
OpenFusion®

CORBA Services
Version 4.2

Trading Service
��������	

OpenFusion®

CORBA Services
TRADING SERVICE GUIDE
Part Number: OFCOR-TRDG-42 Doc Issue 12, 27 May 2005
PRISMTECH

Not ices

Copyright Notice

© 2005 PrismTech Limited. All rights reserved.

This document may be reproduced in whole but not in part.

The information contained in this document is subject to change without
notice and is made available in good faith without liability on the part of
PrismTech Limited or PrismTech Corporation.

All trademarks acknowledged.
All Trademarks mentioned herein belong to their respective owners.

OMG, CORBA, IIOP, and ORB are trademarks or registered trademarks of Object
Management Group, Inc. in the U.S. and other countries.

Java, Enterprise JavaBeans, and all Java-based marks are trademarks or
registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

VisiBroker is a trademark or registered trademark of Inprise Corporation in the U.S.
and other countries.

OrbixWeb, Orbix, and ORBacus are trademarks or registered trademarks of Iona
Technologies PLC in the U.S. and other countries.

UNIX is a registered trademark in the U.S. and other countries, licensed exclusively
through X/Open Company Ltd.

Microsoft Windows and NT are trademarks or registered trademarks of Microsoft
Corporation in the U.S. and other countries.
iii
Trading Service Guide

��������	

Pre face
About the Trading Service Guide

The Trading Service Guide is included with the OpenFusion CORBA
Services’ Documentation Set. The Trading Service Guide explains how use
the OpenFusion Trading Service.

The Trading Service Guide is intended to be used with the System Guide
and other OpenFusion CORBA Services documents included with the
product distribution; refer to the Product Guide for a complete list of
documents.

Intended Audience
The Trading Service Guide is intended to be used by users and developers
who wish to integrate the OpenFusion CORBA Services into products which
comply with OMG or J2EE standards for object services. Readers who use
this guide should have a good understanding of the relevant programming
languages (e.g. Java, IDL) and of the relevant underlying technologies (e.g.
J2EE, CORBA).

Organisation
The Trading Service Guide is organised into two main sections. The first
section describes OpenFusion Trading Service. This section provides

• a high level description and list of main features

• explanation of the architecture and concepts

• how to use specific features

• detailed explanations of the main interfaces and how to use them

• other information which is needed to use the component

The last section of the Trading Service Guide, Configuration and
Management, provides information on configuring and managing the
OpenFusion Trading Service using the OpenFusion Graphical Tools. This
section includes detailed descriptions of properties specific to the service,
plus instructions on how to use the OpenFusion Graphical Tools’ Browsers
and Managers for it. It is intended that this section be read in conjunction
with the System Guide.
v
Trading Service Guide

��������	

Conventions
The conventions listed below are used to guide and assist the reader in
understanding the Trading Service Guide.

Item of special significance or where caution needs to be taken.

Item contains helpful hint or special information.

Information applies to Windows (e.g. NT, 2000) only.

Information applies to Unix based systems (e.g. Solaris) only.

Hypertext links to WWW and other internet services are shown as blue italic
underlined.

On-Line (PDF) versions of this document: Items shown as cross references
to other parts of the document, e.g., Contacts on page vii, behave as
hypertext links: readers can jump to that section of the document by clicking
on the cross reference.

Courier fonts indicate programming code and file names.

Extended code fragments are shown in shaded, full width boxes (to allow for
standard 80 column wide text), as shown below:

Italics and Italic Bold are used to indicate new terms, or emphasise an item.

Arial Bold is used to indicate user related actions, e.g. File | Save from a
menu.

Step 1: Indicates that this item is a step or stage of completing a task by a user.

% Commands or input which the user enters on the
command line of their computer terminal

i
WIN

UNIX

 NameComponent newName[] = new NameComponent[1];

 // set id field to “example” and kind field to an empty string
 newName[0] = new NameComponent (“example”, ““);

 rootContext.bind (newName, demoObject);
vi
Trading Service Guide

��������	

Contacts
PrismTech can be contacted at the following address, phone number, fax
and e-mail contact points for information and technical support. Users of the
on-line version of this manual can click the e-mail addresses below to launch
their e-mail client or Web browser to send e-mail direct to PrismTech.

Web: http://www.prismtechnologies.com
General Enquiries: info@prismtechnologies.com
Support Enquiries: http://www.prismtechnologies.com/Contacts

Corporate Headquarters European Head Office
PrismTech Corporation
6 Lincoln Knoll Lane
Suite 100
Burlington, MA
01803
USA

Tel: +1 781 270 1177
Fax: +1 781 238 1700

PrismTech Limited
PrismTech House
5th Avenue Business Park
Gateshead
NE11 0NG
UK

Tel: +44 (0)191 497 9900
Fax: +44 (0)191 497 9901
vii
Trading Service Guide

��������	

http://www.prismtechnologies.com
mailto: info@prismtechnologies.com
http://www.prismtechnologies.com/Contacts

viii
Trading Service Guide

��������	

Contents

Ta b le o f Con ten ts
Notices iii

Preface v
About the Trading Service Guide .v
Contacts .vii

List of Figures xv

List of Tables xvii

Introduction 1

Trading Service 5
1 Description 7
1.1 Overview .7

OMG Standard Features .7
OpenFusion Enhancements .8

1.2 Concepts .8
Standard CORBA Concepts .8

Linking Traders .10

1.3 Architecture .12
Service Type Repository .12
Register .12
Proxy .13
Lookup. .13
Link .13
Admin .13
Database Plug-in. .13
XML Import and Export .14

Service Types .14
Interface Names .14
Property Types .14
Super-types and Inheritance .15
Incarnation Numbers .16
xi
Trading Service Guide

��������	

Table of Contents
Offers . 16
Persistence . 17
Instrumentation . 17
Fail-over . 17
Replication . 18

2 Using Specific Features 19
2.1 Obtaining a Reference to the Trading Service 20
2.2 Obtaining References to Trading Service Interfaces 20
2.3 Managing Service Types . 21

Adding and Removing Service Types . 21
Listing Service Types . 23

2.4 Managing Service Offers . 23
Exporting Service Offers . 23
Using Dynamic Properties . 24
Exporting Proxy Offers . 26
Listing All Service Offers . 29
Querying Service Offers. 30
Details of Service Offers . 31
Removing Service Offers . 33

2.5 Federation of Traders . 33
2.6 Changing Trader Attributes . 34

3 API Descriptions 37
3.1 TraderComponents Interface . 37
3.2 Admin Interface . 37
3.3 Register Interface. 39
3.4 Lookup Interface . 40
3.5 Link Interface . 40
3.6 Proxy Interface . 40

4 Supplemental Information 41
4.1 Trader Constraint Language . 41

Common Types of Constraints. 42
Property Value Types. 42
xii
Trading Service Guide ��������	

Table of Contents
Query Elements. .43
Precedence .47

4.2 Trader Preference Language .47
4.3 Trader Constraint Recipe Language .48
4.4 Valid Service Type Names .50
4.5 XML Export and Import. .51
4.6 Service Type XML File Format .52
4.7 Offer XML File Format. .54
4.8 Trading Service Types .55
4.9 Trading Service Components .57
4.10 Exceptions .57

Configuration and Management 61
5 Trading Service Configuration 63
5.1 Overview .63

Common Properties .63

5.2 TradingSingleton Configuration .64
CORBA Properties .64
Persistence Properties .66
General Properties .66

5.3 ServiceTypeRepositorySingleton Configuration68
CORBA Properties .68
Persistence Properties .70
General Properties .70

5.4 ProcessSingleton Configuration .71

6 Trading Service Manager 73
6.1 Overview .73
6.2 Using the Trading Service Manager .73

Trading Service Properties .75
Query Details. .75
Supports .76
Link Following .76
xiii
Trading Service Guide

��������	

Table of Contents
Tool Bar Buttons . 77

6.3 Queries . 77
Query Constraints . 78

Properties. 78
Policies. 78
Preferences . 79

Execute a Query . 79
Offers . 80

Export Offers . 80

6.4 Offers. 80
Properties. 81
Withdraw an Offer . 82

6.5 Proxy Offers . 82
6.6 Links . 82

7 Service Type Repository Manager 85
7.1 Overview . 85
7.2 Using the Service Type Repository Manager . 85

Tool Bar Buttons . 87
Removing Service Types . 87
Adding Service Types . 88

Names . 88
Properties. 89

Load Service Types . 90
Save Service Types . 90
Mask Service Types. 90

Index 91
xiv
Trading Service Guide ��������	

L is t o f F igures
Figure 1 Trading Service Interactions .10
Figure 2 Structure of the Trading Service .12
Figure 3 Proxy Offer Indirection .26
Figure 4 Trading Service Manager .74
Figure 5 Service Type Repository Manager .86
Figure 6 Add Service Types Dialog Box .88
Figure 7 Add Property Dialog Box .89
xv
Trading Service Guide��������	

List of Figures
xvi
Trading Service Guide ��������	

L i s t o f Ta b les
Table 1 Comparative Functions .43
Table 2 Property Existence .45
Table 3 Mathematical Operators .46
Table 4 Operator Precedence .47
Table 5 Service Type Name Errors .50
Table 6 Kinds of Trading Service .55
Table 7 Trading Service Components .57
Table 8 Trading Service Object Icons .74
Table 9 Trading Service Tool Bar .77
Table 10 Offer Icons .81
Table 11 Service Type Repository Manager Tool Bar .87
xvii
Trading Service Guide��������	

List of Tables
xviii
Trading Service Guide ��������	

Introduct ion

Introduction
The OpenFusion Trading Service is one of a range of services and
interfaces included with the OpenFusion CORBA Services product.

The OpenFusion Trading Service can be used stand-alone or with other
OpenFusion CORBA Services’ interfaces and services.

OpenFusion Trading Service is standards based, i.e. fully compliant with
recognised industry standards and specifications, and supports portability
and interoperability.
 3
Trading Service Guide

��������	

Introduction
4
Trading Service Guide

��������	

Trading Service

1 Descr ip t ion

1.1 Overview

The OpenFusion Trading Service provides a mechanism through which
objects can advertise their capabilities, or match their needs against
advertised capabilities.

Just as the Naming Service is analogous to an ordinary "white pages"
telephone directory, where services are found under a business name, the
Trading Service is analogous to a "yellow pages" directory where services
are found under the type of business that provides the service. The Trading
Service is sometimes used in conjunction with the Naming Service; together
they are referred to as Directory Services.

The Trading Service can be used in many situations where different services
or products may be required by a variety of clients or customers. It could be
used to manage system resources, such as printers: printers advertise their
capabilities (speed, colour, multiple paper sizes), and users and applications
choose a printer suitable for a specific printing job. It could be used for
routing telephone calls: long-distance carriers advertise destinations and
costs, and the user’s local system chooses the lowest-cost carrier for the
specific destination of each call. It might be used as the basis for a company
share-dealing service, where buyer’s wants are matched against offers of
shares for sale. The Trading Service could also be used to implement a
video-on-demand service, where viewers (clients) choose from movies or
other programmes offered by different TV companies.

OMG Standard Features
The OMG Trading Service specification defines six kinds of trading service,
which provide different levels of functionality depending on which interfaces
they implement. The OpenFusion Trading Service is an implementation of
the full service specification, which provides the greatest functionality.

The OpenFusion Trading Service is wholly compliant with the OMG
specification. The main features of the OMG specification enable:

• server objects to advertise the availability of their capabilities (exports)

• client objects to find and use servers with specific capabilities (imports)

• server objects to be linked together so that all their individual capabilites
are available to all of their clients (federation)
 7
 Trading Service

��������	

 1.2 Concepts Description
OpenFusion Enhancements
The OpenFusion implementation of the Trading Service includes several
enhancements to the OMG-defined Trading Service. These enhancements
do not affect the use of the standard service.

Enhancements include:

• multi-threaded implementation for performance and scalability

• database persistence

• service type definition by importing XML documents

• service offer export and import as XML documents

• improved offer searching algorithm

• instrumentation (monitoring functions)

The OpenFusion Trading Service includes a graphical tool, the
Administration Manager, which eases the task of managing the service
whilst it is running. The Administration Manager is fully described in the
System Guide.

1.2 Concepts
The OMG specification defines six kinds of Trading Service. These range
from simple query services (providing lookups only) to full service
implementations, which provide additional facilities such as administration
services. The OpenFusion Trading Service is a full-service implementation,
so everything in this guide is described from that point of view: there is no
indication of which facilities or features may or may not be available in the
other kinds of Trading Service. (The different kinds of Trading Service and
the functions they provide are listed in Supplemental Information on page
41).

Standard CORBA Concepts
An object that supports the Trading Service is called a trader. A trader can
be a server, a client, or both.

The following typical sequence of events illustrates both the terminology of
the Trading Service and the way it could be used in a simple share-dealing
system.
8
 Trading Service

��������	

 Description 1.2 Concepts
• A server adds a description of a service to the trader as a service type.
This description is added to the Service Type Repository, which holds the
catalogue of available service types. In a share-dealing service, these
service types would probably be the names of the companies whose
shares are being bought and sold.

• The server exports an offer of a service of a particular service type to the
trader, and the offer is registered. The offer has a reference to an object
providing the service (it is not necessary for this object to be the same as
the one advertising the service) plus some properties that describe that
object. In a share-dealing service, an offer would be for shares in a
particular company, and the properties would be the kind of share
(Ordinary or Preference, for example), the number of shares available,
and the price expected. The properties of an offer can be static or
dynamic: the value of a static property is determined when the offer is
exported (the value is held in the trader), but the value of a dynamic
property may change during the life of the offer, so the value is requested
from the server when a query is received. In the share offer example, the
kind of share would be static but the price and quantity available would
both be dynamic.

• A client queries the trader for a service with certain characteristics. For
example, the client might be looking for shares in a particular company, or
it might be looking for any kind of share being offered within a price range.
The trader returns offers which match the requirements, and the client
imports the offers returned by the trader. These offers contain references
to server objects with the needed properties. If an offer has dynamic
properties, then they are evaluated when a query is received and the offer
is only returned if they match the query criteria after the current value has
been provided by the server.

• If more than one offer is returned, the client selects one (or more)
according to its requirements. If several offers of shares in the same
company are returned, then the client will probably select the one which
has the lowest price.

• The client then interacts directly with the selected server to invoke objects
which implement the required service (the client agrees to purchase a
number of the offered shares at the price specified).

• Depending on the kind of service it is providing, once it starts interacting
with a client the server may withdraw its offer from the trader. In the
example share dealing system, the server would withdraw its offer when
all of the shares offered had been sold.
 9
 Trading Service

��������	

 1.2 Concepts Description
Note that the Trading Service is no longer involved when the interaction
between the server and the client starts; it only locates objects, it does not
do trading in the sense of mediating transactions between servers and
clients.

The same sequence would occur in the simplified share dealing system if
the offers made by servers were offers to buy shares; in this case the client
(with shares to sell) would select the offer with the highest bid (price).

There can be variations in detail in different situations, but this demonstrates
the general principles illustrated in Figure 1, Trading Service Interactions.

Figure 1 Trading Service Interactions

Linking Traders
A trader can be explicitly linked to other traders. This allows clients to not
only interact with a single trader, but also retrieve service offers from other
traders linked to the first one. Since the linked traders may in turn be linked
to more traders, a large number of traders may be reached from a given
starting trader. Such a network of linked traders is known as a federation of
traders or trading graph. Because each link is unidirectional, leading from
the trader on which it is created, the trading graph is termed directed. There
are no restrictions on the number of links that can be created from any one
trader.

It is possible to specify scoping or link-following policies, to control the extent
of a search for matching offers. This is often desirable in widely-distributed
systems to help limit the length of time that a query takes to complete, or of

export

Serv
er

Server Clie
nt

Client

import

invoke

Pro
xy

Trader
10
 Trading Service

��������	

 Description 1.2 Concepts
the resources that are involved in its completion, but it can be for other
reasons. For example, it is common to specify that a link should only be
followed if no matching offers are found within the current trader. This policy
may be appropriate in a printer management service, where a trader
handles printers and users in a particular location: users do not want to have
to go far to collect a printout, so the service should only look for a suitable
printer farther afield if the print job cannot be handled by a local device.

Whatever the policies applied to individual traders and links, overall system
policies can provide absolute limits: for example, although it might be
possible in a large system to follow a very long daisychain of links from
trader to trader, a low limit might be imposed on the number of steps (often
referred to as hops) to follow along any one chain of links from any one
trader. This hop count limit can also help to ensure that a search does not
enter an infinite loop if it returns to the initiating trader via a link from another
trader in the chain.
 11
 Trading Service

��������	

 1.3 Architecture Description
1.3 Architecture

Figure 2 Structure of the Trading Service

The OpenFusion Trading Service consists of a number of component parts,
which are illustrated in Figure 2. Each component of the service and of a
trader is described below.

Service Type Repository
The Service Type Repository contains details of service types, as a kind of
catalogue. Each service type definition has a unique name and zero or more
properties. An appropriate service type must exist in the Service Type
Repository before a server can export an offer.

Register
The Register is used by servers to export ("advertise") service offers.

Serv
er

Server

Serv
er

Server
Trader

components

Serv
er

Server

Clien
t

Client

OpenFusion Trading Service

define

export

Other
Trading
Services

export

Lin
k

Link

Looku
p

Lookup

Admi
n

AdminRegist
er

Register

Prox
y

Proxy
query

SQL
Server

SQL Server

Access. Flat
file

Flat file

Oracl
e

Oracle

Sybas
e

Sybase

Database
Plug-in

Informi
x

Informix

Service
type

repository

XML

 service offers
import and

export

XML

service types
import
12
 Trading Service

��������	

 Description 1.3 Architecture
To export an offer, a server must provide a description of the service and a
reference to an interface where that service can be obtained.

Proxy
The Proxy supports the delayed evaluation of offers and can be used to
encapsulate legacy systems.

A proxy offer is like a normal service offer in that it has a service type and
named properties. However, it does not contain an object reference leading
directly to the interface providing the service; it contains a reference to an
object supporting the Lookup interface (the Trader performs a secondary
lookup on this interface, transparently to the client).

Lookup
Lookup is used by the client to query the trader for service offers.

A query specifies criteria for the service type and properties which the client
requires.

Link
The Link interface is used to federate traders.

Note that links are one-way only: a trader only has knowledge of links from
itself to other traders. There is no limit to the number of links any one trader
can have; however, the way those links are used can be controlled by a
hierarchy of link-following policies. These policies determine when a link is
used (always, sometimes, never) and how far along a chain of links any
search can go.

Admin
The Admin interface is used to query and change the administrative
properties of the trader. For example, link-following policies may be relaxed
(within limits set for the Trading Service as a whole) or tightened, or support
for proxy offers may be enabled or disabled.

Database Plug-in
Persistence in the Trading Service is normally implemented with a database.
The OpenFusion Trading Service supports many different databases
through the use of JDBC plug-ins. Please refer to the System Guide for
information on using JDBC databases for persistence in the Trading Service.
 13
 Trading Service

��������	

 1.3 Architecture Description
XML Import and Export
The OpenFusion Trading Service enables offers to be both exported and
imported as XML documents. Service type definitions can also be imported
into the service type repository as XML documents.

Service Types
A service type represents the information needed to describe a service. The
service type has a name This is usually meaningful within the the context of
the business where the service will be used; in a video-on-demand system,
for example, service types would probably have names such as programme,
movie and sports_event. A service type definition contains:

• an interface name

• zero or more named property types

• zero or more super-types

The service type model can be illustrated using this notation:

Interface Names
The interface name is the IDL repository identifier for the service; in a simple
video-on-demand system, the interface name for a service type called
programme might be:
 interface IDL:prismt.com.cos.CosTrading.examples/Video/Programme:1.0;

Property Types
Property types describe or define aspects of the service’s behaviour.

The property types of a service contain a name, type and mode.

The name is usually a meaningful identifier; in the video-on-demand system
mentioned above, a service such as movie would probably have properties
named title, certificate and price.

The type can be any arbitrarily complex IDL type. Note, however, that only
simple types (boolean, short, unsigned short, long, unsigned long, float,
double, char, Ichar, string and Istring) can be handled by the Trader
Constraint Language which is used for evaluating and selecting offers for a
query to return.

service <ServiceTypeName>[:<BaseServiceTypeName>[,<BaseServiceTypeName>]*]
(
 interface <InterfaceTypeName>;
 [[mandatory] [readonly] property <IDLType> <PropertyName>;]*
);
14
 Trading Service

��������	

 Description 1.3 Architecture
The mode determines whether the property is static (fixed at the time the
offer is exported) or dynamic (capable of being updated after the offer has
been exported). There are four possible modes:

• normal or default: if no mode is specified, then the property is optional and
if a value is given it can be updated

• readonly: if the mode is readonly, then the property is optional but if a
value is given it cannot be updated

• mandatory: if the mode is mandatory, then a value for the property must
be given but it can be updated

• mandatory readonly: if the mode is mandatory readonly, then a value for
the property must be given and cannot be updated

The mode of a property type has strength. The normal or default mode is the
"weakest"; the mandatory and readonly modes are of equivalent strength,
and the combined mandatory readonly mode is strongest. This is relevant
when service type properties are inherited.

Super-types and Inheritance
A new service type can be declared to be a sub-type of an existing service
type (the super-type), so that it inherits the characteristics of the super-type.
The use of super-types enables the creation of hierarchies of service types
which reflect the inheritance of interface types and the aggregation of
property types.

For example, in a video-on-demand system, film and sports event would
be defined as sub-types of the super-type programme. They would both
inhherit the property title but would have their own properties in addition:
certificate for film and sport for sports event.

This is illustrated below:
 1: service programme
 2: {
 3: interface IDL:prismt.com/cos/CosTrading/examples/Video/Programme:1.0;
 4: property string title;
 5: };
 6:
 7: service film : programme
 8: {
 9: interface IDL:prismt.com/cos/CosTrading/examples/Video/Film:1.0;
 10: property string certificate;
 11: };
 12:
 13: service sportsEvent : programme
 14: {
 15: interface IDL:prismt.com/cos/CosTrading/examples/Video/SportsEvent:1.0;
 16: property string sport;
 17: };
 15
 Trading Service

��������	

 1.3 Architecture Description
The rules for inheritance are:

• the interface type of the sub-type must be the same as the interface type
of the super-type, or derived from it

• all of the properties defined for the super-type are implicitly defined for the
sub-type

• an inherited sub-type property has the same value type as the super-type
property

• an inherited sub-type property must have a mode the same as or stronger
than that of the super-type

Incarnation Numbers
When a new service type is successfully created, it is given an incarnation
number. This is incremented each time a new service type is added to the
repository; it is a sequence number, not a version number.

An incarnation number can be used with the list_types operation to find
all service types added to the repository since that number was assigned.

The incarnation number is currently defined as a struct consisting of two
unsigned longs, but it is expected that this will change when all CORBA
systems fully support 64-bit integers.

Offers
A service offer represents the information given by a server about the
service it is advertising. This information is:

• the service type name

• an object reference to an interface providing the service

• zero or more property values for the service

A server must specify values for all mandatory properties of the service type.
Properties in a service offer can be modified when their property mode is not
readonly.

Service offers may also contain dynamic properties whose values are not
held within the trader but are obtained on demand using the interface of a
dynamic property evaluator nominated by the server. This is useful in
systems such as the share dealing service mentioned earlier, where the
price at which shares are offered for sale is likely to fluctuate during the
lifetime of the offer.

i

16
 Trading Service

��������	

 Description 1.3 Architecture
It is also possible to specify offer properties which are additional to those
specified in the service type definition in the service type repository. Property
type checking is not performed for such offer properties.

Each offer has an ID which is used by the exporter to identify it to the trader;
it only has meaning within the trader with which the offer is registered.

Persistence
The OpenFusion Trading Service can store its persistent data in memory or
databases.

Database persistence is implemented using Java Database Connectivity
(JDBC). OpenFusion currently supports Oracle, Sybase, Informix and
hsqldb on both Unix and Windows NT, plus Microsoft SQL Server on
Windows NT only. Because the OpenFusion Trading Service supports
persistence on enterprise quality, high-availability database systems, it is
fully scalable.

The persistence mechanism must be configured before the Trading Service
is started; this is normally done with the Administration Manager. Please
refer to the System Guide for information on using JDBC databases with the
Trading Service.

Instrumentation
OpenFusion provides both general and service-specific instrumentation
features which can be used for system monitoring, which in turn aids in
problem identification, performance tuning, and so on. OpenFusion
instrumentation consists of a set of properties that can be monitored either
using the Administration Manager or remotely through SNMP.

In addition to properties that are read-only at runtime, OpenFusion provides
some properties that can be set and reset at run-time as required, such as
when a particular threshold value is reached or a time period has elapsed.
Note that there is virtually no performance overhead involved in using any of
the OpenFusion instrumentation features.

Fail-over
Fail-over is the ability of the OpenFusion Trading Service to continue to
provide a service even though part of the system has failed; another part of
the system takes over from the failed part. This is currently only available
with the Visibroker osagent daemon, which performs the fail-over
transparently to the Trading Service.
 17
 Trading Service

��������	

 1.3 Architecture Description
All OpenFusion Trading Service instances in a cluster offer the same service
(data and response times) to the rest of the system. If a member of the
cluster fails, other cluster members ensure that the levels of service are
maintained. If automatic re-binding is supported by the underlying ORB, the
clients of the failed cluster member are automatically and transparently
reconnected to other cluster members. Note that caching must be disabled
to keep the service instances in synchronization. Service offers can be
exported and imported as XML DTDs to assist cluster set-up.

Replication
Replication is the duplication of data across two or more databases. The
duplication and synchronisation is normally performed by the database itself,
and is therefore transparent to the Trading Service. This enables two or
more Trading Services to use the same data, but from physically distinct
databases, thus often improving performance.
18
 Trading Service

��������	

2 Us ing Spec i f i c Fea tu res

This section describes how to use the Trading Service with illustrative
examples in Java.

Features and their use are described in the following order:

Imports: requisite import statements for using the Trading Service

Obtaining a Reference to the Trading Service: describes how to resolve
a reference to the Trading Service

Obtaining References to Trading Service Interfaces: describes how to
resolve references to the various components of the Trading Service

Managing Service Types: adding, removing and listing service types

Managing Service Offers: exporting, listing, querying, detailing and
removing service offers

Federation of Traders: linking traders together

Changing Trader Attributes: managing the behaviour of the trader

A selection of the most useful interfaces and operations are listed in API
Descriptions.

The exceptions raised by the OpenFusion Trading Service are listed in
Supplemental Information.

An example application using the service, complete with source code and a
description of how to compile and run it, is supplied elsewhere as part of the
product distribution.

Note
• No CORBA system exceptions are caught in any of these examples; code

to deal with them has been omitted for the sake of clarity and brevity.
These exceptions must of course be properly caught and handled in a
working system.

• The following libraries must be imported into any application using the
OpenFusion Trading Service:

i

import org.omg.CosTrading.*;
import org.omg.CosTrading.AdminPackage.*;
import org.omg.CosTrading.LinkPackage.*;
import org.omg.CosTrading.LookupPackage.*;
import org.omg.CosTrading.ProxyPackage.*;
import org.omg.CosTrading.RegisterPackage.*;
import org.omg.CosTradingDynamic.*;
import org.omg.CosTradingRepos.*;
import org.omg.CosTradingRepos.ServiceTypeRepositoryPackage.*;
 19
 Trading Service

��������	

 2.1 Obtaining a Reference to the Trading Service Using Specific Features
2.1 Obtaining a Reference to the Trading Service
Step 1: A reference to the Trading Service is obtained after configuring and starting

the trader by initialising the orb and resolving the Trading Service using:

Step 2: This reference is then cast to a CORBA object and narrowed to give a
reference to one of the trader components. A reference to the Lookup
component is obtained in this example. All traders implement the lookup
interface.

2.2 Obtaining References to Trading Service
Interfaces

References are obtained to any of the other four trader components by using
a reference to one of the trader components. Using a reference to the
Lookup component is used to obtain references to all of the other
components.

A reference to the ServiceTypeRepository is obtained using the
type_repos method of the Lookup interface and then narrowing the
reference to the correct type.

import com.prismt.orb.*;

org.omg.CORBA.ORB orb = null;
org.omg.CORBA.Object object = null;

orb = ObjectAdapter.init (args);

try
{
 object = orb.resolve_initial_references (“TradingService”);
}
catch (org.omg.CORBA.ORBPackage.InvalidName ex)
{
 System.err.println (“Failed to resolve service: “ + ex);
 System.exit (1);
}

org.omg.CORBA.Object obj = (org.omg.CORBA.Object) object;
Lookup lookup = LookupHelper.narrow (obj);

Register register = lookup.register_if ();
Admin admin = lookup.admin_if ();
Link link = lookup.link_if ();
Proxy proxy = lookup.proxy_if ();

org.omg.CORBA.Object obj2 = lookup.type_repos ();
ServiceTypeRepository repository
 = ServiceTypeRepositoryHelper.narrow (obj2);
20
 Trading Service

��������	

 Using Specific Features 2.3 Managing Service Types
2.3 Managing Service Types
This section provides examples of how to add, list and remove service types
using the Service Type Repository component of the Trading Service.

Adding and Removing Service Types
The full Trading Service IDL definitions of the derived types used here are
provided on the distribution CD. Adding a service type to the trader is done
using the add_type operation of the ServiceTypeRepository. The
ServiceTypeRepository is part of the CosTradingRepos interface.

A service type named programme, representing television programmes, is
added to the ServiceTypeRepository in order to show the use of the
add_type opera t ion . Th is se rv i ce t ype imp lements the
IDL:prismt.com/cos/CosTrading/examples/Video/Programme:1.0
interface, has a single property called title of type string, and has no
super types. Details of valid names for service types are given in Valid
Service Type Names on page 50 .

i

IncarnationNumber add_type
(
 in CosTrading::ServiceTypeName name,
 in Identifier if_name,
 in PropStructSeq props,
 in ServiceTypeNameSeq super_types
)
raises
(
 CosTrading::IllegalServiceType,
 ServiceTypeExists,
 InterfaceTypeMismatch,
 CosTrading::IllegalPropertyName,
 CosTrading::DuplicatePropertyName,
 ValueTypeRedefinition,
 CosTrading::UnknownServiceType,
 DuplicateServiceTypeName
);

serviceType = “programme”;
interfaceType
 = “IDL:prismt.com/openfusion/examples/Video/Programme:1.0”;

props = new PropStruct[1];
props[0] = new PropStruct ();
props[0].name = “title”;
props[0].mode = PropertyMode.PROP_NORMAL;
props[0].value_type =
 orb.get_primitive_tc (org.omg.CORBA.TCKind.tk_string);

// this type has no supertypes
supers = new String[0];
 21
 Trading Service

��������	

 2.3 Managing Service Types Using Specific Features
The add_type operation is then used to add this service type to the
ServiceTypeRepository.

This operation should be included in a try-catch block in order to check that
the type is successfully added.

A subtype representing a film is added to the ServiceTypeRepository. A
film is created as a subtype, named film, of the service type programme
(previously placed in the ServiceTypeRepository) since it is a type of
television programme.

The new service type, film, inherits the title property from its supertype,
programme. The service type, film, is given an additional property named
certificate of type string.

The remove_type operation of the ServiceTypeRepository is used to
delete a service type:

Service types can also be added to the trader from text files using the
Service Type Repository Manager, which is part of the Administration
Manager.

repos.add_type (serviceType, interfaceType, props, supers);

serviceType = “film”;
interfaceType = “IDL:prismt.com/openfusion/examples/Video/Film:1.0”;
props = new PropStruct[1];
props[0] = new PropStruct ();
props[0].name = “certificate”;
props[0].mode = PropertyMode.PROP_NORMAL;
props[0].value_type =
 orb.get_primitive_tc (org.omg.CORBA.TCKind.tk_string);
supers = new String[1];
supers[0] = “programme”;

repos.add_type (serviceType, interfaceType, props, supers);

void remove_type
(
 in CosTrading::ServiceTypeName name
)
raises
(
 CosTrading::IllegalServiceType,
 CosTrading::UnknownServiceType,
 HasSubTypes
);

repository.remove_type (“film”);
22
 Trading Service

��������	

 Using Specific Features 2.4 Managing Service Offers
Listing Service Types
Once service types have been defined, a complete list of all service types
can be retrieved from the Service Type Repository using the list_types
operation:

The SpecifiedServiceTypes parameter gives two options enabling service
types to return either a complete list of service types or all service types
which were added to the trader since a given incarnation number.

The following example retrieves a complete list of all service type names:

2.4 Managing Service Offers
This section provides examples of managing service offers in the Trading
Service. Both ordinary and proxy offers are exported and removed. Listing
offers from the trader and describing offers are also covered, as is the use of
dynamic properties within offers.

Exporting Service Offers
A server advertises its service offers using the export operation of the
Register interface.

ServiceTypeNameSeq list_types (in SpecifiedServiceTypes which_types);

union SpecifiedServiceTypes switch (ListOption)
{
 case since: IncarnationNumber incarnation;
};

SpecifiedServiceTypes whichTypes = new SpecifiedServiceTypes ();
whichTypes.__default (ListOption.all);
String [] types = repository.list_types (whichTypes);

OfferId export
(
 in Object reference,
 in ServiceTypeName type,
 in PropertySeq properties
)
raises
(
 InvalidObjectRef,
 IllegalServiceType,
 UnknownServiceType,
 InterfaceTypeMismatch,
 IllegalPropertyName,
 PropertyTypeMismatch,
 ReadonlyDynamicProperty,
 MissingMandatoryProperty,
 DuplicatePropertyName
);
 23
 Trading Service

��������	

 2.4 Managing Service Offers Using Specific Features
The ServiceTypeName and PropertySeq variables are set up when the
var iab le re fe rence a l ready con ta ins an ob jec t o f t ype
org.omg.CORBA.Object. An offer is set up here with type film (used in
Adding and Removing Service Types on page 21); values are set for the two
propert ies title and certificate . The any variable is of type
org.omg.CORBA.Any.

The code to export the service offer is then simply:

The OfferIds given to offers in the OpenFusion Trading Service are strings
representing UUIDs. These are fixed length strings.

Using Dynamic Properties
Offers exported to the trader may contain properties that are name-value
pairs where the name is a string and the value is of type CORBA any. The
example above used a static property named title with its value set to
Star Wars by inserting that string into an any. It is also possible to export
offers with dynamic properties where the actual value of the property is held
externally and can be obtained on demand.

The next code example shows how a property value can contain a
DynamicProp structure rather than a static property value. The value of the
date property will not be set until the property value is required during the
execution of a query.

String type = “film”;

Property [] property = new Property[2];
property[0] = new Property ();
property[0].name = “title”;
any = orb.create_any ();
any.insert_string (“Star Wars”);
property[0].value = any;
property[1] = new Property ();
property[1].name = “certificate”;
any = orb.create_any ();
any.insert_string (“U”);
property[1].value = any;

offerId = register.export (reference, type, property);

com.prismt.util.UUID UUID = null;
try
{
 UUID = new com.prismt.util.UUID (offerId);
}
catch (com.prismt.util.UUIDArgumentException ex)
{
 System.err.println (“Invalid offer ID: “ + ex);
}

boolean res = UUID.equals (otherUUID);

property[0] = new Property ();
24
 Trading Service

��������	

 Using Specific Features 2.4 Managing Service Offers
The class MyProperty, which provides the DynamicPropEval interface,
shows how a properly typed property value is obtained during the evaluation
of a query. The property value is set to the current date represented as a
string when the evalDP operation is called on behalf of a property with a
string typecode. However, the property value is set to the current date
represented as the number of milliseconds since January 1st 1970 when the
evalDP operation is called on behalf of a property with a long typecode. The
third parameter of the DynamicProp, extra_info, is not used by the Trading
Service but is passed onto the evalDP operation when the dynamic property
value is evaluated.

property[0].name = “date”;
any = orb.create_any();
MyProperty mp = new MyProperty (orb);
DynamicProp myProp = new DynamicProp
(
 DynamicPropEvalHelper.narrow (ObjectAdapter.getObject (mp)),
 orb.get_primitive_tc (org.omg.CORBA.TCKind.tk_string),
 orb.create_any ()
);
DynamicPropHelper.insert (any, myProp);
property[0].value = any;

public class MyProperty
 implements org.omg.CosTradingDynamic.DynamicPropEvalOperations
{
 private org.omg.CORBA.ORB orb = null;

 public MyProperty (org.omg.CORBA.ORB orb)
 {
 ObjectAdapter.createTransient (this);
 this.orb = orb;
 }

 public org.omg.CORBA.Any evalDP
 (
 String name,
 org.omg.CORBA.TypeCode tc,
 org.omg.CORBA.Any extraInfo
)
 throws org.omg.CosTradingDynamic.DPEvalFailure
 {
 org.omg.CORBA.Any value = orb.create_any ();
 org.omg.CORBA.TypeCode tc2 =
 orb.get_primitive_tc (org.omg.CORBA.TCKind.tk_string);

 if (tc.equal (orb.get_primitive_tc (org.omg.CORBA.TCKind.tk_string)))
 {
 value.insert_string ((new java.util.Date ()).toString ());
 }
 else
 if (tc.equal (orb.get_primitive_tc (org.omg.CORBA.TCKind.tk_longlong)))
 {
 value.insert_longlong ((new java.util.Date ()).getTime ());
 }
 else
 {
 throw new org.omg.CosTradingDynamic.DPEvalFailure ();
 }

 return value;
 }
 25
 Trading Service

��������	

 2.4 Managing Service Offers Using Specific Features
Readonly properties may not have dynamic values. No offers containing
dynamic properties are matched when the trader does not support dynamic
properties, either because the supports_dynamic_properties attribute is
set to false, or a query requests that dynamic properties not be used.

Exporting Proxy Offers
In Exporting Service Offers above, the interface that provides the service is
an integral part of the service offer. As illustrated in Figure 3, Proxy Offer
Indirection below, the trading service also supports a second kind of service
offer, a proxy offer, where the interface that provides the offer is determined
at run-time. The object reference is obtained by invoking another query
operation on the target Lookup interface held in the proxy offer when a proxy
offer matches a query.

Figure 3 Proxy Offer Indirection

Proxy offers are useful, for example, in systems where objects are created
dynamically on request as part of a query. This can be a convenient way to
encapsulate legacy objects; the query to the proxy trader permits the
dynamic creation of a service instance that encapsulates the legacy object.

}

Lookup

Trading Service

Client query

Modified query

Target Server

Target Server

Proxy
Offer

Proxy
Offer

Offer

Client

Offer

Offer

Offer

OfferLookup
26
 Trading Service

��������	

 Using Specific Features 2.4 Managing Service Offers
The target interface of a proxy offer must syntactically support the Lookup
interface of the trader, but all that is required of the target interface is that the
query operation return zero or one offer using the offers parameter.

public void query
(
 String type,
 String constr,
 String pref,
 org.omg.CosTrading.Policy [] policies,
 SpecifiedProps desired_props,
 int how_many,
 OfferSeqHolder offers,
 OfferIteratorHolder offer_iter,
 PolicyNameSeqHolder limits_applied
)
 throws IllegalServiceType,
 UnknownServiceType,
 IllegalConstraint,
 IllegalPreference,
 IllegalPolicyName,
 PolicyTypeMismatch,
 InvalidPolicyValue,
 IllegalPropertyName,
 DuplicatePropertyName,
 DuplicatePolicyName
{
 int index1 = -1;
 int index2 = -1;
 System.out.println (“Programme Factory passed constraint: “ + constr);
 index1 = constr.indexOf (“title==”);
 index1 = index1 + 7; // move to the first quote mark
 if (index1 >= 0)
 {
 // “title==” appears in constraint
 index2 = constr.indexOf (“‘”, index1 + 7); // find second quote mark
 title = constr.substring (index1 + 1, index2);

 offers.value = new Offer[1];
 offers.value[0] = new Offer ();
 offers.value[0].properties = new Property[0];

 ProgrammeOperations pops = new ProgrammeOperations ()
 {
 public String title ()
 {
 return title;
 }

 public String description ()
 {
 return “Unknown”;
 }

 public void show ()
 {
 System.out.println
 (“Showing from the programme factory: “ + title);
 }
 };
 offers.value[0].reference = ObjectAdapter.createTransient (pops);

 limits_applied.value = new String[0];
 }
 else
 {
 27
 Trading Service

��������	

 2.4 Managing Service Offers Using Specific Features
In addition to the query operation, the target interface must support all other
operations of the Lookup interface but none of these will be used by the
trading service.

Proxy offers are exported to the trading service using the export_proxy
operation of the Proxy interface.

A proxy offer contains a service type and properties in the same way as an
ordinary service offer. The proxy offer is considered to be a match to a query
on service type conformance alone when the if_match_all property is set
to true. This means that the query’s constraint expression is not evaluated
against the properties contained in the proxy offer.

The recipe parameter of a proxy offer is an instruction to the trader
describing how to construct the constraint expression for the secondary
query to the target interface from the primary constraint expression and the
proxy offer’s properties. Details of the recipe language are provided in
Supplemental Information.

The policies_to_pass_on parameter contains any policies that should be
appended to those given in the primary query when passing the query onto
the target interface. These policy values are only seen by the target interface

 // we can’t create the programme
 offers.value = new Offer[0];
 limits_applied.value = new String[0];
 System.out.println
 (“Programme Factory unable to create a film using the constraint: “
 + constr);
 }

}

OfferId export_proxy
(
 in Lookup target,
 in ServiceTypeName type,
 in PropertySeq properties,
 in boolean if_match_all,
 in ConstraintRecipe recipe,
 in PolicySeq policies_to_pass_on
)
raises
(
 IllegalServiceType,
 UnknownServiceType,
 InvalidLookupRef,
 IllegalPropertyName,
 PropertyTypeMismatch,
 ReadonlyDynamicProperty,
 MissingMandatoryProperty,
 IllegalRecipe,
 DuplicatePropertyName,
 DuplicatePolicyName
);
28
 Trading Service

��������	

 Using Specific Features 2.4 Managing Service Offers
so duplicated values will not necessarily throw DuplicatePolicyName
exceptions. Instead, they could be used, for example, to override the values
given by the primary query operation.

Listing All Service Offers
A complete list of all service offers can be retrieved from the trader. This is
done using the list_offers operation of the CosTrading module which
allows the specification of the number of offers to be retrieved in the first
instance and the return of an iterator to obtain further service offers.

The retrieval of all service offers is demonstrated by first retrieving ten of
them, and then using the iterator to retrieve further sets of ten until all offers
have been retrieved. First, initialise the Holder variables:

The list_offers operation is used to retrieve the first ten offers:

These ten offers are stored in a vector. The correct number of offers is
stored in the vector when the trader contains less than ten offers.

The iterator returned by the list_offers operation is now used to retrieve
the rest of the offers from the trader in sets of ten until there are no more
offers returned by the iterator. All these offers are added to the storage
vector.

void list_offers
(
 in unsigned long how_many,
 out OfferIdSeq ids,
 out OfferIdIterator id_itr
)
raises
(
 NotImplemented
);

OfferIdSeqHolder ids = new OfferIdSeqHolder ();
OfferIdIteratorHolder iter = new OfferIdIteratorHolder ();

admin.list_offers (10, ids, iter);

java.util.Vector v = new java.util.Vector ();
for (int i = 0; i < ids.value.length; i++)
{
 v.addElement (ids.value[i]);
}

if (iter.value != null)
{
 OfferIdSeqHolder seq = new OfferIdSeqHolder ();
 boolean more;
 do
 {
 more = iter.value.next_n (10, seq);
 for (int i = 0; i < seq.value.length; i++)
 29
 Trading Service

��������	

 2.4 Managing Service Offers Using Specific Features
The vector v containing all of the offers that have been found in the trader
can now be transformed into a string array containing the offers.

Querying Service Offers
The user can query the trader to find service offers that have certain
characteristics or properties. This is done using the query operation of the
CosTrading module:

A simple example of querying the trader is now worked through. An offer for
the service type film is looked for, although any constraints for the offers
returned are not specified, but requested to be returned in random order.

 {
 v.addElement (seq.value[i]);
 }
 }
 while (more);

 iter.value.destroy ();
}

String [] offers = new String [v.size()];
for (int i = 0; i < v.size(); i++)
{
 offers[i] = (String) v.elementAt(i);
}

void query
(
 in ServiceTypeName type,
 in Constraint constr,
 in Preference pref,
 in PolicySeq policies,
 in SpecifiedProps desired_props,
 in unsigned long how_many,
 out OfferSeq offers,
 out OfferIterator offer_iter,
 out PolicyNameSeq limits_applied
)
raises
(
 IllegalServiceType,
 UnknownServiceType,
 IllegalConstraint,
 IllegalPreference,
 IllegalPolicyName,
 PolicyTypeMismatch,
 InvalidPolicyValue,
 IllegalPropertyName,
 DuplicatePropertyName,
 DuplicatePolicyName
);

String stype = “film”;
String constraints = ““;
String preferences = “random”;
30
 Trading Service

��������	

 Using Specific Features 2.4 Managing Service Offers
The policies parameter is used to override the trader’s default behaviour.
One of the trader’s policies is changed to ensure that no proxy offers are
considered by setting the policy supports_proxy_offers to false. The
var iab le any has a l ready been de f ined to have the t ype
org.omg.CORBA.Any.

All the properties that should be returned, along with the offers using the
SpecifiedProps parameter are specified. In this case, three offers are to be
returned in the first instance.

The Holder objects are set up for the returned parameters. Any matching
o f fe rs a re re tu rned in the OfferSeqHolder ob jec t . The
OfferIteratorHolder contains the iterator that enables any other
remaining offers to be retrieved.

The call to the query operation is then:

Details of Service Offers
References to services offers are obtained using either the query or
list-offers methods above. Each offer is returned as an OfferId which is a
String when all service offers are listed. Each offer is returned as an Offer
object which contains a reference to the object and a list of the properties
associated with the offer when the trader is queried.

Policy [] policies = new Policy[1];

policies [0] = new Policy();
policies[0].name = “supports_proxy_offers”;
any = orb.create_any();
any.insert_boolean(false);
policies[0].value = any;

SpecifiedProps properties = new SpecifiedProps ();
properties.__default (HowManyProps.all);

int how_many = 3;

OfferIteratorHolder offer_itr = new OfferIteratorHolder ();
OfferSeqHolder offerseq = new OfferSeqHolder ();
PolicyNameSeqHolder limits = new PolicyNameSeqHolder ();

lookup.query
(
 stype,
 constraints,
 preferences,
 policies,
 properties,
 how_many,
 offerseq,
 offer_itr,
 limits
);
 31
 Trading Service

��������	

 2.4 Managing Service Offers Using Specific Features
It is possible to obtain the information contained within an Offer object
when all service offers have been listed, and there is an OfferId object, by
using the describe operation of the Register interface.

Therefore, using either method above, the reference and properties of the
offer are obtained. The service type will be either specified in the query that
returned the offer, or returned by the describe operation.

The reference is in the form of an IOR. The following Java code prints out the
IOR of the re ference when the var iab le reference i s o f type
org.omg.CORBA.Object.

The details of all the properties it contains are printed when the variable
props is of type org.omg.CosTrading.Property[] using the following
code:

This code does not deal with dynamic properties. However, the following
code could be used in conjunction with that above to deal with dynamic
properties. It first checks that the property has the typecode of a dynamic
property, and then extracts the property details, providing that it is a dynamic
property.

OfferInfo describe
(
 in OfferId id
)
raises
(
 IllegalOfferId,
 UnknownOfferId,
 ProxyOfferId
);

System.out.println (orb.object_to_string (reference));

for (int i = 0; i < props.length; i++)
{
 System.out.println (“Property Name: “ + props[i].name);
 System.out.println (“Property Value: “ + props[i].value);
}

org.omg.CORBA.TypeCode tc = props[i].value.type ();

if (tc.equal (DynamicPropHelper.type ()))
{
 DynamicProp dp = DynamicPropHelper.extract(props[i].value);

 System.out.println
 (“eval_if = “ + orb.object_to_string (dp.eval_if));
 System.out.println
 (“returned_type = “ + dp.returned_type);
 System.out.println
 (“extra_info = “ + dp.extra_info);
}

32
 Trading Service

��������	

 Using Specific Features 2.5 Federation of Traders
Removing Service Offers
Service offers remain in the trader until they are explicitly withdrawn. The
offer is useless to a client when the object reference contained in an offer is
no longer valid. It is therefore good practice for a server to withdraw each of
its service offers when they become invalid. This is done using the withdraw
operation of the Register interface:

This operation is very simple to use: when offerid is an object of type
OfferId which is a String, the Java code for withdrawing the offer is:

2.5 Federation of Traders
The operations of the Link interface allow traders to be linked together so
that a trader can make the offer spaces of other trading services available to
its own clients. A link describes the knowledge that the trader has of a target
trader. In order to link to a target trader, a reference to the Lookup interface
of the target trader is needed, and a name for the target trader is given.
Policies determining when the link will be followed also need to be defined.
The first policy determines the default behaviour for following the link and is
used when a client does not specify a particular mode of link-following
behaviour. The second policy determines the most permissive link-following
behaviour that a client may request.

The three possible modes for link-following behaviour are:

• FollowOption.local_only: links are not followed in any circumstances.

• FollowOption.if_no_local: links are followed when, and only when, a
trader cannot find any offers in the local trading service.

• FollowOption.always: links are always followed.

The add_link operation of the link interface is used to add a link to the
trader. Here, a link to a second trader is set up with the name Link from 1
to 2. A reference to the Lookup interface of this trader is stored in the
variable lookup2. The default policy for following links is to follow them

void withdraw
(
 in OfferId id
)
raises
(
 IllegalOfferId,
 UnknownOfferId,
 ProxyOfferId
);

register.withdraw (offerid);
 33
 Trading Service

��������	

 2.6 Changing Trader Attributes Using Specific Features
when no offers can be found locally. However, the client may request any
behaviour for following links since the limiting policy value is to always follow
links.

Information about a link is obtained using the name it has been given. The
LinkInfo object returned contains details of the link-following policies of the
link and a reference to the Lookup interface of the target trader; it also
contains a reference to the Register interface of the target trader when the
target trader implements this interface .

It is possible to modify the link following policies of a link. This is done using
the modify_link operation. Here, the link is modified so that it is never
followed by default, but is set by the client so that it is followed when no
offers are found locally.

The list_links operation returns a list containing the names of all the links
within the trader. This example shows how to obtain the list and then output
the name of each link.

The only remaining operation in the Link interface is used to remove a link
from a trader using its name.

2.6 Changing Trader Attributes
The following examples show how to modify the default behaviour of a
trading service. The attributes that determine the behaviour of the trader are
contained in the SupportAttributes , ImportAttributes and

link.add_link
(
 “Link from 1 to 2”,
 lookup2,
 FollowOption.if_no_local,
 FollowOption.always
);

LinkInfo linkInfo = link.describe_link (“Link from 1 to 2”);

link.modify_link
(
 “Link from 1 to 2”,
 FollowOption.local_only,
 FollowOption.if_no_local
);

String [] allLinks = link.list_links ();
for (int i = 0; i < allLinks.length; i++)
{
 System.out.println (“Link “ + i + “ is called “ + allLinks[i]);
}

link.remove_link (“Link from 1 to 2”);
34
 Trading Service

��������	

 Using Specific Features 2.6 Changing Trader Attributes
LinkAttributes interfaces. The operations to modify these attributes are
contained in the Admin interface. The Admin interface is used to both
determine the values of attributes and to change them since it also extends
all three of the Attributes interfaces.

This example demonstrates how to obtain the attribute values, assuming the
variable admin is a reference to the Admin interface.

Each of the attributes used above is given a new value in the next example:

System.out.println
(
 “Maximum number of offers to search in a query: “
 + admin.max_search_card ()
);
System.out.println
(
 “Trader supports modifiable properties? “
 + admin.supports_modifiable_properties ()
);
System.out.println
(
 “Most permissive link following policy: “
 + admin.max_link_follow_policy ()
);

admin.set_max_search_card (10000);
admin.set_supports_modifiable_properties (false);
admin.set_max_link_follow_policy (FollowOption.if_no_local);
 35
 Trading Service

��������	

 2.6 Changing Trader Attributes Using Specific Features
36
 Trading Service

��������	

3 API Descr ip t ions

The OpenFusion Trading Service provides most of its functionality through
the interfaces of the trader components: Register, Lookup, Admin, Link and
Proxy. The interfaces listed here are these primary interfaces. The complete
IDL API is provided elsewhere as part of the product distribution.

3.1 TraderComponents Interface
The CosTrading::TraderComponents interface has references to the
component services that make up a trader. Not all services may be present,
depending on the type of trader.

For an example of the use of this interface, please refer to Obtaining
References to Trading Service Interfaces on page 20.

This is an abstract interface, inherited by each of the components.

3.2 Admin Interface
The CosTrading::Admin interface is used to manage the various policies
and constraints applied by the trader.

Operation Description
admin_if Provides a reference to the Admin interface
register_if Provides a reference to the Register interface
lookup_if Provides a reference to the Lookup interface
link_if Provides a reference to the Link interface
proxy_if Provides a reference to the Proxy interface

Operation Description
list_offers Returns a list of offers made by the trader.

Offer identifiers not included in the
returned sequence can be accessed
through the returned iterator

list_proxies Returns a list of proxy offers made by the
trader. Offer identifiers not included in the
returned sequence can be accessed
through the returned iterator

set_def_follow_policy Specifies the default link-following
behaviour of the trader
 37
 Trading Service

��������	

 3.2 Admin Interface API Descriptions
set_def_hop_count Specifies the default maximum number of
steps to take when following any single
chain of links when executing federated
queries; overridden by max_hop_count

set_def_match_card Specifies the default maximum number of
offers to be selected; overridden by
max_match_card

set_def_return_card Specifies the default maximum number of
offers to be returned; overridden by
max_return_card

set_def_search_card Specifies the default maximum number of
offers to be searched; overridden by
max_search_card

set_max_follow_policy Specifies the link-following policy for all
links from the current trader

set_max_hop_count Specifies the maximum number of steps to
take when following any single chain of
links that can be followed when executing
federated queries in the current trader

set_max_link_follow_
policy

Specifies the maximum follow options that
can applied to links when they are created
or modified

set_max_list Specifies the maximum number of objects
that can be returned in any list (including
iterators) in the current trader

set_max_match_card Specifies the maximum number of offers
that can be selected by a query in the
current trader

set_max_return_card Specifies the maximum number of offers
that can be returned by a query in the
current trader

set_max_search_card Specifies the maximum number of offers
that can be searched by a query in the
current trader

Operation Description
38
 Trading Service

��������	

 API Descriptions 3.3 Register Interface
3.3 Register Interface
The CosTrading::Register interface provides operations to export offers
to the trader, and to manage the exported offers.

set_request_id_stem This operation (intended to help avoid
problems with cyclical references when
resolving federated queries) is not
supported by the OpenFusion Trading
Service, as the use of UUIDs renders it
superfluous

set_supports_dynamic_
properties

Determines whether dynamic properties in
offers are supported in the current trader

set_supports_modifiable_
properties

Determines whether modification of
properties in offers is supported in the
current trader

set_supports_proxy_
offers

Determines whether proxy offers are
supported in the current trader

set_type_repos Specifies the reference to the Service
Type Repository to be used by the current
trader

Operation Description

Operation Description
describe Describes an offer of service from the trader
export Exports an offer of service to the trader with a

set of properties it supports
modify Modifies the properties supported by a traded

offer of service. Properties that are read-only or
mandatory may not be deleted and properties
that are read-only may not be modified

resolve Resolves the Register interface of a linked
trader

withdraw Withdraws an offer of service from the trader
withdraw_using_
constraint

Withdraws any offers matching the specified
constraints
 39
 Trading Service

��������	

 3.4 Lookup Interface API Descriptions
3.4 Lookup Interface
The CosTrading::Lookup interface provides one operation for finding
offers which match specified requirements.

3.5 Link Interface
The CosTrading::Link interface is used to federate traders and manage
the links between them.

3.6 Proxy Interface
The CosTrading::Proxy interface provides operations to support proxy
offers.

Operation Description
query Queries the trader for offers. The various call

parameters determine how the trader finds
offers to satisfy the query

Operation Description
add_link Links a federated trader
describe_link Describes a link to a federated trader, returning

a structure containing the link description.
list_links Returns a sequence of links.
modify_link Modifies a link to a federated trader, changing

the follow options that are applied to the link.
remove_link Removes a link to a federated trader.

Operation Description
describe_proxy Describes a proxy offer of service from the

trader
export_proxy Exports a proxy offer of service from the trader

with a set of properties it supports
withdraw_proxy Withdraws a proxy offer of service from the

trader
40
 Trading Service

��������	

4 Supp lementa l

I n fo rmat ion

This section includes additional information which is necessary or useful for
developing applications which use the Trading Service.

First there is a description of the Trader Constraint Language and examples
of how to define Preferences and Constraint Recipes. Valid Service Type
names are described next, and then the importing and exporting of XML files
containing service types or offers, together with descriptions of the XML files
themselves. This is followed by a summary of the different kinds of Trading
Service with a list of their components. Finally the exceptions supported by
the Trading Service are listed and described.

4.1 Trader Constraint Language
Constraint languages are used to define or limit the scope of an operation by
specifying one or more conditions which must be satisfied before the
operation proceeds. The most common use for these conditions is in the
definition of filters for queries or searches. These selection criteria are
sometimes referred to as policies.

The OMG specifies a standard constraint language which ensures
interoperability between traders. The OpenFusion Trader Constraint
Language (TCL) implements this standard.

Other constraint languages may be supported by particular trader
implementations. Statements expressed in such languages must be
identified with an escape prefix of the form <<name major.minor>> , where
name is the name of the language and major.minor is the version. Any
constraint with such a prefix which is not recognised by a particular trader is
simply ignored and the query operation continues as though no constraint
was given.

The absence of a prefix is treated as equivalent to the presence of the <<OMG
1.0>> prefix, which identifies a standard TCL statement. Note that
throughout this section this identity prefix is omitted for brevity.

The constraint string TRUE is assumed when no constraint string is given.

All keywords in TCL are case-sensitive.

Please refer to the OMG Trading Service specification for the definition of
the Trader Constraint Language.
 41
 Trading Service

��������	

 4.1 Trader Constraint Language Supplemental Information
This section describes the way TCL is used to represent constraints in the
Lookup::query operation.

Common Types of Constraints
Some examples of common types of constraint strings are:

• name == ’Prism’

• numberUsers > 42

• ’java’ in topics

• quality > 10 and price < 2000

• exist name

• memsize * 3.6 + filesize / 10.7 > 1234

• not ’Prism’ in names

Property Value Types
Service types can be defined with properties having arbitrarily complex IDL
value types. However, only a limited set of property value types can be
manipulated using the constraint language. The simple types that can be
used are:

• boolean

• short

• unsigned short

• long

• unsigned long

• float

• double

• char

• string

Sequences of these types can also be manipulated.

The exist operator can be applied to any property even when the property
does not have one of these types.
42
 Trading Service

��������	

 Supplemental Information 4.1 Trader Constraint Language
Query Elements
This section details all the possible items that can be used in a query string.

Comparative Functions
Table 1 summarises the comparison operators that can feature in a query
string.

Table 1 Comparative Functions
 Symbol Description Restrictions

== equality Can be applied only when
both the left and right
operands are of the same
simple type.

!= inequality Can be applied only when
both the left and right
operands are of the same
simple type.

 >= greater than or equal to Can be applied only when
both the left and right
operands are of the same
simple type.

 < less than Can be applied only when
both the left and right
operands are of the same
simple type.

 <= less than or equal to Can be applied only when
both the left and right
operands are of the same
simple type.

 ~ substring match Can be applied only when
both the left and right
operands are strings.

 in element in sequence Can be applied only when
the left operand is of a
simple type and the right
operand is a sequence of
the same simple type.
 43
 Trading Service

��������	

 4.1 Trader Constraint Language Supplemental Information
The result of applying any of these comparative functions is a boolean value.

In an OpenFusion trader, the operations ==,!=, >, >=, <, and <= can be
used to compare any numeric type to any other numeric type. For example,
1.0 == 1 and 2e2 > 199 evaluate to TRUE. Comparisons between operands
of different types return FALSE.

<, <=, >, >= can be used on boolean values where TRUE is considered to
be greater than FALSE.

name ==’Prism’ means that the query will only return offers where the value
of the property name is ’Prism’.

numberUsers > 42 means that the query will only return offers where the
value of the property numberUsers is greater than 42.

’java’ in topics means that the query will only return offers where the
value of the topics property, which consists of a set of strings, contains the
string ’java’.

’Open’ ~ product means that the query will only return offers where the
value of the product property contains the substring ’Open’.

Boolean Connectives
The following boolean connectives can be used in a query string:

• and

• or

• not

not (’Prism’ in names) implies that the query should consider matching
offers only when the value of the names property, which consists of a set of
strings, does not contain the string ’Prism’.

quality > 10 and price < 2000 implies that the query should consider
matching offers only when the value of the quality property is greater than
10 and the value of the price property is less than 2000.
44
 Trading Service

��������	

 Supplemental Information 4.1 Trader Constraint Language
Property Existence
The exist operator tests for the presence of a particular property name
without having to test its value.

exist name implies that the query should consider matching only offers
which contain a property named name.

Property Names
Property names feature in almost all constraints. At least one property name
has been used in each expression in the above examples.

Numeric and String Constants
Integers should be written as sequences of digits with a possible leading + or
-.

Examples: 5, 27165, +45, -9

Floats are sequences of digits with a decimal point. Exponential notation is
optional.

Examples: 1.0, .6, 34., 123.45, 12E3, 1234e-05, 1.3E+03

char is of the form ’<char>’ and string is of the form ’<char><char>+’.
To embed an apostrophe or a backslash in a string, place a backslash \ in
front of it.

Examples: ’i\’m here’ evaluates to the string i’m here, ’c:\\temp\\’
evaluates to the string c:\temp\, ’c’ evaluates to the character c.

TRUE and FALSE represent the boolean constants.

Table 2 Property Existence
Description Restrictions

exist Can be applied to any property regardless of its
type.

Expression Property Name
numberUsers > 42 numberUsers
’java’ in topics topics
not ’Prism’ in names names
quality > 10 and price < 2000 quality, price
exist name name
 45
 Trading Service

��������	

 4.1 Trader Constraint Language Supplemental Information
In quality > 10 and price < 2000 both 10 and 2000 are numeric constants.
In ’java’ in topics the word java is a string constant.

Mathematical Operators
Table 3 summarises the mathematical operators that may be used in a query
string.

Negation is indicated with a prefixed hyphen - (minus sign).

memsize * 3.6 + filesize / 10.7 > 1234 implies that the query should
return matching offers only when the arithmetic function, in terms of the
values of the memsize and filesize properties, is greater than 1234.

Grouping Operator
The comma , may be used as a grouping operator in query strings. It is
treated as a synonym for AND; thus the expression (2 > 1) , (3 > 4)
evaluates to FALSE.

Note that this interpretation of the comma operator is specific to the
OpenFusion implementation of TCL; the purpose of the comma is
ambiguous in the OMG Trading Service specification.

Because there is a possibility of alternative incompatible interpretations of
the comma operator (it may not be implemented at all), its use in constraints
used on heterogeneous systems is not recommended. It can of course be
used safely on pure OpenFusion systems.

Table 3 Mathematical Operators
Symbol Description Restrictions

 + addition Can be applied only to simple
numeric operands.

 - subtraction Can be applied only to simple
numeric operands.

 * multiplication Can be applied only to simple
numeric operands.

 / division Can be applied only to simple
numeric operands.
46
 Trading Service

��������	

 Supplemental Information 4.2 Trader Preference Language
Precedence
The operators have the following precedence order in the absence of
parentheses:

Operators are evaluated from left to right when they have the same
precedence. The order of evaluation can be controlled by grouping values
and operators with parentheses; note, however, that implicit multiplication of
bracketed expressions is not valid, so expressions such as (unitcost +
margin) * (taxrate + ifactor) must always include the * operator.

4.2 Trader Preference Language
When a set of offers matching the service type, constraint and policies has
been obtained with a Lookup::query operation, it is returned in an order
determined by a preference string.

As with TCL, preference strings may be expressed in other languages
provided they are identified with an escape prefix of the form <<name
major.minor>>. The absence of a prefix is treated as equivalent to the use
of the <<OMG 1.0>> prefix, which identifies a preference string which
complies with the standard.

The OpenFusion Trading Service only supports the standard language.

Any preference string with such a prefix which is not recognised by a
particular trader is simply ignored and the operation continues as though no
preference string was present.

Table 4 Operator Precedence
Operator Order of Precedence

() exist unary-minus highest precedence
not

* /

+ -

~

in

== != < <= > >=

and

or lowest precedence
 47
 Trading Service

��������	

 4.3 Trader Constraint Recipe Language Supplemental Information
The preference string first is assumed when no preference string is
present.

There are five different types of preference string, each beginning with one
of five case-sensitive keywords:

• first: This is the preference that is used when no preference string is
given. Matched offers are returned in the order in which they are
discovered.

• random: The offers are returned in a random order.

• max expression: The max expression is numeric. Matched offers are
returned in descending order of the expression. For example, max
numberUsers first returns the offer with the highest value of the property
numberUsers, and, finally, the lowest value of the property numberUsers.
Any offers for which the expression cannot be evaluated are appended to
the set of offers returned after the offer with the lowest value of the
expression.

• min expression: The min expression is numeric. Matched offers are
returned in ascending order of the expression. For example, min
numberUsers first returns the offer with the lowest value of the property
numberUsers, and, finally, the highest value of the property numberUsers.
Any offers for which the expression cannot be evaluated are appended to
the set of offers returned after the offer with the highest value of the
expression.

• with expression: The with expression is a constraint expression.
Matched offers are returned such that those that are TRUE precede those
that are FALSE. For example, with numberUsers > 42 returns offers where
the numberUsers property has a value greater than 42 before those where
the numberUsers property has a value less than or equal to 42. Any offers
for which the expression cannot be evaluated are appended to the set of
offers returned after all the offers where the expression is FALSE.

4.3 Trader Constraint Recipe Language
The Trader Constraint Recipe Language is used to construct secondary
constraint expressions when resolving proxy offers.

As with TCL itself, such constraint recipes may be expressed in other
languages provided they are identified with an escape prefix of the form
<<name major.minor>>. The absence of a prefix is treated as equivalent to
48
 Trading Service

��������	

 Supplemental Information 4.3 Trader Constraint Recipe Language
the use of the <<OMG 1.0>> prefix, which identifies a recipe string which
complies with the standard. The OpenFusion Trading Service only supports
the standard language.

Any constraint recipe string with such a prefix which is not recognised by a
particular trader is simply ignored and the operation continues as though no
recipe string was present.

An empty constraint is returned when no recipe string is given.

The secondary constraint expression is constructed from the primary
constraint expression, the properties associated with the proxy offer and the
recipe string. The algorithm for constructing the secondary constraint
expression is:

while not end of recipe
 fetch the next character from the recipe
 if not a ’$’ character
 append the character to the secondary constraint
 else
 fetch next character from the recipe
 if a ’*’ character
 append the entire primary constraint to the secondary
 constraint
 else if not a ’(’ character
 append the character to the secondary constraint
 else
 collect characters up to a ’)’ character, discarding
 ’)’
 lookup property with that name
 append formatted value of that property to secondary
 constraint

For example:

A proxy offer has been exported to the trader with the following properties:

and the primary constraint string for the query is ’.co.uk’ in domainName.

numberUsers 42

machineName ’ithuriel’

serialNumber 123456

cost 1099
 49
 Trading Service

��������	

 4.4 Valid Service Type Names Supplemental Information
The following recipes will generate the given secondary constraint which is
used in the call to the trader behind the proxy.

4.4 Valid Service Type Names
Service Type Names can either be valid IDL interface repository names or
identifiers (as defined by the OMG) or scoped names of the form:

::Scope1::Scope2::Name

The initial :: is not mandatory; the name need not contain any scoping. The
alphanumeric identifiers must not begin with a digit but can contain the
underscore character in addition to upper and lower case letters and digits.

Some examples of valid service type names are:

test

_test

::scope_1::_test

Xscope::test_X

Some examples of service type names which do not conform to the OMG
specification are shown in Table 5.

Recipe Secondary Constraint
numberUsers == $(numberUsers) numberUsers == 42

machineName == $(machineName) machineName == ’ithuriel’

serial number is $#$(serialNumber) serial number is #123456

$* and machineName ==
$(machineName)

’.co.uk’ in domainName and machineName
== ’ithuriel’

price == $$$(cost) price == $42

Table 5 Service Type Name Errors
Invalid Name Reason(s)

1Scope:test Numeric first character not allowed; single
colon not a valid scope symbol

2test Numeric first character not allowed
::scope#1::test Non-alphanumeric character # in identifier
A Scope::the test Embedded spaces not allowed
50
 Trading Service

��������	

 Supplemental Information 4.5 XML Export and Import
Note that checking of service type names can be disabled. The property
CheckServiceTypeNameFormat can be switched on and off whilst the
service is running. This can be done through the Administration Manager or
remotely through SNMP.

4.5 XML Export and Import
The OpenFusion Trading Service can both export and import XML files
containing details of service types and offers. This is performed at the
command line on a per-trader basis: service types or offers for a single
trader are handled with a single command.

The formats of the XML files are described later.

To export service type or offer definitions to XML files, use this command:

 run com.prismt.cos.CosTrading.xml.ExportXML <options>

where the <options> are:

To import service type or offer definitions from XML files, use this command:

 run com.prismt.cos.CosTrading.xml.ImportXML <options>

scope : test Embedded spaces not allowed; single colon
not a valid scope symbol

test:: Incomplete (scope symbol should be followed
by an alphanumeric identifier)

Table 5 Service Type Name Errors (Continued)
Invalid Name Reason(s)

i

Option Description
-s serviceTypeFile name of file to export service types into
-o offerFile name of file to export offers into
resolveName the trader’s resolve name
-f traderIORFile name of file containing the trader’s IOR
-i traderIOR the trader’s IOR
 51
 Trading Service

��������	

 4.6 Service Type XML File Format Supplemental Information
where the <options> are:

The options can occur in any order.

The -s option specifies the filename for service types. The -o option
specifies the filename for offers. At least one of -s or -o must be present.

The trader to use is specified in one of four ways. The trader’s resolve name
can be given, its IOR can be given with the -i option, or a file containing the
IOR can be specified with the -f option. If none of these options are given,
then a resolve name of "TradingService" will be used.

4.6 Service Type XML File Format
Below is an example of an XML file describing service types that can be
imported using the Service Type Repository Manager. The full DTD is
supplied as part of the Trading Service distribution.

Each service type must have one ServiceTypeName element and one
InterfaceTypeName element. One or more BaseServiceTypeName
elements can be provided for each servicetype. One or more Property
elements can be provided for each servicetype. Each property can be
given a mode attribute, the possible values being:

• normal (the default)

• readonly

• mandatory

• mandatory readonly

Option Description
-s serviceTypeFile name of file to import service types from
-o offerFile name of file to import offers from
resolveName the trader’s resolve name
-f traderIORFile name of file containing the trader’s IOR
-i traderIOR the trader’s IOR
52
 Trading Service

��������	

 Supplemental Information 4.6 Service Type XML File Format
Each property must have a name and an IDLType. The IDLType can either
be a base IDL type or a defined IDL type. The Java CLASSPATH used to run
the Service Type Repository Browser must contain the generated Java
stubs for the IDL types when defined IDL types are to be used in import
definitions.

<?xml version="1.0" encoding="UTF-8"?>

<ServiceTypes>

 <ServiceType>

 <ServiceTypeName>typeA</ServiceTypeName>

 <InterfaceTypeName>IDL:prismt.com/tests/TypeA:1.0</InterfaceTypeName>

 <Property mode="normal">

 <PropertyName>propA</PropertyName>

 <IDLType>string</IDLType>

 </Property>

 </ServiceType>

 <ServiceType>

 <ServiceTypeName>typeB</ServiceTypeName>

 <BaseServiceTypeName>typeA</BaseServiceTypeName>

 <InterfaceTypeName>IDL:prismt.com/tests/TypeB:1.0</InterfaceTypeName>

 <Property mode="readonly">

 <PropertyName>propB1</PropertyName>

 <IDLType>short</IDLType>

 </Property>

 <Property mode="mandatory">

 <PropertyName>propB2</PropertyName>

 <IDLType>long</IDLType>

 </Property>

 </ServiceType>

 <ServiceType>
 53
 Trading Service

��������	

 4.7 Offer XML File Format Supplemental Information
4.7 Offer XML File Format
Below is an example of an XML file describing offers that have been
exported by the trader. Please refer to the description of the Trading Service
Manager for more information about the use of XML for exporting offers. The
full DTD is supplied as part of the Trading Service distribution.

 Note that this XML description cannot be written by hand because property
values can only be exported in a serialised form.

Each offer has one Reference element, which contains an IOR string, and
one ServiceTypeName element. Offers can contain many Property
elements. Each Property element has one PropertyName and one
PropertyValue which is listed in string format. Offers cannot be migrated
from a trader running one ORB to a trader running a different ORB because
of the differences in the serialised form of the property values between the
ORBs.

 <ServiceTypeName>typeC</ServiceTypeName>

 <BaseServiceTypeName>typeA</BaseServiceTypeName>

 <BaseServiceTypeName>typeB</BaseServiceTypeName>

 <InterfaceTypeName>IDL:prismt.com/tests/TypeC:1.0</InterfaceTypeName>

 <Property mode="normal">

 <PropertyName>propC</PropertyName>

 <IDLType sequence="true">string</IDLType>

 </Property>

 </ServiceType>

</ServiceTypes>

<?xml version="1.0" encoding="UTF-8"?>

<Offers>

 <OfferInfo>

 <Reference>{IOR}</Reference>

 <ServiceTypeName>film</ServiceTypeName>

i

54
 Trading Service

��������	

 Supplemental Information 4.8 Trading Service Types
4.8 Trading Service Types
The OMG Trading Service specification defines six kinds of trading service,
which provide different levels of functionality depending on which interfaces
they implement. This naming scheme is summarised in Table 6.

 <Property>

 <PropertyName>title</PropertyName>

 <PropertyValue>{Serialised Value}</PropertyValue>

 </Property>

 <Property>

 <PropertyName>certificate</PropertyName>

 <PropertyValue>{Serialised Value}</PropertyValue>

 </Property>

 </OfferInfo>

</Offers>

Table 6 Kinds of Trading Service

Trading Service Components

Kind of
Trading Service

Looku
p

Registe
r

Admin Link Proxy

Query 2

Simple 2 2

Stand-Alone 2 2 2

Proxy 2 2 2 2

Linked 2 2 2 2

Full-Service 2 2 2 2 2
 55
 Trading Service

��������	

 4.8 Trading Service Types Supplemental Information
There are two further Trading Service iterator interfaces in addition to those
described in Table 7, Trading Service Components: OfferIterator and
OfferIdIterator. These interfaces are used by operations to return lists
of Offer or OfferId. They do this by returning a list of a given length and
enabling the remainder of the list to be extracted by successive operations
on the iterator interface.

The following abstract interfaces are defined by the Trading Service to
enable the construction of traders which have differing support for the
individual trader components.

• The TraderComponents interface provides a method of obtaining an
object reference to any component when given a reference to one of the
components. For example, the interface may be used to obtain a reference
to the Admin component given a reference to the Register component

• The SupportAttributes interface gives a trading service implementation
the ability to choose whether to support

 - modifiable properties

 - dynamic properties

 - proxy offers

• The ImportAttributes interface is used to configure the trading service
with default and maximum values for constraints that apply to queries

• The LinkAttributes interface is used to configure the trading service as
to the most permissive behaviour a new or modified link will be allowed

The ServiceTypeRepository forms a major part of the trading service and
handles all processing of service types. This component is used to add,
remove, describe and mask service types.

Dynamic properties in the trading service use the DynamicPropEval
interface which implements properties whose values can be evaluated at
runtime.

The OpenFusion Trading Service is a full service trader: it includes all of the
required components (listed in Table 7, Trading Service Components), and
implements all of the interfaces detailed above.
56
 Trading Service

��������	

 Supplemental Information 4.9 Trading Service Components
4.9 Trading Service Components
The Trading Service functionality is divided into five components. Each
component has an associated interface. Individual implementations of the
Trading Service may choose to implement some or all of the components;
the OpenFusion Trading Service is a full service implementation, and so
includes all components.

The five interfaces are separable and are summarised in Table 7.

4.10 Exceptions
The Trading Service supports many exceptions which are summarised in the
following tables.

Table 7 Trading Service Components
Component Description

Lookup Queries the trading service to find offers matching given
requirements.

Register Manages service offers. Offers can first be exported, then
later modified or withdrawn.

Admin Configures the trading service settings.
Link Supports the federation of trading services.
Proxy Supports the delayed evaluation of offers.

Exception Description
DuplicatePolicyName The policy name is specified more than once.
DuplicatePropertyName The property name is specified more than

once.
IllegalConstraint The constraint given has invalid syntax.
IllegalOfferId The OfferId has invalid syntax.
IllegalPropertyName The property name has invalid syntax.
IllegalServiceType The service type has invalid syntax.
InvalidLookupRef An invalid lookup target has been given.
MissingMandatoryProperty The property that was declared mandatory by

the service type has not been given a value.
 57
 Trading Service

��������	

 4.10 Exceptions Supplemental Information
NotImplemented The functionality has not been implemented to
carry out this operation.

PropertyTypeMismatch The property value type is not the same type
as declared in the service type.

ReadonlyDynamicProperty The readonly property cannot have a dynamic
value assigned to it.

UnknownMaxLeft The OfferIterator cannot determine the
number of offers left.

UnknownOfferId The OfferId is not recognised by the trader.
UnknownServiceType The service type is not recognised.

Exception Description
IllegalPolicyName The policy name specified has invalid syntax.
IllegalPreference The preference has invalid syntax.
InvalidPolicyValue The policy value is invalid.
PolicyTypeMismatch The policy value type is not the specified type.

Exception Description
IllegalTraderName The Trader name has invalid syntax.
InterfaceTypeMismatch The interface of the object reference is not a

subtype of the service type interface.
InvalidObjectRef The object reference cannot be exported.
MandatoryProperty The property has been declared as mandatory

when that is not possible.
NoMatchingOffers The constraint does not match any offers.
ProxyOfferId The OfferId belongs to a proxy offer.
ReadonlyProperty An attempt was made to modify a readonly

property.

Exception Description
58
 Trading Service

��������	

 Supplemental Information 4.10 Exceptions
RegisterNotSupported The trader does not support the register
component.

UnknownPropertyName The property name does not exist in the offer.
UnknownTraderName The trader name was not found, or the trader

does not support links.

Exception Description
IllegalRecipe The given constraint recipe is not well formed.
NotProxyOfferId The OfferId does not belong to a proxy offer.

Exception Description
IllegalLinkName The link name has invalid syntax.
UnknownLinkName The link name is not known to this trader.
DefaultFollowTooPermissive The default mode for following links specified

by the query is more permissive than the link is
willing to tolerate.

LimitingFollowTooPermissive The most permissive link follow behaviour
given to this link is more permissive than the
value allowed by trader's attribute
max_link_follow_policy at the time of the
links creation.

Exception Description
DPEvalFailure The property value cannot be evaluated.

Exception Description
 59
 Trading Service

��������	

 4.10 Exceptions Supplemental Information
Exception Description
AlreadyMasked An attempt was made to mask a service type

that is already masked.
DuplicateServiceTypeName The service type name has been specified

more than once.
HasSubTypes An attempt was made to remove a service type

with extant subtypes.
InterfaceTypeMismatch The if_name parameter is not a subtype of the

interface associated with a service type from
which this service type is derived.

NotMasked An attempt was made to unmask a service
type that is not masked.

ServiceTypeExists An attempt was made to redefine an existing
service type.

ValueTypeRedefinition Two supertypes are declaring different value
types for the same property name.
60
 Trading Service

��������	

Configuration and
Management

5 Tr ad ing Serv ice

Conf igura t ion

5.1 Overview
The configuration of Singleton properties specific to the Trading Service is
described in this section. These properties appear in the Administration
Manager, a graphical user interface (GUI) based administration tool included
with the OpenFusion Graphical Tools.

The Administration Manager can be used to set the Singleton properties.
These properties can also be set programatically, generally as described in
the service description sections.

Also, the configuration settings enable the Quality of Service and
administration properties to be customised when needed.

Details for configuring Persistence, Logging, CORBA, Java and System
properties for the Trading Service are described in Common Configuration
Properties. the System Guide.

Common Properties
Instances of some common properties are used by a number of different
OpenFusion CORBA Services interfaces and services. Settings for these
property instances appear in the Administration Manager’s Object Hierarchy
for the service’s Singleton node. This small group of properties are included
in this section in order to facilitate configuration of the service while using the
Administration Manager. These properties include:

• IOR Name Service Entry

• IOR URL

• IOR File Name

• Resolve Name

• IOR Name Service
 63
 Configuration and Management

��������	

 5.2 TradingSingleton Configuration Trading Service Configuration
5.2 TradingSingleton Configuration
CORBA Properties

IOR Name Service Entry
The Naming Service entry for the Singleton.

IOR URL
The IOR URL property specifies the location of an Interoperable Object
Reference (IOR) for the Service, using the Universal Resource Locator
(URL) format. This information is used when a client attempts to resolve a
reference to the Service. Some examples are:

file:/usr/users/openfusion/servers/TradingService.ior
http://www.prismtech.com/of/servers/TradingService.ior
corbaloc::server.prismtechnologies.com/TradingService

OpenFusion supports URLs in Corbaloc, Corbaname, file, FTP and HTTP
URL formats, although some ORBs do not support all of these mechanisms.
Consult your ORB documentation for specific details.

IOR File Name
The IOR File Name option specifies the name and location of the IOR file for
the Singleton. If this property is not set, the IOR file name will be:
<INSTALL>/domains/<domain>/<node>/<service>/<singleton>/<singleton>.ior

Property Name Object.Name

Property Type FIXED

Data Type STRING

Accessibility READ/WRITE

Mandatory NO

Property Name IOR.URL

Property Type FIXED

Data Type URL

Accessibility READ/WRITE

Mandatory NO
64
 Configuration and Management

��������	

 Trading Service Configuration 5.2 TradingSingleton Configuration
where <INSTALL> is the OpenFusion installation path. See The Object
Hierarchy See the System Guide for details of the domains directory
structure.

Resolve Name
The ORB Service resolution name used to resolve calls to the Singleton

IOR Name Service
The name of the Naming Service which will be used to resolve the Singleton
object.

Property Name IOR.File

Property Type FIXED

Data Type FILE

Accessibility READ/WRITE

Mandatory NO

Property Name ResolveName

Property Type FIXED

Data Type STRING

Accessibility READ/WRITE

Mandatory YES

Property Name IOR.Server

Property Type FIXED

Data Type STRING

Accessibility READ/WRITE

Mandatory NO
 65
 Configuration and Management

��������	

 5.2 TradingSingleton Configuration Trading Service Configuration
Persistence Properties
Cache Metadata

If selected, metadata (Support Attributes, Import Attributes, and Link
Attributes) will be cached for speed.

Query Cache Size
The number of SQL queries allowed in the database query cache.

General Properties
Create Persistent Iterators

This flag determines whether offer and offer id iterators are created as
persistent or transient objects. By default, transient iterators are created;
these are invalidated when the services shut down.

Property Name DB.CacheMetadata

Property Type FIXED

Data Type BOOLEAN

Accessibility READ/WRITE

Mandatory YES

Property Name DB.QueryCacheSize

Property Type FIXED

Data Type INTEGER

Accessibility READ/WRITE

Mandatory YES

Property Name PersistentIterators

Property Type DYNAMIC

Data Type BOOLEAN

Accessibility READ/WRITE

Mandatory YES
66
 Configuration and Management

��������	

 Trading Service Configuration 5.2 TradingSingleton Configuration
Evaluation Timeout (secs)
The peroid, in seconds, which the trader will wait for a dynamic property to
be evaluated. The default value for this property is zero.

Purge Interval
Invalid offers (object references which are not active and not persistent) will
be purged from the system periodically.

This property sets the interval, in minutes, between invalid offer purges.

A value of zero (the default value) means that there is no purging of invalid
offers.

Purge at Startup
All invalid offers (object references which are not active and not persistent)
are removed when the Purge at Startup option is selected.

Property Name DynamicProperty.Timeout

Property Type DYNAMIC

Data Type INTEGER

Accessibility READ/WRITE

Mandatory YES

Property Name Clean.Interval

Property Type DYNAMIC

Data Type INTEGER

Accessibility READ/WRITE

Mandatory YES

Property Name Clean.Startup

Property Type FIXED

Data Type BOOLEAN

Accessibility READ/WRITE

Mandatory YES
 67
 Configuration and Management

��������	

 5.3 ServiceTypeRepositorySingleton Configuration Trading Service Configuration
Service Type Repository Name
Specifies the name of the Service Type Repository to be used by this
Singleton. Multiple Trading Service Singletons can share a Service Type
Repository.

Setting this property avoids the need to perform sharing at runtime with the
CORBA API.

Offer Count
Contains the count of offers exported since the Trading Service started or
since the counter was last reset to zero.

5.3 ServiceTypeRepositorySingleton Configuration
CORBA Properties

IOR Name Service Entry
The Naming Service entry for the Singleton.

Property Name ServiceTypeRepositoryName

Property Type FIXED

Data Type STRING

Accessibility READ/WRITE

Mandatory YES

Property Name OfferCount

Property Type DYNAMIC

Data Type COUNTER

Accessibility READ/WRITE

Mandatory YES

Property Name Object.Name

Property Type FIXED

Data Type STRING

Accessibility READ/WRITE

Mandatory NO
68
 Configuration and Management

��������	

 Trading Service Configuration 5.3 ServiceTypeRepositorySingleton Configuration
IOR URL
The IOR URL property specifies the location of an Interoperable Object
Reference (IOR) for the Service, using the Universal Resource Locator
(URL) format. This information is used when a client attempts to resolve a
reference to the Service. Currently only http and file URLs are supported, for
example:
file:/usr/users/openfusion/ServiceTypeRepositorySingleton.ior
http://www.prismtechnologies.com/openfusion/ServiceTypeRepositorySingleton.i
or

IOR File Name
The IOR File Name option specifies the name and location of the IOR file for
the Singleton. If this property is not set, the IOR file name will be:
<INSTALL>/domains/<domain>/<node>/<service>/<singleton>/<singleton>.ior

where <INSTALL> is the OpenFusion installation path. See The Object
Hierarchy See the System Guide for details of the domains directory
structure.

Resolve Name
The ORB Service resolution name used to resolve calls to the Singleton

Property Name IOR.URL

Property Type FIXED

Data Type URL

Accessibility READ/WRITE

Mandatory NO

Property Name IOR.File

Property Type FIXED

Data Type FILE

Accessibility READ/WRITE

Mandatory NO

Property Name ResolveName

Property Type FIXED
 69
 Configuration and Management

��������	

 5.3 ServiceTypeRepositorySingleton Configuration Trading Service Configuration
IOR Name Service
The name of the Naming Service which will be used to resolve the Singleton
object.

Persistence Properties
Cache Metadata

This property controls whether or not metadata (Service Types) will be
cached.

General Properties
Check Name Format

I f t h i s i s se lec ted , the CheckNameFormat p roper ty o f the
ServiceTypeRepositorySingleton will check the interface name as well
as the service type name for validity, to ensure strict standards compliance.

Data Type STRING

Accessibility READ/WRITE

Mandatory YES

Property Name IOR.Server

Property Type FIXED

Data Type STRING

Accessibility READ/WRITE

Mandatory NO

Property Name DB.CacheMetadata

Property Type FIXED

Data Type BOOLEAN

Accessibility READ/WRITE

Mandatory YES

Property Name CheckServiceTypeNameFormat

Property Type DYNAMIC
70
 Configuration and Management

��������	

 Trading Service Configuration 5.4 ProcessSingleton Configuration
Service Type Count
The number of new Service Types registered since the Trading
Service started or was last reset.

5.4 ProcessSingleton Configuration
IOR Name Service Entry

The Naming Service entry for the Singleton.

IOR URL
The IOR URL property specifies the location of an Interoperable Object
Reference (IOR) for the Service, using the Universal Resource Locator
(URL) format. This information is used when a client attempts to resolve a
reference to the Service. Currently only http and file URLs are supported, for
example:
file:/usr/users/openfusion/ProcessSingleton.ior

Data Type BOOLEAN

Accessibility READ/WRITE

Mandatory YES

Property Name ServiceTypeCount

Property Type DYNAMIC

Data Type BOOLEAN

Accessibility READ/WRITE

Mandatory YES

Property Name Object.Name

Property Type FIXED

Data Type STRING

Accessibility READ/WRITE

Mandatory NO
 71
 Configuration and Management

��������	

 5.4 ProcessSingleton Configuration Trading Service Configuration
http://www.prismtechnologies.com/openfusion/ProcessSingleton.ior

IOR File Name
The IOR File Name option specifies the name and location of the IOR file for
the Singleton. If this property is not set, the IOR file name will be:
<INSTALL>/domains/<domain>/<node>/<service>/<singleton>/<singleton>.ior

where <INSTALL> is the OpenFusion installation path. See The Object
Hierarchy See the System Guide for details of the domains directory
structure.

IOR Name Service
The name of the Naming Service which will be used to resolve the Singleton
object.

Property Name IOR.URL

Property Type FIXED

Data Type URL

Accessibility READ/WRITE

Mandatory NO

Property Name IOR.File

Property Type FIXED

Data Type FILE

Accessibility READ/WRITE

Mandatory NO

Property Name IOR.Server

Property Type FIXED

Data Type STRING

Accessibility READ/WRITE

Mandatory NO
72
 Configuration and Management

��������	

6 Tr ad ing Serv ice Manager

6.1 Overview

The Trading Service Manager, supplied as part of the OpenFusion
implementation of the CORBA Trading Service, is a tool for the
administration, management, and use of the Trading Service. It can be used
to manage any CORBA-compliant trading service, even when the service is
not a full-service trader implementation.

The following tasks can be carried out from the Trading Service Manager:

• Perform queries to find offers that match given criteria, constraints, and
preferences.

• View all offers.

• View all proxy offers.

• View all linked (federated) Trading Services.

6.2 Using the Trading Service Manager
The Trading Service Manager can only be started if the Trading Service has
been started. To start the Trading Service Manager, right-click on a running
TradingSingleton in the Object Hierarchy and select Trading Service Manager
from the pop-up menu. See Administration Manager See the System Guide
for details.

Alternatively, start the Trading Service Manager from the command line with
the following command:

The Trading Service Manager is illustrated in Figure 4.

% run
com.prismt.cos.treebrowser.trader.TraderServicesBrowser
-name TradingService
 73
 Configuration and Management

��������	

 6.2 Using the Trading Service Manager Trading Service Manager
Figure 4 Trading Service Manager

Different nodes in the Trading Service Manager are identified by different
icons. These icons are shown in Table 8.

Table 8 Trading Service Object Icons
Icon Node

Trading Service

The Trading Service root node represents the
current instance of the Trading Service.
Queries

The parent node for queries.
74
 Configuration and Management

��������	

 Trading Service Manager 6.2 Using the Trading Service Manager
Trading Service Properties
If the Trading Service Manager root node is selected, properties relating to the
current instance of the Trading Service are displayed in the right-hand panel.
These properties can be changed and will take effect while the Trading
Service is running, but if the Trading Service is stopped and restarted the
changes will be lost.

Query Details
The top section of the panel, Query Details, contains the properties that affect
the behaviour of queries to the trader. The first four of these properties have
Default and Maximum values.

When a client of the Trading Service does not specify a value for a query
property, the Default value is used. When a client specifies a value that is
greater than the Maximum value, the Maximum value is used instead of the
specified value.

Offers Searched
The Offers Searched property specifies the upper bound of offers to be
searched during a query operation.

Offers Sorted
The Offers Sorted property specifies the upper bound of matched offers to be
sorted according to the preference criteria.

Offers

The parent node for offers.

Proxy Offers

The parent node for proxy offers.

Links

The parent node for linked (federated) trading
services.

Table 8 Trading Service Object Icons (Continued)
Icon Node
 75
 Configuration and Management

��������	

 6.2 Using the Trading Service Manager Trading Service Manager
Offers Returned
The Offers Returned property specifies the upper bound of sorted offers to be
returned by a query operation.

Links to Traverse
The Links to Traverse property specifies the upper bound of links to traverse
in carrying out a query.

Offer Iterator
The Offer Iterator property specifies the upper bound on the size of any list
returned by the trader. This property does not have a default value.

Supports
The Supports section of the Admin panel contains check box options that are
used to modify query behaviour. These options cannot be selected unless
supported by the Trading Service.

Modifiable Properties
Offers containing modifiable properties may be returned as a result of the
query when this setting is checked.

Dynamic Properties
Offers containing dynamic properties may be returned as a result of the
query when this setting is checked.

Proxy Offers
Proxy offers may be returned as a result of the query when this setting is
checked.

Link Following
The properties in the Link Following section specify the behaviour of the
trader in following links to other federated traders during a query operation.

The possible property values are:

• Never: for never following links.

• Perhaps: for following links only when the trader cannot provide any
matching offers locally.

• Always: for always following links.
76
 Configuration and Management

��������	

 Trading Service Manager 6.3 Queries
Default
The Default property specifies the link following behaviour for queries carried
out on the current trader when the client does not specify a policy as part of
the query.

Maximum
The Maximum property is the most permissive link following behaviour for
queries carried out on the current trader, no matter what behaviour is
requested.

Link Maximum
The Link Maximum property is the most permissive link following behaviour
that can be given to new links created from this trader, no matter what
behaviour is requested.

Tool Bar Buttons
The Trading Service Manager adds buttons to the tool bar. These buttons
are only available when the Trading Service Manager is active. The new tool
bar buttons are shown in Table 9.

6.3 Queries
Right-click on the Query node of the Trading Service Manager and select
Create Query from the pop-up menu. Name the query and click OK to create
the query as a child node of the Query node. Each query must have a unique
name.

A query can only be created if there are Service Types in the Trading
Service.

Table 9 Trading Service Tool Bar
Button Function

Load Offers From XML

Prompts for an XML file and will load offers
identified by that XML file into the Trading
Service.
Withdraw Selected Offers

Removes the selected offers from the Trading
Service.
 77
 Configuration and Management

��������	

 6.3 Queries Trading Service Manager
Query Constraints
Constraint properties can be set to narrow the query results. Select a
specific query node to display the property pane for that query.

Properties
Click the Properties tab to display the properties panel for the query.

Offers to Return
The Offers to Return property specifies the maximum number of offers
returned by the query.

Service Type
The Service Type property specifies the service type returned by the query.

The service type is either chosen from the drop-down list or typed into the
field directly. The-drop down list contains only those service types that are
currently active in the trader. However, a query can be based on other
service types as offers may be found on linked traders or with masked or
deleted service types.

Query Constraints
Type a query expression into the Query Constraints field. The expression is
written using the Trader Constraint Language. For details of using the Trader
Constraint Language, see the OpenFusion Trading Service Guide.

The last five query expressions are saved and can be selected from a
drop-down list.

Properties to Return
The Properties to Return property specifies the offer properties returned by
the query.

The offers returned by the trader can be specified to contain:

• All: a complete list of their properties.

• Some: a partial list of their properties. Choose the properties using the
AddProperty button.

• None: no properties.

Policies
Click the Policies tab to display the policies panel.
78
 Configuration and Management

��������	

 Trading Service Manager 6.3 Queries
All policies default to the values given to the various policies on the Admin
panel, with the exception of the Service Type is Exact Match Only policy.

The query considers only those offers that have the exact service type
given, rather than offers of both the service type given and any of its
sub-types when Service Type is Exact Match Only is set.

Preferences
Click the Preferences tab to display the preferences panel. Preferences
specify how the results of the query should be ordered:

The offers can be ordered as follows:

• Randomly.

• In order as found.

• Sorted in descending order by the numerical expression typed into the
Numeric Expression field, which refers to the properties associated with the
matching offers.

• Sorted in ascending order by the numerical expression typed into the
Numeric Expression field, which refers to the properties associated with the
matching offers.

• Such that the offers for which the constraint expression typed into the
Constraint Expression field evaluates to TRUE are placed before those offers
for which the constraint expression evaluates to FALSE.

In the last three cases, if the expression cannot be evaluated for a particular
offer, that offer is placed at the end of the list (after the other offers).

Execute a Query
Right-click on a query and select Execute Query from the pop-up menu.

All offers that match the query criteria are found and returned as child nodes
of the query.

A query will only show offers that existed at the time the query was
executed. To update the query to include new offers, right-click on the query
and select Refresh Query from the pop-up menu.

To remove a query, right-click on the query and select Delete Query from the
pop-up menu.
 79
 Configuration and Management

��������	

 6.4 Offers Trading Service Manager
Offers
Each offer returned by a query is displayed as a child node of that query.
Each offer has icons to represent its active status and persistent state.
These icons are shown in Table 10, Offer Icons on page 81.

The offers listed under a query are a sub-set of the offers listed under the
Offers node. That is, the query returns a sub-set of the offers available in the
Trading Service. See Offers on page 80 for details.

Click on an offer to see full details of the offer in the right-hand pane.

Export Offers
The offers returned by a query can be saved in an XML file. The offers can
later be reloaded into the Trading Service, or into a new Trading Service
instance, by using the Load Offers From XML tool bar button.

The Export Query command is only enabled for the query if the Show All
Properties option was selected in the query properties.

To save all offers for a query, right-click on the query and select Export Query
from the pop-up menu. Choose a directory and enter a file name for the XML
file.

6.4 Offers
Expand the Offers node to see the offers available in the Trading Service.
The first 100 offers available in the Trading Service are listed. To see the
next 100 offers, right-click on the parent node and select Get Next 100 Offers
from the pop-up menu. To return to the first 100 offers, select Get First 100
Offers from the pop-up menu.
80
 Configuration and Management

��������	

 Trading Service Manager 6.4 Offers
Each offer has icons to represent its active status and persistent state.
These icons are shown in Table 10.

The status of an offer is also displayed as a tool tip for the offer.

Select an offer to display its properties in the right-hand pane.

Properties
All offers have the following default properties:

• Offer Service Type.

• Decoded Type (only if the offer status is active).

• Decoded Host (only if the offer status is active).

• Decoded Port (only if the offer status is active).

Offers will have other properties specific to the offer.

Table 10 Offer Icons
Icon Status and Persistence

Inactive and Non-persistent

(both red)

Inactive and Persistent

(red and green)

Active and Non-persistent

(green and red)

Active and Persistent

(both green)

Undetermined status and Non-persistent

(grey and red)

Undetermined status and Persistent

(grey and green)
 81
 Configuration and Management

��������	

 6.5 Proxy Offers Trading Service Manager
Withdraw an Offer
To withdraw an offer from the Trading Service, right-click on the offer and
select Withdraw Offer from the pop-up menu.

To withdraw multiple offers, select the offers (use Ctrl-click to select multiple
offers or Shift-click to select offers in a contiguous block) and click the
Withdraw Offer button on the tool bar. All selected offers will be withdrawn
from the Trading Service and will be removed from the Trading Service
Manager.

6.5 Proxy Offers
Expand the Proxy Offers node to see all proxy offers available in the Trading
Service.

Expand the Proxy Offers node to see the proxy offers available in the Trading
Service. The first 100 offers available in the Trading Service are listed. To
see the next 100 offers, right-click on the parent node and select Get Next
100 Offers from the pop-up menu. To return to the first 100 offers, select Get
First 100 Offers from the pop-up menu.

Each proxy offer has icons to represent its active status and persistent state.
These icons are shown in Table 10, Offer Icons on page 81.

Proxy offers have the same functionality as other offers. See Offers on page
80 for details.

6.6 Links
The Links node lists all federated instances of the Trading Service. Expand
the node to show every Trading Service that the current Trading Service is
linked to. Expanding any of those nodes will show all Trading Services that
they are linked to in turn. A complete graph of the federated Trading
Services can be produced in this way.

Right-click on any federated Trading Service node to get a pop-up menu
with the following options:

• CORBA Object browser

• Service Type Repository Manager

• Trading Service Manager
82
 Configuration and Management

��������	

 Trading Service Manager 6.6 Links
Selecting any of these options will open a new browser of the specified type.
For example, select Trading Service Manager to open the federated Trading
Service in a new instance of the Trading Service Manager.
 83
 Configuration and Management

��������	

 6.6 Links Trading Service Manager
84
 Configuration and Management

��������	

7 Serv ice Type Repos i to ry

Manager

7.1 Overview
The Service Type Repository Manager is an administration tool for the
OpenFusion Trading Service.

, which allows the contents of the Trader Service Type Repository to be
managed.

Use the Service Type Repository Manager to:

• View service types in the repository.

• Add service types.

• Remove service types.

• Import service type descriptions from XML files.

• Mask or unmask service types.

7.2 Using the Service Type Repository Manager
The Service Type Repository Manager can only be started if the Trading
Service has been started. To start the Service Type Repository Manager,
right-click on a running TradingSingleton in the Object Hierarchy and select
Service Type Repository Manager from the pop-up menu. See Administration
Manager See the System Guide for details.

The Service Type Repository Manager is shown in Figure 5.
 85
 Configuration and Management

��������	

 7.2 Using the Service Type Repository Manager Service Type Repository Manager
Figure 5 Service Type Repository Manager

The Service Types panel contains a list of all service types that are currently
active in the trader. The Type Description panel shows the description of the
service type selected in the Service Types panel.
86
 Configuration and Management

��������	

 Service Type Repository Manager 7.2 Using the Service Type Repository Manager
Tool Bar Buttons
The Service Type Repository Manager adds new buttons to the tool bar.
These buttons are only available when the Service Type Repository
Manager is active. The new tool bar buttons are shown in Table 11, Service
Type Repository Manager Tool Bar.

Removing Service Types
Select one or more service types in the Service Type panel and click the
Remove Service Types tool bar button to remove the selected service types
from the repository.

Use Ctrl-click to select multiple service types or Shift-click to select service
types in a contiguous block.

Table 11 Service Type Repository Manager Tool Bar
Button Function

Load Service Types

Load service types from a plain text file.

Save Service Types

Save service types in a plain text file.

Add Service Types

Add a new service type to the repository.

Remove Service Types

Delete selected service types from the
repository.

Load Service Types XML

Load service type descriptions from an XML
file.

Save Service Types XML

Save service types in an XML file.
 87
 Configuration and Management

��������	

 7.2 Using the Service Type Repository Manager Service Type Repository Manager
Adding Service Types
Click the Add Service Types tool bar button to add a service type to the
repository. The Add Service Types dialog box (Figure 6) is shown.

Figure 6 Add Service Types Dialog Box

Names
Service Type Name

The name of the service type.

Interface Name
The name of the service type interface.
88
 Configuration and Management

��������	

 Service Type Repository Manager 7.2 Using the Service Type Repository Manager
Properties
The Properties tab of the Add Service Type dialog lists properties assigned to
the service type. To add a new property, click the Add Property button. The
Add Property dialog box (Figure 7) is shown.

Figure 7 Add Property Dialog Box

Name
The name of the property.

Sequence
Check the Sequence box if the property is designated as a sequence.

Type
The property can be one of the following types:

• short

• long

• unsigned short

• unsigned long

• float

• double

• boolean

• char

• string

Mandatory
Check the Mandatory box if the property is designated as a mandatory
property.
 89
 Configuration and Management

��������	

 7.2 Using the Service Type Repository Manager Service Type Repository Manager
Read Only
Check the Read Only box if the property is designated as a read-only
property.

Load Service Types
The Load Service Types XML tool bar button allows a batch import of service
types from an XML file into the repository.

Use the File Browser dialog to select the file containing the service type
descriptions.

Alternatively, use the Load Service Types tool bar button to import service
types from a plain text file.

The format of service types XML files and plain text files is documented in
the OpenFusion Trading Service Guide.

Save Service Types
Select one or more service types in the Service Type panel and click the
Save Service Types XML tool bar button to save the selected types to an XML
file.

Alternatively, use the Save Service Types tool bar button to save service types
to a plain text file.

Use Ctrl-click to select multiple service types or Shift-click to select service
types in a contiguous block.

The format of service types XML files and plain text files is documented in
the OpenFusion Trading Service Guide.

Mask Service Types
Offers which have a masked service type cannot be advertised.

To mask a service type, select the service type and check the Masked
checkbox.

To unmask a masked service type, select the service type and clear the
Masked checkbox.
90
 Configuration and Management

��������	

I ndex

I ndex

A
Adding

Service Types . 88
Admin (trader component) 13
Admin Interface . 37

Administration Manager 17
aggregation (of property types).15
API (IDL) .37

C
Cache Metadata (property) 66, 70
Check Name Format (property) 70
CheckServiceTypeNameFormat (property) 70
Clean.Interval (property). 67
Clean.Startup (property). 67
clustered Trading Service instances 18
components . 12, 37
Constraint Language

Trader . 41
property value types 42
query elements 43
query elements, boolean connectives . 44
query elements, comparative functions 43
query elements, grouping operators . . 46

query elements, mathematical operators .
46

query elements, numeric constants . . .45
query elements, precedence 47
query elements, property existence . . .45
query elements, property names 45
query elements, string constants45

Trader Constraint Recipe.48
Trader Preference47

Constraints
common types .42

CORBA Concepts .8
Create Persistent Iterators (property)66

D
database (persistence). 13
DB.CacheMetadata (property) 66, 70
DB.QueryCacheSize (property) 66
Decoded

Host. 81
Port . 81
Type . 81

directed trading graph 10

Directory Services. .7
DTD. .52, 54
dynamic (offer property)24
dynamic offer properties9

evaluation of .9
Dynamic Properties (query property) 76
DynamicProperty.Timeout (property)67

E
Enhancements . 8
evaluation of dynamic offer properties 9
Evaluation Timeout (secs) (property) 67
examples

Trading Service20–34
Exceptions .57
Export

Offers .9, 80
93
Trading Service Guide

��������	

 Index
F
Fail-over . 17
Federated Trading Services. 82

federation . 10, 33
full service. 8

H
hop . 11

I
IDL . 37
IDL repository identifier 14, 50
Import

Offers . 9
Incarnation Numbers 16
Inheritance

service types. 15
inheritance

rules . 16
Instrumentation . 17
Interface

Admin . 37
Link . 40

Lookup. 40
Name. 88
Proxy . 40
Register . 39
TraderComponents 37

interface name . 14
IOR File Name (property) 64, 69, 72
IOR Name Service (property) 65, 70, 72
IOR Name Service Entry (property) 64, 68, 71
IOR URL (property). 64, 69, 71
IOR.File (property) 65, 69, 72
IOR.URL (property). 64, 69, 72

J
JDBC . 13, 17

K
kinds (types) of trading service 55

L
Link (trader component) 13
Link Interface . 33, 40
Linked Trading Services 82
link-following . 33

policies . 10
link-following policies 13
Linking Traders 10, 33
Links. 75, 82

Following. 76

Links to Traverse (query property) 76
list_types (operation) 16
Load

Offers From XML. 77
Service Types 87, 90
Service Types XML 87

Lookup (interface). 13
Lookup (trader component) 13
Lookup Interface. 40
94
Trading Service Guide

��������	

 Index
M
Mandatory . 89
Mask Service Types 90

mode (service property type) 14
Modifiable Properties (query property)76

N
Name . 89
named property types. 14

Naming Service. .7

O
Object.Name (property) 64, 68, 71
Offer Count (property) 68
Offer Iterator (query property) 76
Offer Service Type 81
OfferCount (property) 68
Offers . 9, 16, 75, 80

Export . 80
Export XML . 9
Import XML . 9
Properties

dynamic .16
static .15

Proxy .82
Register .9
Withdraw .82

Offers Returned (query property)76
Offers Searched (query property)75
Offers Sorted (query property) 75
Offers to Return (query property)78
OMG specification. .7

P
Persistence. 13, 17
PersistentIterators (property) 66
Policies . 78
Preferences . 79
ProcessSingleton Configuration

Trading Service . 71
Properties to Return (query property). 78
properties, dynamic 24
property

dynamic. 16
property type

checking . 17

mode .14
mode strength .15
name .14
type .14

property types .14
Proxy (trader component)13
Proxy Interface .40
proxy offer .13
Proxy Offers .75, 82
Proxy Offers (query property)76
Purge at Startup (property)67
Purge Interval (property)67

Q
Query . 74, 77

Constraints . 78
Execute . 79

Query Cache Size (property) 66
Query Constraints (property) 78
Query Details (property)75
95
Trading Service Guide

��������	

 Index
R
Read Only . 90
Register (trader component) 12
register an offer . 9
Register Interface. 39
Removing

Service Types . 87
Replication . 18
Repository, Service Type 9
Resolve Name (property) 65, 69
ResolveName (property). 65, 69

S
Save

Service Types 87, 90
Service Types XML. 87

scalability . 17
scoping. 10
Sequence. 89
service offer . 16
service type . 9
Service Type (query property) 78
Service Type Count (property) 71
Service Type Name 88
Service Type Names 50
Service Type Repository 9, 12
Service Type Repository Manager. 85
Service Type Repository Name (property). 68
Service Types

Adding . 88
Removing . 87

ServiceTypeCount (property) 71
ServiceTypeRepositoryName. 68
ServiceTypeRepositorySingleton

Configuration . 68
Singletons

ServiceTypeRepositorySingleton 68
TradingSingleton 64

Starting
Trading Service Manager 73

static offer properties 9
strength (of property type mode) 15
sub-type . 15
super-type. 14
Super-types and Inheritance. 15

T
terminology . 8
Tool Bar

Service Type Repository Manager 87
Trading Service Manager 77

Trader Constraint Language 14, 41
Trader Constraint Recipe Language 48
Trader Preference Language. 47
TraderComponents Interface 37
traders . 8

components 12, 37
linking . 10

trading graph . 10
Trading Service

Components . 57
components . 12
Configuration . 63

dynamic properties
using. 24

example
federation of traders 33
reference to interfaces, obtaining. 20
reference to trading service, obtaining . 20
service offers, managing 23
service types, managing 21
trader attributes, changing 34

Manager . 73
offers . 16
proxy offers

exporting . 26
related topics

offer XML file format. 54
service type names, valid. 50
96
Trading Service Guide

��������	

 Index
service type XML file format 52
service offers

details . 31
exporting . 23
listing all . 29
querying . 30
removing . 33

service types . 14
adding and removing 21

listing all .23
Trader Constraint Language41
Trader Constraint Recipe Language48
Trader Preference Language.47
Types .55

TradingSingleton Configuration 64
transactions (between servers and clients).10
Type .89

V
Visibroker osagent daemon 17

W
Withdraw

an Offer . 82
Selected Offers .77

X
XML

documents. 14
Export . 51
File Format (Offers). 54

File Format (Service Types) 52
Import. .51
offer import and export.14
97
Trading Service Guide

��������	

 Index
98
Trading Service Guide

��������	

	OpenFusion®
	Notices
	Preface
	About the Trading Service Guide
	Contacts

	Contents
	Table of Contents
	List of Figures
	List of Tables

	Introduction
	Trading Service
	1 Description
	1.1 Overview
	OMG Standard Features
	OpenFusion Enhancements

	1.2 Concepts
	Standard CORBA Concepts
	Linking Traders

	1.3 Architecture
	Service Type Repository
	Register
	Proxy
	Lookup
	Link
	Admin
	Database Plug-in
	XML Import and Export
	Service Types
	Interface Names
	Property Types
	Super-types and Inheritance
	Incarnation Numbers

	Offers
	Persistence
	Instrumentation
	Fail-over
	Replication

	2 Using Specific Features
	2.1 Obtaining a Reference to the Trading Service
	2.2 Obtaining References to Trading Service Interfaces
	2.3 Managing Service Types
	Adding and Removing Service Types
	Listing Service Types

	2.4 Managing Service Offers
	Exporting Service Offers
	Using Dynamic Properties
	Exporting Proxy Offers
	Listing All Service Offers
	Querying Service Offers
	Details of Service Offers
	Removing Service Offers

	2.5 Federation of Traders
	2.6 Changing Trader Attributes

	3 API Descriptions
	3.1 TraderComponents Interface
	3.2 Admin Interface
	3.3 Register Interface
	3.4 Lookup Interface
	3.5 Link Interface
	3.6 Proxy Interface

	4 Supplemental Information
	4.1 Trader Constraint Language
	Common Types of Constraints
	Property Value Types
	Query Elements
	Comparative Functions
	Boolean Connectives
	Property Existence
	Property Names
	Numeric and String Constants
	Mathematical Operators
	Grouping Operator

	Precedence

	4.2 Trader Preference Language
	4.3 Trader Constraint Recipe Language
	4.4 Valid Service Type Names
	4.5 XML Export and Import
	4.6 Service Type XML File Format
	4.7 Offer XML File Format
	4.8 Trading Service Types
	4.9 Trading Service Components
	4.10 Exceptions

	Configuration and Management
	5 Trading Service Configuration
	5.1 Overview
	Common Properties

	5.2 TradingSingleton Configuration
	CORBA Properties
	IOR Name Service Entry
	IOR URL
	IOR File Name
	Resolve Name
	IOR Name Service

	Persistence Properties
	Cache Metadata
	Query Cache Size

	General Properties
	Create Persistent Iterators
	Evaluation Timeout (secs)
	Purge Interval
	Purge at Startup
	Service Type Repository Name
	Offer Count

	5.3 ServiceTypeRepositorySingleton Configuration
	CORBA Properties
	IOR Name Service Entry
	IOR URL
	IOR File Name
	Resolve Name
	IOR Name Service

	Persistence Properties
	Cache Metadata

	General Properties
	Check Name Format
	Service Type Count

	5.4 ProcessSingleton Configuration
	IOR Name Service Entry
	IOR URL
	IOR File Name
	IOR Name Service

	6 Trading Service Manager
	6.1 Overview
	6.2 Using the Trading Service Manager
	Trading Service Properties
	Query Details
	Offers Searched
	Offers Sorted
	Offers Returned
	Links to Traverse
	Offer Iterator

	Supports
	Modifiable Properties
	Dynamic Properties
	Proxy Offers

	Link Following
	Default
	Maximum
	Link Maximum

	Tool Bar Buttons

	6.3 Queries
	Query Constraints
	Properties
	Offers to Return
	Service Type
	Query Constraints
	Properties to Return

	Policies
	Preferences

	Execute a Query
	Offers

	Export Offers

	6.4 Offers
	Properties
	Withdraw an Offer

	6.5 Proxy Offers
	6.6 Links

	7 Service Type Repository Manager
	7.1 Overview
	7.2 Using the Service Type Repository Manager
	Tool Bar Buttons
	Removing Service Types
	Adding Service Types
	Names
	Service Type Name
	Interface Name

	Properties
	Name
	Sequence
	Type
	Mandatory
	Read Only

	Load Service Types
	Save Service Types
	Mask Service Types

	Index

