n t e x t o b j ec t i s o b t a i n e d b y u s i n g t h e
resolve_initial_references operation:

Step 2: Add a new binding
The addition of a new binding requires a name to identify the binding. In this
example, there is only one name context, so the name consists of only one
component. The following code allocates a name with a maximum sequence length
of one:

The first component of the name sequence must now be set:

i

org.omg.CORBA.Object obj = null;
org.omg.CORBA.ORB orb = null;
NamingContextExt rootContext = null;

orb = ObjectAdapter.init (args);

try
{
 obj = orb.resolve_initial_references (“NameService”);
 rootContext = NamingContextExtHelper.narrow (obj);
}
catch (org.omg.CORBA.ORBPackage.InvalidName ex)
{
 System.err.println (“Failed to resolve NameService”);
 System.exit (1);
}

NameComponent newName[] = new NameComponent[1];

// set id field to “example” and kind field to an empty string
newName[0] = new NameComponent (“example”, ““);
28
 The Naming Service�������	

 3.1 Example Client

Note that both the id and kind fields are always used when matching names. The
kind field has no defined meaning within the Naming Service, so it is available for
use by applications running on top of the Naming Service.
Assuming the existence of an object reference, demoObject, the object can now be
bound:

Step 3: List the contents of a naming context
The list operation allows the contents of a Naming Context to be examined, with
resulting name bindings returned via either a BindingList CORBA sequence or a
BindingIterator object. In the following example, the BindingList is not
used and all of the contents are returned using the iterator. Note that even though a
zero length list is specified in the first argument of the list command, a valid
(empty) sequence is still returned.
Once a name binding is obtained, the resolve operation returns the object
associated with the binding. The resulting object may be a NamingContext which,
if it was bound using bind_context or bind_new_context, will have a
bind_type of ncontext.

// obtain demoObject reference ...

rootContext.bind (newName, demoObject);

BindingIteratorHolder bi = new BindingIteratorHolder ();
BindingListHolder bl = new BindingListHolder ();
NamingContextExt childContext = null;

rootContext.list (0, bl, bi);

BindingHolder binding = new BindingHolder ();
while (bi.value != null && bi.value.next_one (binding))
{
 try
 {
 obj = rootContext.resolve (binding.value.binding_name);
 if (binding.value.binding_type == BindingType.ncontext)
 {
 childContext = NamingContextExtHelper.narrow (obj);
 // do something with childContext
 }
 else
 {
 // do something with obj
 }
 }
 catch (org.omg.CORBA.UserException ex)
 {
 System.err.println (“resolve exception “ + ex);
 }
}

29
The Naming Service

�������	

CHAPTER

4 API Definitions
This section describes selected interfaces and related aspects of the service. The
complete IDL API is provided elsewhere as part of the product distribution.
The OpenFusion Naming Service provides most of its functionality through a single
interface called NamingContext. A second interface, BindingIterator,
provides support for enumerating the contents of Naming Contexts.

4.1 OMG Standard API Definitions
4.1.1 NamingContext Interface

The NamingContext interface provides operations to create, modify and examine
name bindings within a naming context. The interface also provides operations to
create and destroy naming contexts.
A compound name can be supplied when NamingContext operations take a name
as a parameter. When a compound name is supplied, the operation is applied to the
Naming Context identified by the compound name’s components, excluding the last
component. The last component identifies the binding within the selected Naming
Context.

Table 2 Binding and Unbinding Operations

Operation Description
bind Creates a binding between a name and an object.
rebind Creates a binding between a name and an object,

replacing any existing binding with the same name.
bind_context Creates a binding between a name and a Naming Context.
rebind_context Creates a binding between a name and a Naming Context,

replacing any existing binding with the same name.
bind_new_context Creates and binds a new Naming Context.
unbind Removes a name binding from a context.
30
 The Naming Service�������	

 4.1 OMG Standard API Definitions

Three operations support the creation and destruction of Naming Contexts:

Two operations access the contents of a Naming Context:

4.1.2 NamingContextExt Interface
The NamingContextExt interface provides operations to use URLs and stringified
names.

Table 3 Naming Context Creation and Destruction

Operation Description
new_context Creates a new NamingContext object. This context is

not bound to any other context.
bind_new_context Creates a new NamingContext object and binds it using

the supplied name.
destroy Requests the destruction of the NamingContext.

Table 4 Accessing Naming Context Contents

Operation Description
resolve Retrieves the object bound to a particular name.
list Returns a list of name bindings associated with the Naming

Context in the form of a sequence and a
BindingIterator.

Table 5 NamingContextExt Operations

Operation Description
to_string Accepts a compound name and returns a stringified

name.
to_name Accepts a stringified name and returns a compound

name.
to_url Accepts a URL address component and a stringified

name and returns a URL.
resolve_str A convenience operation that accepts a stringified

name and performs a resolve in the same manner
as NamingContext::resolve.

insToComponent Converts an INS stringified name to a CORBA
Name Component array.

componentToIns Converts a CORBA Name Component array to an
INS stringified name.
31
The Naming Service

�������	

 4.2 OpenFusion API Extensions

Conversions from URLs in the corbaloc and corbaname formats to objects are
handled by CORBA::ORB::string_to_object but most ORBs currently do not
s u p p o r t t h i s fu n c t i o n a l i t y. H o w e v e r, t h e O p e n F u s i o n
ORBAdapter::stringToObject operation does support this, and may be used
instead. It is part of the com.prismt.orb package.

4.1.3 BindingIterator Interface
The BindingIterator interface provides two operations to access name bindings,
and one destroy operation.

4.2 OpenFusion API Extensions
4.2.1 LoadBalancingFactory Interface

The LoadBalancingFactory is colocated with the Naming Service and is
therefore automatically started with the Naming Service. One operation creates a
LoadBalancer object.

4.2.2 LoadBalancer Interface
A LoadBalancer is an object that may be bound into the Naming Service. This
may have zero or more CORBA Objects placed inside it. The LoadBalancer is
defined in IDL by:

Table 6 BindingIterator Operations

Operation Description
next_one This operation returns the next binding. If there are no more

bindings, false is returned.
next_n This operation returns at most the requested number of bindings.
destroy This operation destroys the iterator.

Table 7 LoadBalancingFactory Operations

Operation Description
createLoadBalancer Creates and returns a new LoadBalancer object. The

policy parameter is used to choose the initial policy for
the LoadBalancer.

interface LoadBalancer
{
…
 /**
 * This operation allows the LoadBalancer to retrieve
 * the alias object
 */
 LoadBalancerAlias getAlias ();
};
32
The Naming Service�������	

 4.2 OpenFusion API Extensions

The LoadBalancer implementation is known as delegate style.
The LoadBalancer should be bound when the client wishes to bind a
LoadBalancer object that may be directly retrieved from the NameService. The
LoadBalancer interface is used for control operations (such as adding objects or
changing policies within the load balancer itself).
This applies whether or not Load Balancing has been enabled in the service.
Alternatively, the OpenFusion Naming Service will attempt to return an object
bound into the LoadBalancer when a LoadBalancerAlias is bound and Load
Balancing is enabled. The alias may be retrieved by the getAlias function shown
above. The LoadBalancerAlias interface is used by applications to retrieve an
object to perform a specific task.
The client therefore performs two binds: one for the LoadBalancerAlias and one
for the LoadBalancer. Both refer to the same object but the Naming Service can
distinguish between them. This separation allows the LoadBalancer object to be
dynamically changed even after it has been bound into the Naming Service. For
instance, LoadBalancer objects may be removed, added or their policy changed
without the need for creating new LoadBalancerAlias objects.

interface LoadBalancerAlias : LoadBalancer
{
};

Table 8 LoadBalancer Operations

Operation Description
add Adds an object to the LoadBalancer.
get Retrieves an object from the LoadBalancer according to

the specified policy.
remove Removes the matching object from the LoadBalancer.
list Returns a list of all the objects within the LoadBalancer.
setPolicy Resets the current policy.
addPlugin Adds a new plugin. The parameter should be a fully

specified Java class name.
getAlias Returns the delegate LoadBalancerAlias.
33
The Naming Service

�������	

 4.2 OpenFusion API Extensions

4.2.3 LoadBalancer Standard Policies
The Load Balancing interfaces have been exposed as configurable plugins, thereby
allowing developers to write their own load balancing mechanisms should the
default policies not be sufficient. The standard OpenFusion plugin contains the
following policies:

RemoveCurrent
The RemoveCurrent version of each policy unbinds each object from the load
balancer after it has been returned. This means that the load balancer contains a
diminishing number of objects; calls made after the last object has been returned
cause the NoneBound exception to be thrown.
These policies are useful when resources (objects to return) cannot be re-used once
allocated or committed (returned by the load balancer), or require special processing
before being re-used (triggered by the NoneBound exception).
Combining RoundRobin with RemoveCurrent has the same effect as combining
FirstBound with RemoveCurrent and therefore has not been included.

Table 9 LoadBalancer Standard Policies

Policy Name Description
Random Returns the object references in a

random order.
RoundRobin Returns the object references in a

sequential loop.
FirstBound Returns the object reference that was

first bound to the name.
Random_Active Returns a random active object.
RoundRobin_Active Returns only active objects sequentially.
FirstBound_Active Returns the first bound active object.
Random_RemoveCurrent Returns objects in a random order

removing each as it does so.
FirstBound_RemoveCurrent Returns the first bound object and

removes it.
Random_Active_RemoveCurrent Returns a random active object and

removes it.
FirstBound_Active_RemoveCurrent Returns a first bound active object and

removes it.
34
The Naming Service�������	

 4.2 OpenFusion API Extensions

Note that the name in the first column of the table is the name that should be passed
to setPolicy in order to select one of the default policies. These default names are
defined in NamingExtensions.idl as const strings.

4.2.4 LoadBalancerPlugin Interface
The LoadBalancerPlugin Interface is illustrated in Figure 3.

Figure 3 LoadBalancerPlugin Interface
Plugins must implement the LoadBalancerPlugin interface in the
com.prismt.cos.CosNaming package. The LoadBalancer instantiates plugins
listed in the property Load Balancing Plugin in the Administration Manager.
This property is a comma-separated list of fully qualified class names. Each class
must have a public, no argument constructor so that it can be instantiated by the
LoadBalancer.

4.2.5 JNDIObject Interface
The Naming Service can display non-CORBA objects it finds in the JNDI hierarchy.
In this situation, a CORBA JNDIObject will be created in order to display the
object. The JNDIObject contains two read-only attributes:
• readonly attribute string stringifiedObject;

i

Table 10 LoadBalancerPlugin Operations

Operation Description
get Returns the appropriate object to the LoadBalancer

implementation. There are two parameters: first, an
array of CORBA objects denoting the available objects
in the LoadBalancer, and secondly, a String policy.
The policy parameter allows one policy to be chosen
when the plugin supports multiple policies. The plugin
throws a PluginFailure exception when an error
occurs.

getSupportedPolicies Returns an array of Strings containing the names of
the policies that the plugin will support. These names
directly correspond to the name that is used by the client
when choosing a policy for use.

LoadBalancerPlugin

get()
getSup portedPol ic ies()

<<Interface>>
35
The Naming Service

�������	

 4.2 OpenFusion API Extensions

• readonly attribute string className;

For example, the attributes of a String stored in JNDI would contain the stringified
value of the object and the classname java.lang.String.
The OpenFusion JNDI implementation is described in the JNDI Guide. Full details
of the specification and descriptions of the standard features of the JNDI API and
SPI are available from Sun Microsystems.
36
The Naming Service�������	

 4.2 OpenFusion API Extensions

37
The Naming Service

�������	

CHAPTER

5 Supplemental Information
This section includes additional information which is necessary or useful for
developing applications which use the Naming Service.
Administration properties and instrumentation are described first, then how to
access them. There is a brief description of the relationship between the Naming
Service and JNDI, followed by notes about using LDAP with the Naming Service.
Purging and memory management features are described next, then XML import
and export; finally there are lists of the exceptions that may be thrown.

5.1 Administration Properties and Instrumentation
Behaviour and performance of the Naming and Load Balancing Services can be
controlled both programmatically and from the Administration Manager.
Please refer to Configuration and Management for details of controls and
parameters for administering the OpenFusion Naming Service and Load Balancing.
These properties can all be accessed using (SNMP).

5.2 Java Naming & Directory Interface (JNDI)
The Java Naming and Directory Interface (JNDI) API is a generic API for accessing
naming and directory services. The OpenFusion Naming Service is layered on top
of JNDI. This allows it to access the OpenFusion service provider (which supports
JDBC and Memory persistence) and also the Sun LDAP provider. Clients may
access either transparently or use the OpenFusion JNDI SPI independently of the
CORBA service.
Whenever the OpenFusion Naming Service starts, it automatically creates a basic
jndi.properties file, which contains only the minimum information necessary to run
the service. These settings can be overridden and additional properties specified by
means of a Java hashtable.
The OpenFusion JNDI implementation is described in the JNDI Guide.
Please refer to the relevant Sun Microsystems documentation for details of JNDI
standard functionality.
38
 The Naming Service�������	

 5.3 Lightweight Directory Access Protocol (LDAP)

5.3 Lightweight Directory Access Protocol (LDAP)
The OpenFusion Naming Service is implemented in Java for platform
independence. It is layered on top of JNDI, and can therefore utilise Sun
Microsystems’ JNDI LDAP service provider. This makes it useful for those
organisations which use LDAP as their enterprise directory service; it can use
standard LDAP authentication mechanisms.
It is assumed that the LDAP Server schemas are up to date. For details of LDAP
configuration and functionality, please refer to the relevant Sun Microsystems
documentation at this location:
http://java.sun.com/products/jndi/tutorial/basics/prepare/content.html.

5.4 Purging Options
It is important to be aware of the differences between purging and memory
management. Memory management is related to caching, and is performed without
reference to the status of an object. The purging mechanism is part of the
OpenFusion Naming Service and its handling of objects depends explicitly on their
status.
Purging is the deletion of invalid object references and purgeable objects from a
service. Object references are regarded as invalid when they are not active and not
persistent.
These features can be enabled and controlled with properties specified in the
Administration Manager.

Purge on Load
When this option is selected, invalid object references are removed when contexts
are first accessed after a server has been restarted.

Purge on List
When this option is selected, invalid object references are removed from a naming
context when the list operation is performed on the context.
If either Purge option is enabled, a List operation which encounters an invalid
context will automatically unbind the context and then re-try. A warning message is
printed in the log file when a binding to an invalid context is removed in this way.

Purge Class Plugin
If used, this property must contain the name of a Java class, which can be publicly
instantiated, that implements the com.prismt.openfusion.plugin.Purgable
interface. This interface has one operation:
public boolean isPurgable (org.omg.CORBA.Object obj)

i

39
The Naming Service

�������	

http://java.sun.com/products/jndi/tutorial/basics/prepare/content.html

 5.5 Memory Management

This class is used to determine whether or not to purge objects from the Naming
Service. Typically a client will implement this operation to determine whether its
object is persistent or transient and hence may be purged. This service will also
check the active/inactive state.
If no class is specified for this property, the ORBAdapter.isValid method is used.
This will successfully determine the state of objects created using the OpenFusion
framework, but it will not work reliably for foreign objects (objects created in
non-OpenFusion environments or on other ORBs).

5.5 Memory Management
Memory Management is the removal of objects from memory. The objects can be
naming contexts as well as client and server objects. They are re-loaded on demand.
Memory Management is a caching option that can be enabled in the OpenFusion
Naming Service. When enabled, cache purging can be performed either at regular
intervals, or when the number of bound objects reaches a specified limit.

Object Purging
Object cache properties cannot be specified unless this option is enabled. When it is
enabled, then the properties Object Cache Minimum Size, Object Cache
Maximum Size, and Object Cache Purging Interval can be specified.

Object Cache Minimum Size
This is an integer value which specifies the minimum number of objects to keep in
the cache. The default value is 0, which means that the cache is always completely
flushed.

Object Cache Maximum Size
This is an integer value which specifies the maximum number of objects to hold in
the cache; if not 0, it must be greater than the value specified for Object Cache
Minimum Size. The default value is 0, which means that no object caching is
performed.
When the cache is full, objects are removed using a least-recently-used algorithm
until the value amount specified in Object Cache Minimum Size is reached.

Object Cache Purging Interval
This is an integer value which specifies the time interval in seconds between cache
flushing operations. The default value is 0, which means that periodic flushing does
not occur; the cache is only flushed when full. For any other value, cache flushing
occurs at the specified intervals whether or not the maximum cache size has been
reached.
40
The Naming Service�������	

 5.6 XML Export and Import

When the cache is purged, objects are removed using a least-recently-used
algorithm until the value amount specified in Object Cache Minimum Size is
reached.
Note
• Care must be taken when specifying memory management properties to avoid

values which could result in thrashing (objects being rapidly loaded, removed
from memory, and reloaded).

• When the Naming Service is being used with purging enabled, clients must
always perform operations such as resolve from the root context, to avoid
problems arising from attempts to resolve naming contexts which have been
removed from memory.

5.6 XML Export and Import
The OpenFusion Naming Service can both export and import XML files containing
a representation of a naming hierarchy. This is performed at the command line; a
specific naming hierarchy of a single Naming Service instance is handled with a
single command.
To export a naming hierarchy to an XML file, use this command:

run com.prismt.cos.CosNaming.xml.ExportXML <options>

To import a naming hierarchy from an XML file, use this command:
run com.prismt.cos.CosNaming.xml.ImportXML <options>

The options for both commands are described in the tables.
The options can occur in any order.
The -n parameter specifying the XML file to use must be present.
The -c parameter specifies the name of the naming context that will be the root of
the exported or imported naming hierarchy. This must be a valid INS name. If this
parameter is not specified then the root of the naming hierarchy is used.
The Naming Service to use is determined in one of four ways. The resolve name of
the service can be given, or its IOR can be given directly (with the -i option) or
indirectly (with the -f option). If none of these is given, then the resolve name
"NameService" is used.

Option Description
-n namingHierarchyFile name of XML file to export naming hierarchy into
resolveName the resolve name of the Naming Service
41
The Naming Service

�������	

 5.6 XML Export and Import

Naming hierarchies can also be exported and imported using the OpenFusion
Naming Service Manager as described in Chapter 11, Naming Service Manager, on
page 82.

5.6.1 Exporting and Importing Cyclics
This section shows how the OpenFusion Naming Service handles cyclics (bindings
which refer to a parent or grandparent context) when they occur in naming
hierarchies included in XML exports and imports.
Figure 4 illustrates the principles of exporting and importing hierarchies with a
straightforward example within a single Naming Service instance. The shaded
hierarchy is exported (the context labelled B is the hierarchy root nominated with
the -c option on the export command), and then re-imported and attached to B (with
the -c option on the import command). Naming contexts are transient CORBA
objects, so when the hierarchy is imported new contexts B1, C1 and D1 are created.
Note that the imported hierarchy cannot be attached to A because the new context
B1 will of course have the same name as the existing context B (each reference
within a context must be to a unique name; we assume that B doesn’t already
contain a reference to another context or object with the same name as itself). The
cyclic reference is created as intended and the integrity of the naming graph is
maintained. Note that the new cyclic reference is to B1 and not to B.

-c targetNamingContext the name of the naming context that is to be the root
of the exported naming hierarchy

-f namingIORFile the name of a file containing the IOR of the Naming
Service

-i namingIOR the IOR of the Naming Service

Option Description
-n namingHierarchyFile name of XML file to import naming hierarchy from
resolveName the resolve name of the Naming Service
-c targetNamingContext the name of the naming context that is to be the root

of the imported naming hierarchy
-f namingIORFile the name of a file containing the IOR of the Naming

Service
-i namingIOR the IOR of the Naming Service

Option Description
42
The Naming Service�������	

 5.6 XML Export and Import

Figure 4 Naming Hierarchy Export and re-Import

Naming
Service

Root A

Step 1: Export

(cyclic)

B

C

D

A

Step 2:
Import

(cyclic)

B1

C1

D1

Naming
Service

Root

(cyclic)

B

C

D

43
The Naming Service

�������	

 5.7 Exceptions

5.7 Exceptions
The exceptions raised by the Naming Service are listed in Table 11.

The exceptions raised by the Load Balancer are listed in Table 12.

Table 11 Naming Service Exceptions

Name Purpose
AlreadyBound Indicates an object is already bound to the specified

name. Only one object can be bound to a particular
name in a context.

CannotProceed Indicates that the implementation has given up for some
reason. The client, however, may be able to continue the
operation at the returned naming context.
One possible reason for this exception is that a Name
Server holding one or more of the name bindings within
a compound name is currently unavailable.

InvalidName Indicates that the name is invalid. This implementation
disallows zero length names only.

NotEmpty Indicates that a naming context has bindings.
NotFound Indicates that the name does not identify a binding or

that the binding is not of the type required for the
requested operations.

Table 12 Load Balancer Exceptions

Name Purpose
NoneBound No objects are bound into the LoadBalancer.
InvalidPolicy The specified policy is invalid.
InvalidPlugin The specified class name is invalid.
ObjectNotFound The object does not exist in the LoadBalancer.
PluginFailure The plugin has failed for some reason.

This exception is returned when a custom plugin has
itself determined that it has failed.
44
The Naming Service�������	

 5.7 Exceptions

45
The Naming Service

�������	

JAVA NAMING AND
DIRECTORY INTERFACE

CHAPTER

6 Description
The Java Naming and Directory Interface (JNDI) is an Application Programming
Interface (API) and Service Provider Interface (SPI), defined by Sun Microsystems,
that provides naming and directory functionality to Java applications whilst
remaining independent of any specific directory implementation.
This guide describes the OpenFusion implementation of the JNDI specification
rather than the standard functionality defined by Sun Microsystems.
Full details of the specification and descriptions of the standard features of the
JNDI API and SPI are available from Sun Microsystems. Although this guide
contains brief descriptions of the basic features of JNDI and its underlying
concepts, it assumes that readers are familiar with Sun’s standard documents and
have copies available for reference.
This guide demonstrates how to use the OpenFusion SPI independently of the
OpenFusion CORBA Naming Service, but accessing data written by the Naming
Service. The OpenFusion SPI supports persistence in memory and JDBC databases.

6.1 Overview
6.1.1 Sun’s JNDI Standard Features

The basic features of the JNDI specification include the ability to:
• give meaningful names to objects (name bindings)
• find names which have been bound to objects (resolve)
• group names in logical hierarchies (naming contexts)
• group distributed naming hierarchies (federation)
• access data through different directory services using a standard interface

6.1.2 OpenFusion Enhancements
Advantages of OpenFusion JNDI over the basic Sun specification include:
• improved, more robust multi-user access
• speed improvements, including write caching
48
 Java Naming and Directory Interface�������	

 6.2 Concepts and Architecture

6.2 Concepts and Architecture
6.2.1 Standard JNDI

The purpose of JNDI is to provide the ability to associate meaningful names with
objects to make it easy to access those objects. A name binding is an association of a
name with an object reference as a name-value pair.
Name bindings are grouped in hierarchies called naming contexts. A naming context
is an object containing zero or more name bindings. Each name binding within a
naming context refers to either another naming context (a subcontext) or an object.
An hierarchy of contexts, subcontexts and objects is known as a graph. A context
allows a client to perform various operations upon the objects bound within it.
A naming system is a set of many contexts of the same type. JNDI enables different
naming systems to be connected together (federation).
The process of finding a name and retrieving the associated object reference is
called resolving the name.
The JNDI architecture is illustrated in Figure 5, which shows the relationships
between JNDI, Java applications, and object directory services.

Figure 5 JNDI Architecture
JNDI-compliant applications can use generic calls on different directory services,
such as Lightweight Directory Access Protocol (LDAP) servers, which plug in to
the SPI. A Java client uses the API specifying the appropriate service provider in
order to interact with the directory service.

JNDI SPI

RMI LDAP NDS CORBA . . .

JAVA APPLICATION

JNDI API

JNDI NAMING MANAGER
49
Java Naming and Directory Interface

�������	

 6.2 Concepts and Architecture

OpenFusion CORBA Naming Service clients can access either the OpenFusion
service provider or the Sun LDAP provider transparently. It is also possible to use
the OpenFusion JNDI SPI independently of the CORBA service.

6.2.2 The Initial Context
In the JNDI, all naming and directory operations are performed relative to a context.
Unlike the CosNaming Service, there is no absolute root. Therefore, the JNDI
defines an initial context, InitialContext, which provides a starting point for
naming and directory operations. This is retrieved through the NamingManager
interface as shown below:

A service provider must be specified in order to use the JNDI. This is part of the
standard JNDI configuration. However, further configuration information may need
to be supplied depending upon the service provider.
JNDI properties can be configured by application resource files, environment
parameters passed via a hashtable (as above), system properties or applet parameters
in JNDI, with those specified in the hashtable taking priority. See also Supplemental
Information on page 58.

6.2.3 Naming Systems
A naming system maps names to objects within a directory service. The underlying
directory service determines the syntax the JNDI client must use in the name, as a
naming context represents a node within that directory service. For example, the
OpenFusionSPI follows a left-to-right naming convention while the LDAP SPI
uses a right-to-left notation.
The API methods that accept a name have two overloads: one that accepts a Name
argument and one that accepts a string name. Name is an interface that represents a
generic name; that is, an ordered sequence of zero or more components.

6.2.4 References and Addresses
Different SPIs may restrict what they can store directly, whereas the JNDI API does
not carry any restrictions on what sort of objects may be stored. For instance, the
CosNaming SPI only accepts org.omg.CORBA.Object (or its subclasses). JNDI
defines a Reference for use when the serialized form of an object cannot be directly
stored in the directory. A reference to an object contains one or more addresses, or
communication end points, and information on how to construct a copy of this
object. The JNDI will attempt to turn references looked up from the directory into
the Java objects they represent. JNDI clients therefore present the illusion of directly
storing Java objects in the directory.

initialctx = NamingManager.getInitialContext (env);
50
Java Naming and Directory Interface�������	

 6.2 Concepts and Architecture

51
Java Naming and Directory Interface

�������	

CHAPTER

7 OpenFusion SPI Implementation
The Ope nFus ion SPI im p lemen t s t h e j a v a x .n a m i n g . C o n t e x t a n d
javax.naming.Reference interfaces as described in the specification published by
Sun Microsystems, except for one operation: the javax.naming.Context interface
does not implement the operation getNameInNameSpace. This is because the
OpenFusion SPI supports cyclic references in the name hierarchy, and a distinct
fully qualified name does not make sense in this case. (A cyclic reference is one
where a context contains a binding which refers back to a parent or grandparent
context, which may be in a different naming system.) This feature was included in
order to support the OpenFusion CORBA Naming Service.

7.1 Names
The naming scheme of the provider is very similar to that of the CosNaming
interoperable Naming Service (INS) specification and the Sun CosNaming SPI.
The naming scheme is left-to-right, slash-separated, case sensitive and hierarchical.
String names accepted by the SPI should be JNDI composite names in which each
c o m p o n e n t i s t h e s t r i n g i f i e d J N D I e s c a p e d f o r m o f a
CosNaming::NameComponent. The stringified form of a CosNaming::Name is
defined in the INS specification. Quoting problems may arise when the JNDI syntax
defines meta-characters and the underlying provider has its own syntax. These can
lead to many levels of escaping.
Two options are available:
• a Name may be returned by nameParser.parse(), where nameParser is a

value obtained from the service provider
• the class com.prismt.cos.CosNaming.OFNamingConverter may be used
The name parser will return a compound name as the example below shows.
String strname = “A\\.\\/B”;
NameParser parser = rootctx.getNameParser (““);
Name jndiname = parser.parse (strname);

subctx = (Context)rootctx.lookup (jndiname);
52
 Java Naming and Directory Interface�������	

 7.2 Java Objects

The class com.prismt.cos.CosNaming.OFNamingConverter implements the
interface shown in Figure 6. Note that this class carries out validity checks on the
data passed to it.

Figure 6 OFNamingConverter Interface

7.2 Java Objects
The OpenFusion SPI supports storage of the following types of Java objects using
JDBC to store to disk or memory:
• serializable
• referenceable
• references
Note that any type of Java object may be stored when the provider is configured to
use memory-based persistence and StoreAnyObject is set to true.

OFNamingConvert er

OFNamingConverter()
convertCOStoJNDI(name : String) : Name
convertCOStoJNDI(n : NameComponent[]) : Name
convertJNDItoCOS(n : Name) : NameComponent[]
convertJNDItoCOS(name : String) : NameComponent[]

(from CosNaming)

NamingConverter

convertCOStoJNDI(name : String) : Name
convertCOStoJNDI(n : NameComponent[]) : Name
convertJNDItoCOS(n : Name) : NameComponent[]
convertJNDItoCOS(n : String) : NameComponent[]

(from CosNam in g)

<<Int erface>>

LDAPNamingConverter

LDAPNamingConverter()
makeNewDN()
prependBase()
setCurrentUUID()
convertCOStoJNDI()
convertCOStoJNDI()
convertJNDItoCOS()
convertJNDItoCOS()
escapeS tring()

(from CosNaming)
53
Java Naming and Directory Interface

�������	

 7.3 Supplied Factories

7.3 Supplied Factories
7.3.1 Storing CORBA Objects

The OpenFusion CORBA Naming Service stores CORBA objects in the
OpenFusion SPI using the following factories, which implement DirState and
DirObject:

com.prismt.cos.CosNaming.CORBAStateFactory
com.prismt.cos.CosNaming.CORBAObjectFactory

7.3.2 Storing RMI-IIOP Objects
To store RMI-IIOP objects in the OpenFusion JNDI, an additional StateFactory is
required. This works in conjunction with the CORBAStateFactory and
CORBAObjectFactory factories. The client must set the properties either
programmatically or as system properties, as follows.

Programmatically

As System Properties:

7.4 Federation
The OpenFusion SPI supports federation. The JNDI specification defines the
method of ’hooking’ together naming systems so that the aggregate system can
process composite names (names that span the naming systems).
The federation method uses:
• Weak separation. The context does not necessarily treat the separator as a naming

system boundary. When processing a composite name, it consumes as many
leading components as appropriate for the underlying naming system.

• Next Naming System pointers (junctions). The OpenFusion SPI supports dynamic
implicit NNS pointers.

Note that the naming system is non-terminal: components from the naming system
can appear anywhere in the composite name. Also the OpenFusion SPI cannot
determine the naming system boundary syntactically but it can determine it
dynamically.

env.put(javax.naming.Context.OBJECT_FACTORIES,
 "com.prismt.cos.CosNaming.CORBAObjectFactory");
env.put(javax.naming.Context.STATE_FACTORIES,"com.prismt.j2ee.jndi.RMIStateFactor
y");

 -Djava.naming.factory.state=com.prismt.j2ee.jndi.RMIStateFactory
 -Djava.naming.factory.object=com.prismt.cos.CosNaming.CORBAObjectFactory
54
Java Naming and Directory Interface�������	

 7.4 Federation

55
Java Naming and Directory Interface

�������	

CHAPTER

8 Using Specific Features
This section provides some example Java code which demonstrates the use of the
OpenFusionSPI.
Further source code examples are supplied elsewhere as part of the product
distribution.
Detailed instructions for using JNDI can be found in the JNDI Tutorial published by
Sun Microsystems.
It is possible to use the SPI to access data written by the Naming Service (assuming
that the Naming Service has been configured to use the OpenFusionSPI). The
following describes how to configure JNDI for access to Naming Service data
written under JDBC.
It is recommend that close is always called in order to clean up and free resources
used by the OpenFusionSPI.

8.1 JDBC-based Persistence
The OpenFusion Naming Service uses the JNDI root UUID (Universally Unique
Identifier) and a SID (Service ID) value to establish access to the data in the
database. These values must be set in order to access the data. It is possible for a
standalone JNDI client to just set the root UUID. In this case, the SID value is set
internally to be the same as the UUID.
When logging is enabled for the Naming Service and the level is set to INFO, these
values are output to the log file, and can be retrieved from there if required. Typical
log file entries are shown below:

INFO - Process ID: 0ba57cb0-4dae-11d4-ada7-ce8c9fa68378

INFO - Server ID: 0ba57cb0-4dae-11d4-ada7-ce8c9fa68378

INFO - Common: database = com.prismt.jdbc.Database@16304c8

INFO - initSID: database = com.prismt.jdbc.Database@16304c8

INFO - NamingService UUID is 0d68b080-4dae-11d4-ada7-ce8c9fa68378

The second and fifth lines are the ones containing the necessary information. These
values can then be passed into the JNDI environment using a hashtable:
// Set the UUID.
env.put (“com.prismt.j2ee.jndi.OpenFusionSPI.UUID”,
 args[0]);
// Set the SID.
56
 Java Naming and Directory Interface�������	

 8.2 Accessing Data

8.2 Accessing Data
The hierarchy can be browsed and modified once the root context is located.

A JNDI client may bind a non-CORBA object into the Naming Service hierarchy.

The Naming Service detects that this is not a CORBA object when a CORBA client
attempts to look it up. The service will display the JNDI object when it has been
configured to view them. Otherwise, the service will log the following warning
messages:
WARN - unable to process non-CORBA object. The object is a java.lang.String
WARN - ignoring element with the name of StringObject because it is a

non-CORBA object

env.put (“com.prismt.j2ee.jndi.OpenFusionSPI.SID”,
 args[1]);

initialctx = NamingManager.getInitialContext (env);

Enumeration e = initialctx.list (““);

while (e.hasMoreElements ())
{
 NameClassPair np = (NameClassPair)e.nextElement ();
 System.out.println
 (
 “\tFound name “ + np.getName () +
 “ of class “ + np.getClassName ()
);
 System.out.println
 (“\tResolve: “ + initialctx.lookup (np.getName ()));
}

57
Java Naming and Directory Interface

�������	

CHAPTER

9 Supplemental Information
Refer to the Sun Microsystems documentation for JNDI specification details.

9.1 Configuration Properties
JNDI properties can be configured by means of a Java hashtable. Properties
specified by this means are merged with any properties specified in the
jndi.properties file, with those specified in the hashtable taking priority.
The location of the jndi.properties file is specified by

com.prismt.j2ee.jndi.OpenFusionSPI.JNDIPropertiesFile

If this is not specified, then the jndi.properties file is not written.
Extra configuration information on top of the standard JNDI environment may be
needed, depending upon the naming/directory service and the SPI. Default values
are used when the environment has not been configured; for example, JDBC.URL is
set storing to the user’s home directory.
When the OpenFusion CORBA Naming Service starts, it can automatically create a
jndi.properties file in the location specified. This file contains only the JNDI settings
relevant to the current Naming Service configuration (normally specified using the
OpenFusion Administration Manager) to ensure that JNDI clients are configured to
access the OpenFusion CORBA Naming Service hierarchy. Any existing
jndi.properties file in the specified location is overwritten.

9.1.1 Standard Properties
The OpenFusion service provider supports these standard JNDI properties:

INITIAL_CONTEXT_FACTORY
This is the fully qualified class name of the factory class that creates the initial
context for the provider, for example:

env.put(Context.INITIAL_CONTEXT_FACTORY,
"com.prismt.cos.CosNaming.jndi.OpenFusionCtxFactory")

OBJECT_FACTORIES
This is a colon-separated list of fully qualified class names of object factory classes.
The factories are responsible for creating objects from the information returned by
the provider.

i

58
 Java Naming and Directory Interface�������	

 9.1 Configuration Properties

STATE_FACTORIES
This is a colon-separated list of fully qualified class names of state factory classes.
The factories are responsible for creating and transforming an object into an
acceptable form for storage.

9.1.2 Provider-specific Properties
The following properties are specific to the OpenFusion SPI.
The following prefix must be included with all of these properties:

com.prismt.j2ee.jndi.OpenFusionSPI

For example, the fully-qualified JDBC.User option is:
com.prismt.j2ee.jndi.OpenFusionSPI.JDBC.User=“myUserName”

9.1.2.1 General

JndiPropetiesFile
The location of the jndi.properties f i le . If this is left blank, the
jndi.properties file will not be created. The default is blank.
The jndi.properties file is useful for JNDI client applications that need to
connect to the Naming Service hierarchy.
The OpenFusion JMS Manager requires a valid jndi.properties file. See the
Java Message Service Guide for details.
When more than one Naming Service is used, each one must be configured to use a
different jndi.properties file.

JndiOFPropetiesFile
The location that the of.jndi.properties file will be written to. If this is left
blank, the file will not be created. The default is blank.
The of.jndi.properties file can be used by JBoss (and other application
servers) to access the OpenFusion JNDI properties. As an alternative to using this
file, properties could be hard coded or passed to an application as command-line
parameters.

9.1.2.2 Persistence

JDBC.User
This is the name of the database user with create rights on the database.

JDBC.Password
This is the password of the database user named in JDBC.User.
59
Java Naming and Directory Interface

�������	

 9.1 Configuration Properties

JDBC.URL
This is the URL for the JDBC Connection to the database.
For memory-based persistence the URL string to should be:

JDBC:hsqldb:.

noting hsqldb is used for memory-based persistence and that a “.” must follow the
last colon of the URL string.

JDBC.Type
The choices for the JDBC Type are Oracle, Sybase, SQL Server and Informix.

JDBC.Driver
This is the name of the JDBC Driver used to connect to the database. This is given
in the form:

jdbc:oracle:thin:@ultra2:1526:EXPL

where ultra2:1526 is the server name and port number (for example).

JDBC.AutoCreate
If the tables for the chosen database (selected using JDBC.Type) do not exist, then
they are automatically created. The default value for hsqldb is True and for all other
databases the default value is False, where True sets automatic table creation on.

9.1.2.2.1 Caching
The following properties are relevant to caching. Note that if write caching is
required then read caching must also be enabled. To disable write caching, both
TimedWrite and BatchedWrite must be set to 0. To disable read caching, both
ReadCache.Min and ReadCache.Max must be set to 0.

TimedWrite
This is an integer value which specifies the time interval in seconds between cached
writes. The default value is 0, which means that writes are not cached.

BatchedWrite
This is an integer value which specifies the time interval in milliseconds between
batched writes. The default value is 0, which means that writes are not batched.

ReadCache.Min
This is an integer value which specifies the minimum number of objects to keep in
the read cache. The default value is 0, which means that the cache is always
completely flushed.
60
Java Naming and Directory Interface�������	

 9.1 Configuration Properties

ReadCache.Max
This is an integer value which specifies the maximum number of objects to hold in
the read cache; if not 0 , it must be greater than the value specified for
ReadCache.Min. The default value is 0, which means that no read caching is
performed.

ReadCache.Int
This is an integer value which specifies the time interval in seconds between read
cache flushing operations. The default value is 0, which means that periodic
flushing does not occur; the cache is only flushed when full. For any other value,
cache flushing occurs at the specified intervals whether or not the maximum cache
size has been reached.

9.1.2.2.2 UUID and SID

UUID
This is the context identifier. It must be specified in order for data to remain
persistent across sessions when persistence is set to File and JDBC. By default a
new UUID is generated for each instance.

SID
This is the Service ID. It is a UUID used internally by the OpenFusion Naming
Service. It is required when access to the Naming hierarchy is desired.
// Create a hashtable for the environment
Hashtable env = new Hashtable ();

// Use file based persistence
env.put
 (“com.prismt.j2ee.jndi.OpenFusionSPI.JDBC.URL”,
“jdbc:hsqldb:/tmp”);
// Use a read cache.
env.put (“com.prismt.j2ee.jndi.OpenFusionSPI.ReadCache”, “100”);
// Set the UUID.
env.put
(
 “com.prismt.j2ee.jndi.OpenFusionSPI.UUID”,
 “8e82d2c0-1d04-11d4-844f-a0b231700aae”
);

// Set inital context
env.put
(
 javax.naming.Context.INITIAL_CONTEXT_FACTORY,
 “com.prismt.j2ee.jndi.OpenFusionCtxFactory”
);

try
{
 // Get the root context
61
Java Naming and Directory Interface

�������	

 9.2 Exceptions

The provider generates a new UUID when the UUID option is not specified.
However, this represents the starting point for the hierarchy, much like an LDAP
server URL. Note that the data cannot be retrieved when this is not specified in
future sessions.

9.2 Exceptions
JNDI has an hierarchy of exceptions that may be thrown. Clients may catch
NamingException or any of its derived classes.
Full details of the standard exceptions are available in the JNDI API documentation
available from Sun Microsystems.

 rootctx = NamingManager.getInitialContext (env);
}

62
Java Naming and Directory Interface�������	

 9.2 Exceptions

63
Java Naming and Directory Interface

�������	

CONFIGURATION AND
MANAGEMENT

CHAPTER

10 Naming Service Configuration
The configuration of Singleton properties specific to the Naming Service is
described in this section. These properties appear in the Administration Manager, a
graphical user interface (GUI) based administration tool included with the
OpenFusion Graphical Tools.
The Administration Manager can be used to set the Singleton properties. These
properties can also be set programmatically, generally as described in the service
description sections.
Details for configuring Persistence, Logging, CORBA, Java and System properties
for the Naming Service are described in the System Guide.

10.1 Common Properties
Instances of some common properties are used by a number of different OpenFusion
CORBA Services’ interfaces and services. Settings for these property instances
appear in the Administration Manager’s Object Hierarchy for the service’s
Singleton node. This small group of properties are included in this section in order
to facilitate configuration of the service while using the Administration Manager.
These properties include:
• IOR Name Service Entry
• IOR URL
• IOR File Name
• Resolve Name
• IOR Name Service

10.2 NameSingleton Configuration
10.2.1 CORBA PropertiesOR Name Service Entry

The Naming Service entry for the Singleton.
Property Name Object.Name

Property Type FIXED
66
 Configuration and Management�������	

 10.2 NameSingleton Configuration

IOR URL
The IOR URL property specifies the location of an Interoperable Object Reference
(IOR) for the Service, using the Universal Resource Locator (URL) format. This
information is used when a client attempts to resolve a reference to the Service.
Some examples are:
file:/usr/users/openfusion/servers/NameService.ior
http://www.prismtech.com/of/servers/NameService.ior
corbaloc::server.prismtechnologies.com/NameService

The Naming Service supports URLs in Corbaloc, Corbaname, file, FTP and HTTP
URL formats, although some ORBs do not support all of these mechanisms. Consult
your ORB documentation for specific details.

IOR File Name
The IOR File Name option specifies the name and location of the IOR file for the
Singleton. If this property is not set, the IOR file name will be:
<INSTALL>/domains/<domain>/<node>/<service>/<singleton>/<singleton>.
ior

where <INSTALL> is the OpenFusion installation path. See the System Guide for
details of the domains directory structure.

Data Type STRING

Accessibility READ/WRITE

Mandatory NO

Property Name IOR.URL

Property Type FIXED

Data Type URL

Accessibility READ/WRITE

Mandatory NO

Property Name IOR.File

Property Type FIXED

Data Type FILE

Accessibility READ/WRITE

Mandatory NO
67
Configuration and Management

�������	

 10.2 NameSingleton Configuration

Resolve Name
The ORB Service resolution name used to resolve calls to the Singleton

IOR Name Service
The name of the Naming Service which will be used to resolve the Singleton object.

10.2.2 Lightweight Directory Access Protocol (LDAP)
The Naming Service uses Sun Microsystems’ JNDI (Java Naming and Directory
Interface) LDAP provider. This allows the Naming Service to be stored in a
standard LDAP server. Caching is not supported under the LDAP persistence
option.

LDAP User
The administrator of the LDAP server may want each user to have their own login
name and password. This property specifies the user name. The user name should be
in the fully qualified LDAP format, for example:
uid=RNCross,ou=People,o=prismtechnologies.com

Property Name ResolveName

Property Type FIXED

Data Type STRING

Accessibility READ/WRITE

Mandatory YES

Property Name IOR.Server

Property Type FIXED

Data Type STRING

Accessibility READ/WRITE

Mandatory NO

Property Name DB.LDAP.User

Property Type STATIC

Data Type STRING

Accessibility READ/WRITE

Mandatory YES
68
Configuration and Management�������	

 10.2 NameSingleton Configuration

LDAP Password
The administrator of the LDAP server may want each user to have their own login
name and password. This property specifies the password.

LDAP URL
The URL specifies the location within the LDAP server where the Naming Service
should store its persistent data. The data will not appear in the traditional
hierarchical format due to limitations of the LDAP storage mechanism.
An example URL is:
ldap://excalibur.prismtechnologies.com:2809/ou=OpenFusion
Naming Service,o=prismtechnologies.com

LDAP Trace
Output hexadecimal dump of the incoming and outgoing LDAP ASN.1 BER
packets from the LDAP server.

LDAP Security
LDAP Authentication Mechanism. The security method may be:
• None: anonymous bind.
• Simple: clear-text password.

Property Name DB.LDAP.Password

Property Type STATIC

Data Type PASSWORD

Accessibility READ/WRITE

Mandatory YES

Property Name DB.LDAP.URL

Property Type STATIC

Data Type STRING

Accessibility READ/WRITE

Mandatory YES

Property Name DB.LDAP.Trace

Property Type FIXED

Data Type BOOLEAN

Accessibility READ/WRITE

Mandatory YES
69
Configuration and Management

�������	

 10.2 NameSingleton Configuration

• SASL: Simple Authentication and Security Layer, defined in RFC2222.
The administrator must enable all privileges upon the target location in the LDAP
hierarchy when anonymous bind is selected. The LDAP v3 protocol uses the SASL
to support pluggable authentication. This means that the LDAP client and server can
be configured to negotiate and use possibly non-standard and/or customized
mechanisms for authentication, depending on the level of protection desired by the
client and the server. The LDAP v2 protocol does not support the SASL.

LDAP SASL Mechanism Names
A list of mechanisms should be entered in the configuration tool when the SASL
option is chosen, for example:
DIGEST-MD5 CRAM-MD5

This specifies that DIGEST-MD5 authentication is to be used, or that CRAM-MD5
authentication is to be used when the SASL mechanism is unavailable. An
AuthenticationNotSupportedException will be thrown when neither is
available.

10.2.3 Persistence Options
The Naming Service provides two extra persistence options and a read cache for the
caching of naming contexts.
The different kinds of caching available to the Naming Service are:
• No Cache, i.e. Read Through / Write Through. This is automatically used for

failover.
• Read Cache / Write Through.
• Read Cache / Timed Writes with the value in seconds.

Property Name DB.LDAP.Security

Property Type STATIC

Data Type ENUM

Accessibility READ/WRITE

Mandatory YES

Property Name DB.LDAP.SASL

Property Type STATIC

Data Type STRING

Accessibility READ/WRITE

Mandatory YES
70
Configuration and Management�������	

 10.2 NameSingleton Configuration

• Read Cache / Batched Writes.
• Read Cache / Batched and Timed Writes.

Read Cache Flush Interval
The interval, in seconds, between read cache flush operations. A least-recently-used
algorithm is employed to reduce the size of the cache to the level of the Read
Cache Minimum Size.
The default value is 0 (zero), which indicates no timed cache flush will be
performed.

Read Cache Maximum Size
The maximum number of objects that the read cache will be allowed to hold. A
value of zero means that there is no read cache. When the cache reaches the read
limit size, a least-recently-used algorithm is employed to reduce the size of the
cache to the level of the Read Cache Minimum Size.
The default value is 500.
The Read Cache Maximum Size must be set greater than zero if a write cache is
required, as it is not possible to have a write cache without a read cache.

Read Cache Minimum Size
The minimum number of objects which will be left in the cache when it is cleared.
The default value is 0 (zero).

Property Name DB.ReadCache.Int

Property Type DYNAMIC

Data Type INTEGER

Accessibility READ/WRITE

Mandatory YES

Property Name DB.ReadCache.Max

Property Type DYNAMIC

Data Type INTEGER

Accessibility READ/WRITE

Mandatory YES

Property Name DB.ReadCache.Min

Property Type DYNAMIC
71
Configuration and Management

�������	

 10.2 NameSingleton Configuration

Write Cache Write Interval
The write interval option refers to the delay (in seconds) between saving object state
changes within a server, and writing this information to persistent store. This option
is a performance optimization feature as it can be used to prevent the service making
a lot of small updates to the persistent store.
A value of zero indicates no delay. Changes are written immediately to the
persistent store if both the Write Cache Write Interval and Write Cache Batch
Size are set to zero.
The default value for this property is zero. Increasing the write interval value may
improve performance when the data held by a service is changing rapidly.

Write Cache Batch Size
The Write Batch Size option specifies the maximum number of updates that will be
buffered before the data is written to persistent storage. Just as for the write interval
option, the write batch size option is also a performance optimization feature.
A value of zero indicates that the updates are not buffered but are written
immediately to the datastore. Increasing this property value may improve
performance when the data held by a service is changing rapidly.
The Read Cache Maximum Size must be set greater than zero if a write cache is
required, as it is not possible to have a write cache without a read cache.
The effect of setting both the Write Interval and Write Batch Size to values greater
than zero is that of batched timed writes.

Data Type INTEGER

Accessibility READ/WRITE

Mandatory YES

Property Name DB.WriteInterval

Property Type DYNAMIC

Data Type INTEGER

Accessibility READ/WRITE

Mandatory YES

Property Name DB.WriteBatch

Property Type DYNAMIC
72
Configuration and Management�������	

 10.2 NameSingleton Configuration

Naming Data Storage Type
This property sets the persistent storage type. The type can be:
• Default
• LDAP
If Default is selected, the data store will default to the location of the service data
(using JDBC). See the System Guide for details.

10.2.4 Instrumentation Properties
The interfaces for setting the instrumentation properties are given below. For
information on managing instrumentation, in the System Guide.

Count of resolve operations
The number of resolve operations since the Service started or was last reset.

Count of rebind context in service
The number of rebind contexts in service since the Service started or was last reset.

Data Type INTEGER

Accessibility READ/WRITE

Mandatory YES

Property Name DB.NameDataPersistence

Property Type STATIC

Data Type ENUM

Accessibility READ/WRITE

Mandatory YES

Property Name ResolveCount

Property Type DYNAMIC

Data Type COUNTER

Accessibility READ/WRITE

Mandatory NO

Property Name ReBindContextCount

Property Type DYNAMIC
73
Configuration and Management

�������	

 10.2 NameSingleton Configuration

Count of context bind operations
The number of context binds in service since the Service started or was last reset.

Count of unbind operations
The number of unbinds in service since the Service started or was last reset.

Count of rebind operations
The number of rebinds in service since the Service started or was last reset.

Count of bind operations
The number of binds in service since the Service started or was last reset.

Data Type COUNTER

Accessibility READ/WRITE

Mandatory NO

Property Name BindContextCount

Property Type DYNAMIC

Data Type COUNTER

Accessibility READ/WRITE

Mandatory NO

Property Name UnBindCount

Property Type DYNAMIC

Data Type COUNTER

Accessibility READ/WRITE

Mandatory NO

Property Name ReBindCount

Property Type DYNAMIC

Data Type COUNTER

Accessibility READ/WRITE

Mandatory NO

Property Name BindCount

Property Type DYNAMIC
74
Configuration and Management�������	

 10.2 NameSingleton Configuration

10.2.5 General Properties

JNDI ContextFactory Cache Flush Interval
The internal ContextFactory cache can be purged to prevent the possibility of
memory leaks. This property specifies the interval, in seconds, between
ContextFactory cache flush operations. A value of zero indicates that no timed
cache flush will take place.
JNDI ContextFactory Cache Flush Interval is used in conjunction with the JNDI
ContextFactory Cache Maximum Size and JNDI ContextFactory Cache
Minimum Size properties to determine the purging behaviour.

JNDI ContextFactory Cache Maximum Size
The maximum number of contexts allowed in the ContextFactory cache. When the
cache exceeds this size, contexts are purged according to a least-recently-used
algorithm

Data Type COUNTER

Accessibility READ/WRITE

Mandatory NO

Property Name jndiCtxCacheInt

Property Type STATIC

Data Type INTEGER

Accessibility READ/WRITE

Mandatory YES

Property Name jndiCtxCacheMax

Property Type STATIC

Data Type INTEGER

Accessibility READ/WRITE

Mandatory YES
75
Configuration and Management

�������	

 10.2 NameSingleton Configuration

JNDI ContextFactory Cache Minimum Size
The size that the ContextFactory cache will be reduced to following a cache flush.
For example, if this property is set to 10 then all but 10 contexts will be purged
during a flush operation.

JNDI Properties File
The location of the jndi.properties fi le. If this is left blank, the
jndi.properties file will not be created.
The jndi.properties file is useful for JNDI client applications that need to
connect to the Naming Service hierarchy.
The OpenFusion JMS Manager requires a valid jndi.properties file.See the
Java Message Service Guide for details.
When more than one Naming Service is used, each one must be configured to use a
different jndi.properties file.

JNDI OF Properties File
The location that the of.jndi.properties file will be written to. If this is left
blank, the file will not be created.
The of.jndi.properties file can be used by JBoss (and other application
servers) to access the OpenFusion JNDI properties. As an alternative to using this
file, properties could be hard coded or passed to an application as command-line
parameters.

Property Name jndiCtxCacheMin

Property Type STATIC

Data Type INTEGER

Accessibility READ/WRITE

Mandatory YES

Property Name jndiPropertiesFile

Property Type STATIC

Data Type STRING

Accessibility READ/WRITE

Mandatory NO

Property Name jndiOFPropertiesFile

Property Type STATIC
76
Configuration and Management�������	

 10.2 NameSingleton Configuration

JNDI Root ID
This option allows the root ID used by the JNDI hierarchy to be manually
configured. This is useful when used in conjunction with the Server Persistent ID
(SID) property (see the System Guide) as these are then known values that may be
passed to JNDI client programs. These clients can then access the Naming Service
persistent data.

Enable Load Balancing
This allows load balancing to be performed by the Naming Service.

View Non-Corba Objects
This allows the Naming Service to browse a JNDI hierarchy even when
non-CORBA objects (e.g. java.lang.String) have been stored. The Naming
Service will log and ignore any non-CORBA objects it encounters when this option
is disabled.

Data Type STRING

Accessibility READ/WRITE

Mandatory NO

Property Name JNDIID

Property Type STATIC

Data Type UUID

Accessibility READ/WRITE

Mandatory NO

Property Name LoadBalancing

Property Type DYNAMIC

Data Type BOOLEAN

Accessibility READ/WRITE

Mandatory YES

Property Name ViewNonCorba

Property Type DYNAMIC

Data Type BOOLEAN

Accessibility READ/WRITE

Mandatory YES
77
Configuration and Management

�������	

 10.2 NameSingleton Configuration

Purge on List
Invalid object references (that is, those object references which are not active and
not persistent) are removed from a naming context when the list operation is
performed on the context and Purge on List is selected.

Purge on Load
Invalid object references (that is, those object references which are not active and
not persistent) are removed when contexts are first accessed after a server has been
restarted and Purge on Load is selected.

Purge Class Plugin
This should be a publicly instantiable Java class that implements the
com.prismt.openfusion.plugin.Purgable interface. This interface has one
operation:
public boolean isPurgable (org.omg.CORBA.Object obj)

This class is used to determine whether or not to purge objects from the Naming
Service. Typically, a client will code this operation to determine whether their object
is persistent or transient and hence may be purged. This service will also check the
active/inactive state. The ObjectAdapter.isTransient method is the default
used when a class is not specified. This will successfully determine the persistent
state for objects created using the OpenFusion framework, but it will not work for
foreign objects.

Property Name Clean.List

Property Type DYNAMIC

Data Type BOOLEAN

Accessibility READ/WRITE

Mandatory YES

Property Name Clean.Load

Property Type DYNAMIC

Data Type BOOLEAN

Accessibility READ/WRITE

Mandatory YES
78
Configuration and Management�������	

 10.3 LoadBalancingFactorySingleton Configuration

Purging is the deletion of invalid object references and purgable objects from a
service. Object references are regarded as invalid when they are not active and not
persistent. The OpenFusion Naming Service can most easily determine whether an
object is purgable if the com.prismt.openfusion.plugin.Purgable interface
is implemented. See the OpenFusion Naming Service Guide for further details.

System Master
This property should be set to true (checked) if this is the master naming service
for a system. There can be only one master naming service.

10.3 LoadBalancingFactorySingleton Configuration
IOR Name Service Entry

The Naming Service entry for the Singleton.

IOR URL
The IOR URL property specifies the location of an Interoperable Object Reference
(IOR) for the Service, using the Universal Resource Locator (URL) format. This
information is used when a client attempts to resolve a reference to the Service.
Currently only http and file URLs are supported, for example:
file:/usr/users/openfusion/servers/NameService.ior

Property Name Clean.PurgeClass

Property Type DYNAMIC

Data Type STRING

Accessibility READ/WRITE

Mandatory NO

Property Name Resolver

Property Type STATIC

Data Type BOOLEAN

Accessibility READ/WRITE

Mandatory YES

Property Name Object.Name

Property Type FIXED

Data Type STRING

Accessibility READ/WRITE

Mandatory NO
79
Configuration and Management

�������	

 10.3 LoadBalancingFactorySingleton Configuration

http://www.prismtech.com/openfusion/servers/NameService.ior

IOR File Name
The IOR File Name option specifies the name and location of the IOR file for the
Singleton. If this property is not set, the IOR file name will be:
<INSTALL>/domains/<domain>/<node>/<service>/<singleton>/<singleton>.
ior
where <INSTALL> is the OpenFusion installation path. See the System Guide for
details of the domains directory structure.

Resolve Name
The ORB Service resolution name used to resolve calls to the Singleton

IOR Name Service
The name of the Naming Service which will be used to resolve the Singleton object.

Property Name IOR.URL

Property Type FIXED

Data Type URL

Accessibility READ/WRITE

Mandatory NO

Property Name IOR.File

Property Type FIXED

Data Type FILE

Accessibility READ/WRITE

Mandatory NO

Property Name ResolveName

Property Type FIXED

Data Type STRING

Accessibility READ/WRITE

Mandatory YES

Property Name IOR.Server

Property Type FIXED
80
Configuration and Management�������	

 10.3 LoadBalancingFactorySingleton Configuration

Load Balancing Plugin
Plugin class used to implement load balancing. This should be a publicly
instantiable Java class.

Load Balancing Timeout
This property is used when an Active policy is selected. It controls the length of
time that the ORB will attempt to communicate with an object before regarding it as
inactive. The default value is zero.

Data Type STRING

Accessibility READ/WRITE

Mandatory NO

Property Name Classnames

Property Type FIXED

Data Type STRING

Accessibility READ/WRITE

Mandatory NO

Property Name Timeout

Property Type DYNAMIC

Data Type INTEGER

Accessibility READ/WRITE

Mandatory YES
81
Configuration and Management

�������	

CHAPTER

11 Naming Service Manager
Use the Naming Service Manager to:
• Browse the Naming Service hierarchy.
• Add or delete naming contexts.
• Bind CORBA objects to the Naming Service.
• Launch other managers and browsers.
• Export and import the hierarchy as XML files (this function can also be performed

from the command line).
Various Naming Service management operations can also be performed using a
command line tool, NamingServiceMgrTool. This tool and how to use it is
described in the System Guide.

11.1 Running the Naming Service Manager
The Naming Service Manager can only be started if the Naming Service has been
started. To start the Naming Service Manager, right-click on a running
NameSingleton in the Administration Manager’s Object Hierarchy and select
Naming Service Manager from the pop-up menu. See the System Guide for details.
Alternatively, start the Naming Service Manager from the command line with the
following command:

11.2 Using the Naming Service Manager
The Naming Service Manager shows the naming hierarchy as a graphical tree view.
Figure 7 illustrates how OpenFusion CORBA objects might be registered in the
Naming Service Manager.

i

% run
com.prismt.cos.treebrowser.naming.NamingServiceBrowser
-name NameService
82
 Configuration and Management�������	

 11.2 Using the Naming Service Manager

Figure 7 Naming Service Manager
Each object in the Naming Service is represented by an icon in the tree view. The
object is labelled with its Id and/or Kind (if specified), in one of the following
formats:
• {id,kind}

• id

• {,kind}

When an object is selected (highlighted) in the tree view, its details are shown in the
properties pane to the right of the tree view.
An object’s IOR can be selected in the properties pane and copied to the clipboard.
83
Configuration and Management

�������	

 11.2 Using the Naming Service Manager

11.2.1 Object Icons
Different objects in the Naming Service Manager are identified by different icons in
the tree view. These icons are shown in Table 13.

11.2.2 Tool Bar Buttons
The Naming Service Manager adds new buttons to the tool bar. These buttons are
only available when the Naming Service Manager is active. The new tool bar
buttons are shown in Table 14.
The buttons are disabled if a leaf node or an invalid naming context is selected in the
naming hierarchy.

Table 13 Naming Service Object Icons

Icon Node
Root Context
The Naming Service root node represents the
current instance of the Naming Service.
Naming Context
Represents an OpenFusion CORBA naming
context.
CORBA Object
Represents a CORBA object binding. This must
always be a leaf node in the hierarchy.
Non-CORBA Object
Represents a non-CORBA object binding. This
must always be a leaf node in the hierarchy.
Invalid Naming Context
Represents a naming context which has been
invalidated as a result of a linked object being
destroyed.
84
Configuration and Management�������	

 11.2 Using the Naming Service Manager

11.2.3 Adding a Naming Context
A new naming context must be added as a child of an existing naming context (or
the root context) in the naming hierarchy. A naming context cannot be added as a
child of a bound CORBA or non-CORBA object.
To add a new naming context to the naming hierarchy:

Step 1: Right-click on the parent naming context.
Step 2: Select Add New Context from the pop-up menu.
Step 3: Enter the Id and Kind of the new naming context in the New Context dialog box.

Both of these fields are optional.
Step 4: Click the OK button.

The new naming context is added to the naming hierarchy as a child of the selected
parent naming context.

11.2.4 Binding OpenFusion Services
When a Service is started in the Administration Manager, each of its Singletons will
attempt to bind to the Naming Service if it is configured to do so (see below), and if
the Naming Service is running when the Service starts.
This occurs each time the Service is started. (Persistent objects remain registered
when the Service is stopped, with a Status of Inactive/Persistent.) If the bind
is successful, entries for the Singletons are added to the Naming Service Manager
hierarchy. To see any newly-started objects, right-click on the root node of the
Naming Service Manager and select Refresh Node from the pop-up menu.
OpenFusion Singletons that register themselves in this way are bound directly under
the Naming Service root context.
If a Singleton is to register itself with a running Naming Service when it is started, it
must be configured to do so, as follows:

Table 14 Naming Service Manager Tool Bar

Button Function
Load Naming XML
Load Naming Service information from an XML
file.
Save Naming XML
Save Naming Service information in an XML file.
85
Configuration and Management

�������	

 11.2 Using the Naming Service Manager

• The IOR Name Service Entry property of the Singleton must contain a valid INS
name to identify the Singleton.

• The IOR Name Service property must contain the name of the Naming Service it
is to bind to. (This should be NameService for the OpenFusion Naming Service.)

• The Use Xbootclasspath property of the Service containing the Singleton must
be set to true.

11.2.5 Binding Objects
An object must be added as a child of an existing naming context (or the root
context) in the naming hierarchy. An object cannot be added as a child of a bound
CORBA or non-CORBA object (bound objects are always leaf nodes in the
hierarchy).
An object’s IOR is used to bind the object into the naming hierarchy. The IOR of an
existing object must be copied to the clipboard before the object can be bound into
the naming context. See the System Guide for details of querying objects in the
Object Browser and copying the object’s IOR to the clipboard.
Once the required object’s IOR is copied, follow these steps to bind the object:

Step 1: Right-click on the naming context that the object will be bound to.
Step 2: Select Paste New Binding from the pop-up menu.
Step 3: Enter an Id and Kind for the bound object. Both of these fields are optional.
Step 4: Click the OK button.

The new object is added to the naming hierarchy as a child of the selected parent
naming context.
It is possible to bind a naming context object as either an object or a naming context.
If it is bound as an object, it becomes a leaf node and will not be used for name
resolution.

11.2.6 Deleting a Naming Context or Object Binding
To delete a naming context or object binding from the naming hierarchy, right-click
on the node and select Delete from the pop-up menu. Click the DELETE button in
the Warning dialog box.
Deleting an object binding will not remove the underlying object; only its resolution
through the Naming Service will be affected.
When a naming context is deleted, all of its children (naming contexts and object
bindings) are also removed from the hierarchy.

11.2.7 Exporting XML
Any portion of the naming hierarchy can be exported to an XML file.
86
Configuration and Management�������	

 11.2 Using the Naming Service Manager

Step 1: Select the naming context that is to be exported. Every node under the selected
naming context is exported. To export the entire hierarchy, select the root node.

Step 2: Right-click on the selected naming context and select Export xml from the pop-up
menu. Alternatively, click the Save Naming XML tool bar button.

Step 3: Select a file location and enter a file name in the Save Naming XML dialog box.
The XML Export will fail if the tree being exported contains any invalid naming
contexts.
The XML export can also be performed from the command line. The command line
method is preferred when dealing with very large naming hierarchies (where the
export operation may take a considerable time).

11.2.8 Importing XML
An XML file containing a previously-exported section of the naming hierarchy can
be re-imported into the naming hierarchy.
The imported branch of the naming hierarchy must be added to an existing naming
context node.
As an exported branch of the naming hierarchy can be imported into a completely
different location, this is a convenient way to move or replicate large sections of the
naming hierarchy

Step 1: Select the naming context that the imported branch will be added under.
Step 2: Right-click on the selected naming context and select Import xml from the pop-up

menu. Alternatively, click the Load Naming XML tool bar button.
Step 3: Use the Load Naming XML dialog box to select a previously exported XML file to

import.
The contents of the imported file are added to the naming hierarchy in the selected
location.
The XML import can also be performed from the command line. The command line
method is preferred when dealing with very large naming hierarchies (where the
import operation may take a considerable time).

11.2.9 Launching Managers and Browsers
Other OpenFusion graphical tools can be launched from the Naming Service
Manager.
The right-click menu options of each object in the naming hierarchy include options
for launching browsers and managers specific to that object.
For example, a bound NotificationSingleton object has a menu option to launch the
Notification Service Manager.
87
Configuration and Management

�������	

 11.2 Using the Naming Service Manager

11.2.9.1 CORBA Object Browser
All nodes include an option to launch the CORBA Object Browser. See the System
Guide for details. The CORBA Object Browser can be used to view naming
contexts as well as CORBA objects.

11.2.9.2 Naming Service Manager
Naming contexts include an option to launch a new instance of the Naming Service
Manager. The new instance is rooted at the selected naming context.
This is not a new instance of the Naming Service. The new manager is simply a new
view of the selected portion of the Naming Service.
88
Configuration and Management�������	

 11.2 Using the Naming Service Manager

89
Configuration and Management

�������	

CHAPTER

12 The Purgable Interface
The purgable interface is an OpenFusion plugin intended to be used to assist in
the determination of whether an object is inactive and can be safely removed.

12.1 Purge Class Plugin
This is a property of the NameSingleton which can be specified through the
Administration Manager (the System Guide). If used, this property must contain the
n a m e o f a p u b l i c l y i n s t a n t i a b l e J av a c l a s s t h a t i m p l e m e n t s t h e
com.prismt.openfusion.plugin.Purgable interface.

12.2 Using the Purgable Interface
This interface has one operation:

public boolean isPurgable (org.omg.CORBA.Object obj)

The class specified as the Purge Class Plugin is used to determine whether or not
to purge objects from the Naming Service. Typically a client will implement this
operation to determine whether its object is persistent or transient and hence may be
purged. This service will also check the active/inactive state.
If no class is specified for this property, the ORBAdapter.isValid method is used
(an object is valid if it is active or not transient). This will successfully determine
persistent state for objects created using the OpenFusion framework, but it will not
work reliably for foreign objects (objects created in non-OpenFusion environments
or on other ORBs).
The following pseudocode illustrates how the interface is used.

MyPurgable implements Purgable
{
if ’mine’

test & return
else

return ! ORBAdapter.isValid(obj)
}

The if ’mine’ is a test which first establishes whether the client object is one that
OpenFusion cannot determine the status of (for example, an object from a C++ orb).
If it is, then its status is determined by the test & return clause; otherwise the
90
 Configuration and Management�������	

 12.2 Using the Purgable Interface

default OpenFusion check of the object’s status is performed. If the isValid()
check is not included, then no checking is performed on OpenFusion created objects
and the Naming Service will only purge the client objects.
91
Configuration and Management

�������	

APPENDICES

Appendix

A Command Line Management
Tool

The Naming Service Command Line Management Tool, nsMgrTool, provides
management capabilities which are not available in the GUI-based Administration
Manager, namely the ability to manage Naming Service instances which reside in
diverse OpenFusion installations and domains (refer to the Administration Manager
section of the System Guide for a description of domains and their related directory
hierarchy).
An example of a Domains hierarchy (as it would appear in the Administration
Manager) and its associated directory structure is shown in Figure 8:.

Figure 8: Example Domains Hierarchy and Directories

Features
Operations which nsMgrTool can perform include:
94
Naming Service Guide�������	

 Appendices
• viewing and managing running Naming Service instances located in local or
remote installations

• creating and listing the contents of naming contexts for those instances
• binding and unbinding objects to contexts and name objects
• resolving named objects
• destroying contexts and name objects
The Command Line Management Tool, as its name indicates, can be run directly
from the command line or as part of a shell or batch script.

Configuration
The command l ine tool must be able to locate and access ei ther the
NameSingleton.ior file or a file containing the corbaloc URL for the Naming
Service instance it is required to manage. Alternatively, the tool may be provided
with the Name Service instance IOR or corbaloc URL. The NS_LOCATION
environment variable is used to pass one of those values to the command line tool.
File locations can use either a file or HTTP address (described below).
The NS_LOCATION environment variable must be set before running the command
line tool.
If the http protocol is used, then a Tomcat object must be added to the specific
Naming Service instance to be managed.
A Tomcat object can be added to a Naming Service instance by using the
Administration Manager’s pop-up menu command Add | Java Object | TomcatObject
for the instance - see Tomcat Web Server Integration in the System Guide for details.

Using the file Protocol
When using the file protocol, set NS_LOCATION to:

file:///<path>

where <path> is the complete pathname to the NameSingleton.ior file or a file
containing the corbaloc URL of the Name Service instance.
When using Windows to access an OpenFusion installation located on a remote
host, the remote host’s file space must be available as a mapped drive in Windows
Explorer (see Example 1, Windows version, below).

i

WIN
95
Naming Service Guide �������	

Appendices
Example 1 Setting NS_LOCATION using the file protocol
Referring to the example installation shown in Figure 8:, NS_LOCATION is set to
manage a Naming Service instance called NameService5, located on a host called
ultra5, in the user-defined PrismTech domain (note that a mapped drive is used for
the Windows version):

Using the http Protocol
When using the http protocol, set NS_LOCATION to:

http://<host>:<port>/NameService/domains/<domain>/<node>/
<service_name>/NameSinglton/NameSingleton.ior

where
<host> is the host or machine name of the OpenFusion installation where the
Naming Service instance resides
<port> is the port address of the Naming Service instance’s Tomcat object; the
default port address used by Tomcat is 8080,
<domain> is the domain defined under the installation’s Domains item,
<node> is the node name (i.e. the host machine) under the domain,
<service_name> is the service name for the Naming Service instance

Example 2 Setting NS_LOCATION using the http protocol
Referring to the example installation shown in Figure 8:, NS_LOCATION is set to
manage a Naming Service instance called NameService5, located on a remote host
called ultra5, in the user-defined PrismTech domain:

% export NS_LOCATION=file:///var/usr/local/prismtech/
OpenFusion/domains/PrismTech/ultra5/NameService5/
NameSingleton/NameSingleton.ior

> set NS_LOCATION=file:///m:/prismtech/OpenFusion/
domains/PrismTech/ultra5/NameService5/NameSingleton/
NameSingleton.ior

UNIX

WIN

% export NS_LOCATION=http://ultra5:8080/NameService/
domains/PrismTech/ultra5/NameService5/NameSingleton/
NameSingleton.ior

UNIX
96
Naming Service Guide�������	

 Appendices
Using IOR and corbaloc URL
NS_LOCATION can be also set directly to the IOR or the corbaloc URL of the
Name Service instance, for example:

or

Note
Setting the NS_LOCATION environment variable to the corbaloc URL may require
escaping of certain characters.

Running
After setting the NS_LOCATION environment variable, described above,
nsMgrTool is run using the commands listed in Table 15, Command Line
Management Tool Commands, as follows:

nsMgrTool is located in the bin sub-directory where OpenFusion is installed.
Note

> SET NS_LOCATION=http://ultra5:8080/NameService/
domains/PrismTech/ultra5/NameService5/NameSingleton/
NameSingleton.ior

WIN

% export NS_LOCATION=corbaloc:iiop:160.45.110.41:38693/
OpenFusion.NameService.NameSingleton/NameSingleton.ior

% set NS_LOCATION=corbaloc:iiop:160.45.110.41:38693/
OpenFusion.NameService.NameSingleton/NameSingleton.ior

% export
NS_LOCATION=IOR:000000000000002B49444C3A6F6D672E6F72672F436F...

% set
NS_LOCATION=IOR:000000000000002B49444C3A6F6D672E6F72672F436F...

UNIX

WIN

UNIX

WIN

i

% nsMgrTool <commands>
97
Naming Service Guide �������	

Appendices
• The required OpenFusion Naming Service instance must be running in order for
the tool to work.

• The commands must be entered in the order they are listed in Table 15.

Table 15 Command Line Management Tool Commands

Command Description
-h, -?, -help Displays the list of commands (described below)
-l <path> This lists the contents specified by the path.

If the path resolves to a context, its contents are
displayed.

If the path resolves to an object, then the object is
displayed.

If no path is specified, then the contents of the root
naming context are displayed.

The path argument should be in the form of a string.

Example: -l Videos/Films
-create [path] This creates a new naming context. If an element of the

path does not exist then it is created automatically, e.g. if
the path entered was Videos/Sport/Football and
only the Videos context existed, then a context would
be created for Sport (under Videos) and for
Football (under Videos/Sport). If a path is not
supplied an unbound Naming Context is created and the
object reference string is displayed to the user.

Example: -create Videos/Sport
-bind <-c | -o> <-p path>
<IOR> |
-bind <-c | -o> <-p path>
<-f filename>

This option binds a given IOR as a context or object to
the specified path. The IOR can either be provided
directly or can be read from a file. If the IOR does not
resolve to a context, then it is bound as an object.

Example: -bind -c -p Videos/Films/ET -f
/filedir/filename.ior

Items shown in < > are required; items shown in [] are optional; + indicates one or more items
98
Naming Service Guide�������	

 Appendices
Example 3 Managing a Naming Context
The following example shows a naming object called test, located in a Naming
Service instance called NameService5, being created, bound, resolved, and
destroyed. This example assumes that the NS_LOCATION environment variable was
set as shown in Example 1 or Example 2, above. The example shows the UNIX
command line; the tool works identically in Windows, except that Windows users
should substitute the forward-slashes with back-slashes for file paths only - context
paths should always use forward slashes.

-resolve [path] Returns the object reference string for the specified path.
If a path is not specified, then the object reference string
for the root context is returned. The object reference
string is in the format:
IOR:000000000000002B49444C3A6F6D672E67...

Example: -resolve Videos/Films
-destroy [-r] <path> This unbinds and destroys the context or object

specified by the path. If the path refers to a context the
context is only destroyed if it is empty. If it is not empty
and the -r argument has not been set, then it is not
destroyed and a message is displayed. If the -r
argument has been set, then the context and its contents
are unbound and destroyed recursively.

Example: -destroy -r Videos/Films
-unbind <path> This option unbinds the context or object for the path

specified. The unbind will fail if the path relates to a
context and the context is not empty.

Example: -unbind Videos/Films/ET

Table 15 Command Line Management Tool Commands

Command Description

Items shown in < > are required; items shown in [] are optional; + indicates one or more items

% nsMgrTool -create test
% nsMgrTool -bind -o test/myObject -f /var/user/

application/client.ior
% nsMgrTool -resolve test/myObject > test.ior
% nsMgrTool -destroy test/myObject
99
Naming Service Guide �������	

Appendices
The -create command creates a naming context called test. An object is then
bound (and automatically created) in this context, using the IOR defined in a file
called client.ior.
The -resolve command, in this example, is used to retrieve the IOR bound to
myObject and save it to a file call test.ior. The myObject object is then
destroyed.
100
Naming Service Guide�������	

 Appendices
101
Naming Service Guide �������	

INDEX

Index

A
Access

Naming Service Data 48, 61
Adding

Naming Context . 85
Address

Object Reference . 50
Alias . 12
Applet parameters . 50
Applications

Java . 49

B
BindContextCount (property). 74
BindCount (property) . 74
Binding

Name. .48, 49

Object . 57
Binding a CORBA Object 86
Binding OpenFusion Services 85
BindingIterator Interface 32

C
Cache

Disabling . 60
Enabling . 60
Flushing . 61
Properties . 60

Caching. .9
Classnames (property) . 81
Clean.List (property) . 78
Clean.Load (property) . 78
Clean.PurgeClass (property). 79
Client

CORBA. 57
CORBA Naming Service50
Java . 49
JNDI . 50, 56, 57

Component
Name. .50

Composite name .52
Compound name. .52
Configuration

JNDI . 50
Naming Service. 58
Service provider dependence 50

Context
Identifier . 61

Initial. 50, 58
Naming . 48, 49
Root . 57
Sub-. 49

Convention
Name. 50

CORBA
Client . 57
Naming Service . 48, 52
Object . 50

CORBA Object
Binding . 86

Corbaloc . 7
Corbaname . 8

file . 8
http . 8

CosNaming
SPI . 50, 52

Count of binds in service (property) 74
Count of context binds in service (property) . . . 74
Count of rebind context in service (property) . . 73
Count of rebinds in service (property) 74
Count of resolve operations (property) 73
Count of unbinds in service (property) 74
Create rights, JDBC database. 59
104
Naming Service Guide�������	

 Index
Cyclic reference. 52 Cyclics, exporting and importing 42

D
Data

Accessing Naming Service 48
Database types. 60
DB.LDAP.Password (property) 69
DB.LDAP.SASL (property) 70
DB.LDAP.Security (property) 70
DB.LDAP.Trace (property). 69
DB.LDAP.URL (property) 69
DB.LDAP.User (property) 68
DB.NameDataPersistence (property) 73
DB.ReadCache.Int (property)

Naming Service . 71
DB.ReadCache.Max (property)

Naming Service . 71

DB.ReadCache.Min (property)
Naming Service . 71

DB.WriteBatch (property)
Naming Service . 72

DB.WriteInterval (property)
Naming Service . 72

Delegate . 12
Delete

Naming Context . 86
Object Binding . 86

Directory service (objects within). 50
Directory services . 49
Driver, JDBC . 60

E
Enable Load Balancing 77
Environment

JNDI. 56, 58
Parameters . 50

Escaping in strings . 52
Examples

Naming Service . 25, 28
Exceptions. 44, 62
Export

XML . 86
Exporting and Importing Cyclics 42

F
Factories

Supplied . 54
Factory Classes

Object. 58

State . 59
Fail-over . 14
Federation . 5, 48, 49, 54
Flushing, cache . 61

G
Generated UUID . 61, 62 Graph (hierarchy) . 49

H
Hashtable. 50, 56, 58 Hierarchy of naming contexts 48, 49
105
Naming Service Guide

�������	

 Index
I
Identifier

Context . 61
UUID . 61

Importing XML . 87
Initial context . 50, 58
INITIAL_CONTEXT_FACTORY 58
INS (Interoperable Naming Service)52
Instrumentation. 13

Naming Service Properties 73

Interoperable Naming Service (INS) 6
IOR. 7
IOR File Name (property) 67, 80
IOR Name Service (property) 68, 80
IOR Name Service Entry (property) 79
IOR URL (property). 67, 79
IOR.File (property). 67, 80
IOR.URL (property). 67, 80

J
Java

Applications . 49
Client. .49
Objects . 50, 53

Java Naming & Directory Interface (JNDI) . . 8, 38
javax.naming.Context (interface) 52
JDBC

Create rights . 59
Database type . 60
Database URL. .60
Database user . 59
Driver . 60

JMX
Instrumentation Properties 73

JNDI
Client. .56
Configuration . 50
Environment . 56, 58
Object . 57
OF Properties File . 76
Properties . 50, 58

Properties File. 76
Root ID . 77
Root ID option . 77
Specification . 52
Standard properties . 58
Tutorial (Sun Microsystems) 56

JNDI ContextFactory Cache Flush Interval
(properties) . 75

JNDI ContextFactory Cache Maximum Size
(property) . 75

JNDI ContextFactory Cache Minimum Size
(property) . 76

jndi.properties file, location of 58
jndiCtxCacheInt (property) 75
jndiCtxCacheMax (property) 75
jndiCtxCacheMin (property) 76
JNDIID (property) . 77
JNDIObject Interface . 35
jndiOFPropertiesFile (property). 76
jndiPropertiesFile (property) 76

L
LDAP . 38, 39, 68
LDAP (Lightweight Directory Access Protocol)49

Server URL . 62
LDAP Password (property) 69
LDAP SASL Mechanism Names (property) . . . 70
LDAP Security (property) 69
LDAP Trace (property) 69

LDAP URL (property) . 69
LDAP User (property) . 68
Lightweight Directory Access Protocol 68
Load

Naming XML . 85
Load Balancing

Concepts . 11
106
Naming Service Guide�������	

 Index
Implementation . 12
Policies. 13, 34

Load Balancing Plugin (property). 81
Load Balancing Timeout (property) 81
LoadBalancer Interface 32
LoadBalancerPlugin Interface. 34, 35

LoadBalancing (property) 77
LoadBalancingFactory 12
LoadBalancingFactory Interface. 32
LoadBalancingFactorySingleton Configuration 79
Log file . 56

M
Memory Management . 40

Concepts . 10
Memory-based persistence 53

Messages, warning . 57
Meta-characters . 52

N
Name

Binding . 48, 49
Component. 50
Composite . 52
Compound . 52
Conventions . 50
Resolving . 48, 49
String . 50
Stringified . 52
Syntax . 50, 52
Validity checks . 53

Name (interface) . 50
Name Components . 5
NameService option

Purge Class Name . 39
Purge on Load . 39

NameSingleton Configuration. 66
Naming Context . 3

Adding . 85
Deleting . 86

Naming context . 48, 49
Naming context hierarchy 48
Naming Data Storage Type 73
Naming scheme . 52
Naming Service 57, 58, 61

Access to . 61
BindingIterator Interface 32
Configuration. 58, 66
Contexts . 3

CORBA . 48, 52
Corbaloc . 7
Corbaname. 8

file . 8
http . 8

Data, accessing . 56
example

BindingIterator. 20
client. 28
LoadBalancer, customizing 25
LoadBalancer, manipulating objects 24
LoadBalancer, using 24
LoadBalancingFactory, using 23
naming context contents, accessing 19
naming context, extension 21

Interoperable . 52
IOR . 7
JNDIObject Interface 35
LoadBalancer Interface 32
LoadBalancerPlugin Interface 34, 35
LoadBalancingFactory Interface 32
Manager. 82
Naming context . 3
NamingContext Interface 30
NamingContextExt Interface. 31
URL . 6

Naming System . 49, 50
Federation . 49

NamingManager (interface) 50
107
Naming Service Guide

�������	

 Index
O
Object

CORBA. 50
Factories . 58
Java . 50, 53
JNDI . 57
Non-CORBA . 57
Reference . 53
Referenceable . 53
Serializable . 50, 53
Stored in directory . 50

Object Binding . 86
Deleting . 86

Object Cache Maximum Size option 40
Object Cache Minimum Size option 40
Object Cache Purging Interval option 40
Object Purging option . 40
Object.Name (property) 66, 79
OBJECT_FACTORIES 58
Obtaining the Root Context 17
OMG Standard API Definitions. 30

P
Parameters

Applet . 50
Environment . 50

Persistence
Across sessions . 61
JDBC. .56
Memory. 53
Multiple forms of . 3, 9

Persistence Options
NameSingleton . 70

Policies .11
Prefix

Properties . 59

Properties
JNDI . 50
OpenFusion SPI . 59
System . 50

Purgable interface. 90
Purge Class Name option 39
Purge Class Plugin . 78, 90
Purge on List (property) 78
Purge on Load (property) 78
Purge on Load option . 39
Purging

Concepts . 10

Q
Quoting in strings . 52

R
Read Cache Flush Interval (property) 71
Read Cache Maximum Size (property) 71
Read Cache Minimum Size (property). 71
ReBindContextCount (property) 73
ReBindCount (property). 74
Reference

Cyclic . 52
Stored . 50

Referenceable object . 53
References to objects . 53

Replication . 14
Resolve a name. 48, 49
Resolve Name (property) 68, 80
ResolveCount (property) 73
ResolveName (property) 68, 80
Resolver (property) . 79
Restrictions

SPI . 50
Root context . 57
Root Context, obtaining 17
108
Naming Service Guide�������	

 Index
Root UUID . 56

S
Save

Naming XML. 85
Serializable object . 50, 53
Service provider . 49

LDAP. 50
OpenFusion . 50

Services, directory. 49
SID (Service ID) . 56, 61
Singletons

LoadBalancingFactorySingleton 79
NameSingleton . 66

SNMP . 13
Specification

JNDI. 52
SPI

CosNaming . 50, 52

Restrictions . 50
Starting

Naming Service Manager 82
STATE_FACTORIES 59
String

Escaping within . 52
Name . 50
Quoting in . 52

Stringified name . 52
Stringified Names . 6
Subcontext. 49
Supplied factories . 54
Syntax

Name . 50, 52
System Master (property) 79
System, Naming . 49

T
Timeout (property)

Load Balancing Singleton 81
Tool Bar

Naming Service Manager 85

U
UnBindCount (property) 74
URL. 6

JDBC database. 60

UUID (Universally Unique Identifier) 56, 61
Generated. 61, 62

V
Validity checks on names 53
View Non-Corba Objects (property). 77

ViewNonCorba (property) 77
VisiBroker. 14

W
Warning messages. 57
Write Cache Batch Size (property)

Naming Service . 72
Write Cache Write Interval (property) 72

X
Xbootclasspath . 86 XML Export and Import 41
109
Naming Service Guide

�������	

	OpenFusion® CORBA Services
	Table of Contents
	List of Figures
	Preface
	About the Naming Service Guide
	Contacts

	The Naming Service
	1 Description
	1.1 Overview
	1.1.1 OMG Standard Features
	1.1.2 OpenFusion Enhancements

	1.2 Concepts and Architecture
	1.2.1 OMG Standard
	1.2.1.1 Naming Contexts
	1.2.1.2 Federation
	1.2.1.3 Name Components
	1.2.1.4 Interoperable Naming Service (INS)
	1.2.1.5 Stringified Names
	1.2.1.5.1 Interoperable Object Reference (IOR)
	1.2.1.5.2 URLs

	1.2.2 OpenFusion Enhancements
	1.2.2.1 Java Naming and Directory Interface (JNDI)
	1.2.2.2 Multiple Forms of Persistence
	1.2.2.3 Caching
	1.2.2.4 Purging and Memory Management
	1.2.2.4.1 Purging
	1.2.2.4.2 Memory Management

	1.2.2.5 Load Balancing Concepts
	1.2.2.6 Load Balancing in OpenFusion
	1.2.2.7 Instrumentation
	1.2.2.8 Fail-over
	1.2.2.9 Replication

	2 Using Specific Features
	2.1 Obtaining the Root Context
	2.2 Naming Context Creation and Destruction
	2.3 Binding and Unbinding Operations
	2.4 Accessing Naming Context Contents
	2.5 BindingIterator Operations
	2.6 Naming Context Extension Operations
	2.7 Using the LoadBalancingFactory
	2.8 Manipulating Objects in the LoadBalancer
	2.9 Using the LoadBalancer with the Naming Service
	2.10 Customizing the LoadBalancer

	3 Worked Example
	3.1 Example Client

	4 API Definitions
	4.1 OMG Standard API Definitions
	4.1.1 NamingContext Interface
	4.1.2 NamingContextExt Interface
	4.1.3 BindingIterator Interface

	4.2 OpenFusion API Extensions
	4.2.1 LoadBalancingFactory Interface
	4.2.2 LoadBalancer Interface
	4.2.3 LoadBalancer Standard Policies
	4.2.4 LoadBalancerPlugin Interface
	4.2.5 JNDIObject Interface

	5 Supplemental Information
	5.1 Administration Properties and Instrumentation
	5.2 Java Naming & Directory Interface (JNDI)
	5.3 Lightweight Directory Access Protocol (LDAP)
	5.4 Purging Options
	5.5 Memory Management
	5.6 XML Export and Import
	5.6.1 Exporting and Importing Cyclics

	5.7 Exceptions

	Java Naming and Directory Interface
	6 Description
	6.1 Overview
	6.1.1 Sun’s JNDI Standard Features
	6.1.2 OpenFusion Enhancements

	6.2 Concepts and Architecture
	6.2.1 Standard JNDI
	6.2.2 The Initial Context
	6.2.3 Naming Systems
	6.2.4 References and Addresses

	7 OpenFusion SPI Implementation
	7.1 Names
	7.2 Java Objects
	7.3 Supplied Factories
	7.3.1 Storing CORBA Objects
	7.3.2 Storing RMI-IIOP Objects

	7.4 Federation

	8 Using Specific Features
	8.1 JDBC-based Persistence
	8.2 Accessing Data

	9 Supplemental Information
	9.1 Configuration Properties
	9.1.1 Standard Properties
	9.1.2 Provider-specific Properties
	9.1.2.1 General
	9.1.2.2 Persistence
	9.1.2.2.1 Caching
	9.1.2.2.2 UUID and SID

	9.2 Exceptions

	Configuration and Management
	10 Naming Service Configuration
	10.1 Common Properties
	10.2 NameSingleton Configuration
	10.2.1 CORBA PropertiesOR Name Service Entry
	10.2.2 Lightweight Directory Access Protocol (LDAP)
	10.2.3 Persistence Options
	10.2.4 Instrumentation Properties
	10.2.5 General Properties

	10.3 LoadBalancingFactorySingleton Configuration

	11 Naming Service Manager
	11.1 Running the Naming Service Manager
	11.2 Using the Naming Service Manager
	11.2.1 Object Icons
	11.2.2 Tool Bar Buttons
	11.2.3 Adding a Naming Context
	11.2.4 Binding OpenFusion Services
	11.2.5 Binding Objects
	11.2.6 Deleting a Naming Context or Object Binding
	11.2.7 Exporting XML
	11.2.8 Importing XML
	11.2.9 Launching Managers and Browsers
	11.2.9.1 CORBA Object Browser
	11.2.9.2 Naming Service Manager

	12 The Purgable Interface
	12.1 Purge Class Plugin
	12.2 Using the Purgable Interface

	Appendices
	A Command Line Management Tool
	Features
	Configuration
	Using the file Protocol
	Using the http Protocol
	Using IOR and corbaloc URL
	Running

	Index

