IDOL

KeyView

Software Version 12.9

HTML Export SDK C and COM Programming
Guide

Document Release Date: June 2021
Software Release Date: June 2021




HTML Export SDK C and COM Programming Guide

Legal notices

Copyright notice
© Copyright 1997-2021 Micro Focus or one of its affiliates.

The only warranties for products and services of Micro Focus and its affiliates and licensors (“Micro Focus”)
are as may be set forth in the express warranty statements accompanying such products and services.
Nothing herein should be construed as constituting an additional warranty. Micro Focus shall not be liable
for technical or editorial errors or omissions contained herein. The information contained herein is subject to
change without notice.

Documentation updates

The title page of this document contains the following identifying information:

« Software Version number, which indicates the software version.
« Document Release Date, which changes each time the document is updated.
« Software Release Date, which indicates the release date of this version of the software.

To check for updated documentation, visit https://www.microfocus.com/support-and-services/documentation/.

Support

Visit the MySupport portal to access contact information and details about the products, services, and
support that Micro Focus offers.

This portal also provides customer self-solve capabilities. It gives you a fast and efficient way to access
interactive technical support tools needed to manage your business. As a valued support customer, you can
benefit by using the MySupport portal to:

Search for knowledge documents of interest

Access product documentation

View software vulnerability alerts

Enter into discussions with other software customers
Download software patches

Manage software licenses, downloads, and support contracts
Submit and track service requests

Contact customer support

View information about all services that Support offers

Many areas of the portal require you to sign in. If you need an account, you can create one when prompted
to sign in. To learn about the different access levels the portal uses, see the Access Levels descriptions.

IDOL KeyView (12.9) Page 2 of 482


https://www.microfocus.com/support-and-services/documentation/
https://mysupport.microfocus.com/
https://mysupport.microfocus.com/web/softwaresupport/access-levels

HTML Export SDK C and COM Programming Guide

Contents
Part 1: Overview of HTML EXport .. 14
Chapter 1: Introducing HTML EXPOrt ... 15
OV IV W . 15
Features il 15
Platforms, Compilers, and Dependencies ... ... ... ... 16
Supported Platforms ... 16
Supported Compilers il 17
Software Dependencies ... ...l 18
Windows Installation .. il 18
UNIDX Installation . ... 19
Package Contents ... ... 20
License Information .. .. 20
Enable Advanced Document Readers ... ... 20
Pass License Informationto KeyView .. .. 21
Directory Structure ... 22
Definition of Terms ... 24
Chapter 2: Getting Started ... .. ... i 26
HTML Export Reference Implementation ... .. ... 26
Architectural OVeIVIEW 28
Memory Abstraction ... .. 29
Enhance Performance .. .. 30
File Caching ... il 30
ConVert FIleS ... 30
Convert Files Out of Process ...l 31
Configure Out-of-Process CoNversions ......................ooooiiiiiiiiiiiii .. 32
Run Export Out of Process—Overview .. ... ... il 34
Recommendations ..l 35
Run Export Out of Process .. ... ... 35
Example—KVHTMLStartOOPSession . ... ... ... ... 36
Example—KVHTMLENdOOPSession ... ... ... .. 37
Subfile EXtraction . ... ... 38
Convert Outlook Email without Using the Extraction APl ... .. . ... .. ........... 38
Set Conversion Options ...l 39
Set Conversion Options by Usingthe AP . ... . ... 39
Explore Conversion Options with the Sample Programs ... .. ... 39
Templates il 40
Usethe Export Demo Program ... il 42
Change Input/Output Directories ... ... .. . .l 43
Set Configuration Options ... 44
Convert PDF Files il 44
Convert Rotated Text ... il 45

IDOL KeyView (12.9) Page 3 of 482



HTML Export SDK C and COM Programming Guide

ConVert FileSs .o 45
Use the C-Language Implementation of the APl .. 46
Input/Output Operations ... .. ... 47
Convert Files .. 47
Multithreaded CoNVersions . ... ... . .. 49
Use the COM Implementation of the AP . 49
Sample Implementation ... 50
Define the htmserv Object ... .. ... .. .. 50

Sample Code ... 51

Part 2: Use the Export APl . 53
Chapter 3: Use the File Extraction AP ... 55
INtrodUCHION L 55
EXtract SUDTIlES L 56
Sanitize Absolute Paths .. ... 57
EXtract IMages ... L 58
Recreate a File’'s Hierarchy ... ... 58
Create a Root Node .. ... . 59
Recreate a File’s Hierarchy—Example ... ... ... 59
Extract Mail Metadata il 60
Default Metadata Set .. ...l 60
Extract the Default Metadata Set ... ... . .. ... ... 61
Extract All Metadata ... ... 61
Microsoft Outlook (MSG)Metadata ... ... . .. ... 61
Extract MSG-Specific Metadata ... . ... 63
Microsoft Outlook Express (EML) and Mailbox (MBX)Metadata .......................... 63
Extract EML- or MBX-Specific Metadata ... ... .. ... 63

Lotus Notes Database (NSF)Metadata ... .. ... . . ... 64
Extract NSF-Specific Metadata ... ... .. .. .. 64
Microsoft Personal Folders File (PST)Metadata ........ ... ... 65
MAPT Properties . . .. ... 65
Extract PST-Specific Metadata ... . . .. 66
Exclude Metadata from the Extracted Text File ... ... ... ... 67
Extract Subfiles from Outlook Files ... .. 67
Extract Subfiles from Outlook Express Files ... .. 67
Extract Subfiles from Mailbox Files ... . . 67
Extract Subfiles from Outlook Personal Folders Files .......... . ... ... 68
Choose the Readertouse for PST Files ... ... 68
MAPI Attachment Methods ... 70
Open Secured PST Files ... ... 70
Detect PST Files While the Outlook Clientis Running ... ............ 71
Extract Subfiles from Lotus Domino XML Language Files ........ .. ... ... .. ... 71
Extract DXL Files to HTML . L 72
Extract Subfiles from Lotus Notes Database Files ... .. .. .. ... 72
System Requirements . ... .. .. . 72
Installation and Configuration . ... . 73

IDOL KeyView (12.9) Page 4 of 482



HTML Export SDK C and COM Programming Guide

WiNAOWS 73
SOlaMIS L 73

ADX B X il 74

LiNUX . . 74

Open Secured NSF Files ... .. L 75
Format Note Subfiles ... ... 75
Extract Subfiles from PDF Files ... . ... 75
Improve Performance for PDFs with Many Small Images .....__.. .. ..._................ 75
Extract Embedded OLE Objects .. ... .. .. 76
Extract Subfiles from ZIP Files ... 76
Default File Names for Extracted Subfiles ... .. ... 76
Default File Name for Mail Formats ... . ... 77
Default File Name for Embedded OLE Objects ... ... .. . ... ... 78
Chapter4: Use the HTML Export APl . 79
Extract Metadata ... .. 79
Extract Metadata by Usingthe APl ... 80
Usethe C AP .. 80
Usethe COMINterface ... ... e 80
Extract Metadata by Usinga Template File ... . . .. ... 80
EXaMIIES L 81
SSUMMARYNN 81
FSUMMARY 81
SUSERSUMMARY 82

Extract File Format Information ... ... 82
Usethe C AP . 83
Usethe COMINterface ... ... L 83
Convert Character Sets ... .. 83
Determine the Character Set of the Output Text ... ... ... 83
Guidelines for Character Set Conversion ... 84
Examples of Character Set Conversion ... ... ... 85
Document Character Set Can be Determined ... . ... ... ... 85
Document Character Set Cannot be Determined ... ... ... ... 85

Set the Character Set During Conversion ... ... ... ..., 86
Set the Character Set During File Extraction froma Container ............................ 86
Map S YIS . 87
Usethe C AP . 87
Usea Templatefile - ... .. 88
Usethe COMINterface ... ... . 90
Use Style Sheets il 90
Display Vector Graphics on UNIX and Linux ... . ... 91
Search and Highlight Terms ... . .. 91
Include Revision Information ... ... .. . 92
Configure the Revision Title ... e 93
Configure the Revision Style ... .. 94
Generate a Revision Summary ... 95
Extract Text from Text BOXes ... ... .. . 95

IDOL KeyView (12.9) Page 5 of 482



HTML Export SDK C and COM Programming Guide

Convert PDF Files ... 95
Usethe padf2sr Reader ... oo o L 95
Usea Graphic-Based Reader .. ... ... . 96

UsethekppdfrdrReader ... . 97
Usethe kppdf2rdr Reader . ... 97
Specify the Graphic-based Reader ... .. ... 97
Convert PDF Files to Raster Images ... ... ..o oo 98
Convert PDF Files toa Logical ReadingOrder ........ ... ................................ 99
Logical Reading Order and Paragraph Direction ...................................... 99
Enable Logical Reading Order ... . 100
Usethe C AP .. 100
Usetheformats_e.ini File ... . 101
Generate a Table of Contents from PDF Bookmarks ......... . ... .. ............. 102
Disable Bookmark CONVersion ... 102
Convert Invisible Text ... 103
Toggle Invisible Text .. .. 103
Specify Opacity of Invisible Text ..., 103
Convert Rotated Text ... il 104
Control Hyphenation ... 105
Extract Custom Metadata from PDF Files .. ... ... . . . 106

Convert Spreadsheet Files ... L 106
Convert Hidden Text in Microsoft Excel Files ... ... ... ... 107
Convert Headers and Footers in Microsoft Excel 2003 Files ... ............. 107
Specify Date and Time Format on UNIX Systems ... ... . ... ... 107
Convert Very Large Numbers in Spreadsheet Cells to Precision Numbers ............. 108
Extract Microsoft Excel Formulas ... ... 108
Set Minimum IMage Size ... o 110

Convert Presentation Files ... .. . 110
Convert Presentation Files toRasterIlmages ... ... .. . ... 110
Convert Presentation Files to a Logical ReadingOrder _......... .. .. ... .............. 110
Mitigate Text Wrapping .. ..o ool 111

Convert XML Files ..o 111
Configure Element Extraction for XML Documents ........... ... ... ... ............... 111

Modify Element Extraction Settings . ... ... .. o L 112

Usethe C AP .. 112
Modify Element Extraction Settings in the kvxconfig.iniFile __.....__.............._. 113
Specify an Element's Namespace and Attribute ... ... ... ... 115
Add Configuration Settings for Custom XML Document Types ...................... 115

Show Hidden Data .. ... .. 116
Hidden Datain Microsoft Documents ... .. ... . 116

Toggle Word Comment Settings in the formats_e.iniFile ... ... ... ......... 117
Toggle PowerPoint Slide Note Settings in the formats_e.iniFile ..................... 118

Exclude Japanese Guide TexXt ... .. o 118

Source Code ldentification ... ... . 118

Partitioning . ... . . 119

Configure the Proxy for RMS el 120

IDOL KeyView (12.9) Page 6 of 482



HTML Export SDK C and COM Programming Guide

Chapter 5: Sample Programs . ... .. 122
INtrOdUCHION 122
C Sample Programs . . ... ... 122
Compile the Visual Basic Sample Program ... ... 123
COM Sample Program ...l 123
BT AC, 124
CNV 2t Ml 125
CNV 2EMIO0D ..o 126
ONETII 128
INEX 128
10 S AMID Lo 128
01000111 o S 129
CallbaCK .. . 131
JVErEE MO . 131
JV T 132
KV M X PO 132
EXPOrt D MO .. 133
Template Wizard .. 133
Convert Documents to HTML by Using the Template Wizard ... ..................... 134
Change the Output Directory ... il 134
Modify a Template inthe Wizard . ... .. ... ... 135
COMSAIMD . . 138
EMIOOD . .. 138
Part 3: C APIReference ... ... 139
Chapter 6: File Extraction APl Functions . ... .. L 140
KVGetExtractinterface() ... oo 140
TPCIOSEFIIE() ... 141
fPEXtractSUBFIle() .. 142
OIS UCT () - .. 143
fPGetMaiNFilelNfO() - ... 144
PGt SUDFIIEINTO() .o 145
fpGetSubFileMetaData() ... ... ... .. 147
TDOPENFI () oo 149
Chapter 7: File Extraction APl Structures ... ... . 151
KV Credential . ... L 151
KVCredential Component . . ... .. 152
KVEXtractinterface ... . 152
KVEXIractSUDBFIICATG . . .. 153
KV Gt SUDFIlEMEtaA TG 156
KVMaiNFIleINtO . e 157
KVMetadataElem . . 158
KVMetaName . 159
KVOPENFIICATG . . . . 160
KV QUL UL S M . 161

IDOL KeyView (12.9) Page 7 of 482



HTML Export SDK C and COM Programming Guide

KV SUbFileEXtractinfo . ... . 162
KV SUBFIIEINTO e 163
KVSUbFIleMetaData . ... ... 166
Chapter 8;: HTML Export APl FUNCHIONS . ... L 167
KVHTMLGetInterfaceEX() - ... 168
KVHTMLGetInterfaceEX2() ... . 168
fPCONfigUIERM S () . 170
TP  ONVE S aAMI ) . L 171
fpFileTolnputStreamCreate() ... ... . . 173
fpFileTolnputStreamFree() ... .. . .. 174
fpFileToOutputStreamCreate() ... ... . 175
fPFileToOUtpULStreamMFree() . . ... L 176
fpFreePartitionInfolist . ... . 177
PGt ANCNON() - iiiiiiiiiiiiiil. 178
fpGetConvertFilelist() .. ... 179
fPGEtKVEIOrC Ode . ...l 180
fPGEtKVEOrCOodeEX . ... ... 180
fpGetPartitionInfollist .. ... . 181
fPGetStreamInfO() .. ... 182
PGt SUMMANYINO() . .. L 182
£0] 011 184
fplnitWithLicenseData() ... ... . . . 185
TS et PartitioNON 187
TSt Sty leMapPPING() - .. L 188
TS NU D OWN() il 189
fpValidateTemplate() ... o il 190
KVHTMLCONFIG() . . .o e 190
KVHTMLCONVEFIlE() ... 198
KVHTMLENdOOP SeSSION() - ... 200
KVHTMLSetHighlight() ... . 202
KVHTMLSetStyleSheet() ... ..o 204
KVHTMLStartOOPSESSION() - ..o 205
Chapter 9: HTML Export API Callback Functions . . ... .. . . 209
INtrOdUC T ON 209
CONtiNUE ) .. L 209
Gl ANCINON ) L 210
GetAUXOUIPUL() . .. 212
USErCB) .. 213
Chapter 10: HTML Export APl Structures .. ... .. . 215
AD DO CINF O 216
KV INPU S i aM e 216
KV MEmMOrY S aM 217
KV OUL UL S aM . 218
KV PartitionDimensions ... . 218
KV PartitionNINfO . ... 219
KV P artitionINf OISt . 220

IDOL KeyView (12.9) Page 8 of 482



HTML Export SDK C and COM Programming Guide

KV PartitionSetON .. 221
KVRMS Credentials . ... . 221
KV S T R e 222
KV S reamIng O 223
KV StructHead 224
KN Yl 224
KV SUMIN OB OME X L 226
KVSummaryInfoEX ... 226
KV XCoNnfigInfo .. 227
KVHTMLCAIDACKSEX ... e e 228
KVHTMLHeadingINfO . .. 229
KVHTMLHIghlght . 231
KVHTMLINterfaCeEX . ... 232
KVHTMLINt e aCeEX 2 oo e 234
KVHTMLOPtONSEX . ... 237
KVHTMLT T emplateEX .. . 246
KVHTMLTOCOPRHONS ..o 250
KVReVISIONMarK . ... 252
KV R T e L 253
Chapter 11: Enumerated Ty PeS ..o oo 255
INtrOdUCH ON 255
Programming Guidelines ... .. 256

EN D OCA DU ES . . 256
ENS ATabIeBOrder 257
KV CredKeY TY e . 258
KVEMOrC O0e .. o 258
KVEMOrCodeEX ... o 260
KVHTMLStYleSheet TY P o e 264
KVHTMLANChorTypeEX .. 264
KVHTMLGraphiC Ty e . o oL 266
KVHeadingCreateOptions . ... ... . 267
KVMetadataType .. ... 267
KVMetaNameType il 269
KV PartitionStartReason ... . . 269
KV SUMIN O Y P 271
KV SUM T Y P . . 272
LPDF DIRECTION 275
RM _Title Flag ...l 276
Part4: COM APIREference ... 278
Chapter 12: COM Interface Methods and Events ... ... .. .. . ... 279
MeEtNOOS .. L 279
BV N S L 279
AdAStYIeMaPDING oL 279
ConvertFIleToFile .. L 280

IDOL KeyView (12.9) Page 9 of 482



HTML Export SDK C and COM Programming Guide

GetFilelNfO L 280
Gt Sty IeMaPPING . . ..l 281
GetSUMMANY INTO 281
RemoveStyleMapping . ...l 282
UNload . 282
UpdateFromIniFile .o 282
HT ML ONFIg .. 283
CONtINUE . 283
UserCallback ... ... 283
Chapter 13: COM Interface Properties .. ... ... . 284
adinfo_dOCAHIDULES .. L 284
adinfo_dOCCIaSS ... 284
adinfo dOCF Mt . 284
adinfo_dOCV erSION ... 285
bAllowHeadingsINTables ... . 285
bDisplayRelativeFontSize . ... ... . 285
bENnableEMpPtyROWS ... 285
bForceOutpuUtCharSet . ... . . 285
BFOrCeSICC NS et . 286
bGenerateU R LS .. 286
bHardPageMakesNewBIlocK . . ... . ... 286
bNbspEMPtYCells ... .. 286
DN O P C NS . 287
bPutBlocksInSeparateFiles ... . . 287
bRasterizZEFIleS 287
bRemoveEmptyColumns .. .. 288
bRemoveFileNameSpaces ... . 288
BSUPPOt C Il S AN . . . L 288
bSupportColumnHeadings . ... ...l 288
bSupportColumnWidth ... . 288
DS UPPOFONtFaCE ., 289
bSUPPORFC1942 COIS . ... 289
bSupportRowHeadings ... ...l 289
DS UPPO R OW S AN . 289
bSupportUserFontSizeMapping . ... ... L 289
bTableHTMLForSpreadsheetOnly . ... . . . . 290
bTabsToTables . ... . 290
bUseDocUMENtCOIOrS ... 290
bUseDocumentFontInfo ... 290
COAEPaAgE . ... L 290
CREAACT 291
CReplaCEC Al .. 291
CXVEeCtOrTORASTEr X R ES . 291
CYVECtOrTORASIEIY RES . 292
AWFIaGS il 293
FontSizeMap NSize[d...7] - 293

IDOL KeyView (12.9) Page 10 of 482



HTML Export SDK C and COM Programming Guide

headingCreateType ... il 293
INPUEC IS L . 294
ICOBIOCKSIZE . ... 294
IcbMaxMemUsage ... ... . 295
MarkUpPENG 295
MarkU DS At . . 295
NCOMPresSioNQUAlITY ... .. L 295
NROWSBEfOreS Plit . ...l 296
nTableBorderWidth .. ... . 296
NUM S YOS 296
OULPULCarS L .. . 296
OutputlanguagelD ..l 297
OutputRasterGraphicType ... 297
OutputVectorGraphiCTYPe ... ... 297
PHN BNOMUII S PaCES ... 297
pPHN_bNoNZeroIndent .. . 298
PHN BNOTabS .. 298
PHN BMUSTBEBOId 298
PHN bMuUstBeltalic ... .. 299
pHN_bMustBeUnderlined ... ... . 299
PHN foNtSiZzeMaX .. 299
PHN foNtSizZeMin L 300
PHN MaXParalen 300
PHN MiNParalen .. 300
PHN MO paCe A e 301
PHN _MSpaceBefore . .. ... 301
PSZAUINOT 301
PSZBasEURN L ... L 301
PSZC oMM S . 302
PSZChUNK T emMplate . 302
pPSzDefaultOUtPULDIrECtONY . . ..l 302
PSZENABIOCK .. 302
PSZFIrsStHIENG 302
PSZEIrStH IS art . 303
PSZHI 2. .6 H ML 303
PSZINPUIFIlE . 303
PSZKeYVIEeW DI L 303
PSZKEYWOIAS 303
PSZLaStHTIENG .. 304
PSzLastH IS art . 304
pszlastSavedby .. 304
PSZMaiNB Ot OM . 304
PSZMaAIN T 0D .. 304
PSZMaiNUR L L 305
PSZMIdAIEH TENG ... 305
PSzZMIddIeH S At 305
PSZPICP At . 305

IDOL KeyView (12.9) Page 11 of 482



HTML Export SDK C and COM Programming Guide

PSZPICUR L .. 305
PSZREVNUMDET . 306
PSZ St BIOCK . 306
PSZSUD ECt .. 306
PSZTableH TML . 306
PSZT eMIPIate . L 306
PSZTIlE . 307
PSZTOC H M. 0] . 307
PSZTOCHI[ . B ENd <. 307
PSZTOCHI[1..6]LeafNoOde . .. ... L 307
PSZTOCHI .8 S art ... 307
PSZUSErSUMIMaAIY .. 308
PSZXFIlE . L 308
PSZXStartBIOCK . . .. 308
PSZXENABIOCK . . . 308
SATAbIEBOrAer ... L 309
SreCharS et il 309
StYIES et Ty P 309
SUYIENAME L 309
TIMIEOUL . . 310
Part 5: APPEeNdiXeS ... 311
Appendix A: Supported Formats .. ... 312
Key to Supported Formats Table ... . 312
Supported FOrmMats ... L 314
Appendix B: Document Readers . ... .. . 392
Key to Document Readers Table ... . e 392
DocumMeENt REadErS . 394
Appendix C: Character Sets ... 424
Multibyte and Bidirectional SUPPOrt . .. ... 424
Coded Character Sets .. ... .o 432
Appendix D: Extract and Format Lotus Notes Subfiles ... ... ... .. ... 438
OV IV W 438
Customize XML Templates .. ... 438
Use Demo Templates ... .. L 439

Use Old Templates . ... 439
Disable XML Templates . .. ... 439
Template Elements and Attributes .. ... . L 440
Conditional Elements ... 440
Control Elements . ... 441

Data Elements ... 442
Dateand Time Formats .. ... 445
Lotus Notes Date and Time Formats . ... ... ... . .. 445
KeyView Dateand Time Formats ... .. ... ... . .. ... 446

IDOL KeyView (12.9) Page 12 of 482



HTML Export SDK C and COM Programming Guide

Appendix E: EXport TOKENS ... 451
Appendix F: File Format Detection ... ... . 454
INErOAUC T ON L 454
Extract Format Information .. ... 454
Determine Format SUPPOM ... o 454
Refine Detection of Text Files . ... ... 455
Change the Amount of File DatatoRead ... ... .. .. ... ... ... 455

Change the Percentage of Allowed Non-ASCII Characters .......................... 456

Use the File Extension for Detection ... ... . 456

Allow Consecutive NULL BytesinaTextFile ........ ... 456
Translate Format Information ... ... . 457
Distinguish Between Formats ... . . 457
Determine a Document Reader ... . 458
Category Values informats_e.ini ... .. 458
Appendix G: Files Required for Redistribution ... .. ... ... ... 462
COre FIlES 462
SUPPOM FileS . ..o 463
Document Readers and Witers .. ... . . 465
Appendix H: Password Protected Files ... .. . 473
Supported Password Protected File Types ... .. 473
Open Password Protected Container Files ... .. . ... 474
Export Password Protected Files ... . 474
Appendix |: Microsoft Rights Management Service Protected Files ......... ... ... .. ......... 476
Microsoft Azure Rights Management Service ... ... 476
RMS Credentials .. ... 477
Supported FOrmMats .. L 477
Microsoft Office Files ... . 477
Implemented as pFile ... 478

PO FleS oo 480
Restricted Permission MeSsages ... ... 481
Send documentation feedback ... ... 482

IDOL KeyView (12.9) Page 13 of 482



HTML Export SDK C and COM Programming Guide

Part 1: Overview of HTML Export

This section provides an overview of the Micro Focus IDOL KeyView Export SDK and describes how
to use the C and COM implementation of the API.

« Introducing HTML Export
« Getting Started

IDOL KeyView (12.9) Page 14 of 482



Chapter 1: Introducing HTML Export

This guide is for developers who want to incorporate Micro Focus KeyView HTML conversion
technology into their applications using a C and COM development environment. It is intended for
readers who are familiar with HTML and C and COM.

O OV IV W L 15
O R eatUNES il 15
® Platforms, Compilers, and Dependencies ... ... ... 16
® Windows Installation ... .. e 18
® UNIX Installation ... il 19
® Package Contents ... . L 20
® License Information ... . . 20
® Directory StructUre ... . 22
® Definition of TermMS .. 24
.
Overview

HTML Export is part of the KeyView Export SDK. It enables you to convert virtually any document,
spreadsheet, presentation, or graphic into high-fidelity HTML. Incorporating this technology into your
web-based applications enables your end-users to access a document even if they do not have the
appropriate plug-in or native application. With HTML Export, you control the content, structure, and
format of the HTML output using either easily customized templates, or the flexible and robust APIs.

The Export SDK supports a number of programming environments, such as Visual Basic, Java, .NET
and Delphi and runs on all popular operating system platforms including Windows, Linux, Solaris, and
IBM AIX.

The Export SDK is part of the KeyView suite of products. KeyView provides high-speed text extraction,
conversion to web-ready HTML and well-formed XML, and high-fidelity document viewing.

Features

« Dynamically convert word processing, spreadsheet, presentation, and graphics files into web-
ready, 4.0-compliant HTML.

« Export supports over 300 formats in 70 languages.

« Convert files either in-process or out of process. Out-of-process conversion ensures the stability
and robustness of the calling application if a corrupt document causes an exception or causes the
conversion process to fail.

IDOL KeyView (12.9) Page 15 of 482



HTML Export SDK C and COM Programming Guide
Chapter 1: Introducing HTML Export

« You can extract files embedded within files by using the File Extraction API, and then convert
them by using the Export API.

« Use redirected input/output. You can provide an input stream that is not restricted to file system
access.

« Export automatically recognizes the file format being converted and uses the appropriate reader.
Your application does not need to rely on file name extensions to determine the file format.

« Create heading levels in the output file either by using the structure in the source document or by
allowing Export to automatically generate a structure based on document properties, such as font
or font attributes.

« Use callbacks to control aspects of the conversion process, such as file naming and the insertion
of scripts.

« Manage memory allocation to optimize speed and performance of application.
« Insert predefined HTML markup at specific points in the output stream.

« Create navigable documents by automatically inserting links into target HTML. You can also
break large documents into multiple linked web pages.

« Apply Cascading Style Sheets (CSS) to improve the fidelity of the output.

« Map paragraph and character styles in word processing documents to any markup that you
specify in the output.

« Control the resolution of rasterized vector graphics to optimize storage requirements or image
quality.

« Select the target format for converted graphics, including GIF, JPEG, CGM, PNG, WMF, and
SVG on Windows, and JPEG and SVG on Unix and Linux.

« Define the background, colors, and fonts used in the final HTML document, or maintain the
source document's existing attributes.

Platforms, Compilers, and Dependencies

This section lists the supported platforms, supported compilers, and software dependencies for the
KeyView software.

Supported Platforms

« CentOS 7 x86, x64, and AArch64

o IBMAIXL6.1 PowerPC 32-bit and 64-bit

o IBMAIXL7.1 PowerPC 32-bit and 64-bit

« macOS 10.13 or later on 64-bit Apple-Intel architecture
« macOS 11 or later on Apple M1.

IDOL KeyView (12.9) Page 16 of 482



HTML Export SDK C and COM Programming Guide
Chapter 1: Introducing HTML Export

« Microsoft Windows Server 2012 x64

o Microsoft Windows Server 2016 x64

o Microsoft Windows Server 2019 x64

« Microsoft Windows 8 x86 and x64

« Microsoft Windows 10 x64

o Oracle Solaris 10 SPARC
o Oracle Solaris 10 x86 and x64

« Red Hat Enterprise Linux 6 x86 and x64

« Red Hat Enterprise Linux 7 x64

« Red Hat Enterprise Linux 8 x64

o SuSE Linux Enterprise Server 11 x86 and x64

« SuSE Linux Enterprise Server 12 x64

o SuSE Linux Enterprise Server 15 x64

Supported Compilers

Platform Architecture

Microsoft x86

Windows
x64
Sun x86 64-bit
Solaris
SPARC 64-
bit
Linux x86
x64

IBMAIX  Power

macOS Apple-Intel
64-bit
Apple M1

IDOL KeyView (12.9)

Compiler Compiler Version

Name

cl

cl

Sun
Studio 12

Sun
Studio 11

gcc/g++
gcc/ g++

xIC r/
ccr

LLVM

LLVM

Microsoft 32-bit C/C++ Optimizing Compiler for x86 Version
17 (Visual Studio 2012) to Version 19 (Visual Studio 2019)

Microsoft C/C++ Optimizing Compiler for x64 Version 17
(Visual Studio 2012) to Version 19 (Visual Studio 2019).

Sun C 5.9 SunOS_i386 Patch 124868-01
2007/07/12
Sun C 5.8 Patch 121015-06 2007/10/03

4.1.0t04.9.2
4.1.0t04.9.2

IBM XL C/C++ Enterprise Edition V8.0

Apple LLVM 5.1 (clang-503.0.40) (based on LLVM 3.4svn)

Apple LLVM 12.0.0 (clang 1200.0.32.28).

Page 17 of 482



HTML Export SDK C and COM Programming Guide
Chapter 1: Introducing HTML Export

Supported Compilers for Java Components

Component Compiler

Java components Java7

Software Dependencies

Some KeyView components require specific third-party software:

« Java Runtime Environment (JRE) or Java Software Developer Kit (JDK) version 7 or 8 is required
for Java API and graphics conversion in Export SDK.

« Outlook 2002 or later is required to process Microsoft Outlook Personal Folders (PST) files using
the MAPI-based reader (pstsr). The native PST readers (pstxsr and pstnsr) do not require
Outlook.

NOTE: You must install an edition of Microsoft Outlook (32-bit or 64-bit) that matches the
KeyView software. For example, if you use 32-bit KeyView, install 32-bit Outlook. If you use
64-bit KeyView, install 64-bit Outlook.

If the editions do not match, KeyView returns Error 32: KVError_PSTAccessFailed and an
error message from Microsoft Office Outlook is displayed: Either there is a no default
mail client or the current mail client cannot fulfill the messaging request.
Please run Microsoft Outlook and set it as the default mail client.

« Lotus Notes or Lotus Domino is required for Lotus Notes database (NSF) file processing. The
minimum requirement is 6.5.1, but version 8.5 is recommended.

« Microsoft Visual C++ 2019 Redistributables (Windows only).

Windows Installation

To install the SDK on Windows, use the following procedure.

To install the SDK

1. Run the installation program, KeyViewProductNameSDK_VersionNumber_OS.exe, where
ProductName is the name of the product, VersionNumber is the product version number, and 0S is
the operating system.

For example:
KeyViewExportSDK_12.9 Windows_X86_64.exe
The installation wizard opens.

2. Read the instructions and click Next.

IDOL KeyView (12.9) Page 18 of 482



HTML Export SDK C and COM Programming Guide
Chapter 1: Introducing HTML Export

The License Agreement page opens.

3. Read the agreement. If you agree to the terms, click | accept the agreement, and then click
Next.

The Installation Directory page opens.
4. Select the directory in which to install the SDK. To specify a directory other than the default, click
r&, and then specify another directory. After choosing where to install the SDK, click Next.
The Pre-Installation Summary opens.
5. Review the settings, and then click Next.
The SDK is installed.
6. Click Finish.

UNIX Installation

Toinstall the SDK, use one of the following procedures.

To install the SDK from the graphical interface

« Run the installation program and follow the on-screen instructions.

To install the SDK from the console
1. Runthe installation program from the console as follows:
. /KeyViewExportSDK_VersionNumber_Platform.exe --mode text

where:

VersionNumber is the product version.

Platform is the name of the platform.

2. Read the welcome message and instructions and press Enter.
The first page of the license agreement is displayed.

3. Read the license information, pressing Enter to continue through the text. After you finish
reading the text, and if you accept the agreement, type Y and press Enter.

You are asked to choose an installation folder.
4. Type an absolute path or press Enter to accept the default location.
The Pre-Installation summary is displayed.
5. If you are satisfied with the information displayed in the summary, press Enter.

The SDK is installed.

IDOL KeyView (12.9) Page 19 of 482



HTML Export SDK C and COM Programming Guide
Chapter 1: Introducing HTML Export

Package Contents

The Export installation contains:

« Libraries and executable files necessary for converting source documents into high-quality, web-
ready HTML (see Files Required for Redistribution, on page 462).

« Theinclude files that define the functions and structures used by the application to establish an
interface with Export (see the include directory for HTML Export).

« The Java APl implemented in the com.verity.api.export package contained in the
KeyView. jar file.

« Several sample programs that demonstrate Export's functionality.
« Sample images that can be used as navigation buttons and background textures in your output.

« Template files that enable you to set conversion options without modifying at the API level. They
can be used to generate a wide range of output, from highly-stylized user-defined HTML to
stripped-down, text-only output suitable for use with an indexing engine.

« Sample style sheet: WordStyle.css (for word processing documents).

License Information

Your license key controls whether you have the full version of the KeyView SDK, or a trial version. It
also determines whether the following advanced features are enabled:

« Advanced character set detection with the character set detection library (kvlangdetect).
« Advanced document readers:

o Microsoft Outlook Personal Folders (PST) readers (pstsr, pstnsr, and pstxsr)

o Lotus Notes database (NSF) reader (nsfsr)

o Mailbox (MBX) reader (mbxsr)

« Processing of documents protected by Microsoft RMS encryption.

If you obtain a new license key from Micro Focus, you must update the licensing information that you
pass to KeyView. See Pass License Information to KeyView.

Enable Advanced Document Readers

To enable advanced readers, you must obtain an appropriate license key from Micro Focus and pass
the license key to KeyView as described in Pass License Information to KeyView.

If you are enabling the MBX reader in an existing installation of Export, in addition to updating the
license key, change the parameter 208=eml to 208=mbx in the formats_e.ini file.

IDOL KeyView (12.9) Page 20 of 482



HTML Export SDK C and COM Programming Guide
Chapter 1: Introducing HTML Export

Pass License Information to KeyView

To provide license information to KeyView, do one of the following:

Provide the license information through the API. Micro Focus recommends using this approach.

Provide the license information as a text file named kv. lic. In earlier versions of KeyView,
license information had to be stored in a file and included in the bin folder with the KeyView
libraries. The ability to provide license information as a file has been deprecated and might be
removed in future. You should no longer include license information in your application as a file.
Micro Focus recommends that you pass license information to KeyView through the APl instead.

If you have an evaluation version of KeyView and purchase a full version of the SDK, or you are adding
a document reader (for example, the PST reader), you must update the license information that you
pass to KeyView.

To provide license information through the API

In the C API, provide license information when you initialize KeyView by calling
fpInitWithLicenseData().

In the Java API, provide license information to KeyView when you instantiate the HtmlExport
object.

To provide license information as a file

1.

Open or create the license key file, kv. lic, in a text editor. The file must be saved in the same
directory as the KeyView libraries, and must contain your organization name and license key.

COMPANY NAME
XXXXXXX = XXXXXXX = XXXXXXX = XXXXXXX

Replace the text COMPANY NAME with the company name that appears at the top of the License
Key Sheet provided by Micro Focus. Enter the text exactly as it appears in the document.

Replace the characters XXXXXX- XXXXXXX - XXXXXXX-XXXXXXX with the appropriate license key
from the License Key Sheet provided by Micro Focus. The license key is listed in the Key column
in the Standalone Products table. The key is a string that contains 31 characters, for example,
2TQD22D-2M6FV66-2KPF23S-2GEM5AB. Enter the characters exactly as they appear in the
document, including the dashes, but do not include a leading or trailing space.

The finished kv . 1ic file looks similar to the following:

Autonomy
24QD22D-2M6FV66-2KPF23S-2G8M59B

Save thefile.

IDOL KeyView (12.9) Page 21 of 482



HTML Export SDK C and COM Programming Guide

Chapter 1: Introducing HTML Export

Directory Structure

The following table describes the directories created during the HTML Export installation. The variable
install is the path name of the Export installation directory (for example,
/usr/autonomy/KeyviewExportSDK on UNIX, or C:\Program Files\Autonomy\KeyviewExportSDK
on Windows). On UNIX, the HTML Export directory is named /htmlexpt.

The variable 0s is the operating system for which the SDK is installed. For example, the bin directory
on a standard 32-bit Windows installation would be located at C: \Program
Files\Autonomy\KeyviewExportSDK\WINDOWS\bin

HTML Export installed directory structure

Directory

install\0S\bin

instal l\OS\1ib

install\dotnet\sample

install\htmlexport\docs

install\htmlexport\guide

install\htmlexport\include

install
\htmlexport\programs\bin

install

\htmlexport\programs\callback

install
\htmlexport\programs\cnv2html

install

IDOL KeyView (12.9)

Description

Contains the libraries, executables for sample programs, the
Java program (kvraster.class), the Java applet
(kvvector.jar), the format detection file, formats_e.ini, the
license key file (kv.1ic), and a number of other supporting
files.

(Solaris installations only) Contains the redistributable
libstlport.so.1 library, which is required to run KeyView on
Solaris platforms.

The HtmlConvFileToFile.cs C# sample program
demonstrating the .NET interface.

Contains the converted version of the sample word
processing, spreadsheet, and presentations files.

Contains the HTML Export C and COM Programming Guide
and HTML Export Java Programming Guide in HTML and PDF
format.

Contains the header files for HTML Export.

Contains the executable files for the Visual Basic sample
program called Export Demo.

Contains the C source code and supporting files for a sample
program that demonstrates how user callbacks can
dynamically shape the HTML conversion.

Contains the C source code for a sample program that creates
a single HTML file. The executable for this sample program is
in the bin directory.

Contains the C source code for a sample program that creates

Page 22 of 482



HTML Export SDK C and COM Programming Guide
Chapter 1: Introducing HTML Export

HTML Export installed directory structure, continued

Directory
cnv2htmloop

install
\htmlexport\programs\comsamp

install\htmlexport\programs\
ExportDemo

install
\htmlexport\programs\htmlini

install
\htmlexport\programs\htmloop

install
\htmlexport\programs\images

install
\htmlexport\programs\index

install
\htmlexport\programs\ini

install
\htmlexport\programs\io_samp

install
\htmlexport\programs\jstree

install
\htmlexport\programs\jvtree

install

\htmlexport\programs\jvtree_

demo

install
\htmlexport\programs\pdfini

install
\htmlexport\programs\tempout

IDOL KeyView (12.9)

Description
a single HTML file out of process.

Contains the Visual Basic source code and supporting files for
a sample program that demonstrates the use of the COM
interface.

Contains the source code for a sample Visual Basic program.
The executable for this program is in the bin directory. The
Export Demo is available through the Start menu.

Contains the C source code and supporting files for a sample
program that uses template files to set the conversion options.

Contains a Visual C++ sample program that uses the
Microsoft Foundation Classes (MFC) to provide out-of-
process HTML conversion using the COM automation server.

Contains the background graphics and navigation buttons
used by the template files.

Contains the C source code and supporting files for a sample
program that produces text-only HTML.

Contains the template files used to set the conversion options
inthe C API.

Contains the C source code and supporting files for a sample
program that demonstrates how to input a stream by providing
a simple wrapper around the ANSI C interface fread(), fopen
(),andsoon.

Contains the C source code and supporting files for a sample
program that employs JavaScript to produce an expandable
table of contents in a frame-based HTML output file.

Contains the C source code and supporting files for a sample
program that uses the JvTree Java applet in creating an
expandable table of contents in a frame-based HTML output
file.

C code sample that creates a frame-based HTML stream
using the JvTree Java applet to display the table of contents.

Contains the configuration file used to extract custom
metadata from PDF documents.

The default output directory for converted files. Contains a
sample style sheet.

Page 23 of 482



HTML Export SDK C and COM Programming Guide
Chapter 1: Introducing HTML Export

HTML Export installed directory structure, continued

Directory Description

install Contains the C source code and supporting files for a sample
\htmlexport\programs\ program that demonstrates the File Extraction interface.
tstxtract

install Contains the source code and supporting files for the Visual

\htmlexport\programs\wizard Basic program HTML Export Template Wizard.

install\htmlexport\rel notes Contains the HTML Export Release Notes in HTML and PDF

format.
install\javaapi\ini Contains the template files used with the Java API.
install\javaapi\javadoc Contains the Javadoc for the Java API.
install\javaapi\sample Contains the source files and sample programs for the Java
API.
instal l\pdfexport\cnv2pdf Contains the C source code for a sample program that creates

a PDF file. The executable for this sample program is in the
bin directory.

install\pdfexport\include Contains the header files for PDF Export. For more
information, see the PDF Export Programming Guide.

install\testdocs Contains sample word processing, spreadsheet, and
presentation files that you can use to test HTML Export's
options. You might also find this directory useful when testing
your own applications.

Definition of Terms

The following are specialized terms used throughout the guide.

anchor  HTML markup that defines both anchors and hyperlinks. An anchor is a named place in a
document to which other documents can form a link. Anchors use the HTML anchor tags
(<a> </a>) tofacilitate navigation within a document.

block All source document content (including subheadings) associated with Heading Level 1.
Export identifies and/or generates blocks from the input stream for the implementation of
the your HTML markup.

block All source document content associated with Heading Levels 2 through 6. Chunks are
chunk subdivisions of blocks. You can supply specific HTML markup for the different levels of

IDOL KeyView (12.9) Page 24 of 482



HTML Export SDK C and COM Programming Guide
Chapter 1: Introducing HTML Export

chunk block chunks.

callback A function optionally supplied by your application and called from the Export API. For
example, callbacks allow your application to monitor the progress of the conversion
process dynamically.

stream  Transmission of a file's content between memory and disk in a continuous flow.

token The vehicle for conveying specific types of information to and from the API during the
conversion process. Tokens are placeholders for markup that appears in the output. See
Export Tokens, on page 451.

IDOL KeyView (12.9) Page 25 of 482



Chapter 2: Getting Started

This section provides an overview of the HTML Export SDK and describes how to use the C and COM
implementations of the API.

* HTML Export Reference Implementation .. ... L 26
® Architectural OVervieW . 28
® Memory Abstraction ... il 29
® ENnhance PerformanCe . ... 30
O CoNVert FlES L 30
® Convert Files Out of Process ... il 31
® Subfile EXtraction ...l 38
® Set ConVersion OptiONS ... o L 39
® Usethe EXport Demo Program . 42
® Use the C-Language Implementation of the APl . ... 46
* Use the COM Implementation of the APl . .. 49

HTML Export Reference Implementation

The KeyView Export SDK includes a reference implementation that demonstrates how to export
documents to HTML. The reference implementation includes source code for a library named
libkvhtmlexport, and a sample program named kvhtmlexport.

The 1ibkvhtmlexport library is written in C++ and provides a simple interface to HTML Export. You
can:

« use the library in your own product, if it provides the functionality you need.
« modify the library to provide the functionality you desire.

« look at the source code to help you learn how to use the C API, which provides much greater
flexibility.

The library uses partition information provided by KeyView to provide the following features out-of-the-
box:

« A"print" view for word-processor documents. This creates a web page containing a
representation of the original document, which is easy to read because it uses the correct page
widths and margins.

« A"tabbed" view for spreadsheet files. This shows spreadsheets using a familiar tabbed interface,
with one worksheet on each tab.

« A'list" view for presentations. This displays multiple slides, arranged in a vertical column one
after another, on a single web page.

IDOL KeyView (12.9) Page 26 of 482



HTML Export SDK C and COM Programming Guide
Chapter 2: Getting Started

« A"full screen" view for presentations. This displays one slide at a time. You can navigate
between slides using the arrow keys on your keyboard or the scroll wheel on your mouse.

The following image shows a Microsoft Word document that has been exported to HTML, being
displayed in a web browser:

Microsoft Word Document (.docx)

MIC RO
FOCUS

actars, 538 farreat of the HTKAL taat au
thes Pancitls and skt APR

The Capart S0K capparts a sumber of progesmeing sersiroa ments, ssck ac Wil Jav,
Iwen, NIIT and Dwiphi aad ua on allpep b opsatiag gueen pletiomea ichidiag
Wiratamen, Linas, Selari, ard B4 AL

Thas Capart SO b 3art F 2he KesWies nahe of profuses. Keyy ke aryides high-tpesd
inut ctraction, comes riion b meb-ready HTML and sel-darmed XML, ard high-Adality
uuuuuuu wwing

The following image shows a Microsoft Excel workbook that has been exported to HTML, being
displayed in a web browser. Additional sheets can be viewed by clicking the tabs at the bottom of the

window.
A | 8 | ¢ | o | E | F | & | W |

1 |Microsoft Excel (.xlsx)
2 |This is the second sheet in the workbook
El

Year Sales (Em
4] (Em) Sales(£m)
5 |2014 50.2 160
iZDlS 65.4 140
12016 75.8 120
EZDI? 90.1 Y
9 |2018 115.3
10/2019 140.2 -
11| B0
12| 40
13 20
14
E 2014 2015 2018 2017 2018 2019

| Sheetl | Sheet2 | Sheet3 |

The interface for the library is in htmlexport/libkvhtmlexport/include/libkvhtmlexport.h, and
the implementation is in htmlexport/libkvhtmlexport/src/.

IDOL KeyView (12.9) Page 27 of 482



HTML Export SDK C and COM Programming Guide

Chapter 2: Getting Started

The kvhtmlexport sample program uses the library to convert documents to HTML. The source code
is provided in htmlexport/libkvhtmlexport/sample/src/. A compiled binary is also provided, in the
PLATFORM/bin folder, so that you can try it without having to build it yourself. For more information, see

kvhtmlexport.

NOTE: The compiled binary for kvhtmlexport has an embedded trial license, which expires
approximately five months after release.

Architectural Overview

The general architecture of the KeyView HTML conversion technology is the same across all supported
platforms and is illustrated in the following diagram:

HTML Export Architecture

El

Developer’s Application

H| KeyView File Extraction API

I

KeyView Format Detection H KeyView HTML Export API

Document
Readers

I

Structured Access Layer

Word Processing

Spreadsheets

Presentations

T

i)

T

T

T T

HTML HTML HTML
Document . Document . Document .

Writer Writer Writer
Readers Readers Readers

Each component is described in the following table.

Architectural Components

Component Description

Developer's  The developer's application interfaces directly with the HTML Export API through
Application  eithera C, COM, or Java implementation.

File The File Extraction API opens a file and extracts the file's subfiles so that the subfiles
Extraction are available for conversion. See Use the File Extraction API, on page 55.

IDOL KeyView (12.9)

Page 28 of 482



HTML Export SDK C and COM Programming Guide
Chapter 2: Getting Started

Architectural Components, continued

Component Description

API

HTML
Export API

Format
Detection
Module

Structured
Access
Layer

Document
Reader

HTML
Writers

The HTML Export API exposes the functionality of HTML Export and controls all
other HTML Export modules during the conversion process.

The format detection module determines the file type of the source file, which enables
the HTML Export interface to load the appropriate structured access layer module and
document reader. See File Format Detection, on page 454.

The structured access layer contains three modules: one for word processing, one for
spreadsheets, and one for presentations and graphics. Information from the format
detection module determines which access layer module operates at this stage of the
conversion. The structured access layer performs the following:

1. Loads the appropriate document reader.

Processes the data stream from the document reader.
Determines table of contents entries.

Sends the stream to the appropriate HTML writer.
Accepts the HTML stream from the HTML writer.

o g > w0 Db

Generates the HTML output file with a table of contents, metadata, and the
document's contents, and sends it to the HTML Export interface.

Each document reader reads a specific file format and sends a text stream of the
document to the structured access layer. Word processing readers return a token
stream to the structured access layer. A token stream contains the document
contents and messages (tokens) that precede the content and identify the type of
information that follows them. Each reader is loaded as required by the structured
access layer. See Document Readers and Writers, on page 465 for a complete list of
document readers.

Each HTML writer accepts a text stream or token stream from the structured access
layer and generates an equivalent HTML stream that is sent back to the structured
access layer. The structured access layer then generates the output file. See
Document Readers and Writers, on page 465 for a list of format writers.

Memory Abstraction

All dynamic memory allocations in Export modules are abstracted through a C interface. This memory
allocation interface is defined in the KvMemoryStream structure in kvtypes.h. See KVMemoryStream,
on page 217. You can override all memory allocations by providing a C structure that contains pointers
to functions identical in nature to their standard ANSI C counterpart.

The callback, on page 131 sample program demonstrates Export memory management features.

IDOL KeyView (12.9) Page 29 of 482



HTML Export SDK C and COM Programming Guide
Chapter 2: Getting Started

Enhance Performance

KeyView is designed for optimal performance out of the box. However, there are some parameters that
you can adjust to improve performance specifically for your system.

File Caching

To reduce the frequency of 1/0 operations, and consequently improve performance, the KeyView
readers load file data into memory. The readers then read the data from the cache rather than the
physical disk. You can configure the amount of memory used for file caching through the formats_
e.ini file. Generally, when you increase the memory, performance improves.

By default, KeyView uses a maximum of 1 MB of memory for each thread, assuming a thread contains
only one instance of pContext that is returned from the session initialization (fplnit() or
fplnitWithLicenseData()). If the file data is larger than 1 MB, up to 1 MB of data is cached and the data
beyond 1 MB is read from disk. The minimum amount of memory that can be used for file caching is 64
KB.

To determine a reasonable value, divide the maximum amount of memory you want KeyView to use for
file caching by the total number of threads. For example, if you want KeyView to use a maximum of 50
MB of memory and have 10 threads, set the value to 5 MB.

To modify the memory allocated for file caching, change the value for the following parameter in the
[DiskCache] section of the formats_e. ini file:

DiskCacheSize=1024

The value is in kilobytes. If this parameter is not set or is set to @ (zero), the minimum value of 64 KB is
used.

The formats_e. ini file is in the directory instal (\OS\bin, where install is the path name of the
Export installation directory and 0s is the name of the operating system.

Convert Files

KeyView Export SDK enables you to convert many different types of documents to HTML. Converting
is the process of extracting the text from a document without the application-specific markup, and
applying HTML markup. The conversion process can also include the following:

« Extracting subfiles to expose all subfiles for conversion. See Subfile Extraction, on page 38.

« Setting conversion options to determine the content, structure, and appearance of the HTML
output. See Set Conversion Options, on page 39.

« Extracting the file's format to detect afile's format, and report the information to the API, which in
turn reports the information to the developer's application. See Extract File Format Information, on
page 82.

IDOL KeyView (12.9) Page 30 of 482



HTML Export SDK C and COM Programming Guide
Chapter 2: Getting Started

« Extracting metadata (document properties) from a file. See Extract Metadata, on page 79.

« Converting character sets to control the character set of both the input and the output text. See
Convert Character Sets, on page 83.

« Implementing callbacks to control the conversion while it is in progress. See HTML Export API
Callback Functions, on page 209.

You can use one of the following methods to convert documents:

« Use the Export Demo sample program. This Visual Basic program demonstrates most Export
API functionality and is the easiest way to get started. See Use the Export Demo Program, on
page 42.

« Use the C-language implementation of the API from your C or C++ application. See Use the C-
Language Implementation of the API, on page 46.

« Use the COM implementation of the API from your Visual Basic, Delphi, or J++ or C application
(32-bit Windows platforms only). See Use the COM Implementation of the API, on page 49.

« Usethe C and COM sample programs. See Sample Programs, on page 122.

NOTE: Micro Focus strongly recommends that you convert documents out of process. During
out-of-process conversion, Export runs independently from the calling application. Out-of-
process conversions protects the stability of the calling application in the rare case when a
malformed document causes Export to fail. Convert Files Out of Process, below.

Convert Files Out of Process

Export can run independently from the calling application. This is called out of process. Out-of-process
conversions protect the stability of the calling application in the rare case when a malformed document
causes Export to fail. You can also run Export in the same process as the calling application. This is
called in process. However, it is strongly recommended you convert documents out of process
whenever possible.

The Export out-of-process framework uses a client-server architecture. The calling application sends
an out-of-process conversion request to the Service Request Broker in the main Export process. The
Broker then creates, monitors, and manages a Servant process for the request—each request is
handled by one independent Servant process. Data is exchanged between the application thread and
the Servant through TCP/IP sockets. The source data is sent to the Servant process as a data stream
or file, converted in the Servant, and then returned to the application thread. At that point, the
application can either terminate the Servant process or send more data for conversion.

Multiple conversion requests can be sent from multiple threads in the calling application
simultaneously. All requests sent from one thread are processed by the Servant mapped to that thread.
In other words, each thread can only have one Servant to process its conversion requests.

Any standard conversion errors generated by the Servant are sent to the application.
NOTE: Currently, the main Export process and Servant processes must run on the same host.

The following are requirements for running Export out of process:

IDOL KeyView (12.9) Page 31 of 482



HTML Export SDK C and COM Programming Guide
Chapter 2: Getting Started

« Internet Protocol (TCP/IP) must be installed
« Multithreaded processing must be supported on the operating system platform

« The user application must be built with a multithreaded runtime library

The following functions run in process or out of process:

fpConvertStream() fpGetConvertFileList()
fpGetSummarylInfo() fpSetStyleMapping()
KVHTMLConfig() KVHTMLConvertFile()
KVHTMLSetStyleSheet|()

When converting out of process, these functions must be called after the call to start an out-of-
process session and before the call to end an out-of-process session.

Other HTML Export functions, the File Extraction functions, and the COM methods always run in-
process.

Configure Out-of-Process Conversions

Although most components of the out-of-process conversion are transparent, the following parameters
are configurable:

« File-size threshold/temporary file location
« Conversion time-out

« Listener port numbers and time-out

« Connection time-out and retry

« Servant process name

These parameters are defined internally, but you can override the default by defining the parameter in
the formats_e.ini file. The formats_e.ini file is in the directory instal (\OS\bin, where install is
the path name of the Export installation directory and 0S is the name of the operating system.

To set the parameters, add the following section to the formats_e. ini file:

[KVExportOOPOptions]
TempFileSizeMark=
TempFilePath=
WaitForConvert=
WaitForConnectionTime=
ListenerPortList=
ListenerTimeout=
ConnectRetryInterval=
ConnectRetry=
ServantName=

Each parameter is described in the following table.

IDOL KeyView (12.9) Page 32 of 482



HTML Export SDK C and COM Programming Guide

Chapter 2: Getting Started

The default values for these parameters are set to ensure reasonable performance on most systems. If
you are processing a large number of files, or running Export on a slow machine, you might need to
increase some of the time-out and retry values.

Parameters for Out-of-Process Conversion

Parameter

TempFileSizeMark
unit = megabytes

default=10

TempFilePath
type = file path

default = current working
directory

WaitForConvert

unit = seconds

default = 1800

range = 30~3600
WaitForConnectionTime
unit = seconds

default = 180

range = 15~600

ListenerPortList
type = integer

default = 9985, 9986,
9987, 9988, 9989

ListenerTimeout

unit = seconds

default = 10

range = 5~30
ConnectRetryInterval
unit = microseconds

default = 0.1

IDOL KeyView (12.9)

Description

The file-size threshold. If the input file received by the Servant is larger
than this value, temporary files are created to store the data. The
directory in which the temporary files are stored is defined by the
TempFilePath parameter. If the file received is smaller than this value,
the data is stored in memory in the Servant. This applies only when the
input is a stream.

The directory in which temporary files are stored. Temporary files are
created when you use the fpConvertStream() API, and the input file
surpasses the file-size threshold (TempFileSizeMark). If the Servant
cannot access the file path, an error is generated.

This applies only when converting in stream mode.

The length of time to wait for a Servant to convert afile. If the conversion
is not completed within the specified time, the error code "Wait for
child process failed" is generated.

The length of time to wait for the Servant to connect to the application
thread after the application has sent a conversion request to the Broker.
If the Servant does not connect within the specified time, the error code
"Wait for child process failed"is generated. If there are many
Servant processes running simultaneously, you might need to increase
this value.

The TCP/IP port number used for communication between the calling
application and the Servant. You can specify a single port number, or a
series of numbers separated by commas.

The length of time to wait for the Servant listener thread to get a process
ID from the Servant after the connection is established. If the ID is not
obtained within the specified time, the error code "Wait for child
process failed"is generated. During this time, no other Servant can
connect with the application.

The length of time to wait after a Servant has failed to connect to the
application before it retries the connection. A Servant might be unable to
connect because the application is waiting for another Servant to send a
process ID.

Page 33 of 482



HTML Export SDK C and COM Programming Guide
Chapter 2: Getting Started

Parameters for Out-of-Process Conversion, continued

Parameter Description

range = 50000~500000 To calculate the total retry interval, the value set here is added to the
platform-specific TCP retry value (on Windows, this is 1 second).

ConnectRetry The number of attempts the Servant makes to connect to the calling
application. This value and the total retry interval determine the total

type = integer , .
delay time. The total delay is calculated as follows:

default = 120 ‘s
ConnectRetryInterval + platform-specific_TCP_retry_value*
range = 30~600 ConnectRetry
For example, if the ConnectRetryInterval is set to 2 seconds, and the
Export process is running on Windows (the default TCP retry value on
Windows is 1 second), the total delay would be:
2+1*120=360
The Servant would attempt to connect to the application every 3
seconds for 120 attempts for a total of 360 seconds.
ServantName The name of the Servant process. To move the Servant to another
type = string location, enter a fully qualified path.

default = servant

Run Export Out of Process—Overview

To convert files out of process

1. If required, set parameters for the out-of-process conversion in the formats_e. ini file. See
Configure Out-of-Process Conversions, on page 32.

Initialize an Export session.

If you are using streams, create an input stream.

Define the conversion options.

Initialize an out-of-process session.

Convert the input and/or call other functions that can run out of process.
Shut down the out-of-process session.

Repeat Step 3 to Step 7 for additional files.

© © N o o & w N

Terminate the out-of-process session and the Servant process.

-_—
©

Shutdown the Export session.

IDOL KeyView (12.9) Page 34 of 482



HTML Export SDK C and COM Programming Guide
Chapter 2: Getting Started

Recommendations

« Toensure that multithreaded conversions are thread-safe, you must create a unique context

pointer for every thread by calling fpInit() or fpInitWithLicenseData(). In addition, threads must not
share context pointers, and the same context pointer must be used for all API calls in the same
thread. Creating a context pointer for every thread does not affect performance because the
context pointer uses minimal resources.

All functions that can run in out-of-process mode must be called within the out-of-process session
(that is, after the call to initialize the out-of-process session and before the call to end the out-of-
process session).

When terminating an out-of-process session, persist the Servant process by setting the Boolean
flag bkeepServantAlive in the KVHTMLEndOOPSession () function or endOOPSession method. If
the Servant process remains active, subsequent conversion requests are processed more
quickly because the Servant process is already prepared to receive data. Only terminate the
Servant when there are no more out-of-process requests.

To recover from a failure in the Servant process, start a new out-of-process session. This creates
a new Servant process for the next conversion.

Run Export Out of Process

The cnv2htmloop sample program demonstrates how to run Export out of process.

To convert files out of process in the C API

1.

If required, set parameters for the out-of-process conversion in the formats_e. ini file. See
Configure Out-of-Process Conversions, on page 32.

Declare instances of the following types and assign values to the members as required:

KVHTMLTemplateEx
KVHTMLOptionsEx
KVHTMLHeadingInfo
KVHTMLTOCOptions

See HTML Export API Structures, on page 215 for more information.

Load the KVHTML library and obtain the KVHTMLInterfaceEx entry point by calling
KVHTMLGetInterfaceEx().

See KVHTMLGetInterfaceEx(), on page 168.

Initialize an Export session by calling fpInit() or fpInitWithLicenseData(). See fplnit() or
fpInitWithLicenseData().

If you are using streams for the input and output source, follow these steps; otherwise, proceed to
Step 6:

a. Create aninput stream (KVInputStream)by calling fpFileToInputStreamCreate(). See
fpFileTolnputStreamCreate(), on page 173.

IDOL KeyView (12.9) Page 35 of 482



HTML Export SDK C and COM Programming Guide
Chapter 2: Getting Started

6.

10.
1.

12.

b. Create an output stream (KVOutputStream) by calling fpFileToOutputStreamCreate().
See fpFileToOutputStreamCreate(), on page 175.

c. Proceedto Step 6.

Set up an out-of-process session by calling KVHTMLStart00PSession().

See KVHTMLStartOOPSession(), on page 205. This function performs the following:
« Initializes the out-of-process session.

« Specifies the input stream or file. If you are using an input file, set pFileName to the file name,
and set pInputStreamtoNULL. If you are using an input stream, set pInputStream to point to
KVInputStream, and set pFileName to NULL.

« Passes conversion options from the KVHTMLTemplateEx, KVHTMLOptionsEx, and
KVHTMLTOCOptions data structures.

« Creates a Servant process.
« Establishes a communication channel between the application thread and the Servant.
« Sends the data to the Servant.

See the sample code in Example—KVHTMLStartOOPSession, below, and
KVHTMLStartOOPSession(), on page 205.

Convert the input and generate the output files by calling KVHTMLConvertFile() or
fpConvertStream(). The KVHTMLTemplateEx, KVHTMLOptionsEx, and KVHTMLTOCOptions
structures are passed in the call to KVHTMLStart00OPSession(), and should be NULL in the
conversion call. A conversion function can be called only once in a single out-of-process session.
See KVHTMLConvertFile(), on page 198, and fpConvertStream(), on page 171.

Terminate the out-of-process session by calling KYHTMLEndOOPSession(). The Servant ends the
current conversion session, and releases the source data and session resources. See sample
code in Example—KVHTMLENdOOPSession, on the next page, and KVHTMLEndOOPSession
(), on page 200.

If you used streams, free the memory allocated for the input stream and output stream by calling
the fpFileToInputSreamFree() and fpFileToOutputStreamFree() functions. See
fpFileTolnputStreamFree(), on page 174 and fpFileToOutputStreamFree(), on page 176.

Repeat Step 5 to Step 9 for additional files.

After all files are converted, terminate the out-of-process session and the Servant process by
calling KVHTMLEndOOPSession () and setting the Boolean to FALSE.

After the out-of-process session and Servant are terminated, shut down the Export session by
calling fpShutbown (). See fpShutDown(), on page 189.

Example—KVHTMLStartOOPSession

The following sample code is from the cnv2htmloop sample program:

/* declare OOP startsession function pointer */
KVHTML_START_OOP_SESSION fpKVHTMLStartOOPSession;
/* assign OOP startsession function pointer */

IDOL KeyView (12.9) Page 36 of 482



HTML Export SDK C and COM Programming Guide
Chapter 2: Getting Started

fpKVHTMLStartOOPSession = (KVHTML_START_OOP_SESSION)mpGetProcAddress
(hKVHTML, "KVHTMLStartOOPSession");
if (! fpKVHTMLStartOOPSession)
{
printf("Error assigning KVHTMLStartOOPSession pointer\n");
(*KVHTMLInt.fpFileToInputStreamFree) (pKVHTML, &Input);
(*KVHTMLInt.fpFileToOutputStreamFree) (pKVHTML, &Output);
mpFreeLibrary (hKVHTML);
return 7;
b
if (! (*fpKVHTMLStartOOPSession) (pKVHTML,
&Input,
NULL,
&HTMLTemplates, /* Markup and related variables */
&HTMLOptions, /* Options */
NULL, /* TOC options */
&oopServantPID,
&error,
0,
NULL,
NULL))

printf("Error calling fpKVHTMLStartOOPSession \n");
(*KVHTMLInt.fpShutDown) (pKVHTML) ;
mpFreeLibrary(hKVHTML);

return 9;

Example—KVHTMLENndOOPSession
The following sample code is from the cnv2htmloop sample program:

/* declare endsession function pointer */
KVHTML_END_OOP_SESSION fpKVHTMLENdOOPSession;
/* assign OOP endsession function pointer */
fpKVHTMLENdOOPSession = (KVHTML_END_OOP_SESSION)mpGetProcAddress
(hKVHTML, "KVHTMLEndOOPSession");
if (! fpKVHTMLENndOOPSession)
{
printf("Error assigning KVHTMLEndOOPSession pointer\n");
(*KVHTMLInt.fpFileToInputStreamFree) (pKVHTML, &Input);
(*KVHTMLInt.fpFileToOutputStreamFree) (pKVHTML, &Output);
mpFreeLibrary (hKVHTML);
return 8;
¥
JX*FRXXAAEND OOP SESSION, DO NOT KEEP SERVANT ALIVE *****kxx*/
if (! (*fpKVHTMLEndOOPSession) (pKVHTML,
FALSE,
&error,

IDOL KeyView (12.9) Page 37 of 482



HTML Export SDK C and COM Programming Guide
Chapter 2: Getting Started

9,
NULL,
NULL))

printf("Error calling fpKVHTMLEndOOPSession \n");
(*KVHTMLInt.fpShutDown) (pKVHTML) ;

mpFreeLibrary (hKVHTML);

return 10;

Subfile Extraction

To convert afile, you must first determine whether the source file contains any subfiles (attachments,
embedded objects, and so on). A file that contains subfiles is called a container file. Compressed files
(such as Zip), mail messages with attachments (such as Microsoft Outlook Express), mail stores
(such as Microsoft Outlook Personal Folders), and compound documents with embedded OLE objects
(such as a Microsoft Word document with an embedded Excel chart) are examples of container files.

If the file is a container file, the container must be opened and its subfiles extracted by using the File
Extraction API. The extraction process is done repeatedly until all subfiles are extracted and exposed
for conversion. After a subfile is extracted, you can use the HTML Export API to convert the file.

If afile is not a container, you should pass it directly to the HTML Export API for conversion without
extraction.

See Use the File Extraction API, on page 55 for more information.

Convert Outlook Email without Using the Extraction API

Micro Focus strongly recommends that you convert all container files, including Microsoft Outlook files,
by using the File Extraction APIl. However, you can convert Outlook email messages (MSG) directly by
using the Export API and the MSG reader (msgsr).

NOTE: The MSG reader only extracts the message body of an MSG file. Attachments are not
extracted.

To convert MSG files by using the MSG reader, add the following to the formats_e. ini file (TRUE is
case-sensitive):

[ContainerOptions]
bConvertMSG=TRUE

IDOL KeyView (12.9) Page 38 of 482



HTML Export SDK C and COM Programming Guide
Chapter 2: Getting Started

Set Conversion Options

Conversion options are parameters that determine the content, structure, and appearance of the HTML
output. For example, you can specify:

« the markup inserted at the beginning and end of specific HTML blocks
« whether a heading is included in the table of contents
« the output character set

« theresolution at which graphics are converted.

Set Conversion Options by Using the API

You set conversion options by modifying the following data structures:
o KVHTMLTemplateEx
o KVHTMLOptionsEx
o KVHTMLHeadingInfo
o KVHTMLTOCOptions

These data structures are then passed into functions in the KeyView Export API, such as:
o fpConvertStream()
« KVHTMLConvertFile()
o« KVHTMLStartOOPSession()

Explore Conversion Options with the Sample Programs

To make it easier to explore the conversion options, HTML Export includes some sample
configurations in the form of initialization (. ini) files. These are read by the htmlini sample program
(you must supply the . ini file path as a command-line argument). The sample program reads the
configuration, and converts your input file into HTML using the options you set, by passing them into
the API. This lets you try out conversion options without programming.

You can use a text editor to customize the configuration files. In general, a section name refers to the
structure containing an option, and a parameter name matches an element of that structure. For
example:

[KVHTMLOptionsEx]
OutputCharSet=KVCS_SJIS
bForceOutputCharSet=TRUE

This sets the OutputCharSet and bForceOutputCharSet elements in the KVHTMLOptionsEx
structure.

IDOL KeyView (12.9) Page 39 of 482



HTML Export SDK C and COM Programming Guide
Chapter 2: Getting Started

NOTE: To create valid HTML, an initialization file must define at least two structures:
KVHTMLTemplateEx and KVHTMLOptionsEx. Additionally, if you enter markup in the template files
that is not compliant with HTML standards, HTML Export inserts the markup into the output file
unchanged. This might result in a malformed HTML file.

Templates

The template files for the C APl implementation are in the directory
install\htmlexport\programs\ini, where install is the path name of the Export installation
directory. The following templates are provided:

Template Description

Arabic (bidi_ « Based on the default template (default.ini).

arabic.ini) « The Arabic character set is defined in the template.

« <«dir="rtl"> added to the Body tag to indicate that the text is read from

right to left.
Cascading style  This template writes style sheet information to an external Cascading Style
sheet (css_ Sheet (CSS) file or reads the information from an existing CSS file. This makes
ex.ini) the HTML output significantly smaller because the information is not stored

within the output file. It also allows you to use the same style sheet for many
conversions.

See Use Style Sheets, on page 90 and Use Style Sheets with htmlini, on
page 130 for more information on using an external CSS file.

Default « Segments word processing documents, spreadsheets, and presentations
(default.ini) into multiple files according to the document's heading levels.

« Creates two frames. The table of contents (based on the source
document's heading levels and page breaks) appears in the left frame. The
document contents associated with the table of contents entry selected in
the left frame appears in the right frame.

« Inserts Previous and Next buttons at the end of each block.
o Supports URLs.

« Supports headers, footers, footnotes, and endnotes.

« Converts graphics to JPEG with the original size preserved.

« Converts presentation slides to HTML as individual JPEG files.
Hebrew (bidi_ « Based on the default template (default.ini).
hebrew. ini) « The Hebrew character set is defined in the template.

o <dir="rtl"> added to the Body tag to indicate that text is read from right to
left.

Low bandwidth This template is useful when you need to provide information to a mobile

IDOL KeyView (12.9) Page 40 of 482



HTML Export SDK C and COM Programming Guide

Chapter 2: Getting Started

Template Description

lowband.ini) workforce that might not always have access to fast connections.

Multiple files .
with three
frames
(Logotoc.ini)

No frills .
(nofrills.ini)

Creates text-only HTML.

Suppresses the source document's embedded graphics.

Segments word processing documents, spreadsheets, and presentations
into multiple files according to the document's heading levels.

Creates three frames. A corporate logo is displayed in the top left frame.
The table of contents (based on source document heading levels and page
breaks) appears in the bottom left frame, and the HTML files appear in the
right frame.

Inserts Previous and Next links at the end of each block.

Supports URLs.

Creates a single HTML file.

Supports URLs.

Maintains the source document's fonts and styles.
Does not create a table of contents.

Does not list the source document's metadata.

PDF bookmarks  This template is optimized to display PDF bookmarks in a separate frame.

in aframe
(pdfframe.ini)

Segments a PDF file into two HTML files; one contains the table of
contents (based on the bookmarks in the PDF file), and the other contains
the document text.

Creates two frames. The table of contents appears in the left frame, and the
document appears in the right frame.

Forces the output character set to UTF-8.

Does not insert Back to Top, Previous, or Next links.

See Convert PDF Files, on page 95 for more information on generating a table of
contents from bookmarks in a PDF file.

Single file with This template is useful when you want to print the document.

table of contents

(

onefiletoc.ini o

)

IDOL KeyView (12.9)

Creates a single HTML file.
Creates a table of contents at the top of the HTML document.

Uses worksheet names to create the table of contents entries for
spreadsheets. If worksheet names do not exist in the source document,
"Sheet1," "Sheet2," "Sheet3," and so on are used.

Uses slide titles to create the table of contents entries for presentations. If
slide titles do not exist in the source document, "slide 1," "slide 2," "slide 3,"

Page 41 of 482



HTML Export SDK C and COM Programming Guide
Chapter 2: Getting Started

Template Description

and so on are used.
« Lists all metadata (Title, Subject, Author, Comments, and so on).
« Converts graphics to JPEG with the original resolution preserved.

« Converts presentation slides to HTML as individual JPEG files.

Style mapping This template demonstrates how to map paragraph and character styles ina

( word processing document to arbitrary markup (including CSS, XML, or HTML).

wordstyle.ini) Using style mapping, you can use external Cascading Style Sheet (CSS)files to
define styles used in the HTML, alter the structure of a document, delete content,
or replace content with a specified character (redact).

See Map Styles, on page 87.

UNIX web « Based on the default template (default.ini).
server

L. « Converts embedded graphics or presentations to either JPEG or HTML
(defunix.ini)

Export's Java target. See Display Vector Graphics on UNIX and Linux, on
page 91.

Use the Export Demo Program

The easiest way to get started with Export is to become familiar with its capabilities through the Visual
Basic sample program, Export Demo. Export Demo is for Windows only.

The source code for the program is in the directory instal L\htmlexport\programs\ExportDemo,
where install is the path of the Export installation directory.

The output options that control the look of the output files are predefined in Export Demo and cannot be
changed in the user interface. Export Demo uses a small sample of the options available in the Export
API.

The Template Wizard sample program is an example of a Visual Basic program that does allow the
user to control some of the output options with template files. See Template Wizard, on page 133. You
can use the sample documents in the directory install\testdocs to experiment with converting
different file formats.

When you start the program, the following dialog appears:

IDOL KeyView (12.9) Page 42 of 482



HTML Export SDK C and COM Programming Guide
Chapter 2: Getting Started

" Autonomy Key¥iew Export SDK Demo o [

Options

~ Source Files

S ¢ [Abasden] ¥

building2.png
————————  |ecpepdi
ET) fieezer2.ppt
AFtogiam Files FreshDinner. doc
A Autanamy fishfiozen s
Y KewiewExport  [GATT doc

goodideas. eps

& testdocs
? greerpark bmp
HTMLword.doc
mission wp
rowing4.doc
salesfigures. 123
souplabel TIF
tennis2 xls

Convert file ta
Open | HTML | ML |

~ Dutput Files

]

Wiew Delete e

NOTE: XML conversion using XML Export is available in Export Demo if you have XML Export
installed. If you do not have XML Export installed, the XML button is disabled.

Change Input/Output Directories

If HTML Export is installed in the default directory, the output and input directories are automatically
set.

The default location for source files is the directory install\testdocs.
The default location for output files is the directory instal l\htmlexport\programs\tempout.

If HTML Export is installed in a directory other than the default, you are prompted to select an output
and input directory when you first start Export Demo.

To change the default directories for the source and output files
1. Select Options > Set Directories. The following dialog appears:

Export Demo: Setting Directories

IDOL KeyView (12.9) Page 43 of 482



HTML Export SDK C and COM Programming Guide
Chapter 2: Getting Started

L4 Autonomyy Key¥iew Export SDK Demo 5'

— Select directori

IIEl c: [abasden] 'I i Current |

Source

C:\Program

0 Files'Autonomys KepviewE xportSDENWIND 04w S \bin
%joglam Files HTHL C:Program
= Kulun.um_l,é 5K Files\Autonomys KepviewE xportSDENWIND 04 S \bin
eyviewE xpor
YWwINDOWS L

C:\Program
Files\AutonomyKepviewE xport SDE WM D 0% S \bin

—Change |

@ Sourcee COHTML XML Change |
ok |

From the tree view, select the drive letter and directory for the source or output files.
In Change Location, select which files are stored in the directory, either Source or HTML.

Click Change. The Current Locations fields are updated with the new selection.

o & w0 DN

Follow the same procedure for the other file types. When you are finished, click OK.

Set Configuration Options

With HTML Export, you can configure options prior to the document conversion by using the
KVHTMLConfig() function. Export Demo demonstrates this function, and allows you to:

« Specify a PDF reader.
« Specify whether rotated text in a PDF file is displayed in its original position or at the bottom of the
page.
Convert PDF Files
In Export Demo, PDF documents can be converted in one of two ways:
« generate HTML output by using the basic PDF reader (pdfsr)

« generate a raster image for each page of the PDF file by using a graphic-based PDF reader
(kppdfrdr or kppdf2rdr). See Convert PDF Files to Raster Images, on page 98.

Export Demo provides an option to select the type of reader you want to use to convert PDF
documents. By default, the basic reader (pdfsr)is used to convert PDF documents.

To specify that the graphic-based reader be used to convert PDF documents

1. Ensure that Export Demo is not running.

. Set the appropriate configuration file options. See Use a Graphic-Based Reader, on page 96.

2
3. Start the Export Demo program.
4. Select Options > HTML Config > Set Hifi.

IDOL KeyView (12.9) Page 44 of 482



HTML Export SDK C and COM Programming Guide
Chapter 2: Getting Started

NOTE: You can also convert PDF documents to a logical reading order by using the pdfsr
PDF reader. This feature is demonstrated in the cnv2html sample program . See Convert
PDF Files to a Logical Reading Order, on page 99.

Convert Rotated Text

In HTML Export, you can specify how rotated text is displayed in the HTML output. By default, rotated
text in afile is displayed in its original position, at the original font size, and at zero degrees rotation.
Because the text is the original size, but might be displayed in a smaller space, the text might overlap
adjacent text in the HTML output. You use the text rotation configuration option to avoid this problem. If
this option is set, rotated text is displayed at the bottom of the page on which it appears. See Convert
Rotated Text, on page 104. Currently, this configuration option applies only to PDF files.

To specify that rotated text be displayed at the bottom of the page on which it appears, select Options
> HTML Config > Set Text Rotate.

Convert Files

To convert a single file
1. Select Options > Convert > Single file.

2. Select the document from the file list, and then click HTML in the Convert file to pane.

To convert files in a directory
1. Select Options > Convert > Entire directory.
2. Click HTML in the Convert directory to pane.

To view a converted file, double-click the output file in the Output Files pane, or select the output
file, and then click View. The converted file is displayed in the view pane:

IDOL KeyView (12.9) Page 45 of 482



HTML Export SDK C and COM Programming Guide

Chapter 2: Getting Started

Export Demo: Converting Files

(4 Autonomy KeyY¥iew Export SDK Demo

Qptions

i Source Files

| S c: [phasden] 7|

architectures. lwp
building2. png
————————  |ecpe.pdf

(=T feezer. ppt
FreshDinner.doc
frshfrozen <z
GATT doc

4 Program Files
S Autonomy
S keypviewExport

goodideas.eps
greenpark.bmp
HTHLword doc
mizsion. lwp
rowingd.doc
zalesfiguies. 123
souplabel TIF
teninis2 ulz

Convert file to

gpen | HTML ML
— Dutput Files
GATT.dochim [

THE GENERAL AGREEMENT ON :I
TARIFFS AND TRADE (1947)
(as amended through 1966)

THE GENERAL AGREEMENT ON TARIFFS
AND TRADE

The Governments of the COMMONWEALTH OF AUSTRALIA,
the KINGDOM OF BELGIUM, the UNITED STATES of
BRAZIL, BURMA, CANADA, CEYLON, the REPUBLIC OF
CHILE, the REPUBLIC of CHINA, thes REPUBLIC OF
CUBA, the CEZECHOSLOVAK REPUBLIC, thne FRENCH
REPUBLIC, INDIA, LEBANON, the GRAND-DUCHY OF
LUXEMBURG, the KINGDOM OF THE NETHERLANDS, NEW
ZEATAND, the KINGDOM OFNORWAY, PAKISTAN, SOUTHERN
RHODESTA, SYRTA, the UNION OF SOUTH AFRICA, the
UONITED KINGDOM of GREAT BRITATN AND NORTHERN
IRELAND, znd the UNITED STATES of AMERICA:

Recognizing that their relations in the field of
trade and economic endeavour should be conducted
with a view to raising standards of living,
ensuring full employment and a large and steadily
growing volume of real income and effective
demand, developing the full use of the resources
of the world and expanding the production and
exchange of goods,

Being desirous of contributing to these cobjectives

-
b Enterinm intn recinracal and motnalls
4 »

Delete

Exit

~=1ol x|

To view the original document, select the document from the file list, and then click Open. If you have
an application on your system associated with the file, the file is displayed in that application.

To delete output files, select the file in the Output Files pane and click Delete.

Use the C-Language Implementation of the

API

The C-language implementation of the APl is divided into the following function suites:

« File Extraction API Functions, on page 140—Open and extract subfiles in a container file. These
functions also extract metadata and file format information, and control character set conversion

on extraction.

o HTML Export API Functions, on page 167— Extract format information (metadata, character set,
and format), create an input/output stream from a file, and open, convert, and close the stream.

« HTML Export API Callback Functions, on page 209—Controls the conversion while it is in

progress.

IDOL KeyView (12.9)

Page 46 of 482



HTML Export SDK C and COM Programming Guide
Chapter 2: Getting Started

Input/Output Operations

In the Export API, the source input and target output can be either a physical file accessed through a
file path, or a stream created from a data source. A stream is a C structure that contains pointers to 1/0
functions similar in nature to their standard ANSI C counterparts. This structure is passed to Export
functions in place of the standard input source. See KVInputStream, on page 216 and
KVOutputStream, on page 218.

You can create an input stream either by using the fpFileToInputStreamCreate() function, or by
using code similar to the example code in the io_samp sample program. You can create an output
stream by using the fpFileToOutputStreamCreate() function. These functions assign C equivalent
I/O functions to fpOpen(), fpRead(), fpSeek(), fpTell(), and fpClose(). See
fpFileTolnputStreamCreate(), on page 173 and fpFileToOutputStreamCreate(), on page 175.

Convert Files

To use the C-language implementation of the API

1. Develop the HTML markup and tokens to be assigned to the required members of a declared
instance of KYHTMLTemplateEx.

If you use markup in the structure that is not compliant with HTML standards, HTML Export
inserts the markup into the output file unchanged. This might result in a malformed HTML file.

2. Declare instances of the following types and assign values to the members as required:

KVHTMLTemplateEx
KVHTMLOptionsEx
KVHTMLHeadingInfo
KVHTMLTOCOptions

See HTML Export API Structures, on page 215 for more information.

3. Load the KVHTML library and obtain the KVHTMLInterfaceEx entry point by calling
KVHTMLInterfaceEx. See KVHTMLGetInterfaceEx(), on page 168.

4. Initialize an Export session by calling fpInit() or fpInitWithLicenseData(). The function's
return value, pContext, is passed as the first argument to all other Export functions. See fplnit()
or fplnitWithLicenseData().

5. Pass the context pointer from fplnit() or fpInitWithLicenseData() and the address of a structure
containing pointers to the File Extraction API functions in the call to KVGetExtractInterface().
See. KVGetExtractinterface(), on page 140.

6. If you are using streams for the input and output source, follow these steps; otherwise, proceed to
Step 7:

a. Create aninput stream (KVInputStream) either by calling fpFileToInputStreamCreate(),
or by using code similar to the example code in the io_samp sample program.
fpFileTolnputStreamCreate(), on page 173.

IDOL KeyView (12.9) Page 47 of 482



HTML Export SDK C and COM Programming Guide
Chapter 2: Getting Started

10.

1.

12.
13.

14.

15.

16.

17.

18.
19.

20.
21.

b. Create an output stream (KVOutputStream) either by calling fpFileToOutputStreamCreate
(), or by using code similar to the example code in the io_samp sample program.
fpFileToOutputStreamCreate(), on page 175.

c. Proceedto Step7.

Declare the input stream or file name in the KvOpenFileArg structure. See KVOpenFileArg, on
page 160.

Open the source file by calling fpopenFile() and passing the KVOpenFileArg structure. This call
defines the parameters necessary to open a file for extraction. See fpOpenFile(), on page 149.

Determine whether the source file is a container file (contains subfiles) by calling
fpGetMainFileInfo(). See fpGetMainFilelnfo(), on page 144.

If the call to fpGetMainFileInfo() determined the source file is a container file, proceed to Step
11; otherwise, proceed to Step 14.

Determine whether the subfile is itself a container (contains subfiles) by calling
fpGetSubFileInfo(). See fpGetSubFilelnfo(), on page 145.

Extract the subfile by calling fpExtractSubFile(). See fpExtractSubFile(), on page 142.

If the call to fpGetSubFileInfo() determined the subfile is a container file, repeat Step 6 through
Step 12 until all subfiles are extracted; otherwise, proceed to Step 14.

Setup an out-of-process session by calling KVHTMLStart00PSession(). See
KVHTMLStartOOPSession(), on page 205.

Convert the input and generate the output files by calling KVYHTMLConvertFile() or
fpConvertStream(). The structures KVHTMLTemplate, KVHTMLOptions, and KYHTMLTOCOptions
are defined in the call to KVYHTMLStart00PSession(), and should be NULL in the conversion call. A
conversion function can be called only once in a single out-of-process session. See
KVHTMLConvertFile(), on page 198, and fpConvertStream(), on page 171.

If you are using callbacks, they are called while the conversion process is underway. If required,
you can specify alternate paths and file names for output files, including using the table of content
entries for the file names. See HTML Export API Callback Functions, on page 209.

If you are converting additional files, terminate the out-of-process session by calling
KVHTMLENndOOPSession () and setting the Boolean to TRUE. The Servant ends the current
conversion session, and releases the source data and session resources.

If you are not converting additional files, terminate the out-of-process session and the Servant
process by calling KYHTMLEndOOPSession() and setting the Boolean to FALSE. See
KVHTMLENdOOPSession(), on page 200.

Close the file by calling fpCloseFile(). See fpCloseFile(), on page 141.

If you used streams, free the memory allocated for the input stream and output stream by calling
the functions fpFileToInputSreamFree() and fpFileToOutputStreamFree(). See
fpFileTolnputStreamFree(), on page 174 and fpFileToOutputStreamFree(), on page 176.

Repeat Step 6 through Step 18 for additional source files.
Shutdown the Export session by calling fpShutDown (). See fpShutDown(), on page 189.

IDOL KeyView (12.9) Page 48 of 482



HTML Export SDK C and COM Programming Guide
Chapter 2: Getting Started

Multithreaded Conversions

To ensure that multithreaded conversions are thread-safe, you must create a unique context pointer for
every thread by initializing the Export session with fpInit() or fpInitWithLicenseData(). In addition,
threads must not share context pointers, and the same context pointer must be used for all API calls in
the same thread. Creating a context pointer for every thread does not affect performance because the
context pointer uses minimal resources.

For example, your code should have the following logic for one thread:

fpInit()
KVGetExtractInterface()
fpFileToInputStreamCreate()
fpFileToOutputStreamCreate()
fpOpenFile()
fpGetMainFileInfo() /* container file */
fpGetSubFileInfo()
fpExtractSubFile
KVHTMLStartOOPSession()
fpConvertStream()
KVHTMLEndOOPSession(bKeepServantAlive TRUE)
fpCloseFile()
fpFileToInputSreamFree()
fpFileToOutputStreamFree()
set input/output file
fpOpenFile()
fpGetMainFileInfo() /* not a container file */
KVHTMLStartOOPSession()
KVHTMLConvertFile()
KVHTMLEndOOPSession(bKeepServantAlive TRUE)
fpCloseFile()

fpShutdown()

Use the COM Implementation of the API

The COM implementation of HTML Export is only applicable to Win32 environments. It is supported in
both out-of-process (htmserv.exe) and in-process (htmserv.d11) versions. Programming with either
interface is identical. The out-of-process version provides a more robust HTML conversion, but at the
expense of making out-of-process calls. To use either version of the COM implementation, you must
register the COM component. Both components support self-registration and self-unregistration. You
can only register one COM component.

IDOL KeyView (12.9) Page 49 of 482



HTML Export SDK C and COM Programming Guide
Chapter 2: Getting Started

To use the COM Automation Server

1.

o o k~ w

Register the COM server by using one of the following methods:

« Toregister the out-of-process COM server, run:
instal\OS\bin\htmserv.exe -RegServer

« Toregister the in-process COM server, run:
regsvr32.exe install\OS\bin\htmserv.dll

o Tounregister the out-of-process COM server, run;
instal\OS\bin\htmserv.exe -UnRegServer
and then reboot the machine.

« Tounregister the in-process COM server, run:
regsvr32.exe -u install\OS\bin\htmserv.dll
where install is the path name of the Export installation directory.

The regsvr32.exe is a Microsoft Windows program used to register in-process COM objects
and is stored in the instal L\0S\bin directory.

Confirm the following entry is in the Windows registry:
\\HKEY_CLASS_ROOT\VerityHtmServ.Application

Create an instance of the COM object. See the comsamp sample for an example.
Specify the source file by using the pszInputFile property.

Specify the location of the HTML Export libraries by using the pszKeyVviewDir property.

Use the properties and methods described in COM Interface Methods and Events, on page 279
and COM Interface Properties, on page 284.

Sample Implementation

The following code, which is found in the sample Visual Basic program named comsamp, demonstrates
how to use the properties, methods, and events of the ActiveX Controls from within Visual Basic.

Define the htmserv Object

The sample code will not function unless you first define the htmserv object in Visual Basic.

To define the object for Visual Basic 6

1.
2.
3.

Select References... from the Project menu.
Search available references for "HTML Export COM Server Library," and select it.

If the HTML Export COM Server Library is unavailable, follow the registering instructions in Use
the COM Implementation of the API, on the previous page.

IDOL KeyView (12.9) Page 50 of 482



HTML Export SDK C and COM Programming Guide
Chapter 2: Getting Started

Sample Code

1.

Declare the variable MyRef as an instance of htmserv (the HTML Export COM server):
Dim WithEvents MyRef As htmserv
Specify the source file by setting the input file property pszInputFile:

Private Sub Convert_Click()
MyRef.pszInputFile = Filel.Path & "\" & Filel.FileName

Define the GetSummaryInfo method and metadata properties:

Dim nTotal As Long

Dim nValid As Long

Dim nType As Long

Dim nval As Long

Dim szVal As String

Dim szUserVal As String

On Error GoTo Handler
Call MyRef.GetSummaryInfo(3, nTotal, nValid, nType, nVal, szVal, szUserVal)
MsgBox szUserVal & " = " & szVal

Call the ConvertFileToFile method:

Convert:
nRet = MyRef.ConvertFileToFile("c:\temp\temp.htm")
WebBrowserl.Navigate ("c:\temp\temp.htm")
Exit Sub

The comsamp sample program specifies the default directory for source files as the C: \Program
Files\Autonomy\KeyviewExportSDK\testdocs directory, and the directory in which binaries are
stored as the C: \Program Files\Autonomy\KeyviewExportSDK\>0S\bin directory, where 0S is
the name of the operating system. To change these directories to match your installation, set the
Path property to the location of the testdocs directory, and set the pszKeyViewDir property to
the location of the HTML Export binary files:

Private Sub Form_Load()
Set MyRef = New htmserv
Dirl.Path = "C:\myinstall\testdocs"
MyRef.pszKeyViewDir = "C:\myinstall\bin"
End Sub

Implement the Continue event that is called by HTML Export:

Private Function MyRef_Continue(ByVal PercentDone As Long) As Long
ProgressBarl.Value = PercentDone
MyRef_Continue = True
ProgressBarl.Refresh

End Function

See Continue, on page 283 for more information.

Implement the UserCallback event:

IDOL KeyView (12.9) Page 51 of 482



HTML Export SDK C and COM Programming Guide
Chapter 2: Getting Started

Private Function MyRef _UserCallback(ByVal szUserString As String) As String
MsgBox (szUserString)

MyRef_UserCallback = "Output this text to HTML"
End Function

See UserCallback, on page 283 for more information.

The code below demonstrates an alternate way to initiate an instance of the COM server:

Dim HTM As Object
Set HTM = CreateObject("VerityHtmServ.Application")

where HTM is the COM Automation Server object.

IDOL KeyView (12.9) Page 52 of 482



Part 2: Use the Export API

This section explains how to perform some basic tasks using the File Extraction and Export APls, and
describes the sample programs. It contains the following chapters:

« Usethe File Extraction API
o Usethe HTML Export API

« Sample Programs

IDOL KeyView (12.9) Page 53 of 482



HTML Export SDK C and COM Programming Guide

IDOL KeyView (12.9) Page 54 of 482



Chapter 3: Use the File Extraction API

This section describes how to extract subfiles from a container file by using the File Extraction API.

O INtrOdUCH ON 55
® Extract SUDfiles . il 56
O EXtraCt IMageS .. 58
® Recreate a File’s HierarChy . 58
® Extract Mail Metadata ... .. 60
¢ Extract Subfiles from Outlook Files ... ... ... 67
® Extract Subfiles from Outlook EXpress Files .. ... . L 67
® Extract Subfiles from Mailbox Files ... . 67
® Extract Subfiles from Outlook Personal Folders Files ... ... ... . ... 68
¢ Extract Subfiles from Lotus Domino XML Language Files ... ... .. .. .. ... ... 71
* Extract Subfiles from Lotus Notes Database Files ... ... 72
® Extract Subfiles from PDF Files .. L 75
® Extract Embedded OLE Objects . ... .. 76
® Extract Subfiles from ZIP Files ... .. 76
* Default File Names for Extracted Subfiles ... ... 76
Introduction

To convert afile, you must first determine whether the file contains any subfiles (attachments,
embedded OLE objects, and so on). A file that contains subfiles is called a containerfile. A container
file has a main file (parent) and subfiles (children) embedded in the main file.

The following are examples of container files:
« Archive files such as ZIP, TAR, and RAR.
« Mail messages such as Outlook (MSG) and Outlook Express (EML).

« Mail stores such as Microsoft Outlook Personal Folders (PST), Mailbox (MBX), and Lotus Notes
database (NSF).

« PDF files that contain file attachments.
« Compound documents with embedded OLE objects such as a Microsoft Word document with an

embedded Excel chart.

NOTE: Document Readers, on page 392 indicates which formats are treated as container files and
are supported by the File Extraction API.

IDOL KeyView (12.9) Page 55 of 482



HTML Export SDK C and COM Programming Guide
Chapter 3: Use the File Extraction API

The subfiles might also be container files, creating a file hierarchy of multiple levels. For example, an
MSG file (the root parent) might contain three attachments:

« aMicrosoft Word document that contains an embedded Microsoft Excel spreadsheet.
« an AutoCAD drawing file (DWG).

« an EML file with an attached Zip file, which in turn contains four archived files.

MSG file
Microsoft Word DWG EML MSG body text
Embedded OLE | |
object (XLS)
Zip EML body text
Archived file 1 Archived file 2 Archived file 3 Archived file 4

NOTE: The parent MSG file contains four first-level children. The body text of a message file,
although not a standalone file in the container, is considered a child of the parent file.

Extract Subfiles

To convert all files in a container file, you must open the container and extract its subfiles by using the
File Extraction API. The extraction process is done repeatedly until all subfiles are extracted and
exposed for conversion. After a subfile is extracted, you can call Export API functions to convert the
file.

If you want to convert a container file and its subfiles to a single file, you must extract all files from the
container, convert the files, and then append each converted output file to its parent.

To extract subfiles

1. Pass the context pointer from fpInit() or fpInitWithLicenseData() and the address of a
structure that contains pointers to the File Extraction API functions in the call to
KVGetExtractinterface().

2. Declare the input stream or file name in the K\VOpenFileArg structure.

3. Open the source file by calling fpOpenFile() and passing the KVOpenFileArg structure. This call

IDOL KeyView (12.9) Page 56 of 482



HTML Export SDK C and COM Programming Guide
Chapter 3: Use the File Extraction API

defines the parameters necessary to open a file for extraction.

4. Determine whether the source file is a container file (that is, whether it contains subfiles) by
calling fpGetMainFilelnfo().

5. Ifthe call to fpGetMainFileInfo() determined that the source file is a container file, proceed to
step 6; otherwise, convert the file.

6. Determine whether the subfile is itself a container (that is, whether it contains subfiles) by calling
fpGetSubFilelnfo().

7. Extract the subfile by calling fpExtractSubFile().

8. Ifthe call to fpGetSubFileInfo() determined that the subfile is a container file, repeat step 2
through step 7 until all subfiles are extracted and the lowest level of subfiles is reached;
otherwise, convert the file.

Sanitize Absolute Paths

When you extract a subfile from a container and write it to disk, you specify an extract directory and a
path to extract the file to.

To set the path, you might use the path in the container file that you are extracting from, as returned
from the function fpGetSubFilelnfo(), on page 145. However, if the path is an absolute path, the file
could be created outside the directory you have chosen as the extract directory. Your application might
then contain a vulnerability that could be exploited to write files to unexpected locations in the file
system. This section discusses some KeyView features that can help you secure your application by
sanitizing paths.

KeyView always sanitizes relative paths that you pass in when extracting files, so that the paths
remain within the extract directory you specify. For example, KeyView does not allow the use of ". ." to
move outside the extract directory.

KeyView can update absolute paths so that they remain within the extract directory. You can instruct
KeyView to sanitize absolute paths programmatically (through the API), or by setting a parameter in the
configuration file.

The following table shows the effect on some example paths.

Requested path  Path of extracted file (not sanitized) Path of extracted file (sanitized)

file.txt extractDir/file.txt extractDir/file.txt
dir/file.txt extractDir/dir/file.txt extractDir/dir/file.txt
../file.txt extractDir/file.txt extractDir/file.txt
/dir/file.txt /dir/file.txt extractDir/dir/file.txt

To sanitize absolute paths

« Inthe KVExtractSubFileArg struct that you pass in to fpExtractSubFile, set the flag
KVExtractionFlag SanitizeAbsolutePaths. When KeyView sanitizes a path and the resulting

IDOL KeyView (12.9) Page 57 of 482



HTML Export SDK C and COM Programming Guide
Chapter 3: Use the File Extraction API

directory does not exist, extraction fails unless you instruct KeyView to create the directory, so
you might also want to set the flag KVExtractionFlag_CreateDir. You can find the path that a
file was actually extracted to from the KV SubFileExtractinfo structure.

To sanitize absolute paths (through configuration)

« Inthe formats_e.ini configuration file, set the parameter SanitizeAbsoluteExtractPaths, for
example:

[Options]
SanitizeAbsoluteExtractPaths=TRUE

Extract Images

You can use the File Extraction API to extract images within the file by specifying the following in the
formats.ini file:

[Options]
ExtractImages=TRUE

If you set this option, images within the file behave in the same way as any other subfile. Extracted
images have the name image[X].[Y], where [X] is an integer, and [ Y] is the extension. The format of
the image is the same as the format in which it is stored in the document.

This option can also be enabled by passing KVFLT_EXTRACTIMAGES to the fpFilterConfig function.

| NOTE: Turning on ExtractImages can reduce the speed of the filtering operation.

Recreate a File’s Hierarchy

When you extract a container file, any relationships between the subfiles in the container are not
maintained. However, the File Extraction interface provides information that enables you to recreate
the hierarchy. You can use the hierarchy to create a directory structure in a file system, or to categorize
documents according to their relationship to each other. For example, if you use KeyView to generate
text for a search engine, the hierarchical information enables your users to search for a document
based on the document’s parent or sibling. In addition, when the document is returned to the user, the
parent and sibling documents can be returned as recommendations.

The information needed to recreate a file’s hierarchy is provided in the call to fpGetSubFilelnfo(). The
members KVSubFileInfo->parentIndex and KVSubFileInfo->childArray provide information
about a subfile’s parent and children. Because you can only retrieve the first-level children in the
subfile, you must call fpGetSubFileInfo() repeatedly until information for the leaf-node children is
extracted.

IDOL KeyView (12.9) Page 58 of 482



HTML Export SDK C and COM Programming Guide
Chapter 3: Use the File Extraction API

Create a Root Node

Because of their structure, some container files do not contain a subfile or folder which acts as a root
directory on which the hierarchy can be based. For example, subfiles in a Zip archive can be extracted,
but none of the subfiles represent the root of the hierarchy. In this case, you must create an artificial
root node at the top of the file hierarchy as a point of reference for each child, and ultimately to recreate
the relationships. This artificial root node is an internal object, and is extracted to disk as a directory
called root. Its index number is 0.

To create the root node, set openFlag to KVOpenFileFlag_CreateRootNode in the call to fpOpenFile().
When you create a root node, the value of numSubFiles in KVMainFilelnfo includes the root node. For
example, when you call fpGetMainFileInfo() ona Microsoft Word document with three embedded
OLE objects and the root node is disabled, numSubFiles is 3. If you create a root node, numSubFiles is
4,

Recreate a File’s Hierarchy—Example

For example, you might extract a PST file that contains seven subfiles with a root node enabled. The
call to fpGetMainFileInfo()returns the number of subfiles as eight (seven subfiles and one root
node). The following diagram shows the structure and the available hierarchy information after the
subfiles are extracted:

PST

‘ Folder ‘ ‘ email ‘ ‘ email ‘ ‘ Zip ‘ ‘ Folder ‘ email ‘ ‘ email ‘ ‘ root ‘
Index 1 2 3 4 5 -] 7 v]
parentindex 4] 1 1 3 4] 5 5 -1
childArray 2,3 4 6,7 1,5

The parentIndex specifies the index number of a subfile’s parent. The childArray specifies an array
of a subfile’s children. With this information, you can recreate the hierarchy shown in the following
diagram.

IDOL KeyView (12.9) Page 59 of 482



HTML Export SDK C and COM Programming Guide

Chapter 3: Use the File Extraction API

IDOL KeyView (12.9)

Root
0
| |
Folder Folder

1 5

| |
email email email email
2 3 & 7
Zip
A

Extract Mail Metadata

You can extract metadata, such as subject, sender, and recipient, from subfiles of mail formats, by
calling the fpGetSubFileMetaData() function. You can extract a predefined set of common metadata
fields, alist of metadata fields by their names or MAPI properties, or, for some subfile types, all the
metadata in the file.

Default Metadata Set

KeyView internally defines a set of common mail metadata fields that you can extract as a group from
mail formats. This default metadata set is listed in the following table.

Default Mail Metadata List

Field Name (string to Description

specify)

From The display name and email address of the sender.

Sent The time that the message was sent.

To The display names and email addresses of the recipients.

Cc The display names and email addresses of recipients who receive copies
of the email.

Bcc The display names and email addresses of recipients who received blind
copies of the email.

Subject The text in the subject line of the message.

Priority The priority applied to the message.

Page 60 of 482



HTML Export SDK C and COM Programming Guide
Chapter 3: Use the File Extraction API

Because mail formats use different terms for the same fields, the format’s reader maps the default field
name to the appropriate format-specific name. For example, when retrieving the default metadata set,
the NSF field Importance is mapped to the name Priority and is returned.

You can also extract the default field names individually by passing the field name (such as From, To,
and Subject); however, in this case, the string is not mapped to the format-specific name. For example,
if you pass Priority in the call, you retrieve the contents of the Priority field from an MBX file, but do not
retrieve the contents of the Importance field from an NSF file.

NOTE: You cannot pass the field names listed in the table individually for PST files. However, you
can pass either the MAPI tag number or the MAPI tag name as integers. See Microsoft Personal
Folders File (PST) Metadata, on page 65.

Extract the Default Metadata Set

To extract the default metadata set, call the fpGetSubFileMetaData() function, and pass in @ for
metaArg->metaNameCount, and NULL for metaArg->metaNameArray.

KVGetSubFileMetaArgRec metaArg;
KVSubFileMetaData pMetaData = NULL;
KVStructInit(&metaArg);

metaArg.index = subFileIndex;
metaArg.metaNameCount = 0;
metaArg.metaNameArray = NULL;

error = extractInterface->fpGetSubFileMetaData(pFile, &metaArg, &pMetaData);

extractInterface->fpFreeStruct(pFile,pMetaData);
pMetaData = NULL;

Extract All Metadata

KeyView can extract all metadata from EML, MBX, MIME, NSF, ICS, and DXL subfiles. You can
extract all metadata in a similar way to extracting the default metadata set, but when you call the
fpGetSubFileMetaData() function, pass in -1 for metaArg->metaNameCount and NULL for metaArg-
>metaNameArray.

Microsoft Outlook (MSG) Metadata

In addition to the default metadata set, you can extract the metadata fields listed in the following table
for MSG files. You must pass the field name to metaNameArray in the call to the
fpGetSubFileMetadata() function.

IDOL KeyView (12.9) Page 61 of 482



HTML Export SDK C and COM Programming Guide
Chapter 3: Use the File Extraction API

MSG-specific Metadata List

Field Name (string to
specify)

AttachFileName

ConversationTopic

CreationTime

InternetMessageID

LastModificationTime

Location

MessagelID

Received

Sender

Sensitivity

TransportMsgHeaders

StartDate

EndDate

IDOL KeyView (12.9)

Description

An attachment's long file name and extension, excluding the path.

The topic of the first message in a conversation thread. A conversation
thread is a series of messages and replies. This is the first message’s
subject with any prefix removed.

The time that the message or attachment was created. This value is
displayed in the Sent field in the message’s Properties dialog in Outlook.

The identifier for messages that come in over the Internet. This is the
MAPI property PR_INTERNET_MESSAGE_ID. This property is not in the
MAPI headers or MAPI documentation.

The time that the message or attachment was last modified. This value is
displayed in the Modified field in the message’s Properties dialog in
Outlook.

The physical location of the event specified in the Outlook calendar entry.

The message transfer system (MTS) identifier for the message transfer
agent (MTA). This value is displayed on the Message ID tab in the
message’s Properties dialog in Outlook.

The date and time a message was delivered. This value is displayed in
the Received field in the message’s Properties dialog in Outlook.

The name and email address of the message sender. This value is a
concatenation of two MAPI properties in the following format:

"PR_SENDER_NAME" <PR_SENDER_EMAIL_ADDRESS>

The Sender value might be the same as or different than the default
metadata From value (see Default Metadata Set, on page 60), depending
on which MAPI properties exist in the MSG file.

The value indicating the message sender's opinion of the sensitivity of a
message. For example, Personal, Private, or Confidential. This value is
displayed in the Sensitivity field in the message’s Properties dialog in
Outlook.

Transport-specific message envelope information. This value
corresponds to the MAPI property PR_TRANSPORT_MESSAGE_HEADERS.

An appointment start date. This value corresponds to the PR_START_DATE
MAPI property.

An appointment end date. This value corresponds to the PR_END_DATE
MAPI property.

Page 62 of 482



HTML Export SDK C and COM Programming Guide
Chapter 3: Use the File Extraction API

Extract MSG-Specific Metadata

To extract specific metadata fields from an MSG file, call the fpGetSubFileMetaData() function, and
pass the field name defined in Default Metadata Set, on page 60 to metaNameArray (the string is not
case sensitive).

For example, the following code extracts the contents of the ConversationTopic and MessagelID
fields:

KVGetSubFileMetaArgRec metaArg;
KVSubFileMetaData pMetaData = NULL;
KVStructInit(&metaArg);
KVMetaNameRec names[2];

KVMetaName pname[2];

names[0].type = KVMetaNameType_String;

names[©].name.sname = "conversationtopic";
names[1].type = KVMetaNameType_String;
names[1l].name.sname = "MessagelD";
pname[@] = &names[0O];

pname[1] &names[1];

metaArg.metaNameCount = 2;
metaArg.metaNameArray = pname;
metaArg.index = subFileIndex;

error = extractInterface->fpGetSubFileMetaData(pFile, &metaArg, &pMetaData);

extractInterface->fpFreeStruct(pFile,pMetaData);
pMetaData = NULL;

Microsoft Outlook Express (EML) and Mailbox (MBX)
Metadata

In addition to the default metadata set, you can extract any metadata field that exists in the header of
an EML or MBX file by passing the field’'s name. If the name is a valid field in the file, the content of the
field is returned. For example, to retrieve the name of the last mail server that received the message
before it was delivered, you can pass the string "Received".

Extract EML- or MBX-Specific Metadata

To extract specific metadata fields from an EML or MBX file, call the fpGetSubFileMetaData() function,
and pass the metadata name to metaNameArray (the string is not case sensitive).

For example, the following code extracts the contents of the Received and Mime-version fields:

KVGetSubFileMetaArgRec metaArg;
KVSubFileMetaData pMetaData = NULL;

IDOL KeyView (12.9) Page 63 of 482



HTML Export SDK C and COM Programming Guide
Chapter 3: Use the File Extraction API

KVStructInit(&metaArg);
KVMetaNameRec names[2];
KVMetaName pname[2];

names[0].type = KVMetaNameType_String;

names[0©].name.sname = "Received";
names[1].type = KVMetaNameType_String;
names[1].name.sname = "Mime-version";
pname[@] = &names[0O];

pname[1] = &names[1];

metaArg.metaNameCount = 2;

metaArg.metaNameArray = pname;

metaArg.index = subFileIndex;

error = extractInterface->fpGetSubFileMetaData(pFile, &metaArg, &pMetaData);

extractInterface->fpFreeStruct(pFile,pMetaData);
pMetaData = NULL;

Lotus Notes Database (NSF) Metadata

In addition to the default metadata set, you can extract any Lotus field name that exists in an NSF file
by passing the field’s name. (You can extract fields from mail NSF files and non-mail NSF files.) If the
name is a valid field in the file, the field is returned. For example, to retrieve the date when a document
in an NSF file was last accessed, you would pass the string "$LastAccessedDB".

NOTE: A complete list of NSF fields is provided in the Lotus Notes file stdnames. h. This header file
is available in the Lotus API Toolkit.

Extract NSF-Specific Metadata

To extract specific metadata fields from an NSF file, call the fpGetSubFileMetaData() function, and
pass the metadata name to metaNameArray (the string is not case sensitive).

For example, the following code extracts the contents of the Description and Categories fields:

KVGetSubFileMetaArgRec metaArg;
KVSubFileMetaData pMetaData = NULL;
KVStructInit(&metaArg);
KVMetaNameRec names[2];

KVMetaName pname[2];

names[0].type = KVMetaNameType_String;

names[©].name.sname = "description";
names[1].type = KVMetaNameType_String;
names[1].name.sname = "Categories";

pname[@] = &names[0];

IDOL KeyView (12.9) Page 64 of 482



HTML Export SDK C and COM Programming Guide
Chapter 3: Use the File Extraction API

pname[1] = &names[1];

metaArg.metaNameCount = 2;
metaArg.metaNameArray = pname;
metaArg.index = subFileIndex;

error = extractInterface->fpGetSubFileMetaData(pFile, &metaArg, &pMetaData);

extractInterface->fpFreeStruct(pFile,pMetaData);
pMetaData = NULL;

Microsoft Personal Folders File (PST) Metadata

In addition to the default metadata set, you can extract Messaging Application Programming Interface
(MAPI) properties from a PST file. These properties describe all elements of an Outlook item ina PST
file (such as subject, sender, recipient, and message text). Because the properties are stored in the
PST file itself, you can retrieve them before you extract the contents of the PST. This enables you to
determine whether an Outlook item should be extracted based on its attributes. Some MAPI properties
are also stored for Outlook attachments that are not mail messages (such as an attached Microsoft
Word document or Lotus 1-2-3 file).

NOTE: Because all elements of a message (except non-mail attachments) are represented by
MAPI properties, you can extract all components of a subfile, including the header and message
text, by calling the fpGetSubFileMetadata() function.

MAPI Properties

Each MAPI property is identified by a property tag, which is a constant that contains the property type
and a unique identifier. For example, the property that indicates whether a message has attachments
has the following components:

Property PR_HASATTACH
Identifier OxOE1B
Property type PT_BOOLEAN (000B)

Property tag ©x0E1B000OB

The Microsoft MAPI documentation on the Microsoft Developer Network website lists all available
MAPI properties, their tags, and types.

You can retrieve any MAPI property that is of one of the MAPI property types listed below:
PT_I2 PT_DOUBLE PT_STRINGS
PT_I4 PT_FLOAT PT_TSTRING
PT_BINARY PT_LONG  PT_SYSTIME

PT_BOOLEAN PT_SHORT PT_UNICODE

IDOL KeyView (12.9) Page 65 of 482



HTML Export SDK C and COM Programming Guide
Chapter 3: Use the File Extraction API

NOTE: Properties with a PT_TSTRING type have the property type recompiled to either a Unicode
string (PT_UNICODE) or to an ANSI string (PT_STRINGS8) depending on the operating system’s
character set. To retrieve the Unicode property, pass in the Unicode version of the tag. For
example, the property tag for PR_SUBJECT is either 0x0037001E for an ANSI string, or xe037001F
for a Unicode string.

Extract PST-Specific Metadata

In the call to extract subfile metadata, you can pass either the MAPI tag number (such as 6xe070001e)
or the MAPI tag name (such as PR_CONVERSATION_TOPIC). If you specify the MAPI tag name, you
must include the mapitags.h and mapidefs.h Windows header files, in which the MAPI tag name is
defined as a tag number.

To extract specific MAPI properties from a PST file, call the fpGetSubFileMetaData() function, and
pass the property tag to metaNameArray. The tag is passed as an integer.

For example, the following code extracts the MAPI properties PR_SUBJECT and PR_ALTERNATE_
RECIPIENT:

KVGetSubFileMetaArgRec metaArg;
KVSubFileMetaData pMetaData = NULL;
KVMetaNameRec names[2];

KVMetaName pName[2];

names[0].type = KVMetaNameType_Integer;
names[0©].name.iname = PR_SUBJECT;

names[1].type = KVMetaNameType_Integer;
names[1].name.iname = Ox3A010102;

pName[©]
pName[1]

&names[0];
&names[1];

KVStructInit(&metaArg);
metaArg.metaNameCount = 2;
metaArg.metaNameArray = pName;
metaArg.index = SubFileIndex;

error = extractInterface->fpGetSubFileMetaData (pFile,&metaArg,&MetaData);

extractInterface->fpFreeStruct(pFile,pMetaData);

pMetaData = NULL;

NOTE: You must include the mapitags.h and mapidefs.h Windows header files, in which PR_
SUBJECT is defined as 0x0037001E.

IDOL KeyView (12.9) Page 66 of 482



HTML Export SDK C and COM Programming Guide
Chapter 3: Use the File Extraction API

Exclude Metadata from the Extracted Text File

When you extract a mail message, the message text and header information (To, From, Sent, and so
on) is also extracted. You can prevent the header information from appearing in the text file.

To exclude the header information, set extractFlag to KVExtractionFlag ExcludeMailHeader in
the call to fpExtractSubFile().

Extract Subfiles from Outlook Files

When you extract an Outlook file (MSG) to disk, the message text and header information (To, From,
Sent, and so on) is extracted to a text file. (If you do not want the header information to appear in the
text file, see Exclude Metadata from the Extracted Text File, above.) If the Outlook file contains a non-
mail attachment, the attachment is extracted in its native format to a subdirectory. If the Outlook file
contains a mail attachment, the attachment’s message text is extracted to a subdirectory.

Extract Subfiles from Outlook Express Files

When you extract an Outlook Express (EML) file to disk, the message text and header information (To,
From, Sent, and so on) is extracted to a text file. (If you do not want the header information to appear in
the text file, see Exclude Metadata from the Extracted Text File, above.) If the Outlook file contains a
non-mail attachment, the attachment is extracted in its native format to the same directory as the
message text file. If the Outlook file contains a mail attachment, the complete attachment (including
message text and attachments), the message text file, and any non-mail attachments are extracted to
the same directory as the main message.

NOTE: When the MBX reader (mbxsr) is enabled, it is used to filter MBX and EML files. If the MBX
reader is not enabled, the EML reader (emlsr)is used.

Extract Subfiles from Mailbox Files

A Mailbox (MBX) file is a collection of individual emails compiled with RFC 822 and RFC 2045 - 2049
(MIME), and divided by message separators. There are many mail applications that export to an MBX
format, such as Eudora Email and Mozilla Thunderbird.

When an MBX file is extracted to disk, the message text and header information (To, From, Sent, and
so on) from each mail file is extracted to text files. (If you do not want the header information to appear
in the text file, see Exclude Metadata from the Extracted Text File, above.)

In Eudora MBX files, attachments are inserted as a link and are stored externally from the message.
These attachments are not extracted, but the path to the attachment is returned in the call to the
fpGetSubFilelnfo() function. You can write code to retrieve the attachment based on the returned path.

IDOL KeyView (12.9) Page 67 of 482



HTML Export SDK C and COM Programming Guide
Chapter 3: Use the File Extraction API

For MBX files from other clients, KeyView extracts attachments when they are embedded in the
message.

The Mailbox (MBX) reader is an advanced feature and is sold and licensed separately. To enable this
reader in a KeyView SDK, you must obtain the appropriate license key from Micro Focus. See Pass
License Information to KeyView, on page 21 for information on adding a new license key to an existing
installation.

Extract Subfiles from Outlook Personal
Folders Files

KeyView can extract Outlook items such as messages, appointments, contacts, tasks, notes, and
journal entries from a PST file. When a PST file is extracted to disk, the text and header information
(To, From, Sent, and so on) from each Outlook item is extracted to a text file. (If you do not want the
header information to appear in the text file, see Exclude Metadata from the Extracted Text File, on the
previous page.)

You can also extract messages from PST files as MSG files, including all their attachments, by setting
the KVExtractionFlag_SaveAsMsG flag in the KVExtractSubFileArg structure when you call
fpExtractSubFile().

If an Outlook item contains a non-mail attachment, the attachment is extracted in its native format to a
subdirectory. If an Outlook item contains an Outlook attachment, the attached item’s text and any
attachments are extracted to a subdirectory.

NOTE: The Microsoft Outlook Personal Folders (PST) readers are an advanced feature and are sold
and licensed separately. To enable these readers in a KeyView SDK, you must obtain an
appropriate license key from Micro Focus. For information about adding a new license key to an
existing installation, see Pass License Information to KeyView, on page 21.

Choose the Reader to use for PST Files

KeyView provides several ways of processing PST files:

« Indirectly, using the Microsoft Messaging Application Programming Interface (MAPI). MAPI is a
Microsoft interface that enables different applications to exchange messages and attachments
with each other. MAPI allows KeyView to open a PST file, traverse the folders, and extract items.
The pstsr reader uses MAPI, but works only on Windows and requires that Microsoft Outlook is
installed.

« Directly, without relying on the Microsoft interface to the PST format. Accessing the file directly
does not require Microsoft Outlook. The pstxsr reader is available for Windows (32-bit and 64-bit)
and Linux (64-bit only). The pstnsr reader is an alternative native reader, for the platforms not
supported by pstxsr.

On Windows, the MAPI-based reader is used by default but you can choose pstxsr if you prefer. On
UNIX platforms, only one of the native readers is available (pstxsr on Linux x64 and pstnsr on other
platforms).

IDOL KeyView (12.9) Page 68 of 482



HTML Export SDK C and COM Programming Guide
Chapter 3: Use the File Extraction API

The differences between the readers are summarized in the following table.

Feature Native Reader Native Reader MAPI-based Reader
(pstxsr) (pstnsr) (pstsr)

Platforms supported Windows x86 and x64  All platforms not Windows x86 and x64
Linux x64 supported by pstxsr

Outlook required No No Yes

MAPI properties Yes. All properties defined in mapitags.h. Object properties are not

supported supported.

Password protection Yes Yes Yes (using

supported KVCredential

structure)

Compressible Yes Yes Yes

encryption supported

High encryption No No Yes

supported

To change the reader used to process PST files, change the PST entry (file category value 297) in the
formats_e.ini file. For example, to use pstxsr:

297=pstx

NOTE: You must make sure that the PST that you are extracting is not open in the Outlook client,
and that the Outlook process is not running.

NOTE: When extracting subfiles from PST files, information on the distribution list used in an email
is extracted to a file called emailname.dist. This applies to the MAPI reader (pstsr) only.

System Requirements

MAPI is supported on Windows platforms only and relies on functionality in Outlook. If you want to use
the MAPI-based reader, pstsr, Microsoft Outlook must be installed on the same machine as your
application. Outlook must also be the default email application. KeyView supports the following PST
formats and Outlook clients:

o Outlook 97 or later PST files

NOTE: The Outlook client must be the same version as, or newer than, the version of Outlook
that generated the PST file.

« Outlook 2002 or later clients
NOTE: You must install an edition of Microsoft Outlook (32-bit or 64-bit) that matches the

KeyView software. For example, if you use 32-bit KeyView, install 32-bit Outlook. If you use
64-bit KeyView, install 64-bit Outlook.

IDOL KeyView (12.9) Page 69 of 482



HTML Export SDK C and COM Programming Guide
Chapter 3: Use the File Extraction API

If the editions do not match, KeyView returns Error 32: KVError_PSTAccessFailed andan
error message from Microsoft Office Outlook is displayed: Either there is a no default
mail client or the current mail client cannot fulfill the messaging request.
Please run Microsoft Outlook and set it as the default mail client.

MAPI Attachment Methods

The way in which you can access the contents of a PST message attachment is determined by the
MAPI attachment method applied to the attachment. For example, if the attachment is an embedded
OLE object, it uses the ATTACH_OLE attachment method. KeyView can access message attachments
that use the following attachment methods:

ATTACH_BY_VALUE
ATTACH_EMBEDDED_MSG
ATTACH_OLE
ATTACH_BY_REFERENCE
ATTACH_BY_REF_ONLY
ATTACH_BY_REF_RESOLVE

Attachments using the ATTACH_BY_VALUE, ATTACH_EMBEDDED_MSG, or ATTACH_OLE attachment
methods are extracted automatically when the PST file is extracted. An "attach by reference" method
means that the attachment is not in Outlook, but Outlook contains an absolute path to the attachment.
Before you can extract these types of attachments, you must retrieve the path to access the
attachment.

To extract "attach by reference" attachments

1. Determine whether the attachment uses an ATTACH_BY_REFERENCE, ATTACH_BY_REF_ONLY, or
ATTACH_BY_REF_RESOLVE method by retrieving the MAPI property PR_ATTACH_METHOD.

2. If the attachment uses one of the "attach by reference" methods, get the fully qualified path to the
attachment by retrieving the MAPI properties PR_ATTACH_LONG_PATHNAME or PR_ATTACH_
PATHNAME.

3. You can then either copy the files from their original location to the path where the PST file is
extracted, or use the Export API functions to convert the attachment.

Open Secured PST Files

KeyView enables you to specify a user name and password to use to open a secured PST file for
extraction.

To open password-protected PST files that use high encryption, you must use the MAPI-based PST

reader (pstsr). The native PST readers (pstxsr and pstnsr) return the error message KVERR_
PasswordProtected if a PST file is encrypted with high encryption.

IDOL KeyView (12.9) Page 70 of 482



HTML Export SDK C and COM Programming Guide
Chapter 3: Use the File Extraction API

Detect PST Files While the Outlook Client is Running

If you are running an Outlook client while running the File Extraction API, the KeyView format detection
module (kwad) might not be able to open the PST file to determine the file’s format because Outlook has
the file locked. In this case, you can do one of the following:

o Close Outlook when using the Extraction API.

« Detect PST files by extension only and bypass the format detection module. To enable this
option, add the following lines to the formats_e. ini file:

[container_flags]
detectPSTbyExtension=1

The detectPSTbyExtension option applies only when you are using the MAPI reader (pstsr).

If you use this option, you must make sure in your code that valid PST files are passed to
KeyView, because the format detection module is not available to verify the file type and pass
the file to the appropriate reader.

Extract Subfiles from Lotus Domino XML
Language Files

When you extract a Lotus Domino XML Language (.DXL) file, the message text and header information
(To, From, Sent, and so on) is extracted to a text file.

NOTE: To prevent header information from being extracted, see Exclude Metadata from the
Extracted Text File, on page 67.

You can make sure that dates and times extracted from Lotus Domino .DXL files are displayed in a
uniform format.

To extract custom date/time formats
o Inthe formats_e.ini file, set the DateTimeFormat option in the [dx1sr] section. For example:

[dx1lsr]
DateTimeFormat=%m/%d/%Y %I1:%M:%S %p

In this example, dates and times are extracted in the following format:
02/11/2003 11:36:09 AM

The format arguments are the same as those for the strftime () function. See
http://msdn.microsoft.com/en-us/library/fe06s4ak %28V S.71%29.aspx for more information.

IDOL KeyView (12.9) Page 71 of 482


http://msdn.microsoft.com/en-us/library/fe06s4ak(VS.71).aspx

HTML Export SDK C and COM Programming Guide
Chapter 3: Use the File Extraction API

Extract .DXL Files to HTML

You can use the file extraction API to process .DXL files with an XSLT engine. The XSLT engine then
transforms the extracted .DXL to .mail HTML files.

To extract .DXL files to HTML
« Set the following options in the formats_e. ini file:

[nsfsr]
ExportDXL=1
ExportDXL_PureXML=1

[dx1sr]
LNDParser=2

Extract Subfiles from Lotus Notes Database
Files

A Lotus Notes database is a single file that contains multiple documents called notes. Notes include
design notes (such as forms, views, folders, navigators, outlines, pages, framesets, agents, and
resources), data document notes, profile document notes, access control list notes, and collection
(index) notes. KeyView can extract text items, attachments, and OLE objects from data document
notes only. Data document notes include emails, journal entries, discussion threads, documents
(Microsoft Office and Lotus SmartSuite), and so on.

All components of a note are prefixed by field names such as "SendTo:", "Subject:", and "Body:".
When a note is extracted, the field names are not included in the extracted output; only the field values
are extracted.

When a mail message in an NSF file is extracted to disk, the body text and header information (such as
the values from the SendTo, From, and DeliveredDate fields) in each message is extracted to a text
file. (If you do not want the header information to appear in the message text file, see Exclude Metadata
from the Extracted Text File, on page 67.)

NOTE: The Lotus Notes Database (NSF) reader is an advanced feature and is sold and licensed
separately. To enable this reader in a KeyView SDK, you must obtain the appropriate license key
from Micro Focus. See Pass License Information to KeyView, on page 21 for information on adding
anew license key to an existing installation.

System Requirements

The NSF format is proprietary. Therefore, KeyView accesses NSF files indirectly by using the Lotus
Notes API. Because the NSF reader relies on functionality in Lotus Notes, a Lotus Notes client or

IDOL KeyView (12.9) Page 72 of 482



HTML Export SDK C and COM Programming Guide
Chapter 3: Use the File Extraction API

Lotus Domino server must be installed and configured on the same machine as the application
converting NSF files. On UNIX and Linux, the Lotus Domino server is required. On Windows, the Lotus
Notes client or Lotus Domino server is required.

KeyView supports the following Lotus Notes clients and Domino servers:
« Lotus Notes 6.5.1
o Lotus Domino 6.5.1
KeyView supports NSF files on the same platforms supported by Lotus Notes and Lotus Domino:
« Windows XP x86 (Service Pack 1 and 2)
« Windows 2000 x86 (Service Pack 2)
« Solaris 8.0 and 9.0 (built on Solaris 8.0)
« Red Hat Enterprise Linux AS 3.0 (x86)
o SuSE Linux Enterprise Server 8 and 9 (x86)
« IBMAIX5.1, 5L version 5.2

Installation and Configuration

Before KeyView can convert NSF files, you must set up the Lotus Notes client or Lotus Domino server.
Full configuration is not required. The following steps outline the minimal setup for NSF conversion:

Windows

1. Install the Lotus Notes client or Lotus Domino server. You do not need to configure the client or
server.

2. Make sure that the notes. ini file is in the proper location.

« IfLotus Notes is installed, the file should appear in the install\lotus\notes directory,
where install is the installation directory.

« If only Lotus Domino is installed, the file should appear in the install\1lotus\domino
directory, where install is the installation directory.

If the file does not exist, create an ASCII file named notes. ini, and add the following text:
[Notes]

3. Addthe KeyView bin directory and the install\lotus\notes or install\lotus\domino
directory to the PATH environment variable (the KeyView bin directory must be first in the path).
Micro Focus recommends that you add the KeyView bin directory because the Lotus Notes or
Domino server installation might contain older KeyView OEM libraries.

Solaris

1. Install Lotus Domino server. You do not need to configure the server.

2. Make sure that the notes.ini fileis inthe install/lotus/notes/latest/sunspa directory,

IDOL KeyView (12.9) Page 73 of 482



HTML Export SDK C and COM Programming Guide
Chapter 3: Use the File Extraction API

3.

where install is the directory where Lotus Notes is installed. If the file does not exist, create an
ASCII file named notes. ini, and add the following text:

[Notes]
Addthe install/lotus/notes/latest/sunspa directory to the PATH environment variable:

setenv PATH install/lotus/notes/latest/sunspa:$PATH

4. Addthe install/lotus/notes/latest/sunspa and the KeyView bin directory to the LD_
LIBRARY_PATH environment variable:
setenv LD_LIBRARY_PATH keyview_bin:install/lotus/notes/latest/sunspa:$LD_
LIBARY_PATH
where keyview_b1in is the location of the KeyView bin directory. Micro Focus recommends that
you add the KeyView bin directory because the Lotus Notes installation might contain older
KeyView OEM libraries.

AIX 5.x

1. Install the bos.iocp.rte file setif it is not already installed, and reboot the machine. See the
Lotus Domino server documentation for more information.

2. Install Lotus Domino server. You do not need to configure the server.

3. Make sure that the notes.ini fileis inthe install/lotus/notes/latest/ibmpow directory,
where install is the directory where Lotus Notes is installed. If the file does not exist, create an
ASCII file named notes. ini, and add the following text:

[Notes]

4. Addthe install/lotus/notes/latest/ibmpow directory to the PATH environment variable:
setenv PATH install/lotus/notes/latest/ibmpow:$PATH

5. Addthe install/lotus/notes/latest/ibmpow and the KeyView bin directory to the LIBPATH
environment variable:
setenv LIBPATH keyview_bin:install/lotus/notes/latest/ibmpow:$LIBPATH
where keyview_b1in is the location of the KeyView bin directory. Micro Focus recommends that
you add the KeyView bin directory because the Lotus Notes installation might contain older
KeyView OEM libraries.

Linux

1. Install Lotus Domino server. You do not need to configure the server.

2. Make sure that the notes.ini fileis inthe install/lotus/notes/latest/1linux directory,
where install is the directory where Lotus Notes is installed. If the file does not exist, create an
ASCII file named notes. ini, and add the following text:

[Notes]
3. Addthe install/lotus/notes/latest/linux directory to the PATH environment variable:

IDOL KeyView (12.9) Page 74 of 482



HTML Export SDK C and COM Programming Guide
Chapter 3: Use the File Extraction API

setenv PATH 1install/lotus/notes/latest/linux:$PATH

4. Addthe install/lotus/notes/latest/linux and the KeyView bin directory tothe LD_
LIBRARY_PATH environment variable:

setenv LD_LIBRARY_PATH keyview _bin:install/lotus/notes/latest/linux:$LD_
LIBRARY_PATH

where keyview_bin is the location of the KeyView bin directory. Micro Focus recommends that
you add the KeyView bin directory because the Lotus Notes installation might contain older
KeyView OEM libraries.

Open Secured NSF Files

KeyView enables you to specify a user ID file and password to use to open a secured NSF file for
extraction.

Format Note Subfiles

The KeyView NSF reader uses XML templates to format note subfiles. You can customize the
templates to approximate the look and feel of the original notes as closely as possible. For more
information, see Extract and Format Lotus Notes Subfiles, on page 438.

Extract Subfiles from PDF Files

KeyView can extract document-level and page-level attachments from a PDF document. Document-
level attachments are added by using the Attach A File tool, and can include links to or from the parent
document or to other file attachments. Page-level attachments are added as comments by using
various tools. Page-level or comment attachments display the File Attachment icon or the Speakericon
on the page where they are located. KeyView can also extract the files from Portfolio PDFs.

When a PDF’s attachments are extracted to disk, the attachments are saved in their native format.

Improve Performance for PDFs with Many Small Images

To improve performance when processing PDF files that contain many small images, you can choose
to ignore images unless they exceed a minimum width and/or height. If an image is smaller than the
minimum width or height, KeyView does not extract the image.

For example, to ignore images that are less than 16 pixels wide or less than 16 pixels in height, add the
following to the [pdf_flags] section of the formats_e.ini file:

[pdf_flags]
process_images_with_min_width=16
process_images_with_min_height=16

IDOL KeyView (12.9) Page 75 of 482



HTML Export SDK C and COM Programming Guide
Chapter 3: Use the File Extraction API

Exiract Embedded OLE Objects

Embedded OLE objects can be converted in two ways:

« Using the File Extraction API, the OLE object is first extracted from the main file and saved to
disk. It can then be converted by making a separate conversion call.

« Using the HTML Export API, the main file is converted to HTML and the OLE object is converted
to a graphics file that is referenced in the HTML file .

The File Extraction API can extract embedded OLE objects from the following types of documents:
« Lotus Notes (DXL)
« Microsoft Excel
« Microsoft Word
« Microsoft PowerPoint
« Microsoft Outlook
« Microsoft Visio
« Microsoft Project
« OASIS Open Document
« Rich Text Format (RTF)

When an embedded OLE object is extracted from its parent file, the location of the embedded file in the
original document is not available. The parent and child are extracted as separate files.

Extract Subfiles from ZIP Files

You can extract ZIP files that are not password-protected by using the general method (see Extract
Subfiles, on page 56). However, some ZIP files use password protection, in which case you must use
a different method to enter the required credentials.

Default File Names for Extracted Subfiles

When you do not specify a file name in the call to fpExtractSubFile(), in some cases a default file name
is applied to the extracted subfile.

IDOL KeyView (12.9) Page 76 of 482



HTML Export SDK C and COM Programming Guide
Chapter 3: Use the File Extraction API

Default File Name for Mail Formats

To avoid naming conflicts and problems with long file names, KeyView applies its own names to the
extracted mail items when you do not supply a name in the call to fpExtractSubFile(). A non-mail
attachment retains its original file name and extension.

When the contents of a mail store or the message body of a mail message are extracted, the extracted
file names can include the following:

« Thefirst valid eight characters of the original folder name or "Subject" line of the mail message. If
the "Subject" line is empty, the characters kvext are used, where ext is the format’s extension.
For example, the characters would be "kvmsg" for MSG and "kvnsf" for NSF.

For notes, the file name is derived from the first 24 characters of the note text. For contact entries,
the file name is derived from the full name of the contact.

The following special characters are considered invalid and are ignored:

any non-printing character with a value less than ex1F

angle brackets (< >) double quotation marks (")
asterisk (*) forward slash (/)

back slash (\) pipe (|)

colon (;) question mark (?)

« The characters _kvn, where n is an integer incremented from O for each extracted item.

« One of the following extensions:

Type File Extension
email message .mail

calendar appointment .cal

contact entry .cont

task entry .task

note .note

journal entry .jrnl
distribution list .dist

posting note .post

o If the type cannot be determined for an MSG or PST file, the file is given a .mail extension.
o If the type cannot be determined for a NSF file, the file is given a . tmp extension.

o The format of a MAIL file is plain text by default, but can be set to RTF with the
KVExtractionFlag_GetFormattedBody flag.

IDOL KeyView (12.9) Page 77 of 482



HTML Export SDK C and COM Programming Guide
Chapter 3: Use the File Extraction API

For example, an MSG mail message with the subject line RE: Product roadmap that contains the
Microsoft Excel attachment release_schedule.xls is extracted as:

RE produ_kve.mail
release_schedule.xls

If an extracted message contains an embedded OLE object or any attachment that does not have a
name, the object or attachment is extracted as _kvi#. tmp.

Default File Name for Embedded OLE Objects

KeyView can apply a default name to an extracted embedded OLE object when you do not supply a
name in the call to fpExtractSubFile(). When an embedded OLE object is extracted, the extracted
file name can include the following:

« The characters subfile_kvn, where n is an integer incremented from 0 for each extracted object.

« If KeyView can determine the embedded OLE is a Microsoft Office document, the original
extension is used. If the file type cannot be determined, the file is given a . tmp extension.

For example, a Microsoft Word document (sales_quarterly.doc) might contain two embedded OLE
objects: a Microsoft Excel file called west_region.x1ls, and a bitmap created in the Word document.
The embedded objects are extracted as subfile_kve@.x1ls and subfile_ kv1.tmp.

IDOL KeyView (12.9) Page 78 of 482



Chapter 4: Use the HTML Export API

This section describes how to perform some basic tasks by using the HTML Export API.

® Extract Metadata ... ... il 79
® Extract File Format Information ... ... 82
® Convert Character Sets .. 83
O VAR StYIES . . 87
® Use Style Sheets ... o 90
¢ Display Vector Graphics on UNIX and Linux ... ... 91
® Search and Highlight Terms ... 91
* Include Revision Information ... 92
® Extract Text from Text BOXes . ... ... il 95
® Convert PDF Files oL 95
® Convert Spreadsheet Files .. .. 106
® Convert Presentation Files .. .. 110
@ Convert XML FIIES ... .. 111
® Show Hidden Data ... o 116
® Exclude Japanese Guide Text ... . 118
® Source Code ldentification ... .. . L 118
O PartitiONING . 119
® Configure the Proxy for RMS .. 120

Extract Metadata

When a file format supports metadata, KeyView can extract and process that information. Metadata
includes document information fields such as title, author, creation date, and file size. Depending on
the file's format, metadata is referred to in a number of ways: for example, "summary information,"
"OLE summary information," "file information," and "document properties."

The metadata in mail formats (MSG and EML) and mail stores (PST, NSF, and MBX) is extracted
differently than other formats. For information on extracting metadata from these formats, see Extract
Mail Metadata, on page 60.

NOTE: KeyView can extract metadata from a document only if metadata is defined in the
document, and if the document reader can extract metadata for the file format. The section
Document Readers, on page 392 lists the file formats for which metadata can be extracted.
KeyView does not generate metadata automatically from the document contents.

IDOL KeyView (12.9) Page 79 of 482



HTML Export SDK C and COM Programming Guide
Chapter 4: Use the HTML Export API

Extract Metadata by Using the API

You can extract the metadata at the API level. The API| extracts all valid metadata fields that exist in
the file.

Use the C API

To extract metadata by using the C API
1. Declare a pointer to the KvSummaryInfoEx structure. K\VSummaryInfoEx, on page 226.

2. Call the fpGetSummaryInfo() function. See fpGetSummarylnfo(), on page 182.

Use the COM interface

To extract metadata by using the COM interface, call the GetSummaryInfo() method. See
GetSummaryInfo, on page 281.

Extract Metadata by Using a Template File

When using a template file, KeyView recognizes two types of metadata: standard and non-standard.
Standard metadata includes fields, such as Title, Author, and Subject. The standard fields are
enumerated from 1 to 41 in KVSumType in the header file kvtypes . h. Non-standard metadata includes
any field not listed from 1 to 41 in KvSumType, such as user-defined fields (for example, custom property
fields in Microsoft Word documents), or fields that are unique to a particular file type (for example,
"Artist" or "Genre" fields in MP3 files). Enumerated types 42 and greater are reserved for non-standard
metadata.

To extract metadata by using a template file

1. Insert metadata tokens in a member of the KVHTMLTemplateEx structure in the template file. This
defines the point at which the metadata appears in the HTML output.

2. If you are using the $USERSUMMARY or $SUMMARY token, define the szUserSummary member of the
KVHTMLTemplateEx structure in the template file. This determines the markup and tokens
generated when these metadata tokens are processed.

3. Inyour application, read the template file and write the data to the KVHTMLTemplateEx structure.
See htmlini, on page 129.

The following metadata tokens can be used in the template files:

Token Description

$SUMMARYNN Inserts the data from a specified metadata field. NN is a number from 00 through 42
enumerated in KVSumType in kvtypes.h.

IDOL KeyView (12.9) Page 80 of 482



HTML Export SDK C and COM Programming Guide
Chapter 4: Use the HTML Export API

Token Description

$SUMMARY Inserts the data from valid metadata fields in the range of 0 to 33 using the markup
provided in pszUserSummary.

$USERSUMMARY  Inserts the data from every valid non-standard metadata field using the markup
provided in pszUserSummary.

$CONTENT Inserts the content of the metadata field specified by the $NAME token.

$NAME Inserts the name of a the metadata field, such as "Title," "Author," or "Subject."

Depending on the markup in szUserSummary, the extracted metadata might not appear in the browser
when the HTML file is displayed, but might appear in the output file. Most of the KeyView-supplied
template files extract standard metadata from a document, and include it in the output HTML. However,
they do not display the metadata in a browser.

Examples

$SUMMARYNN
The following markup displays the contents of the "Title" field at the top of the main HTML file:
szMainTop=<em><strong>$SUMMARYO1</strong></em>

In KvSumType, 01 is the enumerated value for the "Title" metadata field.

$SUMMARY

The following markup extracts all standard fields, and includes them in the first heading level 1 HTML
block:

szFirstH1Start=$SUMMARY
szUserSummary=<meta name="$NAME" content="$CONTENT" />

This example extracts the field name ($NAME) and field content ($CONTENT) for standard metadata from
a document, and includes it at the beginning of the first Heading level 1 HTML block. However, it does
not display the metadata in the browser. The HTML output might look like this:

<meta name="CodePage" content="1252" />

<meta name="Title" content="My design document" />
<meta name="Subject" content="design specifications" />
<meta name="Author" content="John Doe" />

<meta name="Keywords" content="" />

<meta name="Comments" content="" />

<meta name="Template" content="Normal.dot" />

<meta name="LastAuthor" content="1lchapman" />

<meta name="RevNumber" content="6" />

<meta name="EditTime" content="01/01/1601, ©:08" />
<meta name="LastPrinted" content="14/01/2002, 14:06" />
<meta name="Create_DTM" content="27/08/2003, 10:31" />
<meta name="LastSave DTM" content="29/08/2003, 14:07" />

IDOL KeyView (12.9) Page 81 of 482



HTML Export SDK C and COM Programming Guide
Chapter 4: Use the HTML Export API

<meta name="PageCount" content="1" />

<meta name="WordCount" content="4062" />
<meta name="CharCount" content="23159" />
<meta name="AppName" content="Microsoft Word 9.0" />
<meta name="Security" content="0" />

<meta name="Category" content="software" />
<meta name="LineCount" content="192" />
<meta name="ParCount" content="46" />

<meta name="ScaleCrop" content="FALSE" />
<meta name="Manager" content="" />

<meta name="Company" content="Autonomy" />

To display the metadata in a browser, use the following markup in szUserSummary:

<hr>name="$NAME" content="$CONTENT" <br>/>

SUSERSUMMARY

The following markup extracts non-standard fields, and includes them at the bottom of the main HTML
file:

szMainBottom=$USERSUMMARY
szUserSummary=<meta name="$NAME" content="$CONTENT" />

This example extracts the field name ($NAME) and field content ($CONTENT) for non-standard metadata
from a document, and includes it at the bottom of the main HTML file. However, it does not display the
metadata in the browser. The HTML output might look like this:

meta name="Telephone number" content="444-111-2222"
meta name="Recorded date" content="07/03/2003, 23:00"
meta name="Source" content="TRUE"

meta name="my property" content="reserved"

To display the metadata in a browser, use the following markup in szUserSummary:

<hr>name="$NAME" content="$CONTENT" <br>/>

Extract File Format Information

Export can detect afile's format, and report the information to the API, which in turn reports the
information to the developer's application. This feature enables you to apply customized conversion
settings based on afile's format. See File Format Detection, on page 454 for more information on
format detection.

IDOL KeyView (12.9) Page 82 of 482



HTML Export SDK C and COM Programming Guide
Chapter 4: Use the HTML Export API

Use the C API

To extract file format information by using the C API
1. Declare a pointer to the KvStreamInfo data structure. KVStreamlinfo, on page 223.

2. Call the fpGetStreamInfo() function. fpGetStreamlInfo(), on page 182.

Use the COM interface

To extract file format information by using the COM interface, call the GetFileInfo() method. See
GetFilelnfo, on page 280.

Convert Character Sets

Export allows you to control the character set of both the input and the output text. This is
accomplished by either

« setting the source and/or target character set in the API, or

« basing the input/output on the character set of the document (if the document character set is
stored in the document and can be determined by the document reader).

The character sets are enumerated in KVCharSet in kvcharset.h.

Not all character sets can be used to specify the target character set. See Code Character Sets, on
page 432 for a list of character sets that can be used as a target character set.

Determine the Character Set of the Output Text

To determine the output character set of a converted document, Export considers the following:

« Whether the reader can extract the character set from the document. This depends on whether
the file format can provide character set information and whether the document actually contains
character set information.

The section Document Readers, on page 392 indicates the file formats for which character set
information can be extracted. If character set information cannot be determined for your document
type, you must set the source, the target character set, or both, in the API.

« Whether a source character set is set in the API.

NOTE: To set the source character set, you must specify a character set and set the
bForceSrcCharSet member of the KVHTMLOptionsEx structure to TRUE.

« Whether atarget character set is set in the API.

IDOL KeyView (12.9) Page 83 of 482



HTML Export SDK C and COM Programming Guide
Chapter 4: Use the HTML Export API

NOTE: To set the target character set, you must specify a character set and set the
bForceOutputCharSet member of the KVHTMLOptionsEx structure to TRUE.

Guidelines for Character Set Conversion

The following diagram shows how the output character set is determined when the document character
set can be determined:

Document Character Set Can Be Determined

~Can determine
document character
set

ource charset is set
in API?

s

Output charset is
setin API?

Output charset is
dacument charset

i

Y;i Yes
Converts - . Converts
arget charset is set
characters from *Nu g in API? characters from
document charset : document charset
to source charset to target charset
Yes
h 4
Converts
characters from
source charset to
target charset

The following diagram shows how the output character set is determined when the document character
set cannot be determined:

Document Character Set Cannot Be Determined

“Can determine
document character
set

ource charset is set
in API?

Converts
characters from
05 code page to

target charset

P

’arget charset is set
"N"&n API?

No
A4

Output character
set is 0S code
page

IDOL KeyView (12.9)

s

’Oumutcharset is
set?

Converts
characters fram
source charset to
target charset

No
¥

Output character
set is source
charset

Page 84 of 482



HTML Export SDK C and COM Programming Guide
Chapter 4: Use the HTML Export API

Examples of Character Set Conversion

The examples below demonstrate possible configurations for mapping character sets and the expected
output for each scenario.

Document Character Set Can be Determined

For the example in the following table, the document is an RTF file. The section Document Readers, on
page 392 indicates that the document character set can be obtained from this file type. The document
character set is Traditional Chinese (BIG5).

Document character set can be determined

Source Target Output charset
charset set charset
set

KVCS_GB KVCS_UTF8 KVCS_UTF8

Converts GB (Simplified Chinese) to UTF-8. The output character set is
the target character set specified in the API.

KVCS_GB -- KVCS_GB

Converts BIGS to GB (Simplified Chinese). The output character set is
the source character set specified in the API.

-- KVCS_UTF8 KVCS_UTF8

Converts BIG5 to UTF-8. The output character set is the target character
set specified in the API.

-- -- KVCS_BIG5

The output character set is the document character set. No conversion.

Document Character Set Cannot be Determined

For the example in the following table, the document is an ASCI| file. The section Document Readers,
on page 392 indicates that the document character set cannot be obtained from this file type. The
document character set is KVCS_1251.

Document character set cannot be determined

Source Target Output charset

charset charset

set set

KVCS_1252 KVCS_ KVCS_UTF8
UTF8

Converts KVCS_1252 to KVCS_UTF8. The output character set is the target

IDOL KeyView (12.9) Page 85 of 482



HTML Export SDK C and COM Programming Guide
Chapter 4: Use the HTML Export API

Document character set cannot be determined, continued

Source Target Output charset
charset charset
set set

character set specified in the API.
KVCS_1252 KVCS_ KVCS_1252
UNKNOWN . ey
The output character set is the source character set specified in the API
because KVCS_UNKNOWN cannot be used. No conversion.
KVCS_1252 -- KVCS_1252

The output character set is the source character set specified in the API.
No conversion.
-- KVCS_ KVCS_1252
1252 Converts OS code page to KVCS_1252. The output character set is the
target character set specified in the API.

-- -- The output character set is OS code page. No conversion.

Set the Character Set During Conversion

You can convert the character set of afile at the time the file is converted.

To specify the source character set for documents from which the document character set
cannot be obtained by the reader

1. Set the eSrcCharSet member of the KVHTMLOptionsEx structure to one of the character sets
enumerated in KVCharSet in kvcharset.h. See KVHTMLOptionsEx, on page 237.

2. Setthe bForceSrcCharSet member of the KVHTMLOptionsEx structure to TRUE.

To specify the target character set

1. Set the OutputCharSet member of the KVHTMLOptionsEx structure to one of the character sets
enumerated in KVCharSet in kvcharset.h. See KVHTMLOptionsEx, on page 237.

2. Setthe bForceOutputCharSet member of the KVYHTMLOptionsEx structure to TRUE.

Set the Character Set During File Extraction from a
Container

You can convert the character set of a container subfile at the time the subfile is extracted from the
container and before it is converted to HTML. This is most often used to set the output character set of
amail message's body text. See Use the HTML Export API, on page 79.

To specify the source character set of a subfile, call the fpExtractSubFile() function, and set the

IDOL KeyView (12.9) Page 86 of 482



HTML Export SDK C and COM Programming Guide
Chapter 4: Use the HTML Export API

KVExtractSubFileArg->srcCharset argument to any value in the enumerated list in KVCharSet in
kvcharset.h. See fpExtractSubFile(), on page 142.

To specify the target character set of a subfile, call the fpExtractSubFile() function, and set the
KVExtractSubFileArg->trgCharSet argument to any value in the enumerated list in KVCharSet in
kvcharset.h.

Map Styles

Export can map paragraph and character styles in any word processing format that contains styles
(such as Microsoft Word, RTF, or Folio Flat File) to user-defined markup. This feature is useful for
shaping the look of the HTML output, or for generating user-defined metadata (including using XML
tags) for indexing, searching, and navigation. With this feature, you can redact (hide) text in the source
document, delete content, or change the overall structure of the output. You can also embed style
sheet styles in the output defined in the HTML.

To enable style mapping, you must indicate which paragraph and/or character styles are to be mapped,
and define the starting and ending markup to be included in the HTML output.

For example, if the source Microsoft Word document contains the character style "Recipe," and the
content of the style in Microsoft Word is "Brownies," you can specify that the starting markup be
<recipe> and the ending markup </recipe>. This would result in the output HTML containing:
<recipe>Brownies</recipe>.

You can also use style mapping to control the look of the HTML output either by using a Cascading
Style Sheet (CSS) or by defining the style directly in the starting markup. For example, if a Word
document contains the paragraph style "Colorful", you can have markup of the form <p><div
class="rainbow"> inserted at the front of the paragraph and markup of the form </div></p> inserted
at the end of the paragraph. "Rainbow" is a CSS style defined in an externally provided CSS file
referenced at the top of the HTML output.

Style mapping is enabled in the wordstyle.ini template file. The HTML Export Getting Started page
demonstrates the output resulting from a conversion with wordstyle. ini. The Getting Started page,
named htmstart.html, is in the directory install\htmlexport\docs, where install is the path
name of the Export installation directory. The source documents used in the page are in the directory
install\testdocs.

NOTE: When the user-defined markup in KvSty1le conflicts with other markup generated by Export,
the user-defined markup takes precedence.

Use the C API

To map styles by using the C API

1. Define the KvStyle structure. See KVStyle , on page 224. The information in this structure
includes:

IDOL KeyView (12.9) Page 87 of 482



HTML Export SDK C and COM Programming Guide
Chapter 4: Use the HTML Export API

« the markup to be added to the beginning and end of a paragraph or character style.

« the name of the word processing style (for example, "Heading 1") to which style mapping
applies. Style names are case sensitive.

« the flag which defines instructions on how to process the content associated with a paragraph
or character style. The flags are defined in kvtypes . h and described in Flags for Defining
Styles, on the next page.

2. Callthe fpSetStyleMapping() function. See fpSetStyleMapping(), on page 188.

Use a Template file

To map styles by using a template file

1.

Use the KvStyle parameter to specify how many styles are being mapped. For example, if there
are nine mapped heading levels, add the following:

[KVStyle]
NumStyles=9

For each style, there must be a [StyleX] entry that contains the markup that appears at the start
and end of the defined style. For example, in the wordstyle.ini sample file, the first heading
level is defined as follows:

[Stylel]

StyleName=Colorful

MarkUpStart=<div class="colorful">
MarkUpEnd=<!-- end of colorful --></div>

These values are used in StyleName, MarkUpStart, and MarkUpEnd in the KvStyle structure.
See KVStyle, on page 224.

For each style, define the flag that applies. Flags define instructions on how to process the
content associated with a paragraph or character style.

They are defined in kvtypes. h and described in Flags for Defining Styles, on the next page. This
value is used in dwflags of the KVStyle structure. See KVStyle , on page 224. The value
associated with each flag is a hexadecimal number. You can set an option by either entering the
converted decimal value or entering the flag's text.

Flags=0

A finished entry in a template file could look like this:

[KVStyle]
NumStyles=3

[Stylel]

StyleName=Colorful

MarkUpStart=<div class="Colorful">
MarkUpEnd=<!-- End of Colorful --></div>
Flags=0

IDOL KeyView (12.9) Page 88 of 482



HTML Export SDK C and COM Programming Guide
Chapter 4: Use the HTML Export API

[Style2]
StyleName=RedactPara

MarkUpStart=<div class="RedactPara">
MarkUpEnd=<!-- End of RedactPara --></div>

Flags=2048

[Style3]
StyleName=Code
MarkUpStart=<pre>

MarkUpEnd=<!-- End of Code --></pre>

Flags=KVSTYLE_PRE

Flags for Defining Styles

Flag

KVSTYLE_PRE

KVSTYLE_HEADING[1-6]

KVSTYLE_ORDERLIST

KVSTYLE_UNORDEREDLIST

KVSTYLE_DELETECONTENT

KVSTYLE_
ONCONSECUTIVEPARAGRAPHS

KVSTYLE_REDACT

IDOL KeyView (12.9)

Description

The KVSTYLE_PRE flag specifies that white space should be preserved
(treated as characters, not word separators), and that mode changes,
such as changes in font size within a paragraph, should be ignored.
This allows the tags <pre> and </pre> to be used.

The flags KVSTYLE_HEADING[1-6] specify that a given style is to be
detected and processed as a heading. Heading flags are exclusive.
This means a style cannot be processed as both h1 and h2.

By default, Export maps the heading style "Heading 1" to <h1></h1>,
and so on, for heading levels 1 through 6. If you use style mappings,
the default mapping is overridden. Therefore, you must supply markup
for all heading levels. HTML Export uses heading levels to define the
overall structure of the HTML output.

The KVSTYLE_ORDERLIST flag specifies that the style should be
tagged as an ordered list. Currently not implemented.

The KVSTYLE_UNORDERLIST flag specifies that the style should be
tagged as an unordered list. Currently not implemented.

The KVSTYLE_DELETECONTENT flag specifies that the content
associated with the style tag should be deleted from the output.

The KVSTYLE_ONCONSECUTIVEPARAGRAPHS flag specifies that the style
should be applied to consecutive paragraphs of the document. If this
flag is used, and two or more paragraphs require the same style, the
opening and closing tags that normally appear between each
paragraph are not generated.

The KVSTYLE_REDACT flag is used to hide sensitive or confidential
information in the source document. It specifies that the text
associated with the style tag should be replaced in the HTML output
with a selected character.

The default replacement character is "X," but you can specify a

Page 89 of 482



HTML Export SDK C and COM Programming Guide
Chapter 4: Use the HTML Export API

Flags for Defining Styles, continued

Flag Description

different replacement character by setting cRedact. See cRedact, on
page 243.

Use the COM interface

To map styles by using the COM interface

1. Callthe AddStyleMapping(), GetStyleMapping(), and RemoveStyleMapping() methods. See
AddStyleMapping, on page 279, GetStyleMapping, on page 281, and RemoveStyleMapping, on
page 282.

2. Define the NumStyles property. See NumStyles, on page 296.

Use Style Sheets

You can use style sheets to define the overall layout and type specifications of the HTML output.
Export can write style sheet information to an external Cascading Style Sheet (CSS) file, or read the
information from an existing CSS file during the conversion. The formatting data can either be stored
within the output HTML file (inline), or externally in a CSS file. Using an external style sheet makes the
HTML output significantly smaller, and allows you to use the same style sheet for many conversions.
The style sheet options are enumerated in KVHTMLStyleSheetType.

NOTE: Cascading style sheets can be used only with word processing documents.

To enable CSS formatting and output the generated formatting data within the output HTML stream, set
eStyleSheetType member to CSS_INLINE, either directly in the KYHTMLOptionsEx structure orin the
template file.

NOTE: You cannot retrieve the CSS if you have set bNoPictures to TRUE (see
KVHTMLOptionsEx, on page 237).

To enable CSS formatting and output the generated formatting data in an external CSS file
that is referenced in the HTML output as a tag

1. SeteStyleSheetType to CSS_TOFILE, either directly in the KYHTMLOptionsEx structure orin the
template file.

2. Inthetemplate file, use the $STYLESHEET token to specify the URL of the style sheet in the HTML
output. The external CSS file is referenced in the output HTML by a LINK statement of the form:

<LINK rel="STYLESHEET" href="CSS_file" type="text/css">

IDOL KeyView (12.9) Page 90 of 482



HTML Export SDK C and COM Programming Guide
Chapter 4: Use the HTML Export API

3. Call the KVHTMLSetStyleSheet () function to set the path and file name of the external style
sheet. See KVHTMLSetStyleSheet(), on page 204.

The sample program htmlini provides an example of using style sheets. htmlini, on page 129.

Display Vector Graphics on UNIX and Linux

Export offers the option of rasterizing vector graphic content from source documents into a variety of
graphics formats including JPEG, PNG, WMF, and CGM. This solution is implemented with Windows
Graphical Device Interface (GDI) code, and therefore is not portable to other platforms.

The output format of vector graphics is defined by the OutputVectorGraphicType memberin the
KVHTMLOptionsEx structure, and the options are enumerated in KVHTMLGraphicType in kvhtml.h.
See KVHTMLOptionsEx, on page 237 and KVHTMLGraphicType, on page 266.

To display vector graphics in presentation, word processing, and spreadsheet files on UNIX and Linux,
Export can convert the files directly to JPEG by using a Java program named kvraster.class. This
program uses the Java Abstract Windowing Toolkit (AWT). Alternatively, rather than rasterizing,
Export can output text from vector graphics in SVG foramt, which works the same as on Windows.

To convert the file
1. If rasterizing, add the location of the JRE to the PATH environment variable.

2. SetOutputVectorGraphicType to KVGFX_JPEG (for raster output), or KVGFX_SVG (for text-only
vector output) in the defunix. ini template file or directly in the API.

3. Convert the document to HTML. The graphics in the document are converted to JPEG or SVG
and stored in the output directory.

Search and Highlight Terms

KeyView can use the highlighting API to find and highlight specified text strings in the HTML output.
Only text strings that exactly match the search term are highlighted. For example, if you specify the
term house, the string house is highlighted in house, houses, and housed, but is not highlighted in the
term housing. You can define the text attributes used to highlight the text, such as bold, red, or
underlined, and the text's target character set.

If a specified term contains HTML code, it is not found. For example, if the phrase weekly schedule
was specified, the following string in the output HTML would not be found:

weekly <b>schedule</b>

If you specify multiple terms, and some terms are subsets of other terms, Micro Focus recommends
that you specify the superset first. For example,

["North American car manufacturers car manufacturers car"

IDOL KeyView (12.9) Page 91 of 482



HTML Export SDK C and COM Programming Guide
Chapter 4: Use the HTML Export API

To specify search terms by using the C API

1. Define the KVHTMLHighlight data structure specifying the list of terms, the highlighting
attributes, and the case-sensitivity Boolean. See KVHTMLHighlight, on page 231.

2. Callthe fpSetHighlight() function. See KVHTMLSetHighlight(), on page 202.

Include Revision Information

The revision tracking feature in applications—such as Microsoft Word's Track Changes—marks
changes to a document (typically, strikethrough for deleted text and underline for inserted text) and
tracks each change by reviewer name and date.

If revision tracking was enabled when changes were made to a document, You can configure Export to
convert the deleted text and graphics and include revision information in the HTML output. (The deleted
content and revision information is excluded from the HTML output by default.)

Content that was added to the document is identified by <ins> tags and is underlined when displayed in
a browser. Content that was deleted from the document is identified by <del> tags and is displayed
with strikethrough formatting.

The <ins> and <del> tags include the following attributes:

style This is an optional attribute that is not included by default. You can define a unique HTML
style (such as color: red; background: orange)thatis applied to each reviewer's
edits. See Configure the Revision Style, on page 94.

title The title attribute can contain a prefix and revision information which is displayed in a
browser. By default, the prefix is either the text string "inserted:" or"deleted:", and
the revision information includes the reviewer name, and the date and time the revision
was made.

You can exclude the title attribute or define different text strings for the title attribute
(see Configure the Revision Title, on the next page).

cite The cite attribute contains the name of the reviewer who made the revision.

datetime The datetime attribute contains the date and time the revision was made. The date is in
1SO-8601 format: YYYY-MM-DDThh:mm:ss.

For example, the following markup can be generated for inserted text:

<ins style="color: red" title="Inserted: JohnD, 2006-04-24T14:47:00"
cite="mailto:JohnD" datetime="2006-04-24T14:47:00">This text was added</ins> in a
previous version.

This text is displayed in the browser as:

This text was added in a previous version.

When you hover the cursor over the underlined text in the browser, the text "Inserted: JohnD, 2006-
04-24T14:47:00" is displayed as a ToolTip.

IDOL KeyView (12.9) Page 92 of 482



HTML Export SDK C and COM Programming Guide
Chapter 4: Use the HTML Export API

NOTE: Whether the text is displayed with strikethrough or underline depends on the configuration
and capabilities of the browser.

To convert deleted text and graphics and include revision information

1. Callthe fpInit() or fpInitWithLicenseData() function. See fplnit() or fpInitWithLicenseData
()-

2. Define the KVRevisionMark structure. See KVRevisionMark, on page 252.

3. Callthe fpHTMLConfig() function with the following arguments (see KVHTMLConfig(), on
page 190):

Argument Parameter

nType KVCFG_INCLREVISIONMARK
nValue TRUE
pData A pointer to the KVRevisionMark structure which defines the information that

appears in the title attribute and the HTML styles applied to revised content. If
you pass NULL to this function, defaults are used.

For example:

KVRevisionMark RMark;

memset (&RMark, ©, sizeof(KVRevisionMark));
KVStructInit(&RMark);

RMark. ..

(*fpHTMLConfig) (pKVHTML, KVCFG_INCLREVISIONMARK, TRUE, &RMark))

The htmlini sample program demonstrates this function. See htmlini, on page 129.

4. Callthe fpConvertStream() or KVHTMLConvertFile() function. See fpConvertStream(), on
page 171 or KVHTMLConvertFile(), on page 198.

Configure the Revision Title

The title attribute can contain a prefix and revision information which is displayed in a browser. By
default, the prefix is either the text string "inserted:" or "deleted:" and the reviewer name and
date/time are included in the title.

o Toexclude the title attribute from the <ins> and <del> tags, set the RM_TITLE_FLAG inthe KV_
RM_Title structure to RMT_Off. See KV_RM_Title, on page 253.

« Todefine a different text string for the prefix, specify a new text string in the pprefix member and
set the nSize and eCharSet members of the KV_RM_Title structure. See K\V_RM Title, on
page 253.

« Tochange the revision information included in the title attribute, set the RM_TITLE_FLAG in the
KV_RM_Title structure. See RM_Title Flag, on page 276.

IDOL KeyView (12.9) Page 93 of 482



HTML Export SDK C and COM Programming Guide
Chapter 4: Use the HTML Export API

The following example sets the prefix as "Added:" and "Removed:" for inserted and deleted text
respectively, and only includes the reviewer name in the title attribute:

KVRevisionMark RMark;

char RMInsPre[16] "Added:";

char RMDelPre[16] = "Removed:";
memset (&RMark, @, sizeof(KVRevisionMark));
KVStructInit(&RMark);
RMark.InsTitle.eFlag = RMT_Author;
RMark.InsTitle.pPrefix = (BYTE *)(&RMInsPre);
RMark.InsTitle.nSize = strlen(RMInsPre);
RMark.InsTitle.eCharSet = KVCS_UTFS8;
RMark.DelTitle.eFlag = RMT_Author;
RMark.DelTitle.pPrefix = (BYTE *)(&RMDelPre);
RMark.DelTitle.nSize = strlen(RMDelPre);
RMark.DelTitle.eCharSet = KVCS_UTF8;

(*fpHTMLConfig) (pKVHTML, KVCFG_INCLREVISIONMARK, TRUE, &RMark))

Configure the Revision Style

You can define a unique HTML style (such as color: red; background: orange)thatis appliedto
each reviewer's modifications. This allows you to easily differentiate between multiple reviewers' edits.
For example, changes made by JSmith are highlighted in red, changes made by RBrown are
highlighted in blue, and so on.

To define revision styles, set the number of revision styles in the nAuthorStyles member of the
KVRevisionMark structure, and use the ppAuthorStyles member for each style to define the contents
of the style attribute. See K\VVRevisionMark, on page 252.

The following example defines two revision styles:

KVRevisionMark RMark;

char RMAuthorStyle@[60] = "color: red; background: yellow";

char RMAuthorStylel[60] = "color: green; background: silver";
memset (&RMark, 0, sizeof(KVRevisionMark));
KVStructInit(&RMark);
RMark.nAuthorStyles = 2;
RMark.ppAuthorStyles = (char **)malloc(sizeof(char *)*2);
if(!RMark.ppAuthorStyles) return(1);
RMark.ppAuthorStyles[@] = RMAuthorStyle@;
RMark.ppAuthorStyles[1] = RMAuthorStylel;

(*fpHTMLConfig) (pKVHTML, KVCFG_INCLREVISIONMARK, TRUE, &RMark))

If there are more reviewers than defined styles, KeyView applies all available styles to the reviewers in
the order in which they are encountered in the document, and then applies styles starting from the
beginning of the list to the remaining reviewers. This process is repeated until all reviewers' edits are
highlighted.

NOTE: KeyView does not validate styles. They are written directly to the HTML output.

IDOL KeyView (12.9) Page 94 of 482



HTML Export SDK C and COM Programming Guide
Chapter 4: Use the HTML Export API

Generate a Revision Summary

You can configure Export to summarize the changes made to a document in a revision summary file
that is generated during the HTML conversion. The summary file is created in the directory where the
HTML output is generated. The default file name is output_filename.revsum.htm. Youcan
customize this file name by using the fpGetAnchor callback function. See GetAnchor(), on page 210.

To create a revision summary file, set the bCreateSummary flag to TRUE in the KVRevisionMark
structure, and use the pszRevSumStartBlock and pszRevSumEndBlock members to define the markup
and tokens inserted at the beginning and end of the revision summary file.

For example:

KVRevisionMark RMark;

char RMStartBlock[500] = "<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML
4.0//EN"> <html> <body>";
char RMEndBlock[30] = "</body> </html>";

memset (&RMark, 0, sizeof(KVRevisionMark));
KVStructInit(&RMark);
RMark.pszRevSumStartBlock = RMStartBlock;
RMark.pszRevSumEndBlock = RMEndBlock;
RMark.bCreateSummary = TRUE;

(*fpHTMLConfig) (pKVHTML, KVCFG_INCLREVISIONMARK, TRUE, &RMark))

Extract Text from Text Boxes

By default, the contents of Microsoft Word text boxes are converted to graphics and exported.
Alternatively, you can convert the contents of text boxes to text.

| NOTE: The extracted text box text is not formatted.

To enable text box extraction
« Add the following to the formats_e. ini file:

[WordTextBoxOptions]
OutputText=true

Convert PDF Files

Export has special configuration options that allow greater control over the conversion of PDF files.
These options can improve the fidelity and accuracy of the HTML output.

Use the pdf2sr Reader

IDOL KeyView (12.9) Page 95 of 482



HTML Export SDK C and COM Programming Guide
Chapter 4: Use the HTML Export API

In KeyView Export SDK 10.24, the pdf2sr reader was added. It generates a high fidelity raster image
of each page in the PDF and will insert text that has a zero opacity value in the HTML to allow for text
searching in a web browser.

The pdf2sr reader has the following features:
« supports standard and custom metadata (non-XMP)
« supports basic text extraction
« supports password protected PDFs
The pdf2sr reader has the following limitations:
« does not support logical order
« does not support bidi PDFs
« does not extract subfiles
« does not extract bookmarks from PDFs
« does not give estimations on percent embedded fonts match with display glyphs
« does not support XMP metadata
« does not support headers or footers
« supports annotations only in the raster output, not as searchable text
« does not support content access stream

« does not support tagged content (PDFs)

To specify the pdf2sr reader
1. Openthe formats_e.ini file with a text editor.
2. Inthe [Formats] section, set the following parameter to the pdf2sr reader:
200=pdf2

When you use the pdf2sr reader, the output HTML uses HTMLS syntax that might be disabled when
using Internet Explorer to view the output. It might prompt the user for permission to run. To disable this
behavior, configure Internet Explorer as follows:

1. InInternet Explorer, select Tools from the menu.
2. Select Internet Options.

3. Click the Advanced tab.
4

In the Security area, click Allow active content to run in files on My Computer.

Use a Graphic-Based Reader

Two graphic-based PDF readers are available. The readers display PDFs by converting each page of
the PDF to animage. If you do not want to redistribute the Acrobat Reader with your application, you
can use a graphic-based reader instead.

IDOL KeyView (12.9) Page 96 of 482



HTML Export SDK C and COM Programming Guide
Chapter 4: Use the HTML Export API

The two readers support different features. Choose the appropriate reader depending on your
requirements:

« The kppdfrdr reader supports highlighting, annotation, and several other features but also has
several graphical limitations.

« The kppdf2rdr reader produces high-fidelity raster images but is a viewer only and does not
support highlighting or other features.

Use the kppdfrdr Reader
The kppdfrdr graphic-based reader has the following features:
« supports vectorimages
« supports rotation and scaling
« supports multibyte and bidirectional text
« allows you to search text in the output
The kppdfrdr reader has the following limitations:

« Embedded fonts in a PDF file are not translated correctly. They are usually displayed using the
question mark (?) replacement character.

« If an unsupported font is encountered during conversion, the default font, Times New Roman, is
substituted.

« Supports 180 degree rotation only for rasterimages.

« Supports the following color spaces: DeviceRGB, DeviceGray, DeviceCMYK, CalGray, and
CalRGB color spaces. Indexed color spaces are supported as long as they are used with a
supported basic color space.

« Does not support hyperlinks.

« Does not extract summary information (metadata).

Use the kppdf2rdr Reader

The kppdf2rdr graphic-based reader produces high-fidelity rasterimages. However, it has the following
limitations:

« Does not support anything beyond viewing, such as text searching.

« Does not support PDFs that contain XFA forms content.
Specify the Graphic-based Reader

By default, the Acrobat control is used to convert PDF documents. Use the following procedure to
specify that one of the graphic-based readers be used to convert PDF documents.

IDOL KeyView (12.9) Page 97 of 482



HTML Export SDK C and COM Programming Guide
Chapter 4: Use the HTML Export API

To specify the graphic-based reader

1. Openthe formats_e.ini file with a text editor. The file is installed in the root of the Windows
directory.

2. Inthe [HiFi] section, set the following parameter to the graphic-based reader you want to use.
Set one of the following values:

« Forthe kppdfrdr reader:
200=kppdfrdr
This is the default setting.
o Forthe kppdf2rdr reader:
200=kppdf2rdr

3. Setthe KVCFG_SETHIFIPDF option inthe fpHTMLConfig() function (see KVHTMLConfig(), on
page 190).

Convert PDF Files to Raster Images

Export allows you to convert each page of a PDF document to a raster image, providing a high-fidelity
conversion of the document.

The output format depends on the value of OutputRasterGraphicType in KVHTMLOptionsEx. See
KVHTMLOptionsEx, on page 237.

On UNIX and Linux, the conversion of PDFs to JPEG uses the Java program kvraster.class. This
Java program requires some setup. See Display Vector Graphics on UNIX and Linux, on page 91.

To use a graphic-based reader to convert PDF documents
1. Specify the graphic-based reader that you want to use.

2. Callthe fpInit() orfpInitWithLicenseData() function. See fplnit() or fplnitWithLicenseData

0-

3. Call the KVHTMLConfig() function with the following arguments (see KVHTMLConfig(), on
page 190):

Argument Parameter

nType KVCFG_SETHIFIPDF
nvalue TRUE (non-zero)
pData NULL

For example:

(*fpHTMLConfig) (pKVHTML, KVCFG_SETHIFIPDF, TRUE, NULL);

IDOL KeyView (12.9) Page 98 of 482



HTML Export SDK C and COM Programming Guide
Chapter 4: Use the HTML Export API

The cnv2html sample program demonstrates this function. See cnv2html, on page 125.

4. Callthe fpConvertStream() or KVHTMLConvertFile() function. See fpConvertStream(), on
page 171 or KVHTMLConvertFile(), on page 198.

Convert PDF Files to a Logical Reading Order

The PDF format is primarily designed for presentation and printing of brochures, magazines, forms,
reports, and other materials with complex visual designs. Most PDF files do not contain the logical
structure of the original document—the correct reading order, for example, and the presence and
meaning of significant elements such as headers, footers, columns, tables, and so on.

KeyView can convert a PDF file either by using the file's internal unstructured paragraph flow, or by
applying a structure to the paragraphs to reproduce the logical reading order of the visual page. Logical
reading order enables KeyView to produce PDF files that contain languages that read from right-to-left
(such as Hebrew and Arabic) in the correct reading direction.

NOTE: The algorithm used to reproduce the reading order of a PDF page is based on common page
layouts. The paragraph flow generated for PDFs with unique or complex page designs might not
emulate the original reading order exactly.

For example, page design elements such as drop caps, callouts that cross column boundaries, and
significant changes in font size might disrupt the logical flow of the output text.

Logical Reading Order and Paragraph Direction

By default, KeyView produces an unstructured text stream for PDF files. This means that PDF
paragraphs are extracted in the order in which they are stored in the file, not the order in which they
appear on the visual page. For example, a three-column article could be output with the headers and the
title at the end of the output file, and the second column extracted before the first column. Although this
output does not represent a logical reading order, it accurately reflects the internal structure of the PDF.

You can configure KeyView to produce a structured text stream that flows in a specified direction. This
means that PDF paragraphs are extracted in the order (logical reading order) and direction (left-to-right
or right-to-left) in which they appear on the page.

The following paragraph direction options are available.

Paragraph Description
Direction
Option

Left-to-right Paragraphs flow logically and read from left to right. You should specify this option
when most of your documents are in a language that uses a left-to-right reading order,
such as English or German.

Right-to- Paragraphs flow logically and read from right to left. You should specify this option
left when most of your documents are in a language that uses a right-to-left reading order,
such as Hebrew or Arabic.

IDOL KeyView (12.9) Page 99 of 482



HTML Export SDK C and COM Programming Guide
Chapter 4: Use the HTML Export API

Paragraph Description
Direction
Option

Dynamic Paragraphs flow logically. The PDF reader determines the paragraph direction for each
PDF page, and then sets the direction accordingly. When a paragraph direction is not
specified, this option is used.

Conversions might be slower when logical reading order is enabled. For optimal speed, use an
unstructured paragraph flow.

The paragraph direction options control the direction of paragraphs on a page; they do not control the
text direction in a paragraph. For example, let us say that a PDF file contains English paragraphs in
three columns that read from left to right, but 80% of the second paragraph contains Hebrew
characters. If the left-to-right logical reading order is enabled, the paragraphs are ordered logically in the
output—title paragraph, then paragraph 1, 2, 3, and so on—and flow from the top left of the first column
to the bottom right of the third column. However, the text direction of the second paragraph is
determined independently of the page by the PDF reader, and is output from right to left.

NOTE: Extraction of metadata is not affected by the paragraph direction setting. The characters
and words in metadata fields are extracted in the correct reading direction regardless of whether
logical reading order is enabled.

Enable Logical Reading Order
You can enable logical reading order by using either the API or the formats_e. ini file. Setting the
direction in the API overrides the setting in the formats_e. ini file.

Use the C API

To enable PDF logical reading order in the C API

1. Callthe fpInit() or fpInitWithLicenseData() function. See fplnit() or fpInitWithLicenseData
()-

2. Call the KVvHTMLConfig() function with the following arguments (see KVHTMLConfig(), on
page 190):

Argument Parameter

nType KVCFG_LOGICALPDF

nValue Set to one of the following flags which are defined in kvtypes.h. (see LPDF_
DIRECTION, on page 275):

« LPDF_LTR—Logical reading order and left-to-right paragraph direction.

« LPDF_RTL—Logical reading order and right-to-left paragraph direction.

IDOL KeyView (12.9) Page 100 of 482



HTML Export SDK C and COM Programming Guide
Chapter 4: Use the HTML Export API

Argument Parameter

« LPDF_AUTO—Logical reading order. The PDF reader determines the paragraph
direction for each PDF page, and then sets the direction accordingly. When a
paragraph direction is not specified, this option is used.

« LPDF_RAW—Unstructured paragraph flow. This is the default behavior. If
logical reading order is enabled, and you want to return to an unstructured
paragraph flow, set this flag.

pData NULL

For example:
(*fpHTMLConfig) (pKVHTML, KVCFG_LOGICALPDF, LPDF_RTL, NULL);
The cnv2html sample program demonstrates this function. See cnv2html, on page 125.

Call the fpConvertStream() or KVHTMLConvertFile() function. See fpConvertStream(), on
page 171 or KVHTMLConvertFile(), on page 198.

Use the formats_e.ini File

The formats_e.ini fileis in the directory instal (\0OS\bin, where install is the path name of the
Export installation directory and 0S is the name of the operating system.

To enable logical reading order by using the formats_e.ini file

1.

Change the PDF reader entry in the [ Formats] section of the formats_e. ini file as follows:

[Formats]
200=1pdf

Optionally, add the following section to the end of the formats_e. ini file:

[pdf_flags]
pdf_direction=paragraph_direction

where paragraph_direction is one of the following:

Flag Description

LPDF_ Left-to-right paragraph direction
LTR

LPDF_ Right-to-left paragraph direction
RTL

LPDF_ The PDF reader determines the paragraph direction for each PDF page, and then sets
AUTO  the direction accordingly. When a paragraph direction is not specified, this option is
used.

LPDF_ Unstructured paragraph flow. This is the default behavior. If logical reading order is
RAW  enabled, and you want to return to an unstructured paragraph flow, set this flag.

IDOL KeyView (12.9) Page 101 of 482



HTML Export SDK C and COM Programming Guide
Chapter 4: Use the HTML Export API

Generate a Table of Contents from PDF Bookmarks

When you convert PDF files to HTML by using the basic reader (pdfsr), the table of contents is
generated from "bookmarks" within the PDF file. The hyperlinked table of contents can appear either at
the beginning of the HTML file or in a separate frame.

Micro Focus recommends that you configure the conversion so that the table of contents appears in a
separate frame (the template pdfframe.ini demonstrates how to do this, see Set Conversion
Options, on page 39). Export uses absolute positioning when converting a PDF file, that is, the text
appears in the exact position as in the original document. Table of contents entries do not contain
absolute positioning information. Therefore, if the main document and the table of contents are
generated in the same output file, the table of contents entries might overlap the body text in the
document.

NOTE: When PDF bookmarks are converted to a table of contents in HTML, the generated links do
not lead to the exact location of the destination marker, but jump to the page on which the
destination marker exists. This is similar to the behavior of the Adobe Acrobat Reader.

Disable Bookmark Conversion

By default, Export converts PDF bookmarks to a table of contents in the HTML output. However, you
can configure Export not to generate a table of contents based on the PDF bookmarks.

To prevent conversion of PDF bookmarks

1. Callthe fpInit() or fpInitWithLicenseData() function. See fplnit() or fpInitWithLicenseData
().

2. Call the KVvHTMLConfig() function with the following arguments (see KVHTMLConfig(), on
page 190):

Argument Parameter

nType KVCFG_SUPPRESSTOCPRINTIMAGE
nValue TRUE (non-zero)
pData NULL

For example:

(*fpHTMLConfig) (pKVHTML, KVCFG_SUPPRESSTOCPRINTIMAGE, TRUE, NULL);

The sample programs Export Demo and cnv2html have KVCFG_SUPPRESSTOCPRINTIMAGE
enabled. When you use these programs to convert a PDF file with bookmarks, the HTML output
does not include a table of contents.

3. Callthe fpConvertStream() or KYHTMLConvertFile() function. See fpConvertStream(), on
page 171 or KVHTMLConvertFile(), on page 198.

IDOL KeyView (12.9) Page 102 of 482



HTML Export SDK C and COM Programming Guide
Chapter 4: Use the HTML Export API

Convert Invisible Text

PDF documents sometimes contain invisible text. You can search this text in Adobe PDF Reader, but
you cannot view it in a web browser.

Toggle Invisible Text

You can add a JavaScript button to the upper right corner of the exported page, which you can click to
toggle between invisible and regular text. When you turn on invisible text, the invisible text is displayed
and the regular content is hidden; when you turn off invisible text, the invisible text is hidden.

Invisible text is hidden by default. The toggle button only appears if invisible text is detected in the PDF
document.

To add an invisible text toggle button

1. Callthe fpInit() or fpInitWithLicenseData() function. See fplnit() or fpInitWithLicenseData
().

2. Callthe KVvHTMLConfig() function with the following arguments (see KVHTMLConfig(), on
page 190):

Argument Parameter

nType KVCFG_SETPDFINVISTEXTTOGGLE
nvalue 0 (not used)
pData szButtonName

For example:

(*fpHTMLConfig) (pKVHTML, KVCFG_SETPDFINVISTEXTTOGGLE, ©, szButtonName);

The cnv2html and htmlini sample programs demonstrate this function. See cnv2html, on
page 125 and htmlini, on page 129.

3. Call the fpConvertStream() or KVHTMLConvertFile() function. See fpConvertStream(), on
page 171 or KVHTMLConvertFile(), on page 198.

NOTE: If noinvisible text is detected in the PDF document, no toggle button appears in the
HTML output even if you set KVCFG_SETPDFINVISTEXTTOGGLE.

Specify Opacity of Invisible Text

Invisible text often occurs in PDF documents when the PDF software processes rasterized images
through optical character recognition and then inserts the text in the PDF. You might want to display
both the invisible text as well as the rasterized image. To do so, you can set the invisible text opacity
as determined by an integer from 0 to 100, where 0 hides the invisible text and 100 displays it fully.

Invisible text opacity is set to 0 by default.

IDOL KeyView (12.9) Page 103 of 482



HTML Export SDK C and COM Programming Guide
Chapter 4: Use the HTML Export API

To set invisible text opacity

1. Callthe fpInit() or fpInitWithLicenseData() function. See fplnit() or fpInitWithLicenseData

0-

2. Call the KVHTMLConfig() function with the following arguments (see KVHTMLConfig(), on
page 190):

Argument Parameter

nType KVCFG_SETPDFINVISTEXTOPACITY
nValue iInvisOpacity

pData NULL

For example:

(*fpHTMLConfig) (pKVHTML, KVCFG_SETPDFINVISTEXTOPACITY, iInvisOpacity, NULL);
The htmlini sample program demonstrates this function. See htmlini, on page 129.

3. Callthe fpConvertStream() or KVHTMLConvertFile() function. See fpConvertStream(), on
page 171 or KVHTMLConvertFile(), on page 198.

Convert Rotated Text

By default, rotated text is displayed in its original position, at the original font size, and at 0 degrees
rotation in the HTML output. The text is not rotated in the HTML output because text rotation is not
supported by HTML.

Because the text is the original size, but might be displayed in a smaller space (at 0 degrees), the text
might overlap adjacent text in the HTML output. To avoid this problem, you can specify that the rotated
text be removed from its original position and displayed at the bottom of the HTML page on which it
appears.

To specify that rotated text be displayed at the bottom of the HTML page

1. Callthe fpInit() or fpInitWithLicenseData() function. See fplnit() or fpInitWithLicenseData

0-

2. Call the KVHTMLConfig() function with the following arguments (see KVHTMLConfig(), on
page 190):

Argument Parameter
nType KVCFG_SETTEXTROTATE
nvalue TRUE (non-zero)

pData NULL

For example:

IDOL KeyView (12.9) Page 104 of 482



HTML Export SDK C and COM Programming Guide
Chapter 4: Use the HTML Export API

(*fpHTMLConfig) (pKVHTML, KVCFG_SETTEXTROTATE, TRUE, NULL);

The sample programs Export Demo and cnv2html demonstrate how to use this function. See
Use the Export Demo Program, on page 42, and htmlini, on page 129.

3. Call the fpConvertStream() or KVHTMLConvertFile() function. See fpConvertStream(), on
page 171 or KVHTMLConvertFile(), on page 198.

NOTE: When this feature is enabled, white space is added to the bottom of every HTML page to
accommodate any rotated text.

Control Hyphenation

There are two types of hyphens in a PDF document:

« A soft hyphen is added to a word by a word processor to divide the word across two lines. This is
a discretionary hyphen and is used to ensure proper text flow in justified text.

« A hard hyphen is intentionally added to a word regardless of the word's position in the text flow. It
is required by the rules of grammar or word usage. For example, compound words, such as
"three-week vacation" and "self-confident" contain hard hyphens.

By default, KeyView maintains the source document's soft hyphens in the output HTML to more
accurately represent the source document's layout. However, if you are using Export to generate text
output for an indexing engine or are not concerned with maintaining the document's layout, Micro Focus
recommends that you remove soft hyphens from the HTML output. To remove soft hyphens, you must
enable the soft hyphen flag.

NOTE: If the soft hyphen flag is enabled, every hyphen at the end of a line is considered a soft
hyphen and removed from the HTML output. If a hard hyphen appears at the end of a line, it is also
removed. This might result in an intentionally hyphenated word being extracted without a hyphen.

To remove soft hyphens from the HTML output

1. Callthe fpInit() or fpInitWithLicenseData() function. See fplnit() or fpInitWithLicenseData

0-

2. Call the KVHTMLConfig() function with the following arguments (see KVHTMLConfig(), on
page 190):

Argument Parameter

nType KVCFG_DELSOFTHYPHEN
nvValue TRUE (non-zero)
pData NULL

For example:

(*fpHTMLConfig) (pKVHTML, KVCFG_DELSOFTHYPHEN, TRUE, NULL);

IDOL KeyView (12.9) Page 105 of 482



HTML Export SDK C and COM Programming Guide
Chapter 4: Use the HTML Export API

3. Callthe fpConvertStream() or KVHTMLConvertFile() function. See fpConvertStream(), on
page 171 or KVHTMLConvertFile(), on page 198.

Extract Custom Metadata from PDF Files

To extract custom metadata from your PDF files, add the custom metadata names to the pdfsr.ini
file provided, and copy the modified file to the \bin directory. You can then extract metadata as you
normally would.

The pdfsr.ini is in the directory samples\pdfini, and has the following structure:

<META>
<TOTAL>total_item_number</TOTAL>,
/metadata_tag_name datatype,
</META>

Parameter Description

total item The total number of metadata tags that are listed.

number

metadata_ The metadata tag name used in the PDF files.

tag_name

datatype The data type of the metadata field. Data types are defined in KvSumInfoType. See
KVSumlnfoType, on page 271.

For example:

<META>

<TOTAL> 4 </TOTAL>

/part_number INT4

/volume INT4

/purchase_date  DATETIME

/customer STRING

</META>

NOTE: Metadata cannot be extracted from PDFs when the PDF is converted to JPEG. See
Convert PDF Files to Raster Images, on page 98.

Convert Spreadsheet Files

Export has special configuration options that allow greater control over the conversion of spreadsheet
files.

IDOL KeyView (12.9) Page 106 of 482



HTML Export SDK C and COM Programming Guide
Chapter 4: Use the HTML Export API

Convert Hidden Text in Microsoft Excel Files

Normally, Export does not convert hidden text from a Microsoft Excel spreadsheet because it is
assumed that the text should not be exposed. You can change this default behavior and convert text in
hidden rows, columns, and sheets by adding the following lines to the formats_e. ini file:

[Options]
gethiddeninfo=1

Convert Headers and Footers in Microsoft Excel 2003 Files

Normally, Export does not convert headers and footers from Microsoft Excel 2003 spreadsheets. You
can change this default behavior and convert headers and footers by adding the following lines to the
formats_e.ini file:

[Options]
ShowHeaderFooter=1

Specify Date and Time Format on UNIX Systems

In Microsoft Excel you can choose to format dates and times according to the system locale. On
Windows, KeyView uses the system locale settings to determine how these dates and times should be
formatted. In other operating systems, KeyView uses the U.S. short date format (mm/dd/yyyy). You
can change this by specifying the formats you wish to use in the formats. ini file.

To specify the system date and time format on UNIX systems
« Inthe formats.ini file, specify the following options:

o SysDateTime. The format to use when a cell is formatted using the system format including
both the date and the time.

o SyslLongDate. The format to use when a cell is formatted using the system long date format.

o SysShortDate. The format to use when a cell is formatted using the system short date
format.

o SysTime. The format to use when a cell is formatted using the system time format.
NOTE: These values cannot contain spaces.

For example, if you specify SysDateTime=%d/%m/%Y, dates and times are extracted in the
following format:
28/02/2008

The format arguments are the same as those for the strftime() function. Refer to the following
web page for more information.

See http://linux.die.net/man/3/strftime for more information.

IDOL KeyView (12.9) Page 107 of 482


http://linux.die.net/man/3/strftime

HTML Export SDK C and COM Programming Guide
Chapter 4: Use the HTML Export API

Convert Very Large Numbers in Spreadsheet Cells to
Precision Numbers

You can export numbers in Microsoft Excel files and write them to the output without formatting. By
default, numbers are exported in the format specified by the Excel file (for example, General, Currency,
and Date). Spreadsheets might contain cells that have very large numbers in them. Excel displays the
numbers in a scientific notation that rounds or truncates the numbers.

To export numbers without formatting, add the following options in the following lines to the formats_
e.ini file:

[Options]
ignoredefnumformats=1

Extract Microsoft Excel Formulas

Normally, the actual value of a formula is extracted from an Excel spreadsheet; the formula from which
the value is derived is not included in the output. However, KeyView enables you to include the value
as well as the formula in the output. For example, if Export is configured to extract the formula and the
formula value, the output might look like this:

245 = SUM(B21:B26)

The calculated value from the cell is 245, and the formula from which the value is derived is SUM
(B21:B26).

NOTE: Depending on the complexity of the formulas, enabling formula extraction might result in
slightly slower performance.

To set the extraction option for formulas, add the following lines to the formats_e. ini file:

[Options]
getformulastring=option

where option is one of the following:

Option Description

0 Extract the formula value only. This is the default.
Set this option if formula extraction is enabled, and you want to return to the
default.

1 Extract the formula only.

2 Extract the formula and the formula value.

NOTE: If a function in a formula is not supported or is invalid, and option 1 or 2 is specified, only the
calculated value is extracted. See the following table for a list of supported functions.

IDOL KeyView (12.9) Page 108 of 482



HTML Export SDK C and COM Programming Guide
Chapter 4: Use the HTML Export API

When formula extraction is enabled, Export can extract Microsoft Excel formulas containing the
functions listed in the following table:

Supported Microsoft Excel Functions

=ABS() =ACOS () =AND() =AREAS ()
=ASIN() =ATAN2() =ATAN2() =AVERAGE ()
=CELL() =CHAR() =CHOOSE () =CLEAN()
=CODE() =COLUMN()  =COLUMNS()  =CONCATENATE()
=C0S() =COUNT() =COUNTA() =DATE()
=DATEVALUE() =DAVERAGE() =DAY() =DCOUNT ()
=DDB() =DMAX () =DMIN() =DOLLAR()
=DSTDEV() =DSUM( ) =DVAR() =EXACT()
=EXP() =FACT() =FALSE() =FIND()
=FIXED() =FV() =GROWTH() =HLOOKUP ()
=HOUR () =ISBLANK()  =IF() =INDEX()
=INDIRECT() =INT() =IPMT() =IRR()
=ISERR() =ISERROR()  =ISNA() =ISNUMBER ()
=ISREF () =ISTEXT()  =LEFT() =LEN()
=LINEST() =LN() =LOG() =L0G10()
=LOGEST() =LOOKUP()  =LOWER() =MATCH()
=MAX () =MDETERM()  =MID() =MIN()
=MINUTE() =MINVERSE() =MIRR() =MMULT ()
=MOD( ) =MONTH() =N() =NA()
=NOT() =NOW( ) =NPER() =NPV()
=OFFSET() =OR() =PI() =PMT()
=PPMT () =PRODUCT()  =PROPER() =PV ()
=RATE() =REPLACE()  =REPT() =RIGHT()
=ROUND () =ROUND () =ROW() =ROWS ()
=SEARCH() =SECOND()  =SIGN() =SIN()
=SLN() =SQRT() =STDEV() =SUBSTITUTE()
=SUM() =SYD() =T() =TAN()
=TEXT() =TIME() =TIMEVALUE() =TODAY()

IDOL KeyView (12.9)

Page 109 of 482



HTML Export SDK C and COM Programming Guide
Chapter 4: Use the HTML Export API

=TRANSPOSE() =TREND() =TRIM() =TRUE()
=TYPE() =UPPER() =VALUE () =VAR()
=VLOOKUP()  =WEEKDAY() =YEAR()

Set Minimum Image Size

You can set a minimum size limit for the images to export from spreadsheet files. This option can
improve performance for documents that have lots of very small images.

To set the minimum image size, add the following lines to the formats_e. ini file:

[ss_flags]
process_images_with_min_width=N
process_images_with_min_height=M

where N and M are the minimum image dimensions, in pixels. For example:

[ss_flags]
process_images_with_min_width=150
process_images_with_min_height=250

Convert Presentation Files

Export has special configuration options that allow greater control over the conversion of presentation
files.

Convert Presentation Files to Raster Images

Export allows you to convert each slide in a presentation document to a raster image, providing a high-
fidelity conversion of the document.

The output format depends on the value of bRasterizeFiles in KVHTMLOptionsEx. See
KVHTMLOptionsEx, on page 237.

Convert Presentation Files to a Logical Reading Order

Some presentation files do not store the logical structure of the original document—the correct reading
order, for example, and the presence and meaning of significant elements such as headers, footers,
columns, tables, and so on.

In general, when you convert a presentation slide to a raster image, the output file retains the logical
reading order because it uses the correct coordinates for each element in the output. However, if you do
not use the bRasterizeFiles option in KVHTMLOptionsEx to produce a raster image, you might find
that the export process generates output for some files that does not match the logical reading order.

IDOL KeyView (12.9) Page 110 of 482



HTML Export SDK C and COM Programming Guide
Chapter 4: Use the HTML Export API

When you do not want to rasterize your presentation files, you can use the formats_e. ini file to retain
the logical reading order in your files.

The formats_e. ini fileis in the directory instal\OS\bin, where install is the path name of the
Export installation directory and 0S is the name of the operating system.

To enable logical reading order by using the formats_e.ini file
o Inthe formats_e.ini file, find the [Options] section, and set LogicalOrder to 1.
For example:

[Options]
LogicalOrder=1

Mitigate Text Wrapping

When KeyView cannot render text in exactly the same way as in the original presentation (for example
because exact font information is not available), the text might end up too large for the box that contains
it. In this case, it might clip at the box edge, or overwrite other text.

To mitigate this effect, you can use the GraphicFontScale option to reduce the size of all text rendered
to images by a certain amount.

NOTE: This option is available on Microsoft Windows platforms only.

The default value is 1. You can set it to a value between 0.01 and 100.0 to scale the text rendered into
images by this amount. Setting GraphicFontScale to slightly less than one can help prevent truncation
and wrapping when KeyView does not have access to exactly the correct font. For example:

[Options]
GraphicFontScale=0.95

Convert XML Files

Export enables you to extract all or selected content from source XML files (see Configure Element
Extraction for XML Documents, below). It detects the following XML formats:

« generic XML
« Microsoft Office 2003 XML (Word, Excel, and Visio)

« StarOffice/OpenOffice XML (text document, presentation, and spreadsheet)

See File Format Detection, on page 454 for more information on format detection.

Configure Element Extraction for XML Documents

When you convert XML files, you can specify which elements and attributes are extracted according to
the file's format ID or root element. This is useful when you want to extract only relevant text elements,

IDOL KeyView (12.9) Page 111 of 482



HTML Export SDK C and COM Programming Guide
Chapter 4: Use the HTML Export API

such as abstracts from reports, or a list of authors from an anthology.

A root element is an element in which all other elements are contained. In the XML sample below, book
is the root element:

<book>
<title>XML Introduction</title>
<product id="33-657" status="draft">XML Tutorial</product>
<chapter>Introduction to XML
<para>What is HTML</para>
<para>What is XML</para>
</chapter>
<chapter>XML Syntax
<para>Elements must have a closing tag</para>
<para>Elements must be properly nested</para>
</chapter>
</book>

For example, you could specify that when converting files with the root element book, the element
title is extracted as metadata, and only product elements with a status attribute value of draft are
extracted.

When you extract an element, the child elements within the element are also extracted. For example, if
you extract the element chapter from the sample above, the child element para is also extracted.

Export defines default element extraction settings for the following XML formats:
« generic XML
« Microsoft Office 2003 XML (Word, Excel, and Visio)
« StarOffice/OpenOffice XML (text document, presentation, and spreadsheet)

These settings are defined internally and are used when converting these file formats; however, you
can modify their values.

In addition to the default extraction settings, you can also add custom settings for your own XML
document types. If you do not define custom settings for your own XML document types, the settings
for the generic XML are used.

Modify Element Extraction Settings

You can modify configuration settings for XML documents by using the API.

You can also test this feature by modifying the kvxconfig. ini file, and passing it to the sample
program htmlini.

NOTE: You can use customized element extraction settings only when converting files in process.
When converting out of process, the default extraction settings are used.

Use the C API

You can use the C API to modify the settings for the standard XML document types or add
configuration settings for your own XML document types.

IDOL KeyView (12.9) Page 112 of 482



HTML Export SDK C and COM Programming Guide
Chapter 4: Use the HTML Export API

To modify settings
1. Call the fplnit() or fpInitWithLicenseData() function.
2. Define the KvXConfigInfo structure. See KVXConfiginfo, on page 227.

3. Callthe KVHTMLConfig() function with the following arguments (see KVHTMLConfig(), on
page 190:

Argument Parameter

nType KVCFG_SETXMLCONFIGINFO

nValue 0

pData address of the KvXConfigInfo structure
For example:

KVXConfigInfo xinfo; /* populate xinfo */
(*fpHTMLConfig) (pKVHTML, KVCFG_SETXMLCONFIGINFO, ©, &xinfo);

4. Repeat steps 2 and 3 until the settings for all the XML document types you want to customize are
defined.

5. Call the fpConvertStream() or KVHTMLConvertFile() function. See fpConvertStream(), on
page 171 or KVHTMLConvertFile(), on page 198.

Modify Element Extraction Settings in the kvxconfig.ini File

The kvxconfig.ini file contains default element extraction settings for supported XML formats. The
file is in the directory instal L\OS\bin, where install is the path name of the Export installation
directory and 0s is the name of the operating system.

For example, the following entry defines extraction settings for the Microsoft Visio 2003 XML format:

[config3]

eKVFormat=MS_Visio XML_Fmt

szRoot=
szInMetaElement=DocumentProperties
szExMetaElement=PreviewPicture
szInContentElement=Text
szExContentElement=

szInAttribute=

The following options are available.

Configuration Description
Option
eKVFormat The format ID as detected by the KeyView detection module. This

determines the file type to which these extraction settings apply. See File
Format Detection, on page 454 for more information on format ID values.

IDOL KeyView (12.9) Page 113 of 482



HTML Export SDK C and COM Programming Guide
Chapter 4: Use the HTML Export API

Configuration
Option

szRoot

szInMetaElement

szExMetaElement

szInContentElement

szExContentElement

szInAttribute

IDOL KeyView (12.9)

Description

If you are adding configuration settings for a custom XML document type,
this is not defined.

The file's root element. When the format ID is not defined, the root element
is used to determine the file type to which these settings apply.

To further qualify the element, specify its namespace. See Specify an
Element's Namespace and Attribute, on the next page.

The elements extracted from the file as metadata. All other elements are
extracted as text.

Multiple entries must be separated by commas. To further qualify the
element, specify its namespace, its attributes, or both. See Specify an
Element's Namespace and Attribute, on the next page.

The child elements in the included metadata elements that are not extracted
from the file as metadata. For example, the default extraction settings for
the Visio XML format extract the DocumentProperties element as
metadata. This element includes child elements such as Title, Subject,
Author, Description, and so on. However, the child element
PreviewPicture is defined in szExMetaElement because it is binary data
and should not be extracted.

You cannot exclude any metadata elements from the output for StarOffice
files. All metadata is extracted regardless of this setting.

Multiple entries must be separated by commas. To further qualify the
element, specify its namespace, its attributes, or both. See Specify an
Element's Namespace and Attribute, on the next page.

The elements extracted from the file as content text. Enter an asterisk (*) to
extract all elements including child elements.

Multiple entries must be separated by commas. To further qualify the
element, specify its namespace, its attributes, or both. See Specify an
Element's Namespace and Attribute, on the next page.

The child elements in the included content elements that are not extracted
from the file as content text.

Multiple entries must be separated by commas. To further qualify the
element, specify its namespace, its attributes, or both. See Specify an
Element's Namespace and Attribute, on the next page.

The attribute values extracted from the file. If attributes are not defined here,
attribute values are not extracted.

Enter the namespace (if used), element name, and attribute name in the
following format:

namespace: elementname@attributename

Page 114 of 482



HTML Export SDK C and COM Programming Guide
Chapter 4: Use the HTML Export API

Configuration Description
Option

For example:
keyview:division@name

Separate multiple entries with commas.

Specify an Element's Namespace and Attribute

To further qualify an element, you can specify that the element must exist in a certain namespace,
must contain a specific attribute, or both. To define the namespace and attribute of an element, enter
the following:

ns_prefix:elemname@attribname=attribvalue

You must enclose attribute values that contain space in quotation marks.
For example, the following entry:

bg:language@id=xml

extracts a language element in the namespace bg that contains the attribute name id with the value of
"xml". This entry extracts the following element from an XML file:

<bg:language id="xml">XML is a simple, flexible text format derived from
SGML</bg:1language>

but does not extract:

<bg:language id="sgml">SGML is a system for defining markup
languages.</bg:language>

or

<adv:language id="xml">The namespace should be a Uniform Resource Identifier
(URI).</adv:language>

Add Configuration Settings for Custom XML Document Types

You can define element extraction settings for custom XML document types by adding the settings to
the kvxconfig.ini file. For example, for files containing the root element keyviewxml, you could add
the following section to the end of the initialization file:

[configlel]

eKVFormat=

szRoot=keyviewxml
szInMetaElement=dc:title,dc:meta@title,dc:meta@name=title
szExMetaElement=

szInContentElement=keyview:division@name=dev, keyview:division@name=export,p@style="
Heading 1"

szExContentElement=

szInAttribute=keyview:division@name

IDOL KeyView (12.9) Page 115 of 482



HTML Export SDK C and COM Programming Guide
Chapter 4: Use the HTML Export API

The custom extraction settings must be preceded by a section heading named [ configN], where N is
an integer that starts at 100 and increases by 1 for each additional file type (for example, [configlee],
[configle1l], [configl@2], and so on). The default extraction settings for the supported XML formats
are numbered config0 to config99. Currently only o to 6 are used.

Because a custom XML document type is not recognized by the KeyView detection module, the format
ID is not defined. The file type is identified by the file's root element only.

If a custom XML document type is not defined in the kvxconfig. ini file or by the KVHTMLConfig()
function, the default extraction settings for a generic XML document are used.

Show Hidden Data

Microsoft Word, Excel, and PowerPoint documents contain hidden information, some of which is
shown by default when exported, and some of which is hidden by default. There are several options
that allow you to determine which types of hidden data are shown.

Hidden Data in Microsoft Documents

You can show several types of hidden data from Microsoft Word, Excel, and PowerPoint documents,
each of which has a corresponding flag in the KVHTMLConfig(), on page 190 function, which you can
set to change the default behavior. The following table lists each data type, its default behavior, and its
corresponding configuration API flag.

Hidden data settings

Hidden Data Type
Microsoft Word
Comments

Hidden text

Date field codes

File name field codes
Microsoft Excel
Hidden information
Comments

Formulas

Default Behavior

Shown?2
Hidden
Calculated date

Document file name

Hidden
Hidden

Calculated value

Configuration API Flag

KVCFG_WP_NOCOMMENTS
KVCFG_WP_SHOWHIDDENTEXT
KVCFG_WP_SHOWDATEFIELDCODE

KVCFG_WP_SHOWFILENAMEFIELDCODE

KVCFG_SS_SHOWHIDDENINFOR
KVCFG_SS_SHOWCOMMENTS

KVCFG_SS_SHOWFORMULA

TWord comment settings can also be toggled with a configuration parameter in the formats_e. ini file.
See Toggle Word Comment Settings in the formats_e.ini File, on the next page.
2Shown by default in documents from Microsoft Word 97 and later.

IDOL KeyView (12.9)

Page 116 of 482



HTML Export SDK C and COM Programming Guide
Chapter 4: Use the HTML Export API

Hidden data settings, continued

Hidden Data Type Default Behavior Configuration API Flag

Microsoft PowerPoint

Hidden slides Shown KVCFG_PG_HIDEHIDDENSLIDE
Comments Shown' KVCFG_PG_HIDECOMMENT
Comments slide Hidden KVCFG_PG_SHOWCOMMENTSSLIDEZ
Slide notes3 Hidden KVCFG_PG_SHOWSLIDENOTES

To toggle the display of any type of hidden data
« Use the configuration API and set the third parameter to TRUE or FALSE:
(*fpHTMLConfig) (pKVHTML, KVCFG_WP_NOCOMMENTS, TRUE, NULL)
In this example, comments will not be exported from Word documents.

NOTE: The third parameter affects the default behavior. To change the default behavior, set it
to TRUE.

For more information, see KVHTMLConfig(), on page 190.

Toggle Word Comment Settings in the formats_e.ini File

Microsoft Word 97 to 2003 comment settings can also be controlled through a parameter in the
formats_e.ini file.

The formats_e.ini fileis in the directory instal (\0OS\bin, where install is the path name of the
Export installation directory and 0S is the name of the operating system.

To toggle comment output in formats_e.ini
1. Openthe formats_e.ini file in a text editor.

2. Under [Options], add the WP_NOCOMMENTS parameter and set it to @ to show comments, or 1 to
hide comments. For example:

[Options]
WP_NOCOMMENTS=1

1Shown by default in Microsoft PowerPoint 97 to 2000 documents.
2This setting affects PowerPoint 2003 and 2007 only.

3PowerPoint slide note settings can also be toggled with a configuration parameter in the formats_
e.ini file. See Toggle PowerPoint Slide Note Settings in the formats_e.ini File, on the next page.

IDOL KeyView (12.9) Page 117 of 482



HTML Export SDK C and COM Programming Guide
Chapter 4: Use the HTML Export API

NOTE: The KVCFG_WP_NOCOMMENTS configuration API flag overrides the setting in formats_
e.ini.

Toggle PowerPoint Slide Note Settings in the formats_e.ini File

Microsoft PowerPoint slide note settings can also be controlled through a parameter in the formats_
e.ini file.

The formats_e. ini file is in the directory instal (\OS\bin, where install is the path name of the
Export installation directory and 0s is the name of the operating system.
To toggle slide note output in formats_e.ini

1. Openthe formats_e.ini file in a text editor.

2. Under [Options], add the ShowSlideNotes parameter and set it to 1 to show slide notes, ore to
hide slide notes. For example:

[Options]
ShowSlideNotes=1

NOTE: The KVCFG_PG_SHOWSLIDENOTES configuration API flag overrides the setting in
formats_e.ini.

Exclude Japanese Guide Text

This option prevents output of Japanese phonetic guide text when Microsoft Excel (. x1sx) files are
processed.

To prevent output of Japanese phonetic guide text
o SetNoPhoneticGuides to TRUE in the formats_e.ini file

[Options]
NoPhoneticGuides=TRUE

You can also enable this option programatically when filtering by passing KVFLT_NOPHONETICGUIDES to
fpFilterConfig.

Source Code Identification

When KeyView auto-detects a file that contains source code, it can attempt to identify the
programming language that it is written in.

| NOTE: Source code identification is available only on Windows 64-bit, Linux 64-bit, and macOS 64-

IDOL KeyView (12.9) Page 118 of 482



HTML Export SDK C and COM Programming Guide
Chapter 4: Use the HTML Export API

bit platforms.
You can set source code identification to different levels.

Option Description

KVSOURCECODE_ Do not enable source code identification.
OFF

KVSOURCECODE_  Enable source code identification for the most common source code formats.
ENABLED

KVSOURCECODE_  Enable source code identification for all supported source code formats. This
EXTENDED option might lead to false positives in some cases (for example, a C++ file might
get identified as a rarer format).

For the complete list of source code formats supported for both options, see Supported Formats, on
page 314.

You can enable source code identification by setting the appropriate level in the formats_e.ini file.
For example:

[Options]
SourceCodeDetection=KVSOURCECODE_ENABLED

Partitioning

To increase the flexibility of KeyView output, you can output the HTML rendering of different parts of a
file to different partitions. These partitions are snippets of HTML output for a given portion of the file.
The calling code can then combine these partitions into the desired output structure. This option allows
for highly flexible and customizable output.

For each partition, KeyView returns information about the partition, such as dimensions and
background color, which you can use to better reflect the appearance of the original document in your
output. For an example of how to do this, see HTML Export Reference Implementation, on page 26.

You can enable partitioning by using fpSetPartitionOn. You can obtain information about each partition
by using fpGetPartitionInfoList.

The KeyView interface allows you to create new partitions for several reasons. The following table lists
the available reasons.

Partition  Description
Start
Reason

Format This start reason applies only to documents that were converted by using the
Standard presentation graphic or spreadsheet structured access layers. The format standard
start reason is:

IDOL KeyView (12.9) Page 119 of 482



HTML Export SDK C and COM Programming Guide
Chapter 4: Use the HTML Export API

Partition = Description
Start
Reason

« anew worksheet for spreadsheet formats
« atable for database formats
« aslide for presentation graphic formats

« agraphic for image/graphic formats
Heading A heading in a Word Processing document.

Hard A hard page break in a Word Processing document.
Break

Block Size The block size limit was reached.

Page Size A page size change in a Word Processing document.
Change

Configure the Proxy for RMS

When KeyView needs to access contents that are protected by the Microsoft Rights Management
System (RMS), it must make HTTP requests. By default, KeyView uses the system proxy settings for
these requests.

To use different proxy settings, you can configure them in the [RMS] section of the formats_e.ini
configuration file. The following table describes the available options.

Parameter Description

UseSystemProxy Whether to obtain details about your HTTP proxy from the system. By default,
this parameter is set to TRUE, which means:

« On Microsoft Windows platforms, KeyView reads the proxy settings that
are configured in the Windows Control Panel.

« On Linux, KeyView reads the proxy settings from environment variables
such as HTTP_PROXY and HTTPS_PROXY.

You can use UseSystemProxy instead of setting the other proxy parameters
(ProxyHost, ProxyPort, ProxyUsername, and ProxyPassword). When
UseSystemProxy is set to TRUE, you must remove these other parameters from
your configuration.

Set UseSystemProxy to FALSE to use different proxy settings. In this case you
must set at least ProxyHost and ProxyPort.

ProxyHost The host name or IP address of the proxy server.

IDOL KeyView (12.9) Page 120 of 482



HTML Export SDK C and COM Programming Guide
Chapter 4: Use the HTML Export API

Parameter Description
ProxyPassword  The password to use to authenticate with the proxy server.

ProxyPort The port of the proxy server to use to access the repository. This port must be
greater than 0, and less than 65535.

ProxyUsername  The user name to use to authenticate with the proxy server.

IDOL KeyView (12.9) Page 121 of 482



Chapter 5: Sample Programs

This section describes the sample programs provided with HTML Export.

O INtrOdUCH ON ... 122
Bl €1 941 =0 124
O NV 2Nl . 125
O NV 2NEMIOOD . .. 126
O ONEFIlE L 128
O MO .. 128
& 0 S aAMID .. 128
O NG . 129
® CallDACK ... ... 131
O VIree demMO il 131
RS AV 1= 132
O RV NEMIEX PO 132
® EXPOIt DM ... 133
® Template Wizard ... ... 133
& OIS M ...t 138
O MIOOD ... 138
Introduction

The sample programs demonstrate how to use the C and COM implementations of HTML Export. The
sample code is intended to provide a starting point for your own applications or to be used for reference
purposes.

The source code and makefile for each program are in the following directory, where install is the
path of the Export installation directory, and program_name is the name of the sample program:

install\htmlexport\programs\program_name

In addition to the sample programs, Micro Focus provides a reference implementation for HTML Export.
For more information, see HTML Export Reference Implementation, on page 26.

C Sample Programs

The C sample programs demonstrate how to use the C implementation of HTML Export. The following
sample programs are provided:

« tstxtract, on page 124

IDOL KeyView (12.9) Page 122 of 482



HTML Export SDK C and COM Programming Guide
Chapter 5: Sample Programs

« cnv2html, on page 125

« cnv2htmloop, on page 126
« onefile, on page 128

« index, on page 128

« i0_samp, on page 128

« htmlini, on page 129

« callback, on page 131

You can use the tstxtract, cnv2html, cnv2htmloop, and htmlini sample programs on Windows and
UNIX. All other sample programs are for Windows only.

NOTE: The sample programs do not parse white space in file names. If your file names contain
spaces, use quotation marks around the entire path name. Inserting quotation marks around the file
name only does not work.

The sample programs pass license information to KeyView using fpInitWithLicenseData(). This is
the method recommended by Micro Focus. Before the sample programs can be compiled, you must
replace the parameters YOUR_LICENSE_ORGANIZATION and YOUR_LICENSE_KEY inthe
fpInitWithLicenseData() function call with yourlicense information.

To compile the sample programs, use the makefiles provided in the sample programs' directory. Ensure
the HTML Export include directory is specified in the include path of the project. After the executables
are compiled and built, you must place them in the same directory as the HTML Export libraries.

NOTE: Compiled binaries are provided for some of the sample programs, in the PLATFORM/bin
folder. These have an embedded trial license, which expires approximately five months after
release.

Compile the Visual Basic Sample Program

To compile Export Demo, use the Visual Studio project file (demo_vb.vbp)in the directory
install\htmlexport\programs\ExportDemo, where install is the path of the Export installation
directory. The executable is in the same directory.

COM Sample Program

The COM API is a COM interface to HTML Export and is available on 32-bit Windows platforms only.
The interface is well suited for Visual Basic and Visual J++ programmers. The interface is an
IDispatch interface, and can therefore be used with scripting environments such as Active Server
Pages.

The following COM sample programs are provided:

IDOL KeyView (12.9) Page 123 of 482



HTML Export SDK C and COM Programming Guide
Chapter 5: Sample Programs

« Template Wizard, on page 133
« comsamp, on page 138

« htmloop, on page 138

To compile the Template Wizard, use the Visual Studio project file (htmvbwzd. vbp) in the
install\htmlexport\programs\wizard directory, where install is the path name of the Export
installation directory.

To compile the comsamp sample program, use the Visual Studio project file (comsamp . vbp)in the
install\htmlexport\programs\comsamp directory.

To compile htmloop, use the Visual Studio project file (htmloop2.dsw)in the
install\htmlexport\programs\htmloop directory.

tstxtract

The tstxtract sample program demonstrates the File Extraction API. It opens a file, extracts subfiles
from the file, and repeats the extraction process until all subfiles are extracted. It also demonstrates
how to extract the default set of metadata and pass integer or string names to extract specific
metadata. After the files are extracted, you can convert the files by using one of the conversion sample
programs.

The source code for the tstxtract sample program is the same for the Filter and Export SDKs. A flag
in the makefile specifies whether the program is compiled for Filter, HTML Export, or XML Export.

Torun tstxtract, type the following at the command line:
tstxtract [options] input_file output_directory bin_directory
where options is one or more of the following.

Option Description

-c charset Specify the target character set, for example KvVCS_SJ1IS. See Coded Character
Sets, on page 432 for a full list of supported character sets.

-cf Specify one or more credential files (private keys) to use to decrypt encrypted
keyfilel, .EML, .MBX, .PST, or .MSGfiles.
keyfile2,...

-1 logfile Specify the path and file name of the log file in which metadata is written.

-1m Retrieve metadata and write the data to the log file.

-1ms Retrieve metadata with string metanames and write the data to the log file for
metanamel, .MSG, .EML, .MBX, and .NSF files.

metaname2

-1mi Retrieve metadata with integer (hexadecimal) metanames and write the data to the
metaintl, log file for .PST files.

IDOL KeyView (12.9) Page 124 of 482



HTML Export SDK C and COM Programming Guide
Chapter 5: Sample Programs

Option Description

metaint2,...

-1ma Retrieve all metadata from an .NSF file and write the data to the log file.

-r Recursively extract second-level subfiles to the specified output directory. For

example, if a .ZIP file contains a Microsoft Word file and the Word file contains an
embedded Microsoft Excel file, set the -r option to extract both the Word and Excel
files.

If this option is not set, only first-level subfiles are extracted. For the example
above, only the Word file would be extracted.

-msg Extract mail messages ina .PST file as an .MSG file, including all of its
attachments. If this flag is not set, the mail message is extracted as text. This
option applies to PST files on Windows only.

-f Extract the formatted version of the message body (HTML or RTF) from mail files
when possible. If neither an HTML nor RTF version of the message body exists in
the mail file, then it is extracted as plain text. If this flag is not set, the message
body is extracted as plain text when possible.

-t Preserve the timestamp of embedded files when possible.

-h Extract hidden text.

input_fileis the full path and file name of the source document.
output_directory is the directory to which the files will be extracted.

bin_directory is the path to the Export bin directory. This is required if you do not run the program
from the instal L\Export SDK\bin directory.

cnv2html

The cnv2html sample program creates a single, formatted HTML output file. It is called by the Export
Demo sample program, but can also be used on its own.

To run cnv2html, type the following at the command line:

cnv2html [options] inputfile outputfile

where:

options is one or more of the options listed in Options for cnvhtml, on the next page.
inputfile is the full path and file name of the source document.

outputfile is the full path and file name of the HTML output file.

The following options are available.

IDOL KeyView (12.9) Page 125 of 482



HTML Export SDK C and COM Programming Guide
Chapter 5: Sample Programs

Options for cnvhtml

Option Description
-c KVCFG_ This option specifies the type of reader used to convert PDF documents. In
SETHIFIPDF Export, you can convert PDF documents by using either the graphic-based PDF

reader, named kppdfrdr, or the basic PDF reader, named pdfsr. For more
information on each reader, see Convert PDF Files to Raster Images, on
page 98.

By default, the basic reader (pdfsr) is used to convert PDF documents.

-c KVCFG_ This option specifies that rotated text should be displayed at the bottom of a

SETTEXTROTATE page on which it appears. By default, rotated text in afile is displayed in its
original position, at the original font size, and at 0 degrees rotation. The text is
not rotated in the output because text rotation is not supported by HTML. See
Convert Rotated Text, on page 104 for more information.

Currently, this configuration option applies only to PDF files.

-c KVCFG_ This option specifies that soft hyphens in PDF files are deleted from the
DELSOFTHYPHEN converted output. See Control Hyphenation, on page 105.

-c KVCFG_ y.

SETPDFINVISTEXT

TOGGLE

ButtonName

-pdfauto This option specifies that PDF files are output in a logical reading order. The

PDF reader determines the paragraph direction (left-to-right or right-to-left) for
each PDF page, and then sets the direction accordingly. See Convert PDF
Files to a Logical Reading Order, on page 99.

-pdfltr This option specifies that PDF files are output in a logical reading order, and the
paragraph direction is left to right. See Convert PDF Files to a Logical Reading
Order, on page 99.

-pdfrtl This option specifies that PDF files are output in a logical reading order, and the
paragraph direction is right to left. See Convert PDF Files to a Logical Reading
Order, on page 99.

-pdfraw This option specifies that PDF files are output in an unstructured paragraph
flow. This is the default. Set this flag if logical reading order is enabled, and you
want to return to an unstructured paragraph flow. See Convert PDF Files to a
Logical Reading Order, on page 99.

cnv2himloop

The cnv2htmloop sample program creates a single, formatted HTML output file, but unlike cnv2html, it
converts the file out of process. See Convert Files Out of Process, on page 31 for more information on

IDOL KeyView (12.9) Page 126 of 482



HTML Export SDK C and COM Programming Guide
Chapter 5: Sample Programs

out of process conversions.

To run cnv2htmloop, type the following at the command line:

cnv2htmloop [options] inputfile outputfile

where:

options is one or more of the options listed in Options for cnv2htmloop, below.
inputfile is the full path and file name of the source document.

outputfile is the full path and file name of the HTML output file.

The following options are available.

Options for cnv2htmloop

Option Description

-f Convert by using out-of-process file mode (default)

-s Convert by using out-of-process stream mode

-c KVCFG_ This option specifies the type of reader used to convert PDF documents. In
SETHIFIPDF Export, you can convert PDF documents by using either the graphic-based PDF

reader, named kppdfrdr, or the basic PDF reader, named pdfsr. For more
information on each reader, see Convert PDF Files to Raster Images, on page 98.

By default, the basic reader (pdfsr)is used to convert PDF documents.

-c KVCFG_ This option specifies that rotated text should be displayed at the bottom of a page

SETTEXTROTATE on which it appears. By default, rotated text in afile is displayed in its original
position, at the original font size, and at 0 degrees rotation. The text is not rotated
in the output because text rotation is not supported by HTML. See Convert
Rotated Text, on page 104 for more information.

Currently, this configuration option applies only to PDF files.

-c KVCFG_ This option specifies that soft hyphens in PDF files are deleted from the converted
DELSOFTHYPHEN output. See Control Hyphenation, on page 105.

-pdfauto This option specifies that PDF files are output in a logical reading order. The PDF
reader determines the paragraph direction (left-to-right or right-to-left) for each PDF
page, and then sets the direction accordingly. See Convert PDF Files to a Logical
Reading Order, on page 99.

-pdfltr This option specifies that PDF files are output in a logical reading order, and the
paragraph direction is left to right. See Convert PDF Files to a Logical Reading
Order, on page 99.

-pdfrtl This option specifies that PDF files are output in a logical reading order, and the
paragraph direction is right to left. See Convert PDF Files to a Logical Reading
Order, on page 99.

-pdfraw This option specifies that PDF files are output in an unstructured paragraph flow.

IDOL KeyView (12.9) Page 127 of 482



HTML Export SDK C and COM Programming Guide
Chapter 5: Sample Programs

Options for cnv2htmloop, continued

Option Description

This is the default. Set this flag if logical reading order is enabled, and you want to
return to an unstructured paragraph flow. See Convert PDF Files to a Logical
Reading Order, on page 99.

onefile

The onefile sample program converts a source document into a single, formatted HTML file.
Torunonefile, type the following at the command line:

onefile inputfile outputfile

where:

inputfile is the full path and file name of the source document.

outputfile is the full path and file name of the HTML output file.

index

The index sample program produces minimal HTML output suitable for use with indexing engines. It
converts a source document into a single, largely unformatted HTML file.

To run index, type the following at the command line:

index inputfile outputfile

where:

inputfile is the full path and file name of the source document.

outputfile is the full path and file name of the HTML output file.

io_samp

The io_samp sample program demonstrates how to create an input and an output stream by providing a
simple wrapper around the ANSI C interface fOpen(), fRead(), fSeek(), fTell(), and fClose(). It
converts a source document into a single, largely unformatted HTML file.

Torun io_samp, type the following at the command line:
io_samp 1inputfile outputfile

where:

IDOL KeyView (12.9) Page 128 of 482



HTML Export SDK C and COM Programming Guide
Chapter 5: Sample Programs

inputfile is the full path and file name of the source document.

outputfile is the full path and file name of the HTML output file.

htmlini

The htmlini sample program is used in conjunction with template files to produce HTML documents.
For more information on template files, see Explore Conversion Options with the Sample Programs, on
page 39. Sample template files are in the directory install\htmlexport\programs\ini. You can use

this sample program on Windows and UNIX platforms.

Torun htmlini, type the following at the command line:

htmlini [options] inifile 1inputfile outputfile

where:

options is one or more of the options listed in Options for htmlini, below.

inifile is the full path and file name of a template file.

inputfile is the full path and file name of the source document.

outputfile is the full path and file name of the first HTML output file.

The following options are available.

Options for htmlini

Option Description

-C Css_ This option writes Cascading Style Sheet (CSS) information to an external file. See

filename Use Style Sheets with htmlini, on the next page.

-X This option converts an XML file by using customized element extraction settings

xmlconfig_ defined in the kvxconfig. ini file. If you do not enter the full path to the template

path file, the program looks for the file in the current working directory (instal [\0S\bin,
where install is the path name of the Export installation directory and 0S is the
name of the operating system). See Convert XML Files, on page 111.

-hl term This option specifies the text string or strings that are found and highlighted in the

term term HTML output. You can specify a maximum of three terms. See Search and
Highlight Terms, on page 91.

-hc charset This option specifies the character set of the highlighted search terms in the HTML
output.

-hi This option specifies that the text search is case insensitive. You can use this
option only when the target character set for the highlighted search term is KvCS_
1252.

-rm This opton converts text and graphics that were deleted from a document with

IDOL KeyView (12.9)

revision tracking enabled, and includes revision information in the HTML output.

Page 129 of 482



HTML Export SDK C and COM Programming Guide
Chapter 5: Sample Programs

Options for htmlini, continued

Option

_bp

-00p
-f1
_pi

ButtonName

-ov
OpacityValue

Description

See Include Revision Information, on page 92.
This option uses the following hard-coded defaults:

« therevision title includes the text string "inserted:" for <ins> tags and
"deleted:" for <del> tags.

« therevision title includes the reviewer name, date, and time.
« defines two HTML styles used to highlight reviewers' edits.

« creates arevision summary file.

This option prevents graphics from being converted and generates image tags with
empty src attributes. This makes the conversion faster, and maintains the text flow
of the original document, because placeholders are generated for the graphics.

This option runs the conversion out of process.
This option prints a list of converted files in the console.

This option enables a toggle button in exported PDF documents that you can click
to show or hide invisible text. ButtonName determines the name of the toggle
button. See Toggle Invisible Text, on page 103.

This option specifies the opacity of invisible text in exported PDF documents.
Opacityvalue is an integer from O (invisible) to 100 (fully visible). The default is 0.
See Specify Opacity of Invisible Text, on page 103.

If the HTML file is output to a directory other than programs\tempout, you must update the HTML
markup so that the browser can find images used by the templates (such as backgrounds or corporate
logos) and the style sheet. The markup contains relative references to the image files (. . \images).

Use Style Sheets with htmlini

The htmlini sample program has an option that allows Cascading Style Sheet (CSS) information to be
written to an external file. This makes the HTML output document significantly smaller and enables you
to use the same style sheet for many conversions. If the style sheet does not exist or if it is empty, it is

created.

To write CSS information to an external file:

1. Inthe template file, set eStyleSheetType to CSS_TOFILE. This specifies that the formatting data
is stored ina CSSfile.

2. Inthe template file, use the $STYLESHEET token to specify the URL of the style sheet in the HTML
output. The external CSS file is referenced in the output HTML by a LINK statement of the form:

IDOL KeyView (12.9)

Page 130 of 482



HTML Export SDK C and COM Programming Guide
Chapter 5: Sample Programs

<LINK rel="STYLESHEET" href="CSS_file" type="text/css">
3. Atthe command prompt, type:
htmlini -c stylesheetname inifile inputfile outputfile

where stylesheetname is the path and file name of the CSS file.

callback

The callback sample program demonstrates how you can control the conversion to generate
specialized output while it is in progress. The program employs developer-defined callbacks and
memory management functions during conversion.

Torun callback, type the following at the command line:
callback inputfile outputfile

where:

inputfile is the full path and file name of the source document.

outputfile is the full path and file name of the first HTML output file.

jvtree_demo

The C program jvtree_demo creates a frame-based HTML stream which uses the JvTree. jar to
display the table of contents.

To compile the jvtree_demo sample program, use the makefile (kvhtml.mak) in the directory
install\htmlexport\programs\jvtree_demo, where install is the path name of the Export
installation directory.

Torun jvtree_demo, type the following at the command line:
jvtree inputfile outputfile.htm

where:

inputfile is the full path and file name of the source document.

outputfile.htmis the full path and file name of the first HTML outpuit file.

NOTE: This program requires the Java Runtime Environment (JRE) 1.3 or higher.

The Java applet, JVTree. jar, must be in the same directory as the HTML Export libraries and the
output HTML files.

Set the CLASSPATH environment variable to include the location of the \1ib directory and
lib\tools. jar file for the JDK installed on the machine. Multiple path entries should be separated

by semicolons. You must also include the current directory in the search path by using "." in the new
setting.

IDOL KeyView (12.9) Page 131 of 482



HTML Export SDK C and COM Programming Guide
Chapter 5: Sample Programs

JVTree

The JvTree sample program employs user callbacks and a Java applet to produce an expandable tree
view of the table of contents in a frame-based HTML output file.

To compile the JVTree sample program, use the makefile (kvhtml.mak) in the directory
install\htmlexport\programs\jvtree, where install is the path name of the Export installation
directory.

Torun JVTree, type the following at the command line:

jvtree inputfile outputfile.htm

where:

inputfile is the full path and file name of the source document.

outputfile.htmis the full path and file name of the first HTML outpuit file.

NOTE: This program requires the Java Runtime Environment (JRE) 1.5 or higher.

The Java applet, JVTree. jar, must be in the same directory as the HTML Export libraries and the
output HTML files.

Set the CLASSPATH environment variable to include the location of the \1ib directory and
lib\tools. jar file for the JDK installed on the machine. Separate multiple path entries with
semicolons. You must also include the current directory in the search path by using"." in the new
setting.

kvhtmlexport

A sample program that you can use to try out the KeyView HTML Export Reference Implementation.

This sample program is available in the directory PLATFORM\bin, where PLATFORM is the name of the
platform on which you are running KeyView.

You can run the program as follows:
kvhtmlexport [options] inputfile outputfile
where:
« options are described in the following table.
o 1inputfile is the path and file name of the source document.

o outputfileis the path and file name of the HTML output file.

IDOL KeyView (12.9) Page 132 of 482



HTML Export SDK C and COM Programming Guide
Chapter 5: Sample Programs

Option Description

--fullscreen When you set this option, presentations are displayed in "full screen" view, one
slide at a time. You can navigate between slides using the arrow keys on your
keyboard or the scroll wheel on your mouse. By default, presentations are
displayed in "list" view, with slides arranged in a vertical column one after
another.

Export Demo

Export Demo is a Visual Basic program that provides an easy-to-use graphical user interface to the
Export technology. It allows you to select files, convert them to HTML, and view the result in a browser
object. The output options that control the look of the output files are predefined in Export Demo and
cannot be changed in the user interface.

Export Demo accesses the Export functionality by returning to the operating system and runninga C
program named cnv2html. To adapt the sample program to your needs, modify the GUI by using Visual
Basic, and modify the cnv2html program by using C. For more information on the C program, see
htmlini, on page 129.

The source code for the program is in the directory instal L\htmlexport\programs\ExportDemo,
where install is the path name of the Export installation directory. Export Demo is for Windows only.

See Use the Export Demo Program, on page 42 for more information.

Template Wizard

The Template Wizard is a Visual Basic program that provides an easy-to-use graphical user interface to
the Export technology. It is an example of how to use most of the properties, methods, and events
available in the COM Automation Server. See COM Interface Methods and Events, on page 279 and
COM Interface Properties, on page 284 for more information on the properties and methods.

The Template Wizard converts documents based on the predefined templates. Several templates are
supplied with HTML Export, and they can be customized to suit your needs. See Explore Conversion
Options with the Sample Programs, on page 39 for details on the template files.

NOTE: The Template Wizard requires a COM server to be registered. See Use the COM
Implementation of the API, on page 49.

You can use the Template Wizard to modify existing template files to create your own customized files,
and to convert documents to HTML. However, the Template Wizard does not allow you to modify all
structures in the template files. To control some display options, you might have to modify the template
files directly or use the API.

IDOL KeyView (12.9) Page 133 of 482



HTML Export SDK C and COM Programming Guide
Chapter 5: Sample Programs

Convert Documents to HTML by Using the Template Wizard

To convert a document to HTML

1. Launch HTML Export Template Wizard.

® HTML Export Template Wizard

I E3

HTML Export

Template Wizard

E-@

~ Design Templal

Choose Template |

Modify Template |

Save Template as Ini File

~ Test Templal

InpLit File: I

Convert ta HTML | Change Browser |

Wiew HTML

o
|

Output Directory: I:.\VEIity\HTML_E”1\prugrams\tempuut

[elete Created Output Files

1

Exit

2. Click Choose Template.

3. Select one of the templates listed in the Choose Template dialog box, or click the browse button
to select another template file. The template files are located in the programs\ini directory. Click

OK.

4. Select aninput file by using the browse button next to the Input File field.

5. Click Convert to HTML to produce an HTML file of the source document.

6. Click View HTML to open the converted file in your browser. To specify which browser is used to
view the converted HTML files, click Change Browser.

When you change the default browser, the location of the browser's executable file is written to a
file named browser.wiz. If the browser is not changed, the default browser is the Visual Basic

web browser object\OCX.

Change the Output Directory

By default, the output file is stored in the programs\tempout directory. To change this directory, click
the browse button next to the Output Directory field and select a new directory.

If you change the default output directory, you must make the following modifications to the templates:

1. Update the HTML markup so that any images used by the templates (such as backgrounds or
corporate logos) are found by the browser. The markup contains relative references to the image

files (.. \images).

IDOL KeyView (12.9)

Page 134 of 482



HTML Export SDK C and COM Programming Guide
Chapter 5: Sample Programs

2. Update the templates so that the Java applet (JvTree. jar)is found.

NOTE: JVTree. jar is used to display a expandable table of contents. JVTree, on page 132

for more information on JVTree. jar.

To delete the HTML and image files created in the output directory, click Delete Created Output Files.

Modify a Template in the Wizard

The Template Wizard provides limited control over the templates. You might wish to modify the
template files directly in a text editor to provide maximum customization of the converted HTML. See
Explore Conversion Options with the Sample Programs, on page 39.

To modify the default options specified in the Wizard
1.
2.

Click Modify Template.

Modify the properties in the Options dialog box. The template parameters associated with each
option in the Options dialog box are listed below and are described in HTML Export

API Structures, on page 215.

Wizard field

All Formats tab

Use text color in the original document
Use font information in the original document
Use font face attributes in the document
Set font size relative to base font size
Support user font size mapping

User Font Size Map

Emit <td>$nbsp;</td> for empty cells
Support "col=x" HTML parameter
Convert tabs to tables

Table Border

Table Cell Width

Output Language ID

Style Sheet Type

Replace Character

Redact Character

IDOL KeyView (12.9)

Template parameter

bUseDocumentColors
bUseDocumentFontInfo
bSupportFontFace
bDisplayRelativeFontSize
bSupportUserFontSizeMapping
FontSizeMap
bNbspEmptyCells
bSupportRFC1942_cols
bTabsToTables
SATableBorder
nTableBorderWidth
OutputlLanguageID
eStyleSheetType
cReplaceChar

cRedact

Page 135 of 482



HTML Export SDK C and COM Programming Guide

Chapter 5: Sample Programs

Wizard field

Word Processing tab

Minimum length of paragraph
Maximum length of paragraph
Minimum font size

Maximum font size

Required space before paragraph
Required space after paragraph
Must be bold

Must be italic

Must be underlined

Can be non-zero indent

Cannot contain tab

Cannot contain two or more spaces
Heading Create Options

Force source character set
Source Character Set

Force output character set
Output Character Set
Spreadsheet tab

Support column width

Generate column headings
Generate row headings

Support cell span

Support row span

Remove empty columns

Enable empty rows

Specify maximum rows per table

Presentation/Image tab

IDOL KeyView (12.9)

Template parameter

minParalen
maxParalLen
fontSizeMin
fontSizeMax
mSpaceBefore
mSpaceAfter
bMustBeBold
bMustBeItalic
bMustBeUnderlined
bNonZeroIndent
bNoTabs
bNoMultiSpaces
headingCreateType
bForceSrcCharSet
eSrcCharSet
bForceOutputCharSet

OutputCharSet

bSupportColumnWidth
bSupportColumnHeadings
bSupportRowHeadings
bSupportCellSpan
bSupportRowSpan
bRemoveEmptyColumns
bEnableEmptyRows

nRowsBeforeSplit

Page 136 of 482



HTML Export SDK C and COM Programming Guide
Chapter 5: Sample Programs

Wizard field

Output any raster images to the following format
Output any vector images to the following format
Resolution of output image in x direction
Resolution of output image in y direction

Output presentation graphics as text and images
No pictures

Compression quality

Paragraph Styles tab

Style Name

MarkUpStart

MarkUpEnd

Heading 1

Heading 2

Heading 3

Heading 4

Heading 5

Heading 6

PRE

Redact

Order List

Unordered List

Delete Content

IDOL KeyView (12.9)

Template parameter
OutputRasterGraphicType
OutputVectorGraphicType
cxVectorToRasterXRes
cyVectorToRasterYRes
bRasterizeFiles
bNoPictures

nCompressionQuality

StyleName
MarkUpStart
MarkUpEnd

Flags=KVSTYLE_HEADING1
(see Flags for Defining Styles, on page 89)

Flags=KVSTYLE_HEADING2
(see Flags for Defining Styles, on page 89)

Flags=KVSTYLE_HEADING3
(see Flags for Defining Styles, on page 89)

Flags=KVSTYLE_HEADING4
(see Flags for Defining Styles, on page 89)

Flags=KVSTYLE_HEADING5
(see Flags for Defining Styles, on page 89)

Flags=KVSTYLE_HEADING6
(see Flags for Defining Styles, on page 89)

Flags=KVSTYLE_PRE
(see Flags for Defining Styles, on page 89)

Flags=KVSTYLE_REDACT
(see Flags for Defining Styles, on page 89)

Flags=KVSTYLE_ORDERLIST
(see Flags for Defining Styles, on page 89)

Flags=KVSTYLE_UNORDERLIST
(see Flags for Defining Styles, on page 89)

Flags=KVSTYLE_DELETECONTENT
(see Flags for Defining Styles, on page 89)

Page 137 of 482



HTML Export SDK C and COM Programming Guide
Chapter 5: Sample Programs

Wizard field Template parameter

On Consecutive Paragraphs F1lags=ONCONSECUTIVEPARAGRAPHS
(see Flags for Defining Styles, on page 89)

3. You can use the Paragraph Styles tab to map paragraph and character styles in any word
processing document that contains styles (such as Microsoft Word, RTF, or Folio Flat File) to
arbitrary markup.

4. Tocreate a new template that preserves any modifications that have been made, click Save
Template as Ini File.

comsamp

This Visual Basic program illustrates how to use the properties, methods, and events of the ActiveX
controls from within Visual Basic. Before you can use this sample you must:

« Registeran htmserv COM object. See the registration instructions in Use the COM
Implementation of the API, on page 49.

« If required, specify the location of the HTML Export binaries and the default directory containing
source files.

More detailed information on properties, methods, and events is found in COM Interface Methods and
Events, on page 279 and COM Interface Properties, on page 284.

htmloop

The htmloop sample program demonstrates how to use the COM interface from withina C++
application. Using the COM interface allows C++ developers to take advantage of out-of-process
HTML conversion.

To run htmloop, type the following command:
htmloop install, inifile, inputfile, outputfile.htm
where:
install is the directory where the Export libraries are installed.
inifile is the full path and file name of a template file.
inputfile is the full path and file name of the source document.
outputfile.htmis the full path and file name of the HTML outpuit file.
NOTE: You must separate the arguments with commas (, ). You must not enclose directory names

that contain spaces in quotation marks. This program does not indicate when the conversion has
finished.

IDOL KeyView (12.9) Page 138 of 482



Part 3: C API Reference

This section provides detailed reference information for the C-language implementation of the File Extraction
and Export APls.

« File Extraction APl Functions

« File Extraction API Structures

« HTML Export API Functions

« HTML Export API Callback Functions
o HTML Export API Structures

o Enumerated Types

IDOL KeyView (12.9) Page 139 of 482



Chapter 6: File Extraction API
Functions

This section describes the functions in the File Extraction API. The File Extraction functions open a
container file, and extract the container's subfiles so that the subfiles are exposed and available for
conversion. Subfiles can be files within a Zip archive, messages in a mail store, attachments in a mail
message, or OLE objects embedded in a compound document.

Each function appears as a function prototype followed by a description of its arguments, its return
value, and a discussion of its use.

® KVGetExtractinterface ) ... ... .. 140
® PCIOSERIIE() - ..o 141
¢ FPEXIraCtSUDFIlE() ... 142
® PFree S rUCH () .. . 143
® fpGetMainFilelnfo() .. ... . 144
® fpGetSuUbFilelNfo() ... . 145
® fpGetSubFileMetaData() ... ......coo e 147
A POPENFIlE() ..o 149

KVGetExtractinterfaceQ

This function is the entry point to obtain the file extraction functions. When KvGetExtractInterface()
is called, it assigns the function pointers in the structure KVExtractInterface to the functions
described in this section.

Syntax
int pascal KVGetExtractInterface (
void *pContext,
KVExtractInterface pIextract);
Arguments

pContext A pointer returned from fpInit() or fpInitWithLicenseData().

pIextract A pointertothe KVExtractinterface structure, which contains function pointers that
KVGetExtractInterface()assigns to all other file extraction functions.

IDOL KeyView (12.9) Page 140 of 482



HTML Export SDK C and COM Programming Guide
Chapter 6: File Extraction AP| Functions

Before you initialize the KVExtractInterface structure, use the macro KvStructInit
toinitialize the KvStructHead structure.

Returns

« Ifthe call is successful, the return value is KVERR_Success.

« Ifthe call is not successful, the return value is an error code.

Example

fpKVGetExtractInterface =

(int (pascal *)( void *, KVExtractInterface))myGetProcAddress(hKVExport,
(char*)"KVGetExtractInterface");

/*Initialize file extraction interface structure using KVStructInit*/
KVStructInit(&extractInterface);

/* Retrieve file extraction interface */
error = (*fpkKVGetExtractInterface)(pExport,&extractInterface))

fpCloseFile(

This function frees the memory allocated by fpOpenFile() and closes the file.

Syntax

int (pascal *fpCloseFile) (void *pFile);

Arguments

pFile The identifier of the file. This is a file handle returned from fpOpenFile().

Returns

« Ifthefileis closed, the return value is KVERR_Success.

« If thefileis not closed, the return value is an error code.

IDOL KeyView (12.9) Page 141 of 482



HTML Export SDK C and COM Programming Guide
Chapter 6: File Extraction AP| Functions

Example

extractInterface->fpCloseFile(pFile);
pFile = NULL;

fpExtractSubFileQ

This function extracts a subfile from a container file to a user-defined path or output stream. This call
returns file format information when file is extracted to a path.

Syntax

int (pascal *fpExtractSubFile) (
void *pFile,
KVExtractSubFileArg extractArg,
KVSubFileExtractInfo *extractInfo);

Arguments

pFile The identifier of the file. This is a file handle returned from fpOpenFile().

extractArg A pointer to the structure KVExtractSubFileArg, which defines the subfile to be
extracted.

Before you initialize the KVExtractSubFileArg structure, use the macro
KVStructInit toinitialize the KvStructHead structure.

extractInfo A pointerto the structure KVSubFileExtractInfo, which defines information about
the extracted subfile.

Returns

« If the subfile is extracted from the container file, the return value is KVERR_Success.

« If the subfile is not extracted from the container file, the return value is an error code.

Discussion

« Afterthefile is extracted, call fpFreeStruct() to free the memory allocated by this function.

« If the subfile is embedded in the main file as alink and is stored externally, extractInfo-
>infoFlagis set to KVSubFileExtractInfoFlag_External.

IDOL KeyView (12.9) Page 142 of 482



HTML Export SDK C and COM Programming Guide
Chapter 6: File Extraction AP| Functions

For example, the subfile might be an object that was embedded in a Word document by using
"Link to File," or an attachment that is referenced in an MBX message. This type of subfile cannot
be extracted. You must write code to access the subfile based on the path in the member
extractInfo->filePath orextractInfo->fileName. See KVSubFileExtractinfo, on page 162.

Example
KVSubFileExtractInfo extractInfo = NULL;
KVStructInit(&extractArg);

extractArg.index = index;

extractArg.extractionFlag = KVExtractionFlag CreateDir | KVExtractionFlag
Overwrite;

extractArg.filePath = subFileInfo->subFileName;

/*Extract this subfile*/
error=extractInterface->fpExtractSubFile(pFile,&extractArg,&extractInfo);
if ( error )

{

extractInterface->fpFreeStruct(pFile,extractInfo);
subFileInfo = NULL;

fpFreeStructQ

This function frees the memory allocated by fpGetMainFileInfo(), fpGetSubFileInfo(),
fpGetSubFileMetadata(), and fpExtractSubFile().
Syntax
int (pascal *fpFreeStruct) (
void *pFile,
void *obj);

Arguments

pFile The identifier of the file. This is a file handle returned from fpOpenFile().

obj A pointer to the result object returned by fpGetMainFileInfo(), fpGetSubFileInfo(),
fpGetSubFileMetaData, or fpExtractSubFile().

IDOL KeyView (12.9) Page 143 of 482



HTML Export SDK C and COM Programming Guide
Chapter 6: File Extraction AP| Functions

Returns

« If the allocated memory is freed, the return value is KVERR_Success.

« Otherwise, the return value is an error code.

Example

The example below frees the memory allocated by fpGetSubFileInfo():

if ( subFileInfo )

{
extractInterface->fpFreeStruct(pFile,subFileInfo);

subFileInfo = NULL;

fpGetMainFilelnfoQ

This function determines whether a file is a container file—that is, whether it contains subfiles—and
should be extracted further.

Syntax

int (pascal *fpGetMainFileInfo) (
void *pFile,
KVMainFileInfo *fileInfo);

Arguments

pFile The identifier of the file. This is a file handle returned from fpOpenFile().

fileInfo A pointer to the structure KVMainFilelnfo. This structure contains information about the
file.

Returns

« If the file information is retrieved, the return value is KVERR_Success.

« If the file information is not retrieved, the return value is an error code.

IDOL KeyView (12.9) Page 144 of 482



HTML Export SDK C and COM Programming Guide
Chapter 6: File Extraction AP| Functions

Discussion

« Afterthe file information is retrieved, call fpFreeStruct() to free the memory allocated by this
function.

« Ifthefileis a container (fileInfo->numSubFiles is non-zero), call fpGetSubFilelnfo() and
fpExtractSubFile() for each subfile.

« Ifthefileis not a container (fileInfo->numSubFiles is ) and contains text (fileInfo-
>infoFlagis set to KVMainFileInfoFlag_HasContent), pass the file directly to the conversion
functions.

Example

KVMainFileInfo  filelnfo = NULL;
if( (error=extractInterface->fpGetMainFileInfo(pFile,&fileInfo)))

{

/* Free result object allocated in fileInfo */
extractInterface->fpFreeStruct(pFile,fileInfo);
fileInfo = NULL;

fpGetSubFilelnfoQ

This function gets information about a subfile in a container file.

Syntax
int (pascal *fpGetSubFileInfo) (
void *pFile,
int index,
KVSubFileInfo *subFileInfo);
Arguments
pFile The identifier of the main file. This is a file handle returned from fpOpenFile().
index The index number of the subfile for which to retrieve information.

subFileInfo A pointertothe KVSubFilelnfo structure, which defines information about the subfile.

IDOL KeyView (12.9) Page 145 of 482



HTML Export SDK C and COM Programming Guide
Chapter 6: File Extraction AP| Functions

Returns

« If the file information is retrieved, the return value is KVERR_Success.

« If the file information is not retrieved, the return value is an error code.

Discussion

« After the subfile information is retrieved, call fpFreeStruct() to free the memory allocated by this
function.

« If the root node is not enabled, the first subfile is index o. If the root node is enabled, the first
subfile is index 1. The root node is required to recreate afile’s hierarchy. See Create a Root Node,
on page 59.

o The members subFileInfo->parentIndex and subFileInfo->childArray enable youto
recreate afile’s hierarchy. Because childArray retrieves only the first-level children in the
subfile, you must call fpGetSubFileInfo() repeatedly until information for the leaf-node children
is extracted. See Recreate a File’s Hierarchy, on page 58.

« If the subfile is embedded in the main file as a link and is stored externally, subFileInfo-
>infoFlagis set to KVSubFileInfoFlag_External. For example, the subfile might be an object
that was embedded in a Word document by using "Link to File," or an attachment that is
referenced in an MBX message. This type of subfile cannot be extracted. You must write code to
access the subfile based on the path in the member subFileInfo->subFileName. See
KVSubFilelnfo, on page 163.

o TheKvVSubFileInfoFlag_External flagis not set for an OLE object that is embedded as alink in
a Microsoft PowerPoint file. KeyView can detect linked objects in a Microsoft PowerPoint file
only when the object is extracted. See fpExtractSubFile(), on page 142.

Example

KVSubFileInfo subFileInfo = NULL;
for ( index = ©; index < fileInfo->numSubFiles; index++)

{

error=extractInterface->fpGetSubFileInfo(pFile,index,&subFileInfo);
if ( error )
{

extractInterface->fpFreeStruct(pFile,subFileInfo);

subFileInfo = NULL;

IDOL KeyView (12.9) Page 146 of 482



HTML Export SDK C and COM Programming Guide
Chapter 6: File Extraction AP| Functions

fpGetSubFileMetaData(

This function extracts metadata from mail stores, mail messages, and non-mail items. See Extract
Mail Metadata, on page 60.

Syntax

int (pascal *fpGetSubFileMetaData) (
void *pFile,
KVGetSubFileMetaArg metaArg,
KVSubFileMetaData *metaData);

Arguments

pFile The identifier of the file. This is a file handle returned from fpOpenFile().

metaArg A pointer to the KVGetSubFileMetaArg structure, which defines metadata tags whose
values are retrieved.

Before you initialize the KvGetSubFileMetaArg structure, use the KVStructInit macro
toinitialize the KvStructHead structure.

metaData A pointerto the KVSubFileMetaData structure, which contains the retrieved metadata
values.

Returns

« If the metadata is retrieved, the return value is KVERR_Success.

« If the metadatais not retrieved, the return value is an error code.

Discussion

« KeyView can extract a predefined set of common subfile metadata fields for all mail formats, and
can extract all metadata from EML, MBX, MIME, NSF, ICS, and DXL files. To extract the
common metadata fields, pass in @ for metaArg->metaNameCount, and NULL for metaArg-
>metaNameArray. To extract all metadata, pass in -1 for metaArg->metaNameCount and NULL for
metaArg->metaNameArray. For more information, see Extract Mail Metadata, on page 60.

« Afterthe metadata is retrieved, call fpFreeStruct() to free the memory allocated by this function.

IDOL KeyView (12.9) Page 147 of 482



HTML Export SDK C and COM Programming Guide
Chapter 6: File Extraction AP| Functions

« If afieldis repeated in an EML or MBX mail header, the values in each instance of the field are
concatenated and returned as one field. The values are separated by five pound signs (#####) as
a delimiter.

Example

KVSubFileMetaData metaData = NULL;

KVStructInit(&metaArg);

/* retrieve all the default metadata elements */

metaArg.metaNameCount = 0;

metaArg.metaNameArray = NULL;

metaArg.index = Index;

error = extractInterface->fpGetSubFileMetaData(pFile,&metaArg,&metaData);

extractInterface->fpFreeStruct(pFile,metaData);
metaData = NULL;

/* retrieve specific metadata fields */
KVMetaName  pName[2];
KVMetaNameRec names[2];

names[0].type = KVMetaNameType_Integer;
names[0©].name.iname = KVPR_SUBIJECT;

names[1].type = KVMetaNameType_Integer;
names[1].name.iname = KVPR_DISPLAY_TO;

pName[@]
pName[1]

&names[0];
&names[1];

metaArg.metaNameCount = 2;
metaArg.metaNameArray = pName;
metaArg.index = Index;

error = extractInterface->fpGetSubFileMetaData (pFile,&metaArg,&metaData);

extractInterface->fpFreeStruct(pFile,metaData);
metaData = NULL;

IDOL KeyView (12.9) Page 148 of 482



HTML Export SDK C and COM Programming Guide
Chapter 6: File Extraction AP| Functions

fpOpenFile(

This function opens a file to make the file accessible for subfile extraction or conversion.

Syntax

int (pascal *fpOpenFile) (
void *pContext,
KVOpenFileArg openArg,
void **pFile);

Arguments

pContext A pointer returned from fpInit() or fpInitWithLicenseData().

openArg A pointer to the K\VOpenFileArg structure. This structure defines the input parameters
necessary to open a file for extraction, such as credentials, and the default extraction
directory.

Before you initialize the KvOpenFileArg structure, use the macro KVStructInit to
initialize the KVStructHead structure.

pFile A handle for the opened file. This handle is used in subsequent file extraction calls to
identify the source file.

Returns

« If thefile is opened, the return value is KVERR_Success.

« If thefile is not opened, the return value is an error code and pFile is NULL.

Discussion

Call fpCloseFile() to free the memory allocated by this function.

Example

KVOpenFileArgRec openArg;

/*Initialize the structure using KVStructInit*/
KVStructInit(&openArg);

IDOL KeyView (12.9) Page 149 of 482



HTML Export SDK C and COM Programming Guide
Chapter 6: File Extraction APl Functions

openArg.extractDir = destDir;
openArg.filePath srcFile;

/*0Open the main file */
if ( (error = extractInterface->fpOpenFile(pExport,&openArg,&pFile)))

{
extractInterface->fpCloseFile(pFile);

pFile = NULL;

IDOL KeyView (12.9) Page 150 of 482



Chapter 7: File Extraction API
Structures

This section provides information on the structures used by the File Extraction API. These structures
define the input and output parameters required to extract subfiles from a container file, and are defined
in kvxtract.h.

® KV Credential . ... ..o 151
® KVCredentialCompPONENt .. .. ... e 152
® KVEXtractinterface ... . .. 152
® KVEXtract SUBFIleATG . 153
® KVGetSubFileMetaArg ... 156
® KVMaINFIleINfO ... e 157
® KVMetadataElem ... 158
® KVMetaName . 159
¢ KV OPEN Il AN . . . L 160
® KV OUIPUL ST aM . .. e 161
® KV SubFileEXtractinfO ... 162
® KV SUBFIleIN O . 163
® KVSUbFileMetaData . ... ... ... e 166

KVCredential

This structure contains a count of the number of credential elements, and a pointer to the first element
of the array of individual elements. The structure is initialized by calling fpOpenFile(), and is defined in
kvxtract.h.

typedef struct tag_KVCredential
{

int itemCount;
KVCredentialComponent *items;

}
KVCredentialRec, *KVCredential;

Member Descriptions

itemCount The number of credentials defined for this file.

IDOL KeyView (12.9) Page 151 of 482



HTML Export SDK C and COM Programming Guide
Chapter 7: File Extraction API Structures

items A pointer to the KV Credential Component structure. This structure contains the
individual credential elements used to open a protected file.

KVCredentialComponent

This structure contains the value of a credential item. The structure is defined in kvxtract.h.

typedef struct tag_KVCredentialComponent

{
KVCredKeyType keytype;
union
{
void *pkey;
char *skey;
unsigned int ikey;
}
keyobj;
}

KVCredentialComponentRec, *KVCredentialComponent;

Member Descriptions

keytype The type of credential (such as a user name or password). The types are defined by the
KVCredKeyType enumerated type.

pkey A pointer to a structure defining credentials. Reserved for future use.
skey A pointer to a string credential key.
ikey An integer credential key.

KVEXxtractinterface

The members of this structure are pointers to the file extraction functions described in File Extraction
API Functions, on page 140. When you call the KV GetExtractInterface() function, this structure
assigns pointers to the functions. The structure is defined in kvxtract.h.

typedef struct tag_KVExtractInterface
{
KVStructHeader;
int (pascal *fpOpenFile) (void *pContext,KVOpenFileArg openArg, void
**pFileHandle);
int (pascal *fpCloseFile) (void *pFileHandle);
int (pascal *fpGetMainFileInfo) (void *pFile, KVMainFileInfo *MainFileInfo);

IDOL KeyView (12.9) Page 152 of 482



HTML Export SDK C and COM Programming Guide
Chapter 7: File Extraction API Structures

int (pascal *fpGetSubFileInfo) (void *pFile, int index, KVSubFileInfo
*subFileInfo);

int (pascal *fpGetSubFileMetaData) (void *pFile, KVGetSubFileMetaArg metaArg,
KVSubFileMetaData *metaData);

int (pascal *fpExtractSubFile) (void *pFile, KVExtractSubFileArg extractArg,
KVSubFileExtractInfo *extractInfo);

int (pascal *fpFreeStruct) (void *pFile, void *obj);
}

KVExtractInterfaceRec, *KVExtractInterface;

Member Descriptions

The member functions are described in File Extraction AP| Functions, on page 140.

Discussion

Before you initialize a File Extraction structure, use the KvStructInit macro to initialize the
KVStructHead structure. This process sets the revision number of the File Extraction APl and supports
binary compatibility with future releases.

KVEXxtractSubFileArg

This structure defines the input parameters required to extract a subfile. See fpExtractSubFile(), on
page 142. The structure is defined in kvxtract.h.

typedef struct tag_KVExtractSubFileArg

{
KVStructHeader;
int index;
KVCharSet srcCharset;
KVCharSet trgCharset;
int isMSBLSB;
DWORD extractionFlag
char *filePath;
char *extractDir;
KVOutputStream *stream;

}

KVExtractSubFileArgRec, *KVExtractSubFileArg;

Member Descriptions

KvStructHeader The KeyView version of the structure. See KV StructHead, on page 224.

IDOL KeyView (12.9) Page 153 of 482



HTML Export SDK C and COM Programming Guide
Chapter 7: File Extraction API Structures

index

srcCharset

trgCharset

isMSBLSB

extractionFlag

IDOL KeyView (12.9)

The index number of the subfile to be extracted.

Specifies the source character set of the subfile when the file format’s reader
cannot determine the character set. The character sets are enumerated in
KVCharSet in kvcharset.h. See Discussion, on the next page.

If the file type is KVFileType_Main, this is the target character set of the
extracted file. Otherwise, this is ignored. The character sets are enumerated in
KVCharSet in kvcharset.h. See Discussion, on the next page.

This flag indicates whether the byte order for Unicode text is Big Endian
(MSBLSB) or Little Endian (LSBMSB).

A bitwise flag that defines additional parameters for file extraction. The following
flags are available:

e KVExtractionFlag CreateDir

This flag indicates whether the directory structure of a subfile should be
created. If you set this flag, the path defined in filePath is created if it does
not already exist. If you do not set this flag, the path is not created, and the
function returns FALSE.

e KVExtractionFlag Overwrite

If you set this flag, and the file being extracted has the same name as afile
in the target path, the file in the target path is overwritten without warning. If
you do not set this flag, and a subfile has the same name as afile in the
target path, the error KVError_OutputFileExists is generated.

e KVExtractionFlag ExcludeMailHeader

If you set this flag, header information (To, From, Sent, and so on) in a mail
file is not included in the extracted data. If you do not set this flag, the
extracted data contains header information and the message’s body text.
See Exclude Metadata from the Extracted Text File, on page 67.

e KVExtractionFlag GetFormattedBody

If you set this flag, the formatted version of the message body (HTML or
RTF)is extracted from mail files when possible. If neither an HTML nor RTF
version of the message body exists in the mail file, it is extracted as plain
text. If you do not set this flag, the message body is extracted as plain text
when possible.

NOTE: When an HTML or RTF message body is extracted, the
message’s mail headers (such as "From," "To," and "Subject,") are
extracted, saved in the same format, and added to the beginning of the
subfile. This applies to PST (MAPI-based reader), MSG, and NSF files
only.

e KVExtractionFlag_SaveAsMSG

If you set this flag, the mail message is extracted as an MSG file, including
all of its attachments. If you do not set this flag, the mail message is

Page 154 of 482



HTML Export SDK C and COM Programming Guide
Chapter 7: File Extraction API Structures

extracted as text. This applies to PST files on Windows only.

NOTE: In file mode, when the application sets this flag in
fpExtractSubFile(), it must also check the KVSubFileExtractinfo
structure’s filePath parameter to verify the file name used for
extraction.

e KVExtractionFlag_SanitizeAbsolutePaths

If you set this flag, KeyView ensures that the file is extracted to a location
within the extract directory (extractDir), even if an absolute pathis
supplied using filePath. When KeyView sanitizes a path and the resulting
directory does not exist, extraction fails unless you instruct KeyView to
create the directory, so you might also want to set the flag
KVExtractionFlag CreateDir. For more information, see Sanitize
Absolute Paths, on page 57.

filePath A pointer to the suggested path or file name to which the subfile is extracted. This
can be a file name, partial path, or full path. You can use this in conjunction with
extractDir to create the full output path. See Discussion, below.

extractDir A pointer to the directory to which subfiles are extracted. This directory must
exist. If you set this flag, the path specified in KVOpenFileArg->extractDir is
ignored. You can use this in conjunction with filePath to create the full output
path.

stream A pointer to an output stream defined by KV OutputStream. See Discussion,
below.

Discussion

« If the document character set is detected and is also specified in srcCharset, the detected
character set is overridden by the specified character set. If the source character set is not
detected and is not specified, character set conversion does not occur. The Document Readers,
on page 392 section lists the formats for which the source character set can be determined.

o TheKVSubFileExtractInfoFlag_CharsetConverted flag in the KVSubFileExtractInfo structure
indicates whether the character set of the subfile was converted during extraction.

« The following applies when the output is to afile:

o If filePath is a valid absolute path, the file is extracted to the specified path and extractDir
is ignored. However, if you have set the flag KVExtractionFlag_SanitizeAbsolutePaths
the output path is modified to ensure it is within the extractDir. For more information, see
Sanitize Absolute Paths, on page 57.

o If filePath is a file name or partial path, the target directory specified in either
KVExtractSubFileArg->extractDir or KVOpenFileArg->extractDir is used to create the
full path. See KVVOpenFileArg, on page 160.

o If filePath is afull path or partial path, and createDir is TRUE, the directory is created if it
does not already exist.

IDOL KeyView (12.9) Page 155 of 482



HTML Export SDK C and COM Programming Guide
Chapter 7: File Extraction API Structures

o If filePath is not specified, a default name and the target directory specified in either
KVExtractSubFileArg->extractDir or KVOpenFileArg->extractDir are used to create a
full path.

o If both filePath and extractDir are not specified or are invalid, an error is returned.
o If filePath is valid, but extractDir is not valid, an error is returned.

« The following applies when the output is to a stream:
o SetfilePath and extractDir to NULL.

o The file format (docInfo) and extraction file path (filePath) are not returned in
KVSubFileExtractinfo.

o TheKVExtractionFlag CreateDir and KVExtractionFlag_Overwrite flags are ignored.

KVGetSubFileMetaArg

This structure defines the metadata tags whose values are retrieved by fpGetSubFileMetaData(). This
structure is defined in kvxtract.h.

typedef struct tag_KVGetSubFileMetaArg

{
KVStructHeader;
int index;
int metaNameCount;
KVMetaName *metaNameArray;
KVCharSet srcCharset;
KVCharSet trgCharset;
int isMSBLSB;

}

KVGetSubFileMetaArgRec, *KVGetSubFileMetaArg;

Member Descriptions

KVStructHeader The KeyView version of the structure. See KV StructHead, on page 224.
index The index number of the subfile for which metadata is extracted.
metaNameCount The number of metadata fields to be extracted.

metaNameArray A pointer to the KVMetaName structure that contains an array of metadata tags
whose values are retrieved.

srcCharset Specifies the source character set of the metadata when the format’s reader
cannot determine the character set. The character sets are enumerated in
KVCharSet in kvcharset.h. See Discussion, on the next page.

trgCharset The target character set of the extracted metadata.

IDOL KeyView (12.9) Page 156 of 482



HTML Export SDK C and COM Programming Guide
Chapter 7: File Extraction API Structures

The character sets are enumerated in KVCharSet in kvcharset.h.

isMSBLSB This flag indicates whether the byte order for Unicode text is Big Endian
(MSBLSB) or Little Endian (LSBMSB).

Discussion

« Ifthe character set is detected and is also specified in srcCharset, the detected character set is
overridden by the specified character set. If the source character set is not detected and is not
specified, character set conversion does not occur. The section Document Readers, on page 392
lists the formats for which the source character set can be determined.

« KeyView can extract a predefined set of common subfile metadata fields for all mail formats, and
can extract all metadata from EML, MBX, MIME, NSF, ICS, and DXL files. To extract the
common metadata fields, pass in @ for metaArg- >metaNameCount, and NULL for metaArg-
>metaNameArray. To extract all metadata, pass in -1 for metaArg->metaNameCount and NULL for
metaArg->metaNameArray. For more information, see Extract Mail Metadata, on page 60.

KVMainFilelnfo

This structure contains information about a main file that is open for extraction. It is initialized by calling
fpGetMainFilelnfo(). This structure is defined in kvxtract.h.

typedef struct tag_KVMainFileInfo

{
KVStructHeader;
int numSubFiles;
ADDOCINFO docInfo;
KVCharSet charset;
int isMSBLSB;
unsigned long  infoFlag;

}

KVMainFileInfoRec, *KVMainFileInfo;

Member Descriptions

KVStructHeader The KeyView version of the structure. See KVStructHead, on page 224.
numSubFiles The number of subfiles in the main file.

docInfo The file’s major format (such as Microsoft Word or Corel Presentation), as defined
by the structure ADDOCINFO. See ADDOCINFO, on page 216.

charset The character set of the main file.

isMSBLSB This flag indicates whether the byte order for Unicode text is Big Endian

IDOL KeyView (12.9) Page 157 of 482



HTML Export SDK C and COM Programming Guide
Chapter 7: File Extraction API Structures

MSBLSB) or Little Endian (LSBMSB).

infoFlag A bitwise flag that provides additional information about the main file. The
following flag is available:

KVMainFileInfoFlag HasContent—The main file contains text that can be
converted. Below are some examples of how this flag is used:

« Foran MSG file without attachments, numSubFiles is 1 (message body
text), and this flag is FALSE because the MSG file itself does not contain
text.

« Fora Zipfile with three files, numSubFiles is 3, and this flag is FALSE
because a Zip file does not contain text.

« Fora Microsoft Word file with an embedded OLE object, numSubFiles is 1
(OLE object), and this flag is TRUE (Word file contains text to be converted).

Discussion

« If numSubFiles is non-zero, get information on the subfile by calling fpGetSubFilelnfo(), and then
extract the subfiles by using fpExtractSubFile().

« IfnumSubFiles is 0, the file does not contain subfiles and does not need to be extracted further. If
the KVMainInfoFlag HasContent flagis set, the file contains body text and can be passed
directly to the conversion functions. See HTML Export API Functions, on page 167.

« IfopenFlagis setto KVOpenFileFlag_CreateRootNode in the call to fpOpenFile(),
numSubFiles also includes the root object (index @) which is created by KeyView for
reconstructing the file’s hierarchy. See KVOpenFileArg, on page 160.

KVMetadataElem

This structure contains metadata field values extracted from a mail file. This structure is defined in
kvtypes.h.

typedef struct tag_KVMetadataElem

{
int isDataValid;
int datalD;
KVMetadataType dataType;
char* strType;
void* data;
int dataSize;

}

KVMetadataElem;

IDOL KeyView (12.9) Page 158 of 482



HTML Export SDK C and COM Programming Guide
Chapter 7: File Extraction API Structures

Member Descriptions

isDatavalid Specifies whether the metadata returned from the APl is valid data.

datalD

dataType

strType

data

dataSize

The integer name of the extracted metadata field.

The data type of the metadata field. The types are defined in KVMetadataType in
kvtypes.h.

A pointer to the string name of the metadata field.
The contents of the metadata field.

If the type member is KVMetadata_Int4 or KVMetadata_Bool, this member contains
the actual value. Otherwise, this member is a pointer to the actual value.

KVMetadata_DateTime points to an 8-byte value.

KVMetadata_String and KVMetadata_Unicode point to the beginning of the string
that contains the text. The strings are NULL terminated.

KVMetadata_Binary points to the first element of a byte array.

The byte count of data when the type is KVMetadata_Binary, KVMetadata_Unicode,
or KVMetadata_String.

KVMetaName

This structure defines the names of the metadata fields to be extracted from a mail file. This structure is
defined in kvxtract.h.

typedef struct tag_KvMetaName

KVMetaNameType type;

void
int
char

{
union
{
}name;
}

*pname;
iname;
*sname;

KVMetaNameRec, *KVMetaName;

Member Descriptions

type The type of metadata name (such as integer or string). The types are defined by the
KVMetaNameType enumerated type.

IDOL KeyView (12.9) Page 159 of 482



HTML Export SDK C and COM Programming Guide
Chapter 7: File Extraction API Structures

NOTE: MAPI property names are of type integer.

pname A pointer to a structure defining the metadata fields to be retrieved.
iname The name of a metadata field of type integer.

sname A pointer to the name of a metadata field of type string.

Discussion

If you specify the MAPI tag name (for example, PR_CONVERSATION_TOPIC), you must include the
mapitags.h and mapidefs.h Windows header files, in which PR_CONVERSATION_TOPIC is defined as
0x0070001e.

KVOpenFileArg

This structure defines the input arguments necessary to open a file for extraction. It is initialized by
calling fpOpenFile(). This structure is defined in kvxtract.h.

typedef struct tag_KVOpenFileArg

{
KVStructHeader;
KVCredential cred;
KVInputStream *stream;
char *filePath;
char *extractDir;
DWORD openFlag;
DWORD reserved;
void *pReserved;

}

KVOpenFileArgRec, *KVOpenFileArg;

Member Descriptions

KVStructHeader The KeyView version of the structure. See KVStructHead, on page 224.

cred The credentials required to open a protected PST or NSF file. This is a pointer to
the KV Credential structure. Your application can define multiple credentials to
this member for multiple formats.

stream A pointer to the developer-assigned instance of KvInputStream. The
KVInputStream structure defines the input stream that contains the source. See
KVInputStream, on page 216.

If you are using a file as input, this is NULL.

IDOL KeyView (12.9) Page 160 of 482



HTML Export SDK C and COM Programming Guide
Chapter 7: File Extraction API Structures

filePath

extractDir

openFlag

reserved

pReserved

A pointer to the full file path to the source file.

If you are using a stream as input, this is NULL.

A pointer to the default directory to which subfiles are extracted. This directory
must exist.

You can use this in conjunction with KVExtractSubFileArg->filePath to create
the full output path. See KVExtractSubFileArg, on page 153.

A bitwise flag that defines additional parameters for opening the file. The following
flag is available:

KVOpenFileFlag_CreateRootNode—If you set this flag, KeyView creates a root
object when extracting this file’s subfiles. This root node does not have a parent
and is at the highest level of the file’s tree structure. It is used internally to provide
a reference point from which all other child nodes are determined, and the file’s
hierarchy is created.

If you want to maintain the file’s hierarchy when you extract subfiles from a
container, you must set this flag. See Recreate a File’s Hierarchy, on page 58 for
more information.

The root node has an index of zero. Although not all container formats require an
artificial root node, the root is created for all container formats regardless of
whether the file itself contains a root directory or file.

Reserved for future use. It must be NULL.

Reserved for future use. It must be NULL.

KVOutputStream

This structure defines an output stream for the extracted subfile. The structure is defined in
kvstream.h.

typedef struct tag_OutputStream

{
void
BOOL
UINT
BOOL
long
BOOL

}

*pOutputStreamPrivateData;

(pascal
(pascal
(pascal
(pascal
(pascal

*fpCreate) (struct
*fpWrite) (struct
*fpSeek) (struct
*fpTell) (struct
*fpClose) (struct

KVOutputStream;

Member Descriptions

All member functions are equivalent to their counterparts in the ANSI standard library.

IDOL KeyView (12.9)

tag_OutputStream
tag_OutputStream
tag_OutputStream
tag_OutputStream
tag_OutputStream

*,TCHAR *);

*, BYTE *, UINT);
* long, int);
*)s

*)s

Page 161 of 482



HTML Export SDK C and COM Programming Guide
Chapter 7: File Extraction API Structures

KVSubFileExtractinfo

This structure contains information about an extracted subfile. It is initialized by calling
fpExtractSubFile(). This structure is defined in kvxtract.h.

typedef struct tag_KVSubFileExtractInfo

{
KVStructHeader;
char
char
unsigned long
ADDOCINFO

}

*filePath;
*fileName;

infoFlag;
docInfo;

KVSubFileExtractInfoRec, *KVSubFileExtractInfo;

Member Descriptions

KvVStructHeader The KeyView version of the structure. See KV StructHead, on page 224.

filePath The full path to which the subfile was extracted.

If the subfile is embedded in the main file as a link, this is the external path to the
subfile.

If you output the data to a stream, the extraction path is not returned.

fileName The original path, file name, or path and file name of the subfile.
If the subfile is embedded in the main file as a link, this is the external path to the
subfile.

infoFlag A bitwise flag that provides additional information about the extracted subfile. The

following flags are available:

IDOL KeyView (12.9)

KVSubFileExtractInfoFlag NeedsExtraction—The file might contain
subfiles and should be extracted further.

KVSubFileExtractInfoFlag_FileCreated—The file was created on disk.

KVSubFileExtractInfoFlag_CharsetConverted—The subfile’s character
set was converted.

KVSubFileExtractInfoFlag_External—The subfile is embedded in the
main file as a link and is stored externally. For example, the subfile might be
an object that was embedded in a Word document using "Link to File," oran
attachment that is referenced in an MBX message. This type of file cannot
be extracted. You must write code to access the subfile based on the path in
the member filePath or fileName.

KVSubFileExtractInfoFlag_FolderCreated—A folder was created.

Page 162 of 482



HTML Export SDK C and COM Programming Guide
Chapter 7: File Extraction API Structures

e KVSubFileExtractInfoFlag NonFormattedBodyExtracted—Indicates
that a plain text version of the message was extracted due to an error
extracting the formatted version of the message.

docInfo The file’'s major format (such as Microsoft Word or Corel Presentation), as defined
by the structure ADDOCINFO. See ADDOCINFO, on page 216.

If you output the data to a stream, the file format is not returned.

KVSubFilelnfo

This structure contains information about a subfile in a container file. It is initialized by calling
fpGetSubFilelnfo(). This structure is defined in kvxtract.h.

typedef struct tag_KVSubFileInfo

{
KVStructHeader;
char *subFileName;
int subFileType;
long subFileSize;
unsigned long infoFlag;
KVCharSet charset;
int isMSBLSB;
BYTE fileTime[8];
int parentIndex;
int childCount;
int *childArray;
}

KVContainerSubFileInfoRec, *KVSubFileInfo;

Member Descriptions

KVStructHeader The KeyView version of the structure. See KVStructHead, on page 224.

subFileName The path, file name, or path and file name of the subfile.

If the subfile is the body text of a mail file or is an embedded OLE object, KeyView
provides a default file name. See Default File Names for Extracted Subfiles, on
page 76.

subFileType The subfile’s position in the container file’s hierarchy.

o KVSubFileType_Main The subfile is at the top level of the main file. This is
the default subfile type. See Discussion, on page 165.

o KVSubFileType_ Attachment The subfile is an attachment in afile.

e KVSubFileType_OLE The subfile is an embedded OLE object in a compound
document.

IDOL KeyView (12.9) Page 163 of 482



HTML Export SDK C and COM Programming Guide
Chapter 7: File Extraction API Structures

subFileSize

infoFlag

IDOL KeyView (12.9)

KVSubFileType_Folder The subfile is a folder or the artificial root node (see
Create a Root Node, on page 59).

KVSubFileType UncategorisedImage An embedded image that has not
been categorized by the reader.

KVSubFileType_EmbeddedImage An embedded image.

KVSubFileType_EmbeddedIcon Anicon used to represent an embedded
file.

KVSubFileType_EmbeddedContent Animage used to represent content for
an embedded file. This could be an preview image of the actual content, or
another representation such as anicon.

KVSubFileType_EmbeddedPreview A preview of an embedded file. This is
usually an image that shows part of the embedded file.

KVSubFileType_XrML The subfile contains the XrML that describes the
RMS protection used on an RMS-encrypted main file.

NOTE: The classification of embedded images into images, icons, content,
and previews is supported only for some Microsoft Office file formats (DOC,
DOCX, XLSX, PPT, PPTX).

The size of the subfile in bytes. This information might be useful if you do not
want to extract very large files.

This value is approximate and is the maximum size of the subfile. The subfile is
usually smaller than this value when it is extracted.

A bitwise flag that provides additional information about the subfile. The following
flags are available:

KVSubFileInfoFlag NeedsExtraction—The subfile might contain
subfiles. It must be extracted further to conclusively determine whether it
contains subfiles.

KVSubFileInfoFlag_Secure—The subfile is secured and credentials (such
as user name and password) are required to extract it. This flag applies to
ZIP, RAR, and PDF files only.

KVSubFileInfoFlag_ SMIME—The subfile is S/IMIME-encrypted and
credentials are required to extract it. This applies to .eml and .pst files only.

KVSubFileInfoFlag_ External—The subfile is embedded in the main file
as alink and is stored externally. For example, the subfile might be an
object that was embedded in a Word document by using "Link to File," or an
attachment that is referenced in an MBX message. This type of file cannot
be extracted. You must write code to access the subfile based on the path
in the member subFileName.

KVSubFileInfoFlag_MailItem—When the subfile typeis
KVSubFileType Attachment, this indicates that the attachment is a mail
item. This flag applies to PST, MSG, and NSF files only.

Page 164 of 482



HTML Export SDK C and COM Programming Guide
Chapter 7: File Extraction API Structures

charset If the subfile is not an attachment, this is the character set of the subfile. If the
subfile is an attachment, the character set is KVCS_UNKNOWN.

isMSBLSB This flag indicates whether the byte order for Unicode text is Big Endian
(MSBLSB) or Little Endian (LSBMSB).

fileTime When the subfile is a mail message, this is the file’s Sent time. Otherwise, it is
the last modified time. The file time is not available for the following file types:

« EML attachments
« OLE objects in a Microsoft Office document
« Embedded images

parentIndex The index number of this file’s parent. For example, the index of a folder in which
the subfile is stored, or the file to which the subfile is attached. If a file does not
have a parent, the parentIndexis -1.

childCount The number of first-level children in the subfile.
childArray A pointer to an array of first-level children in the subfile.
Discussion

« TheKVSubFileType_Main type applies to the following for each file format:

File format KVSubFileType_Main applies to...
MSG and EML The message body.

Zipfiles A file inside the archive.

PST files An item that is not an attachment, an OLE object, or a root node.
MBX files A message in the MBX file.

NSF files An item that is not an attachment, an OLE object, or a root node.
PDF files An item that is not an attachment or a root node.

« Ifyou set the KvSubFileInfoFlag_NeedsExtraction flag, open the subfile and extract its
children. See fpOpenFile(), on page 149 and fpExtractSubFile(), on page 142.

« The parentIndex and childArray members provide information about the subfile’s parent and
children. You can use this information to recreate the file hierarchy on extraction. Because
childArray retrieves only the first-level children in the subfile, you must call fpGetSubFileInfo
() repeatedly until information for the leaf-node children is extracted. See Recreate a File's
Hierarchy, on page 58.

IDOL KeyView (12.9) Page 165 of 482



HTML Export SDK C and COM Programming Guide
Chapter 7: File Extraction API Structures

KVSubFileMetaData

This structure contains a count of the number of metadata elements extracted from a mail file, and a
pointer to the first element of the array of elements. It is initialized by calling fpGetSubFileMetaData().
This structure is defined in kvxtract.h.

typedef struct tag_KVSubFileMetaData

{
KVStructHeader;
int nElem;
KVMetadataElem** ppElem;
unsigned long infoFlag;
}

KVSubFileMetaDataRec, *KVSubFileMetaData;

Member Descriptions

KVStructHeader The KeyView version of the structure. See KVStructHead, on page 224.
nElem The number of metadata fields contained in the array.

ppElem A pointer to an array of pointers that are the memory addresses of metadata field
values in the KVMetadataElem structure.

infoFlag A bitwise flag that defines additional properties of the extracted metadata. The
following flag is available:

KVSubFileMetaInfoFlag_CharsetConverted—Indicates that the metadata’s
character set was converted.

IDOL KeyView (12.9) Page 166 of 482



Chapter 8: HTML Export API Functions

This section describes the functions in the HTML Export API. These functions manage the input and
output streams, and perform the document conversion. Each function appears as a function prototype
followed by a description of its arguments, its return value, and discussion of its use.

* KVHTMLGetInterfaceEX() .. il 168
® KVHTMLGetInterfaceEX2() ... L 168
® I PCONfIGQUIERIM S () ... L 170
® fPCONVErtSIreamM () ... 171
® fpFileTolnputStreamCreate() ... ... . 173
® fpFileTolnputStreamFree ) .. ... .. 174
* fpFileToOutputStreamCreate() ...... ... ..o ool 175
® fpFileToOutputStreamFree ) ... . o ... 176
® fpFreePartitionInfolist . .. 177
® PGEtANCNON() - il 178
® fpGetConvertFilelist() ... o 179
® fPGetKVEMOrCode . . ... . 180
® fpGetKVEMOrCOdeEX .. 180
® fpGetPartitionInfoList ... . 181
® fpGetStreamInfo() ... ... o 182
® fpGetSummaryInfo() ... .. 182
O DIt ) il 184
® fplnitWithLicenseDatal) ... ... ... L 185
® pSetPartitionON ... 187
® fPSetStyleMapPing() . ... 188
® DS U D OWN() .. L 189
® fpValidateTemplate() .. ... o o il 190
® KVHTMLCONFIG() - - eooeen oo 190
® KVHTMLCOoNVertFile() ... .. 198
® KVHTMLENAOOP SESSION() - .o 200
® KVHTMLSetHIghlight() ... 202
® KVHTMLSetStyleSheet() .. ... 204
® KVHTMLStartOOP SeSSION() - ...l 205

IDOL KeyView (12.9) Page 167 of 482



HTML Export SDK C and COM Programming Guide
Chapter 8: HTML Export API Functions

KVHTMLGetInterfaceExQ

NOTE: This function has been superseded by KVHTMLGetInterfaceEx2(); KVHTMLInterfaceEx2
() should be used instead of KVHTMLInterfaceEx().

This is exported by the Export definition file. It supplies function pointers to other Export functions.
When KVHTMLGetInterfaceEx() is called, it assigns the function pointers in the KVHTMLInterfaceEx

structure to other functions described in this chapter. For example, KVHTMLInterfaceEx.fpInitis
assigned to point to KVHTMLInitEx().

Syntax

void pascal KVHTMLGetInterfaceEx (KVHTMLInterfaceEx *pInterface);

Arguments

pInterface A pointerto the structure KVHTMLInterfaceEx. See KVHTMLInterfaceEx, on page 232.

Returns

None.

Discussion

« One of the initial steps in using the HTML Export APl is to create an instance of a
KVHTMLInterfaceEx structure and use this function to gain access to other functions.

« You can call the API functions directly. For example, you can call KVHTMLGetSummaryInfo()
instead of using fpGetSummaryInfo() in KVYHTMLInterfaceEx. However, Micro Focus
recommends that you assign the function pointers in KVYHTMLInterfaceEx to the functions for
efficiency.

KVHTMLGetInterfaceEx2(Q

This function is exported by the Export definition file. It supplies function pointers to other Export
functions. When KVHTMLGetInterfaceEx2() is called, it assigns the function pointers in the structure
KVHTMLInterfaceEx2 to other functions described in this chapter. For example,
KVHTMLInterfaceEx2.fpInit is assigned to point to KVYHTMLInitEx().

IDOL KeyView (12.9) Page 168 of 482



HTML Export SDK C and COM Programming Guide
Chapter 8: HTML Export API Functions

Syntax

BOOL pascal KVHTMLGetInterfaceEx2 (KVHTMLInterfaceEx2 *pInterface);

Arguments

pInterface A pointerto the structure KVHTMLInterfaceEx2. See KVHTMLInterfaceEx2, on
page 234.

Returns

« If the call is successful, the return value is TRUE.
« If the call is unsuccessful, the return value is FALSE.
If the function fails, all function pointers in pInterface are set to NULL.

You must initialize pInterface by calling KVStructInit priorto passing it to
KVHTMLGetInterfaceEx2. If you do not do this, the function fails.

Discussion

« One of the initial steps in using the HTML Export APl is to create an instance of a
KVHTMLInterfaceEx2 structure and use this function to gain access to other functions.

« The API functions can be called directly. For example, you can call KVHTMLGetSummaryInfo()
instead of using fpGetSummaryInfo() in KVHTMLInterfaceEx2. However, Micro Focus
recommends that you assign the function pointers in KVHTMLInterfaceEx2 to the functions for
efficiency.

o You mustinitialize KYHTMLInterfaceEx2 by calling KvStructInit prior to passing it to
KVHTMLGetInterfaceEx2, otherwise KVHTMLGetInterfaceEx2 fails

Example

KVHTMLInterfaceEx2 KVHTMLInt;
BOOL (pascal *fpGetInterfaceEx2)(KVHTMLInterfaceEx2 *);

KVStructInit(&KVHTMLINt);
(*fpGetInterfaceEx2) (&KVHTMLINt);

IDOL KeyView (12.9) Page 169 of 482



HTML Export SDK C and COM Programming Guide
Chapter 8: HTML Export API Functions

fpConfigureRMSQ

This function provides a way to set the credentials required to access Azure RMS protected files. After
you set these credentials, the HTML Export and File Extraction API functions can operate on the
contents of the Azure RMS files. This functionality is only available when running in process.

Syntax

KVErrorCode pascal *fpConfigureRMS(
void* pContext,
KVRMSCredentials* credentials);

Arguments

pContext A pointer returned from fplnit() and fpInitWithLicenseData().

credentials A pointerto a KVRMSCredentials structure that contains the required credentials.
See KVRMSCredentials, on page 221.

Set this value to NULL to discard the existing credentials. You can call the function
again with new credentials to override the existing configuration.

Before you fill out the KVRMSCredentials structure, use the macro KVStructInit to
initialize the KvStructHead structure.

Returns

The return value is an error code. See KVErrorCode, on page 258.

If the function returs KVERR_General, you can retrieve the extended error code by using the
fpGetKvErrorCodeEx () function (see fpGetKvErrorCodeEx, on page 180).

Discussion

« This function has an effect only when you export or extract documents in-process. KeyView does
not currently support exporting or extracting RMS protected documents out-of-process.

« Azure RMS decryption is licensed as an additional product. If your license does not allow for
Azure RMS decryption, this function returns the extended error code KVError_
ReaderUsageDenied.

« To access the protected content, KeyView must make an HTTP request. The time required to do
so means that KeyView processes protected files slower than unprotected files.

IDOL KeyView (12.9) Page 170 of 482



HTML Export SDK C and COM Programming Guide
Chapter 8: HTML Export API Functions

« By default, KeyView uses the system proxy when it makes HTTP requests to obtain the key. You
can also specify the proxy manually in the configuration file. See Configure the Proxy for RMS, on

page 120.

« This function is supported only on Windows 64-bit, Linux 64-bit, Solaris SPARC 64-bit, and

Solaris x86 64-bit.

On Linux 64-bit, the minimum supported versions of particular distributions are:

o Red Hat Enterprise Linux (RHEL) 6

o CentOS 6

o SuSE Linux Enterprise Server (SLES) 12

CAUTION: When HTML Export or File Extraction API functions access the protected contents of
Azure RMS-protected files, KeyView may place decrypted contents into the temporary directory. If
you want to manage the security of such files, you might want to change the temporary directory, by
using KVHTMLConfig().

fpConvertStream(Q

This function converts either a source stream or file to an output stream.

Syntax

BOOL pascal fpConvertStream(

void

void
KVInputStream
KVOutputStream

*pContext,
*pCallingContext,
*pInput,
*pOutput,

KVHTMLTemplateEx *pTemplatesEx,

KVHTMLOptionsEx

*pOptionsEx,

KVHTMLCallbacksex  *pCallbacksEx,
KVHTMLTOCOptions *pTOCCreateOptions,

BOOL
KVErrorCode

Arguments

pContext
pCallingContext

pInput

IDOL KeyView (12.9)

bIndex,
*pError );

A pointer returned from fplinit() or fpInitWithLicenseData().
A pointer passed back to the callback functions.

A pointer to the developer-assigned instance of KvInputStream. The
KVInputStream structure defines the input stream that contains the source for
the conversion. See KVInputStream, on page 216.

Page 171 of 482



HTML Export SDK C and COM Programming Guide
Chapter 8: HTML Export API Functions

pOutput A pointer to the developer-assigned instance of KvOoutputStream. The
KVOutputStream structure defines the output stream to which Export writes
the generated HTML. See KVOutputStream, on page 218.

pTemplatesEx A pointer to the KVYHTMLTemplateEx data structure. It defines the overall
structure of the output. Individual elements within the structure define the
markup written at specific points in the output stream. See
KVHTMLTemplateEx, on page 246.

If this pointer is NULL, the default values for the structure are used.

pOptionsEx A pointer to the KVHTMLOptionsEx data structure. It defines the options that
control the markup written in response to the general style and attributes (font,
color, and so on) of the document. See KVHTMLOptionsEx, on page 237.

If this pointer is NULL, the default values for the structure are used.

pCallbacksEx A pointer to the KVHTMLCallbacksEx data structure. It is a structure of
functions that Export calls for specific, user-defined purposes. See
KVHTMLCallbacksEx, on page 228.

If callbacks are not used, this can be NULL.

pTOCCreateOptions A pointerto the KYHTMLTOCOptions data structure. It specifies whether a
heading is included in the table of contents. See KVHTMLTOCOptions, on
page 250.

If this pointer is NULL, the default values for the structure are used.

bIndex Set bIndex to TRUE to generate output with minimal markup and without
images. Because the generated output is minimized to textual content, it is
suitable for an indexing engine. If you set bIndex to FALSE, embedded images
in a document are regenerated as separate files and stored in the output
directory.

You can also set this option through the bNoPictures, on page 244 member in
the template files.

pError A pointer to an error code if the call to fpConvertStream() fails.

Returns

o If the call is successful, the return value is TRUE.

« Ifthe call is unsuccessful, the return value is FALSE.

Discussion

o Only pContext, pInput, pOutput, and bIndex are required. All other pointers should be NULL
when they are not set.

IDOL KeyView (12.9) Page 172 of 482



HTML Export SDK C and COM Programming Guide
Chapter 8: HTML Export API Functions

o If pCallbacksExis NULL, pOptionsEx->pszDefaultOutputDirectory must be valid, except
when bIndex is set to TRUE.

« This function runs in-process or out of process. See Convert Files Out of Process, on page 31.

« When converting out of process, this function must be called after the call to
KVHTMLStart00PSession() and before the call to KYHTMLEndOOPSession(). See
KVHTMLStartOOPSession(), on page 205 and KVHTMLEndOOPSession(), on page 200.

« When converting out of process, the values for the KVYHTMLTemplateEx, KVYHTMLOptionsEx, and
KVHTMLTOCOptions structures should be set to NULL. These structures are already passed in the
call to KVHTMLStarto0oPSession(). See KVHTMLStartOOPSession(), on page 205.

Example

The following sample code is from the cnv2html sample program:

if (! (¥*KVHTMLInt.fpConvertStream) (

pKVHTML, /* A pointer returned by fpInit() */
NULL, /* A pointer for callback functions */
&Input, /* Input stream */
&Output, /* Output stream */
&HTMLTemplates, /* Markup and related variables */
&HTMLOptions, /* Options */
NULL, /* A pointer to callback functions */
NULL, /* TOC options */
FALSE, /* Index mode */
&error)) /* Error return value */
{
printf("Error converting %s to HTML %d\n", argv[i - 1], error);
}
else
{
printf("Conversion of %s to HTML completed.\n\n", argv[i - 1]);
}

fpFileTolnputStreamCreate(

This function creates an input stream from an input file.

Syntax

BOOL pascal _export fpFileToInputStreamCreate(
void *pContext,
char *pszFileName,

KVInputStream  *pInput);

IDOL KeyView (12.9) Page 173 of 482



HTML Export SDK C and COM Programming Guide
Chapter 8: HTML Export API Functions

Arguments

pContext A pointer returned from fplnit() or fpInitWithLicenseData().
pszFileName A pointer to the name of the input file to be converted.

pInput A pointer to the developer-assigned instance of KVInputStream. The KVInputStream
structure defines the input stream that contains the source for the conversion. See
KVInputStream, on page 216.

Returns

o If the call is successful, the return value is TRUE.

« If this call is unsuccessful, the return value is FALSE. Processing is halted.

Discussion

After the conversion is complete, call fpFileToInputStreamFree() to free the memory allocated by
this function.

Example

The following sample code is from the cnv2html sample program:

if (! (*KVHTMLInt.fpFileToInputStreamCreate) (pKVHTML, argv[i++], &Input))

{
printf("Error creating input stream\n");
(*KVHTMLInt.fpShutDown) (pKVHTML);
mpFreeLibrary (hKVHTML);
return (5);

}

fpFileTolnputStreamFree(Q

This function frees the memory used to create an input stream.

Syntax

BOOL pascal _export fpFileToInputStreamFree(
void *pContext,
KVInputStream  *pInput);

IDOL KeyView (12.9) Page 174 of 482



HTML Export SDK C and COM Programming Guide
Chapter 8: HTML Export API Functions

Arguments

pContext A pointer returned from fplnit() or fpInitWithLicenseData().

pInput A pointerto the developer-assigned instance of KvInputStream. The KVInputStream
structure defines the input stream that contains the source for the conversion. See
KVInputStream, on page 216.

Returns

o If the call is successful, the return value is TRUE.

« If this call is unsuccessful, the return value is FALSE. Processing is halted.

Discussion

After the conversion is complete, call this function to free the memory allocated by
fpFileToInputStreamCreate().

fpFileToOutputStreamCreate(

This function creates an output stream from an output file.

Syntax
BOOL pascal _export fpFileToOutputStreamCreate(
void *pContext,
char *pszFileName,
KVOutputStream *pOutput );
Arguments
pContext A pointer returned from fplnit() or fpInitWithLicenseData().

pszFileName A pointer to the name of the output file to create.

pOutput A pointer to the developer-assigned instance of KvOutputStream. The
KvOutputStream structure defines the output stream to which Export writes the
generated HTML. See KVOutputStream, on page 218.

IDOL KeyView (12.9) Page 175 of 482



HTML Export SDK C and COM Programming Guide
Chapter 8: HTML Export API Functions

Returns

« If the call is successful, the return value is TRUE.

« If this call is unsuccessful, the return value is FALSE. Processing is halted.

Discussion

After the conversion is complete, call fpFileToOutputStreamFree() to free the memory allocated by
this function.

Example

The following sample code is from the cnv2html sample program:

if (!'(*KVHTMLInt.fpFileToOutputStreamCreate)(pKVHTML, argv[i], &Output))

{
printf("Error creating output stream\n");
(*KVHTMLInt.fpFileToInputStreamFree) (pKVHTML, &Input);
(*KVHTMLInt.fpShutDown) (pKVHTML);
mpFreeLibrary (hKVHTML);
return 6;

}

fpFileToOutputStreamFreeQ

This function frees the memory used to create the output stream.

Syntax

BOOL pascal _export fpFileToOutputStreamFree(
void *pContext,
KVOutputStream *pOutput );

Arguments

pContext A pointer returned from fplinit() or fpInitWithLicenseData().

pOutput A pointer to the developer-assigned instance of KVOutputStream. The KvOutputStream
structure defines the output stream to which Export writes the generated HTML. See
KVOutputStream, on page 218.

IDOL KeyView (12.9) Page 176 of 482



HTML Export SDK C and COM Programming Guide
Chapter 8: HTML Export API Functions

Returns

« If the call is successful, the return value is TRUE.

« If this call is unsuccessful, the return value is FALSE. Processing is halted.

Discussion

After the conversion is complete, call this function to free the memory allocated by
fpFileToOutputStreamCreate().

fpFreePartitioninfolList

This function frees a KVPartitionInfoList that was allocated by fpGetPartitionInfoList().

Syntax

void pascal fpFreePartitionInfolList (
void* pContext,
KVPartitionInfolList* pPartitionInfolList)

Arguments

pContext A pointer returned from fplinit() or fpInitWithLicenseData().

pPartitionInfolList A pointertoaKVPartitionInfoList instance. The fpFreePartitionInfolist
function frees the resources associated with this structure.

Returns

None.

Discussion

This function is idempotent; that is, it does not do anything if you call it again on the same
pPartitionInfolist.

You must call fpFreePartitionInfolist before you call fpShutDown().

IDOL KeyView (12.9) Page 177 of 482



HTML Export SDK C and COM Programming Guide
Chapter 8: HTML Export API Functions

fpGetAnchor(Q

This function gets the file name automatically generated by Export and used for external graphics
referenced with <img> tags and for heading-level table of contents entries.

Syntax
BOOL pascal fpGetAnchor(
void *pCallingContext,
KVHTMLAnchorTypeEx eAnchorTypeEx,
KVXMLAnchorType eAnchorType,
char *pszAnchor,
int cbAnchorMax,
BYTE *pcHTML,
UINT CbHTML);
Arguments

pCallingContext A pointer passed back to the callback functions.

eAnchorTypeEXx The graphic or block anchor type for the output stream. It must be one of the
enumerated types defined in KVYHTMLAnchorTypeEx. See
KVHTMLAnNchorTypeEXx, on page 264.

pszAnchor A pointer to the location in which the new anchor is stored.
cbAnchorMax The maximum number of bytes to place in pszAnchor.
pcHTML A pointer to either the markup defining the contents of the table of contents

entry, a pointer to the external graphic name, or NULL.

cbHTML The number of valid bytes in pcHTML.

Returns

« If the call is successful, the return value is TRUE.

« Ifthis call is unsuccessful, the return value is FALSE. Processing is halted.

IDOL KeyView (12.9) Page 178 of 482



HTML Export SDK C and COM Programming Guide
Chapter 8: HTML Export API Functions

Discussion

« pszAnchor must be assigned. It might be derived from the cbAnchorMax, pcHTML, and cbHTML
values that are also provided.

o pcHTML can be NULL if the graphic is an internal part of the document.

« This function is exposed so that it can be called from the GetAnchor () callback function to obtain
default behavior for anchor types the callback is not set to handle.

fpGetConvertFileListQ

This function gets the list of files automatically converted to HTML during a call to fpConvertStream()
or KVHTMLConvertFile().

Syntax
char ** pascal _export fpGetConvertFileList(

void *pContext,

int *pnSize );
Arguments
pContext A pointer returned from fplinit() or fpInitWithLicenseData().
pnSize A pointer to the number of files generated by the conversion.
Returns

If no files are converted, the return value is a NULL pointer. Otherwise, the return value is a pointer to an
array of strings that provides the available path information for each converted file.

Discussion

« The array of file path information includes all externally generated files, including graphic files.
Note that the main output file is not included in the array, nor in the count of the number of files
converted.

« The memory used by the array of file path information is freed by the API.

« The array is not valid after a call to fpShutDown ().

IDOL KeyView (12.9) Page 179 of 482



HTML Export SDK C and COM Programming Guide
Chapter 8: HTML Export API Functions

« This function runs in-process or out of process. See Convert Files Out of Process, on page 31.

« When converting out of process, this function must be called after the call to
KVHTMLStart00PSession() and before the call to KYHTMLEndOOPSession(). See
KVHTMLStartOOPSession(), on page 205 and KVHTMLEndOOPSession(), on page 200.

fpGetKvErrorCode

This function gets an extended error code defined in KVErrorcCode. If a KeyView HTML Export function
fails, you can call fpGetKkvErrorCode () to find extra information on the failure.

Syntax

KVErrorCode pascal fpGetKvErrorCode (
void *pContext );

Arguments

pContext A pointer returned from fplnit() or fpInitWithLicenseData().

Returns

The current error code.

Discussion

If there has not been a failure, this function returns KVERR_Success.

fpGetKvErrorCodeEx

This function gets an extended error code defined in KVErrorCodeEx. It is called to provide additional
information when fpGetKvErrorCode() returns the error KVERR_General.

Syntax

KVErrorCodeEx pascal fpGetKvErrorCodeEx (
void *pContext );

IDOL KeyView (12.9) Page 180 of 482



HTML Export SDK C and COM Programming Guide
Chapter 8: HTML Export API Functions

Arguments

pContext A pointer returned from fplnit() or fpInitWithLicenseData().

Returns

The current extended error code.

fpGetPartitioninfolList

This function allocates and fills a KVVPartitionInfolList instance. This list gives you the information you
need to arrange the output so that you can view it in your preferred layout. For more information, see
Partitioning, on page 119.

Syntax
KVErrorCode pascal fpGetPartitionInfolList (

void* pContext,
KVPartitionInfolList* pPartitionInfolList)

Arguments

pContext A pointer returned from fplnit() or fpInitWithLicenseData().

pPartitionInfoList A pointertoaKVPartitionInfolList instance.

Returns

The return value is one of the error codes defined in KVErrorCode in kverrorcodes. h.

Discussion

This function runs in-process or out of process. See Convert Files Out of Process, on page 31.

When you convert out of process, you must call this function after the call to
KVHTMLStartOOPSession() and before the call to KVHTMLEndOOPSession().

When you have finished using pPartitionInfolList, you must call fpFreePartitioninfoList to free the
memory that this function allocates, before you call fpShutDown().

IDOL KeyView (12.9) Page 181 of 482



HTML Export SDK C and COM Programming Guide
Chapter 8: HTML Export API Functions

fpGetStreaminfoQ

This function extracts file format and character set information from the source document.

Syntax

BOOL pascal _export fpGetStreamInfo (
void *pContext,
KVInputStream  *pInput,
KVStreamInfo *pStreamInfo );

Arguments
pContext A pointer returned from fplnit() or fplnitWithLicenseData().
pInput A pointer to the developer-assigned instance of KVInputStream. The KVInputStream

structure defines the input stream that contains the source for the conversion. See
KVInputStream, on page 216.

pStreamInfo A pointer to the developer-assigned instance of KVStreamInfo. The KvStreamInfo
structure defines the input stream document type and character set. See
KV Streamlnfo, on page 223.

You can examine the fields in the structure to determine the appropriate template to
use based on the document type.

Returns

o If the call is successful, the return value is TRUE.

« If this call is unsuccessful, the return value is FALSE.

fpGetSummaryinfoQ

This function extracts all metadata from the input stream. See Extract Metadata, on page 79 for more
information.

IDOL KeyView (12.9) Page 182 of 482



HTML Export SDK C and COM Programming Guide
Chapter 8: HTML Export API Functions

Syntax

BOOL pascal _export fpGetSummaryInfo(
void *pContext,
KVInputStream *pInput,
KVSummaryInfoEx *pSummary,
BOOL bFree );

Arguments

pContext A pointer returned from fplnit() or fpInitWithLicenseData().

pInput A pointer to the developer-assigned instance of KVInputStream. The KVInputStream
structure points to the input stream that contains the source for the conversion. See
KVInputStream, on page 216.

pSummary A pointer to the developer-assigned instance of KvSummaryInfoEx.

In this structure, nElem provides a count of the number of metadata elements, and pElem
points to the first element of the array of individual elements as defined by the structure
KVSumInfoElemEx. See KVSummarylnfoEx, on page 226.

bFree A flag to free or fill the memory allocated to the document metadata.

Returns

« Ifthe call is successful, the return value is TRUE. When the document does not contain metadata,
but the document reader can extract metadata from the specified format, this function returns
TRUE with nElem set toe.

« If this call is unsuccessful, the return value is FALSE. This function returns FALSE when the
document reader does not support metadata extraction for the specified format, or there is an error
in extraction. The section Document Readers, on page 392 lists the file formats for which
metadata can be determined.

Discussion

« For metadata to be extracted by Export, metadata must be defined in the source document, and
the document reader must be able to extract metadata for the file format. Document Readers, on
page 392 lists the file formats for which metadata can be determined. Export does not generate
metadata automatically from the document contents.

« This function runs in-process or out of process. See Convert Files Out of Process, on page 31.

« You can call this function at any time after the call to fpinit() or fpInitWithLicenseData().

IDOL KeyView (12.9) Page 183 of 482



HTML Export SDK C and COM Programming Guide
Chapter 8: HTML Export API Functions

« When converting out of process, this function must be called after the call to
KVHTMLStart00PSession() and before the call to KYHTMLEndOOPSession(). See
KVHTMLStartOOPSession(), on page 205 and KVHTMLEndOOPSession(), on page 200.

« Call this function with bFree set to FALSE to return an array of KVSummaryInfoEx structures, each
containing an element of available document metadata.

« After processing the information in the structure, call this function with bFree set to TRUE to free
the memory allocated to the document metadata.

fpInitQ

This function initializes an Export session. Its return value, pContext, is passed as the first parameter
to the File Extraction interface and all other Export functions.

DEPRECATED: The fpInit() function is deprecated in KeyView 12.7.0 and later. Micro Focus
recommends that you use fplnitWithLicenseData() instead, so that your license key is passed to
KeyView through the API. You should not include license information in your application as a file
(kv.lic).

This function is still available for existing implementations, but it might be incompatible with new
functionality. The function might be removed in future.

Syntax

void* pascal _export fpInit(
KVMemoryStream *pMemAllocator,

char *pszKeyViewDir,

char *pszDataFile,

KVErrorCode *pError,

DWORD dwWord) ;
Arguments

pMemAllocator A pointer to a developer-defined memory allocator. If NULL is passed, the default C
run-time memory allocation is used.

pszKeyViewDir A pointer to the directory where the Export components are located. This is
normally the directory instal\0S\bin, where install is the path name of the
Export installation directory and 0S is the name of the operating system.

pszDataFile A pointer to the directory and file name of the Export data file, formats_e.ini.
This file determines whether a format is supported. If a format does not exist in this
file, the conversion fails.

IDOL KeyView (12.9) Page 184 of 482



HTML Export SDK C and COM Programming Guide
Chapter 8: HTML Export API Functions

The formats_e. ini file is normally stored in the directory install\0OS\bin, where
install is the path name of the Export installation directory and 0sS is the name of
the operating system. See File Format Detection, on page 454 for more

information.

pError A pointer to an error code defined in KVErrorCode or KVErrorCodeEx in
kverrorcodes.h. See KVErrorCode, on page 258 and KVErrorCodeEx, on
page 260.

dWord Reserved. Must be 0.

Returns

« Ifthe call is successful, the return value is a pointer passed to all other functions.

« Ifthe call is unsuccessful, the return value is a NULL pointer.

Discussion

o If pszKeyViewDir is NULL, the required components cannot be found. Ensure that it is valid.

« If this function returns NULL, check stderr for the KeyView installation error messages, "KeyView
Export SDK License Key has Expired" and"KeyView Export SDK License Key is
Invalid", and pass them to your application. See the Export SDK Installation Instructions for
more information on the KeyView license feature.

« Toensure multithreaded conversions are thread-safe, you must create a unique context pointer
for every thread by calling fpInit(). Inaddition, threads must not share context pointers, and the
same context pointer must be used for all API calls in the same thread. Creating a context pointer
for every thread does not affect performance because the context pointer uses minimal
resources.

« When the conversion context is no longer required, it should be terminated by calling fpShutdown
(). See fpShutDown(), on page 189.

fpInitWithLicenseDataQ

This function initializes an Export session with license information passed in function parameters rather
than a license file. Its return value, pContext, is passed as the first parameter to the File Extraction
interface and all other Export functions.

This function is similar to fpinit(), but it uses a different licensing method. You can use either fplnit() or
fpInitWithLicenseData toinitialize your Export session. However, these functions are mutually
exclusive. That is, neither takes the context pointer from the other as an argument. If you call both
functions, you initialize two distinct Export sessions, in the same way as calling fplnit() twice.

IDOL KeyView (12.9) Page 185 of 482



HTML Export SDK C and COM Programming Guide
Chapter 8: HTML Export API Functions

Syntax

void* pascal _export fpInitWithLicenseData(

KVMemoryStream*
char*

const char* const
const char* const
char*
KVErrorCode*
DWORD

Arguments

pMemAllocator

pszKeyViewDir

pszLicenseOrganization

pszLicenseKey

pszDataFile

pError

dWord

IDOL KeyView (12.9)

pMemAllocator,
pszKeyViewDir,
pszLicenseOrganization
pszLicenseKey
pszDataFile,

pError,

dwWord) ;

A pointer to a developer-defined memory allocator. If NULL is passed,
the default C run-time memory allocation is used.

A pointer to the directory where the Export components are located.
This is normally the directory instal\0OS\bin, where install is the
path name of the Export installation directory and 0S is the name of the
operating system.

A pointer to a string that contains the organization name under which
this installation of KeyView is licensed. This value is the company
name that appears at the top of the license key provided by Micro
Focus. Add the text exactly as it appears in this file.

A pointer to a string that contains the license key for this installation of
KeyView. This value is the appropriate license key provided by Micro
Focus. The key is a string that contains 31 characters, for example
2TQD22D-2M6FV66-2KPF23S-2GEM5AB. Type these characters exactly
as they appear in the license key file, including the dashes, but do not
include any leading or trailing spaces.

A pointer to the directory and file name of the Export data file, formats_
e.ini. This file determines whether a format is supported. If a format
does not exist in this file, the conversion fails.

The formats_e.ini file is normally stored in the directory
instal\OS\bin, where install is the path name of the Export
installation directory and 0sS is the name of the operating system. See
File Format Detection, on page 454 for more information.

A pointer to an error code defined in KVErrorCode or KVErrorCodeEx in
kverrorcodes.h. See KVErorCode, on page 258 and KVErrorCodeEXx,
on page 260.

Reserved. Must be 0.

Page 186 of 482



HTML Export SDK C and COM Programming Guide
Chapter 8: HTML Export API Functions

Returns

« Ifthe call is successful, the return value is a pointer passed to all other functions.

« Ifthe call is unsuccessful, the return value is a NULL pointer.

Discussion

o If pszKeyViewDir is NULL, the required components cannot be found. Ensure that it is valid.

« If this function returns NULL, check stderr for the KeyView installation error messages, "KeyView
Export SDK License Key has Expired" and"KeyView Export SDK License Key is
Invalid", and pass them to your application. See the Export SDK Installation Instructions for
more information on the KeyView license feature.

« Toensure multithreaded conversions are thread-safe, you must create a unique context pointer
for every thread by calling fplnit() or fpInitWithLicenseData(). In addition, threads must not
share context pointers, and the same context pointer must be used for all API calls in the same
thread. Creating a context pointer for every thread does not affect performance because the
context pointer uses minimal resources.

« When the conversion context is no longer required, it should be terminated by calling fpShutDown

0-

Example

The following sample code is from the cnv2html sample program:

pKVHTML = (*KVHTMLInt.fpInitWithLicenseData)(NULL, szDir, YOUR_LICENSE
ORGANIZATION, YOUR_LICENSE KEY, NULL, &error, 0);
if (! pKVHTML)

{
printf("Error initializing KVHTML: %d\n", error);
mpFreeLibrary(hKVHTML);
return 4;

}

fpSetPartitionOn

This function tells KeyView when to begin a new partition. For more information, see Partitioning, on
page 119.

IDOL KeyView (12.9) Page 187 of 482



HTML Export SDK C and COM Programming Guide
Chapter 8: HTML Export API Functions

Syntax

KVErrorCode pascal fpSetPartitionOn(
void* pContext,
const KVPartitionSetOn* pSetPartitionOn);

Arguments

pContext A pointer returned from fplnit() or fpInitWithLicenseData().

pSetPartitionOn A pointerto a KVPartitionSetOn structure that tells KeyView when to create a
new partition.

Returns

The return value is one of the error codes defined in KVErrorCode in kverrorcodes. h.

Discussion

This function runs in-process or out of process. See Convert Files Out of Process, on page 31.

When you convert out of process, you must call this function after the call to
KVHTMLStartOOPSession() and before the call to KVHTMLEndOOPSession().

When you convert Word Processing documents with partitioning on hard breaks or page size changes:

« Tocreate atable of contents by using the Export Tokens (see Export Tokens, on page 451) in the
KVHTMLTemplateEx structure, you must set the pszChunkTemplate memberin
KVHTMLTemplateEx.

« When you turn off partitioning on headings, you must not create a table of contents by using the
Export Tokens (see Export Tokens, on page 451) in the KVHTMLTemplateEx structure. Instead,
Micro Focus recommends that you create a table of contents by using the information from
fpGetPartitionInfoList.

fpSetStyleMapping()

This function is used to set the mapping for user-defined styles. Export does not make a distinction
between paragraph styles or character styles, but operates under the assumption that each style has a
unique name.

IDOL KeyView (12.9) Page 188 of 482



HTML Export SDK C and COM Programming Guide
Chapter 8: HTML Export API Functions

Syntax
BOOL pascal _export fpSetStyleMapping(
void *pContext,
KVStyle *pStyles,
int iStyles,
BOOL bCopy);
Arguments

pContext A pointer returned from fplnit() or fpInitWithLicenseData().

pStyles A pointer to the developer-assigned instance of KvStyle. See KVStyle , on page 224.
The KvStyle structure defines the elements of a custom style.

iStyles  The number of elements in the pStyles array.

bCopy If Export is to allocate memory to copy the pStyles array, set this to TRUE. If pStyles
remains valid throughout the conversion process, set this to FALSE.

Returns

« Ifthe call is successful, the return value is TRUE.

« If this call is unsuccessful, the return value is FALSE.

Discussion

« Paragraph styles are presently implemented only for documents in Microsoft Word 97-2003
(DOC), RTF, Folio Flat files, WordPro, and WordPerfect 6.x.

« This function runs in-process or out of process. See Convert Files Out of Process, on page 31.

« When converting out of process, this function must be called after the call to
KVHTMLStart00PSession() and before the call to KYHTMLEndOOPSession(). See
KVHTMLStartOOPSession(), on page 205 and KVHTMLEndOOPSession(), on page 200.

« After this API function is called, the styles are valid until fpShutDown () is called, or until this
function is called again with a new style or NULL.

fpShutDown(Q

This function terminates an Export session that was initialized by fpinit() or fpInitWithLicenseData(),
and frees allocated system resources. It is called when the conversion context is no longer required.

IDOL KeyView (12.9) Page 189 of 482



HTML Export SDK C and COM Programming Guide
Chapter 8: HTML Export API Functions

Syntax

void pascal _export fpShutDown(KVHTMLContext *pContext);

Arguments

pContext A pointer returned from fplnit() or fplnitWithLicenseData().

Returns

None.

Discussion

After this function is called, the pContext pointer must not be passed to any HTML Export API.

fpValidateTemplateQ

This function is used to ensure that the markup in the structures is valid. It is currently not
implemented.

KVHTMLConfigQ

This function is called directly and provides a way to configure options prior to document conversion.
You can use this function to:

« Enable PDF conversion to JPEG or PNG

Enable the graphic-based PDF readers kppdfrdr and kppdf2rdr to convert PDF documents to
JPEG files.

« Configure PDF bookmarks

Specify whether bookmarks in a PDF file are used to create a table of contents in the HTML
output.

« Configure rotated text

Specify whether rotated text is displayed in its original position or at the bottom of the page.
Currently, this option applies only to PDF files.

IDOL KeyView (12.9) Page 190 of 482



HTML Export SDK C and COM Programming Guide
Chapter 8: HTML Export API Functions

« Designate temporary directory
Specify a directory in which temporary files created during the conversion process are stored.
NOTE: On Windows systems, there is a 64 K size limit to the temporary directory. When the
limit is reached, you must either create a new directory or delete the contents of the existing
directory; otherwise, you might receive an error message.
« Configure XML conversion

Specify the elements and attributes extracted from an XML document based on a file's document
type.

« Enable PDF logical reading order

Convert paragraphs in PDF files in the order in which they appear on the PDF page and with left-
to-right or right-to-left paragraph direction. See Convert PDF Files to a Logical Reading Order, on
page 99.

« Configure PDF soft hyphens

Specify whether soft hyphens in a PDF file are removed from the HTML output. See Control
Hyphenation, on page 105.

« Enable revision marks

Convert text and graphics that were deleted from a document with revision tracking enabled and
include revision information in the HTML output. See Include Revision Information, on page 92.

« Enable empty image tags

Prevent graphics from being converted and generate image tags with empty src attributes. This
makes the conversion faster, but, because placeholders are generated for the graphics, maintains
the text flow of the original document. This is similar to the bNoPictures parameter; however,
bNoPictures does not generate an image tag. See bNoPictures, on page 244.

« Toggle hidden data output from Microsoft Word, Excel, and PowerPoint documents

Show or hide information from hidden sources such as comments or slides. See Show Hidden
Data, on page 116.

« Enable a PDF invisible text toggle button

Enable a JavaScript button that toggles the display of invisible text and regular content in
exported PDF documents. Toggle Invisible Text, on page 103.

« Specify opacity of invisible text in PDFs

Specify the opacity of invisible text in exported PDF documents, from O (invisible) to 100 (fully
visible). See Specify Opacity of Invisible Text, on page 103.

« Protected file password
Specify the password to use to open a password-protected file for export.
« Specify output character set for summary information

Specify the output character set for the document's metadata, when using fpGetSummaryInfo().

IDOL KeyView (12.9) Page 191 of 482



HTML Export SDK C and COM Programming Guide
Chapter 8: HTML Export API Functions

« Enable tabbed spreadsheet view
Enables a tabbed navigation view for spreadsheets.
« Enable previews for large spreadsheets

Limits the number of rows, columns, and sheets that are exported to HTML.

Syntax
KVErrorCode pascal KVHTMLConfig(
void *pContext,
int nType,
int nValue,
void *p );
Arguments

pContext A pointer returned from fplnit() or fpInitWithLicenseData().

nType The configuration flag. This is a symbolic constant defined in kvtypes.h. The available
options are described in Configuration Flags for KVHTMLConfig(), on the next page.

nvalue The integer value defined for the flags above. This is TRUE or FALSE for all flags except:

o KVCFG_LOGICALPDF—nValue is one of the paragraph direction options defined in
the LPDF_DIRECTION enumerated type in kvtypes.h. See LPDF_DIRECTION, on
page 275.

e KVCFG_SETTEMPDIRECTORY—nValue is not set.
o KVCFG_SETXMLCONFIGINFO—nValue is not set.
o KVCFG_SETINVISTEXTTOGGLE—nValue is not set.

o KVCFG_SETINVISTEXTOPACITY—nValue is aninteger that specifies text opacity,
from O (invisible) to 100 (fully visible).

o KVCFG_SETMETADATACHARSET—nValue is a character set enumerated in KVCharSet
in kvcharset.h. See Convert Character Sets, on page 83.

p The data for the configuration flag. This is NULL for all flags except:

o KVCFG_SETTEMPDIRECTORY—This is a pointer to a path to the directory where
temporary files are stored.

o KVCFG_SETXMLCONFIGINFO—This is a pointer to the KvXConfigInfo structure. See
KVXConfiginfo, on page 227.

o KVCFG_INCLREVISIONMARK—This is a pointerto the KVRevisionMark structure.
See KVRevisionMark, on page 252.

o KVCFG_SETINVISTEXTTOGGLE—This is a null-terminated string that determines the

IDOL KeyView (12.9) Page 192 of 482



HTML Export SDK C and COM Programming Guide
Chapter 8: HTML Export API Functions

toggle button name.

o KVCFG_SETPASSWORD—This is the source file password.

Returns

The return value is one of the error codes defined in KVErrorCode in kverrorcodes.h.

Discussion

« You must call this function after the call to fpinit() or fpInitWithLicenseData() and before the call to
fpConvertStream() or KVHTMLConvertFile().

« This function runs in-process or out of process. See Convert Files Out of Process, on page 31.

« When converting out of process, this function must be called after the call to
KVHTMLStart00PSession() and before the call to KYHTMLEndOOPSession(). See
KVHTMLStartOOPSession(), on page 205 and KVHTMLEndOOPSession(), on page 200.

« The configuration flags are described in the following table.

Configuration Flags for KVHTMLConfigQ

Flag

KVCFG_SETHIFIPDF

KVCFG_
SETMETADATACHARSET

KVCFG_
SUPPRESSTOCPRINTIMAGE

KVCFG_SETTEXTROTATE

IDOL KeyView (12.9)

Description

This flag enables the graphic-based PDF readers kppdfrdr and
kppdf2rdr to convert PDF documents. See Use a Graphic-Based
Reader, on page 96.

By default, Export uses the basic PDF reader, pdfsr, to convert PDF

This flag enables you to specify the output character set for metadata
when using fpGetSummaryInfo(). nvalue is a character set
enumerated in KVCharSet in kvcharset.h. See Convert Character
Sets, on page 83. You should call this function before
fpGetSummaryInfo().

If you set KVCFG_SUPPRESSTOCPRINTIMAGE, bookmarks in a PDF file
are not used to generate a table of contents in the HTML output. By
default, the table of contents is generated from bookmarks within the
PDF file. See Generate a Table of Contents from PDF Bookmarks, on
page 102.

If you set KVCFG_SETTEXTROTATE, rotated text in a file is displayed at 0
degrees at the bottom of the page on which it appears. The page is
enlarged to accommodate the text.

By default, rotated text in afile is displayed in its original position, at the
original font size, and at 0 degrees rotation. Because the text is the
original size, but might be displayed in a smaller space, the text might

Page 193 of 482



HTML Export SDK C and COM Programming Guide
Chapter 8: HTML Export API Functions

Configuration Flags for KVHTMLConfig(), continued

Flag Description

overlap adjacent text in the HTML output. You use the KVCFG_
SETTEXTROTATE option to avoid this problem. See Convert Rotated
Text, on page 104.

HTML markup does not support text rotation.

KVCFG_SETTEMPDIRECTORY This flag enables you to specify the directory in which temporary files
created during conversion processes are stored. By default, the
system temporary directory is used.

To define a directory for temporary files generated during an out-of-
process conversion, set the tempfilepath parameterin the formats_
e.ini file. Convert Files Out of Process, on page 31.

On Windows systems, there is a 64 K size limit to the temporary
directory. When the limit is reached, you must either create a new
directory or delete the contents of the existing directory; otherwise, you
might receive an error message.

KVCFG_SETXMLCONFIGINFO This flag enables you to define which elements and attributes are
extracted from XML documents with a specified format ID or root
element. You can use this to override the default settings for the
supported XML formats (see Convert XML Files, on page 111), or to
define settings for custom XML document types.

The settings are defined in the KvXConfigInfo structure
(seeKVXConfigInfo, on page 227). To set custom settings for more
than one document type, call the KVYHTMLConfig() function once for
each type.

You can also modify element extraction settings by using the
kvxconfig.ini file. See Configure Element Extraction for XML
Documents, on page 111.

KVCFG_LOGICALPDF This flag converts paragraphs in a PDF file in the order in which they
appear on the page (logical reading order). The nvalue argument
specifies the paragraph direction. See Convert PDF Files to a Logical
Reading Order, on page 99.

KVCFG_DELSOFTHYPHEN If you set this flag, soft hyphens in the source document are removed,
and the hyphenated words are joined in the HTML output. By default,
soft hyphens are maintained. See Control Hyphenation, on page 105.

Micro Focus recommends that you remove soft hyphens if you use
Export to generate text output for an indexing engine or are not
concerned with maintaining the document's layout. See
fpConvertStream(), on page 171 or KVHTMLConvertFile(), on page 198
for more information on running Export in index mode.

IDOL KeyView (12.9) Page 194 of 482



HTML Export SDK C and COM Programming Guide
Chapter 8: HTML Export API Functions

Configuration Flags for KVHTMLConfig(), continued

Flag

KVCFG_INCLREVISIONMARK

KVCFG_BLANKPICTURE

KVCFG_WP_NOCOMMENTS

KVCFG_WP_
SHOWHIDDENTEXT

KVCFG_WP_
SHOWDATEFIELDCODE

KVCFG_WP_
SHOWFILENAMEFIELDCODE

KVCFG_SS_
SHOWHIDDENINFOR

KVCFG_SS_SHOWCOMMENTS
KVCFG_SS_SHOWFORMULA

KVCFG_PG_
HIDEHIDDENSLIDE

KVCFG_PG_HIDECOMMENT

IDOL KeyView (12.9)

Description

If you set this flag to TRUE, text and graphics that were deleted from a
document with revision tracking enabled are converted, and revision
information (revision title, reviewer name, and revision date and time) is
included in the HTML output.

To reset the flag and exclude deleted content and revision information
from the HTML output, set the flag to FALSE. See Include Revision
Information, on page 92.

The default is FALSE.

If you set this flag to TRUE, graphics in a document are not converted,
but an image tag is generated with an empty src attribute, creating an
empty placeholder for the graphic. For example:

<img src="" height="136" width="101">

This allows you to generate output without graphics, but still maintain
the text flow of the original document.

This option applies to word processing formats only. The default is
FALSE.

Set this flag to TRUE not to export text from comments in Microsoft
Word documents. Comment text is exported by default from Microsoft
Word 97 to 2003 files.

You can also toggle the display of comment output by modifying the
formats_e. ini file. See Show Hidden Data, on page 116.

Set this flag to TRUE to export hidden text from Microsoft Word
documents.

Set this flag to TRUE to export date field codes from Microsoft Word
documents.

Set this flag to TRUE to export the file name field code from Microsoft
Word documents.

Set this flag to TRUE to export hidden information from Microsoft Excel
files.

Set this flag to TRUE to export comments from Microsoft Excel files.
Set this flag to TRUE to export formulas from Microsoft Excel files.

Set this flag to TRUE not to export hidden slides from Microsoft
PowerPoint files.

Set this flag to TRUE not to export comments from Microsoft
PowerPoint files. Comments are exported by default from PowerPoint

Page 195 of 482



HTML Export SDK C and COM Programming Guide
Chapter 8: HTML Export API Functions

Configuration Flags for KVHTMLConfig(), continued

Flag Description

97 to 2000 files.

KVCFG_PG_ Set this flag to TRUE to export comments slides from Microsoft
SHOWCOMMENTSSLIDE PowerPoint 2003 and 2007 files.

KVCFG_PG_ Set this flag to TRUE to export slide notes from Microsoft PowerPoint
SHOWSLIDENOTES files.

You can also toggle slide note output by modifying the formats_e.ini
file. See Show Hidden Data, on page 116.

KVCFG_ This flag enables a JavaScript button in exported PDF documents,
SETPDFINVISTEXTTOGGLE  which you can use to show and hide invisible text.

Invisible text is hidden by default. See Toggle Invisible Text, on
page 103.

KVCFG_ This flag allows you specify the degree of invisible text opacity in

SETPDFINVISTEXTOPACITY exported PDFs, from @ (invisible) to 180 (opaque). Use this option if
you want to view both the invisible text and the rasterized image in the
document.

Invisible text opacity is set to @ by default. See Specify Opacity of
Invisible Text, on page 103.

KVCFG_SETPASSWORD This flag enables you to define a password used to open a password-
protected file for export. See Export Password Protected Files, on
page 474. For alist of supported file types, see Supported Password
Protected File Types, on page 473.

nValue is TRUE.

p is the source file password, which can have a maximum length of 255
characters (the final byte is null).

KVCFG_TABNAVIGATION If you set this flag to TRUE, it enables a tabbed navigation view for
spreadsheets. A row of tabs is displayed at the bottom of the browser
window, and enables the user to switch between multiple sheets in a
workbook.

NOTE: JavaScript must be enabled.

KVCFG_SS_PREVIEW Specifies whether to export a preview for large spreadsheets rather
than exporting all content. Web browsers might take a long time, or fail
completely, to render spreadsheets with large numbers of cells. If you
set this flag to TRUE, KeyView limits the numbers of rows, columns,
and sheets that are exported to HTML.

IDOL KeyView (12.9) Page 196 of 482



HTML Export SDK C and COM Programming Guide
Chapter 8: HTML Export API Functions

Examples

« To specify that the graphic-based PDF reader is used to convert PDF files:
(*fpHTMLConfig) (pKVHTML, KVCFG_SETHIFIPDF, TRUE, NULL);

« To specify that bookmarks in a PDF file are not used to generate a table of contents in the HTML
output:

(*fpHTMLConfig) (pKVHTML, KVCFG_SUPPRESSTOCPRINTIMAGE, TRUE, NULL);

« To specify that rotated text in a file is displayed at 0 degrees at the bottom of the page on which it
appears:

(*fpHTMLConfig) (pKVHTML, KVCFG_SETTEXTROTATE, TRUE, NULL);
« Toset adirectory for temporary files:

char tmpDir[250];
strcpy (tmpDir, "c:\\temp\\htmlexport");
(*fpHTMLConfig) (pKVHTML, KVCFG_SETTEMPDIRECTORY, ©, tmpDir);

« To specify custom extraction settings for conversion of an XML file:

KVXConfigInfo xinfo;
(*fpHTMLConfig) (pKVHTML, KVCFG_SETXMLCONFIGINFO, @, &xinfo);

« Tospecify that PDF files are converted to a logical reading order, and the paragraph direction for
the PDF output is left to right:

(*fpHTMLConfig) (pKVHTML, KVCFG_LOGICALPDF, LPDF_LTR, NULL);

« Tospecify that PDF files are converted to a logical reading order, and the paragraph direction for
the PDF output is right to left:

(*fpHTMLConfig) (pKVHTML, KVCFG_LOGICALPDF, LPDF_RTL, NULL);

« To specify that PDF files are converted to a logical reading order, and the paragraph direction for
the PDF output is determined automatically for each page:

(*fpHTMLConfig) (pKVHTML, KVCFG_LOGICALPDF, LPDF_AUTO, NULL);
« To specify that soft hyphens are removed from the HTML output:
(*fpHTMLConfig) (pKVHTML, KVCFG_DELSOFTHYPHEN, TRUE, NULL);
« Toconvert text and graphics that are identified by revision marks:

KVRevisionMark RMark;
(*fpHTMLConfig) (pKVHTML, KVCFG_INCLREVISIONMARK, TRUE, &RMark))

« Togenerate a placeholder for all pictures:
(*fpHTMLConfig) (pKVHTML, KVCFG_BLANKPICTURE, TRUE, NULL);
« Totoggle hidden data output from Microsoft Word documents, use one of the KVCFG_WP flags:

(*fpHTMLConfig) (pKVHTML, KVCFG_WP_NOCOMMENTS, TRUE, NULL);

IDOL KeyView (12.9) Page 197 of 482



HTML Export SDK C and COM Programming Guide
Chapter 8: HTML Export API Functions

« Totoggle hidden data output from Microsoft Excel documents, use one of the KVCFG_SS flags:
(*fpHTMLConfig) (pKVHTML, KVCFG_SS_SHOWHIDDENINFOR, TRUE, NULL);

« Totoggle hidden data output from Microsoft PowerPoint documents, use one of the KVCFG_PG
flags:

(*fpHTMLConfig) (pKVHTML, KVCFG_PG_HIDEHIDDENSLIDE, TRUE, NULL);

« Toenable aninvisible text toggle button in exported PDF documents:
(*fpHTMLConfig) (pKVHTML, KVCFG_SETPDFINVISTEXTTOGGLE, @, szButtonName);
where szButtonName is a null-terminated string that determines the button name.

« To specify the opacity of invisible text in exported PDF documents:

(*fpHTMLConfig) (pKVHTML, KVCFG_SETPDFINVISTEXTOPACITY, iInvisOpacity, NULL);
where iInvisOpacity is aninteger from O (invisible) to 100 (fully visible).

« To specify a password to open a password-protected file for export:

(*fpHTMLConfig) (pKVHTML, KVCFG_SETPASSWORD, TRUE, password);
where password is a null-terminated string of 255 or fewer characters.

o To produce summary information in UTF8:

(*fpHTMLConfig) (pKVHTML, KVCFG_SETMETADATACHARSET, KVCS_UTF8, NULL);

« Toexport only a preview of spreadsheets to HTML:

(*fpHTMLConfig) (pKVHTML, KVCFG_SS_PREVIEW, TRUE, NULL);

KVHTMLConvertFileQ

This function is called directly and converts a source file to an output file.

Syntax

BOOL pascal KVHTMLConvertFile (
void *pContext,
void *pCallingContext,
char *pInFileName,
char *pOutFileName,
KVHTMLTemplateEx *pTemplatesEx,
KVHTMLOptionsEx *pOptionsEx,
KVHTMLCallbacksEx *pCallbacksEx,
KVHTMLTOCOptions *pTOCCreateOptions,
BOOL bIndex,
KVErrorCode *pError)

IDOL KeyView (12.9) Page 198 of 482



HTML Export SDK C and COM Programming Guide
Chapter 8: HTML Export API Functions

Arguments

pContext A pointer returned from fplinit() or fpInitWithLicenseData().

pCallingContext A pointer passed back to the callback functions.

pInFileName A pointer to the input file.
pOutFileName A pointer to the output file.
pTemplatesEx A pointer to the KVYHTMLTemplateEx data structure. It defines the overall

structure of the output. Individual elements within the structure define the
markup written at specific points in the output stream. See
KVHTMLTemplateEx, on page 246.

If this pointer is NULL, the default values for the structure are used.

pOptionsEx A pointer to the KVYHTMLOptionsEx data structure. It defines the options that
control the markup written in response to the general style and attributes (font,
color, and so on) of the document. See KVHTMLOptionsEx, on page 237.

If this pointer is NULL, the default values for the structure are used.

pCallbacksEx A pointer to the KVHTMLCallbacksEx data structure. It is a structure of
functions that Export calls for specific, user-defined purposes. See
KVHTMLCallbacksEx, on page 228.

If you do not use callbacks, this can be NULL. Only the Continue() callback
can be used with KVHTMLConvertFile().

pTOCCreateOptions A pointerto the KYHTMLTOCOptions data structure. It specifies whether a
heading is included in the table of contents. See KVHTMLTOCOptions, on
page 250.

If this pointer is NULL, the default values for the structure are used.

bIndex Set this to TRUE to generate output with minimal markup and without images.
Because the generated output is minimized to textual content, it is suitable for
an indexing engine. If you set bIndex to FALSE, embedded images ina
document are regenerated as separate files and stored in the output directory.

You can also set this through the bNoPictures, on page 244 member in the
template files.

pError A pointer to an error code if the call to KVHTMLConvertFile() fails.

Returns

« If the call is successful, the return value is TRUE.

o If the call is unsuccessful, the return value is FALSE.

IDOL KeyView (12.9) Page 199 of 482



HTML Export SDK C and COM Programming Guide

Chapter 8: HTML Export API Functions

Discussion

o Only pContext, pInFileName, pOutFileName, and bIndex are required. All other pointers should

be NULL when they are not set

o IfpCallbacksExis NULL, pOptionsEx->pszDefaultOutputDirectory must be valid, except

when you set bIndex to TRUE.

« This function runs in-process or out of process. See Convert Files Out of Process, on page 31.

« When converting out of process, this function must be called after the call to

KVHTMLStart00PSession() and before the call to KYHTMLEndOOPSession(). See

KVHTMLStartOOPSession(), on page 205 and KVHTMLEndOOPSession(), below.

« When converting out of process, the values for the KVHTMLTemplateEx, KVHTMLOptionsEx, and
KVHTMLTOCOptions structures should be set to NULL. These structures are already passed in the
call to KVHTMLStartOOPSession(). SeeKVHTMLStartOOPSession(), on page 205.

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

*/

A pointer for callback functions */

A pointer returned by fpInit()

Input file */
Output file */
Markup and related variables */
Options */

A pointer to callback functions */
TOC options */
Index mode */

The error return value */

printf("Error converting %s to HTML %d\n", argv[i - 1], error);

Example

if (! (¥*KVHTMLInt.KVHTMLConvertFile)(
pKVHTML,
NULL,
&InputFile,
&0OutputFile,
&HTMLTemplates,
&HTMLOptions,
NULL,
NULL,
FALSE,
&error))

{

}

else

{

printf("Conversion of %s to HTML completed.\n\n", argv[i - 1]);

}

KVHTMLENnNdOOPSession()

This function terminates the current out-of-process conversion session, and releases the source data
and resources related to the session.

IDOL KeyView (12.9)

Page 200 of 482



HTML Export SDK C and COM Programming Guide
Chapter 8: HTML Export API Functions

Syntax

BOOL pascal KVHTMLEndOOPSession(

void

BOOL
KVErrorCodeEx
DWORD

void

void

Arguments

pContext

bKeepServantAlive

pError
dwOptions
pReservedl

pReserved2

Returns

*pContext,
bKeepServantAlive,
*pError

dwOptions,
*pReservedl,
*pReserved2 );

A pointer returned from fplinit() or fpInitWithLicenseData().

Set this to TRUE to keep a Servant process active after the Export out-of-
process session is terminated. If the Servant remains active, subsequent
conversion requests are processed more quickly because the Servant is
already prepared to receive data.

Set this to FALSE to terminate the Export out-of-process session and the
associated Servant process.

A pointer to an error code defined in KVErrorCodeEx in kverrorcodes. h.
Reserved for future use.
Reserved for future use.

Reserved for future use.

o If the call is successful, the return value is TRUE.

« Ifthe call is unsuccessful, the return value is FALSE.

Example

The following sample code is from the cnv2htmloop sample program:

/* declare endsession function pointer */
BOOL (pascal *fpKVHTMLEndOOPSession)( void *,

BOOL R
KVErrorCode *)
DWORD s
void *,
void *);

IDOL KeyView (12.9)

Page 201 of 482



HTML Export SDK C and COM Programming Guide
Chapter 8: HTML Export API Functions

/* assign OOP endsession function pointer */
fpKVHTMLENdOOPSession = (BOOL (pascal *)( void *,

BOOL s
KVErrorCode *,
DWORD B
void *
void * ))mpGetProcAddress (hKVHTML,

"KVHTMLEndOOPSession");
if(!fpKVHTMLENdOOPSession)

{
printf("Error assigning KVHTMLEndOOPSession() pointer\n");
(*KVHTMLInt.fpFileToInputStreamFree) (pKVHTML, &Input);
(*KVHTMLInt.fpFileToOutputStreamFree) (pKVHTML, & Output);
mpFreeLibrary (hKVHTML);
return 8;

}

JXX¥*¥**xxXEND OOP SESSION, DO NOT KEEP SERVANT ALIVE *******x*x*/
if (! (*fpKVHTMLEndOOPSession) (pKVHTML,

FALSE,

&error,

@,

NULL,

NULL))

printf("Error calling fpKVHTMLEndOOPSession \n");
(*KVHTMLInt.fpFileToInputStreamFree) (pKVHTML, &Input);
(*KVHTMLInt.fpFileToOutputStreamFree) (pKVHTML, & utput);
(*KVHTMLInt.fpShutDown) (pKVHTML) ;

mpFreeLibrary (hKVHTML);

return 10;

KVHTMLSetHighlightO

This function is called directly and enables you to specify search terms that are found and highlighted in
the HTML output. See Search and Highlight Terms, on page 91. The htmlini sample program
demonstrates this function. See htmlini, on page 129.

Syntax

int pascal_export KVHTMLSetHighlight(
void *pContext,
KVHTMLHighlight *pHLConfig,
void *pReservedl,
void *pReserved2 );

IDOL KeyView (12.9) Page 202 of 482



HTML Export SDK C and COM Programming Guide
Chapter 8: HTML Export API Functions

Arguments

pContext A pointer returned from fplnit() or fpInitWithLicenseData().

pHLConfig A pointerto the KVYHTMLHighlight data structure. This structure defines the terms to
be found and the highlight format applied. See KVHTMLHighlight, on page 231.

pReservedl Reserved for future use.

pReserved2 Reserved for future use.

Returns

« Ifthe call is successful, the return value is KVERR_Success.

« If the call is unsuccessful, the return value is an error code.

Discussion

« This function must be called after the call to fplnit() or fpInitWithLicenseData() and before the call
to fpConvertStream() or KVHTMLConvertFile().

« When converting out of process, this function must be called before the call to
KVHTMLStart0OPSession(). See Convert Files Out of Process, on page 31.

Example

KVHTMLHighlight HTMLHighlight;
int (pascal *fpHTMLSetHighlight)(void *, KVHTMLHighlight *, void *, void *);
//get function pointer and call the function
fpHTMLSetHighlight = (int (pascal *)
(void *, KVHTMLHighlight *, void *, void*))myGetProcAddress(hKVHTML,
"KVHTMLSetHighlight");
if(!fpHTMLSetHighlight)
{
printf("Error accessing HTMLSetHighlight().\n");
}
else
{
if(KVERR_Success != (*fpHTMLSetHighlight)(pKVHTML, &amp;HTMLHighlight, NULL,
NULL))
{
printf("Error setting HTML highlight.\n");
}

IDOL KeyView (12.9) Page 203 of 482



HTML Export SDK C and COM Programming Guide
Chapter 8: HTML Export API Functions

KVHTMLSetStyleSheetQ

This function is called directly and is used to specify the full path and file name of an extemnal
Cascading Style Sheet (CSS).

NOTE: You cannot retrieve the CSS if you have set bNoPictures to TRUE (see
KVHTMLOptionsEx, on page 237).

Syntax

BOOL pascal KVHTMLSetStyleSheet(
void *pContext,
char *pszStyleSheetName,
char *pszRef);

Arguments

pContext A pointer returned from fplnit() or fpInitWithLicenseData().
pszStyleSheetName A pointer to the full path and file name of the style sheet.
pszUrlRef A pointer to the URL or file name of style sheet.
Returns

« Ifthe call is successful, the return value is TRUE.

« If this call is unsuccessful, the return value is FALSE.

Discussion

« When the value for eStyleSheetType in KYHTMLOptionsEx is set to CSS_TOFILE, and the token
$STYLESHEET is specified in the templates, an external CSS file is referenced in the output HTML
by a LINK statement of the form:

<LINK rel="STYLESHEET" href="pszRef" type="text/css">

« If the name of the style sheet is not specified by using this function, a style sheet file is created
with an automatically generated file name.

IDOL KeyView (12.9) Page 204 of 482



HTML Export SDK C and COM Programming Guide
Chapter 8: HTML Export API Functions

If this function is used to specify the name of the style sheet file, that file name is used in the
conversion.

o If the file does not exist in the specified location, it is created.
o If the file exists, but is empty, CSS styles are written to the file.

o If thefile exists and is not empty, the conversion attempts to use the predefined styles, and
appends any new styles that are required for the conversion.

If the value for pszStyleSheetName includes the output directory, the href only consists of the
file name because the HTML output resides in the same directory as the CSS file.

If the value for pszStyleSheetName points to a directory other than the output directory, the href
consists of the full path and file name.

If the value for pszStyleSheetName points to afile that is not a CSS file or to a non-existent
directory, the LINK statement is written; but, the style sheet information is added inline (CSS_
INLINE), and an external CSS file is not generated.

If there are multiple calls made to fpConvertStream() or KYHTMLConvertFile(), and the name
of the style sheet is set with KVHTMLSetStyleSheet, the file name can be disabled by calling
KVHTMLSetStyleSheet again with the pszStyleSheetName and pszRef set to NULL. The file
name can then be set to a different value by calling KVYHTMLSetStyleSheet with the new file name
prior to the next call to fpConvertStream() or KYHTMLConvertFile().

This function runs in-process or out of process. See Convert Files Out of Process, on page 31.

When converting out of process, this function must be called after the call to
KVHTMLStart00PSession() and before the call to KYHTMLEndOOPSession(). See
KVHTMLStartOOPSession(), below and KVHTMLEndOOPSession(), on page 200.

KVHTMLStartOOPSession()

This function performs the following:

Initializes the out-of-process session.
Specifies the input stream or file.

Passes conversion options from the KVHTMLTemplateEx, KVYHTMLOptionsEx, and
KVHTMLTOCOptions data structures.

Creates a Servant process.
Establishes a communication channel between the application thread and the Servant.

Sends the data to the Servant.

Syntax

BOOL pascal KVHTMLStartOOPSession(

void *pContext,

IDOL KeyView (12.9) Page 205 of 482



HTML Export SDK C and COM Programming Guide
Chapter 8: HTML Export API Functions

KVInputStream *pInputStream,
char *pFileName,
KVHTMLTemplateEx *pTemplatesEx,
KVHTMLOptionsEx *pOptionsEx,
KVHTMLTOCOptions *pTOCCreateOptions
DWORD *pPID,
KVErrorCode *pError
DWORD dwOptions,
void *pReservedl,
void *pReserved2 );
Arguments
pContext A pointer returned from fplinit() or fpInitWithLicenseData().
pInputStream A pointer to the developer-assigned instance of KVInputStream. The
KVInputStream structure defines the input stream containing the source for
the conversion.
If pInput is defined, then pFileName must be NULL. The input data can be
defined as a data stream or file, but not both.
pFileName A pointer to the file to be converted. The file must exist on the same file
system as the Servant.
If pFileName is defined, then pInput must be NULL. The input data can be
defined as a data stream or file, but not both.
pTemplatesEx A pointer to the KVHTMLTemplateEx data structure. It defines the overall
structure of the output. Individual elements within the structure define the
markup written at specific points in the output stream. See
KVHTMLTemplateEx, on page 246.
If this pointer is NULL, the default values for the structure are used.
pOptionsEx A pointer to the KVHTMLOptionsEx data structure. It defines the options that

control the markup written in response to the general style and attributes (font,
color, and so on) of the document. See KVHTMLOptionsEx, on page 237.

If this pointer is NULL, the default values for the structure are used.

pTOCCreateOptions A pointer to the KYHTMLTOCOptions data structure. It specifies whether a
heading is included in the table of contents. SeeKVHTMLTOCOptions, on
page 250.

If this pointer is NULL, the default values for the structure are used.

pPID Address of a DWORD into which the Servant process ID is returned.
pError A pointer to an error code defined in KVErrorCode in kverrorcodes.h.
dwOptions Reserved for future use.

IDOL KeyView (12.9) Page 206 of 482



HTML Export SDK C and COM Programming Guide
Chapter 8: HTML Export API Functions

pReservedl

pReserved2

Returns

Reserved for future use.

Reserved for future use.

If the call is successful, the return value is TRUE.

If the call is unsuccessful, the return value is FALSE.

Discussion

« Afterthe out-of-process session is started successfully, all conversion functions can be called.
The data is then processed on the Servant until the session is terminated by a call to

KVHTMLEndOOPSession(), on page 200.

« All functions that can run out of process must be called within the out-of-process session, that is,
after the call to KVHTMLStart00PSession(), and before the call to KVYHTMLEndOOPSession().

« The KVHTMLConvertFile() function can only be called once in a single out-of-process session.

o Since the KVHTMLTemplateEx, KVHTMLOptionsEx, and KVHTMLTOCOptions data structures are
passed by this function, the same pointers in the call to KVYHTMLConvertFile() are ignored.

Example

The following sample code is from the cnv2htmloop sample program:

/* declare OOP startsession function pointer */

BOOL (pascal *fpKVHTMLStartOOPSession)( void *
KVInputStream *,
char *
KVHTMLTemplateEx  *,
KVHTMLOptionsEx *,
KVHTMLTOCOptions *,
DWORD *,
KVErrorCode *
DWORD s
void * )
void * ),

/* assign OOP startsession function pointer */

fpKVHTMLStartOOPSession = (BOOL (pascal *)( void *)
KVInputStream *,
char *
KVHTMLTemplateEx *,
KVHTMLOptionsEx *,
KVHTMLTOCOptions *,
DWORD *
KVErrorCode *,

IDOL KeyView (12.9)

Page 207 of 482



HTML Export SDK C and COM Programming Guide
Chapter 8: HTML Export API Functions

DWORD B
void *,
void * ))mpGetProcAddress (hKVHTML,

"KVHTMLStartOOPSession");
if (! fpKVHTMLStartOOPSession)
{
printf("Error assigning KVHTMLStartOOPSession() pointer\n");
(*KVHTMLInt.fpFileToInputStreamFree) (pKVHTML, &Input);
(*KVHTMLInt.fpFileToOutputStreamFree) (pKVHTML, &Output);
mpFreeLibrary (hKVHTML);
return 7;
}
if (! (*fpKVHTMLStartOOPSession) (pKVHTML,
&Input,
NULL,
&HTMLTemplates, /* Markup and related variables */
&HTMLOptions, /* Options */
NULL, /* TOC options */
&oopServantPID,
&error,
e)
NULL,
NULL))

printf("Error calling fpKVHTMLStartOOPSession \n");
(*KVHTMLInt.fpFileToInputStreamFree) (pKVHTML, &Input);
(*KVHTMLInt.fpFileToOutputStreamFree) (pKVHTML, & Output);
(*KVHTMLInt.fpShutDown) (pKVHTML) ;

mpFreeLibrary (hKVHTML);

return 9;

IDOL KeyView (12.9) Page 208 of 482



Chapter 9: HTML Export API Callback
Functions

This section describes the HTML Export API callback functions.

O INtrOdUCTION ... 209
& CONtINUE() - 209
& GetANCNON ) il 210
® GetAUXOULPUL() - .o oo 212
O USBIC B .o 213
Introduction

The fpConvertStream() and KVHTMLConvertFile() functions enable you to specify a callback
function. A callback function controls the conversion while it is in progress. For example, you can
specify a callback function to report progress during the conversion.

To use the API callback functions, declare one or more instances of the KVHTMLCallbacksEx structure.
Each member of this instance can then be initialized by assigning a function pointer to the application-
defined callback functions, cast to the appropriate function prototype. Each instance of
KVHTMLCallbacksEx can define unique callback functions. Alternatively, the functions can be common
to all instances of KVHTMLCallbacksEx; these functions take appropriate action, depending on the
value of the pointer pCallingContext.

The second parameter (pCallingContext) of the call to fpConvertStream() and
KVHTMLConvertFile() provides a void pointer used to identify the context of this call. If more than one
call to fpConvertStream() or KVHTMLConvertFile() is made within a single application, any resulting
callbacks are identified by the first parameter of the callback function. This enables the callback
function to take any appropriate action, depending on which calling context is returned.

The seventh parameter (pCallbacks) of the call to fpConvertStream() and KVHTMLConvertFile()
must be set to the address of the KVHTMLCallbacksEx structure to be used for this call.

For sample code, see the sample program callback. c. It creates a frame-based HTML stream and
demonstrates the use of the callback functions.

Continue(

When fpConvertStream() or KYHTMLConvertFile() is called, control is not returned to the application
until the entire document is processed. This callback function provides a means of monitoring progress
and terminating the conversion process before the conversion is completed.

IDOL KeyView (12.9) Page 209 of 482



HTML Export SDK C and COM Programming Guide
Chapter 9: HTML Export API Callback Functions

Syntax

BOOL (pascal *Continue) (
void *pCallingContext,
int nPercentComplete);

Arguments

pCallingContext A pointer passed back to the caller-provided callback functions. This pointer,
which can be NULL, is specified as the second parameter of the call to
fpConvertStream() and KVHTMLConvertFile().

nPercentComplete The approximate percentage of the current conversion that is completed. You
can monitor the progress of the conversion by checking this value, which
indicates the percentage of blocks that have been processed.

Returns

« To continue the conversion, return TRUE.

« Toterminate the conversion process without completing the conversion, return FALSE.

Discussion

« Thereis a callback to this function for every entry that appears in the generated table of contents.

« The application is free to execute any required code in the callback function, with the exception of
fpShutDown().

GetAnchor(Q

This function should provide the anchor name used for external graphics referenced with <img> tags,
heading-level table of contents entries, and external files (such as CSS files and revision summary
files).

The anchor name you provide is passed into GetAuxOutput(), on page 212 to identify the output stream
if defined, otherwise it is used as the auxiliary file name.

IDOL KeyView (12.9) Page 210 of 482



HTML Export SDK C and COM Programming Guide
Chapter 9: HTML Export API Callback Functions

Syntax
BOOL (pascal *GetAnchor) (
void *pCallingContext,
KVHTMLXMLAnchorTypeEx eAnchorTypeEx,
char *pszAnchor,
int cbAnchorMax,
BYTE *pcHTML,
UINT CbHTML) ;
Arguments

pCallingContext A pointerthat gets passed back to the caller-provided callback functions. This
pointer, which can be NULL, is specified as the second parameter of the call to
fpConvertStream().

eAnchorTypeEx The anchor type for the output stream. It must be one of the enumerated types
defined in KYHTMLAnchorTypeEx.

pszAnchor A pointer to the memory that you should write the new anchor to.
cbAnchorMax The maximum number of bytes to place in pszAnchor.
pcHTML KeyView will have set this to either NULL or a pointer to one of the following:

« markup defining the contents of a table of contents entry
« the external graphic file name

« the external file name

CcbHTML The number of valid bytes in pcHTML.

Returns

« To continue the conversion, return TRUE.

« Toterminate the conversion process without completing the conversion, return FALSE.

Discussion

« If this callback is NULL, default anchor names are generated. The generated names are unique
across the document.

« This function is called once per block, block chunk, graphic anchor, or extra file. Any required
code can be executed here as long as a unique value for pszAnchor is assigned. If this string is
not unique, an existing file might be overwritten, producing undesirable results. The callback

IDOL KeyView (12.9) Page 211 of 482



HTML Export SDK C and COM Programming Guide
Chapter 9: HTML Export API Callback Functions

function should contain the functionality to verify whether files already exist.

« This function can call the fpGetAnchor(), on page 178 interface function, which returns the default
anchor generated by Export. For example, to specify only graphic anchor names, provide an
anchor when eAnchorTypeEx is VectorPictureAnchorEx or RasterPictureAnchorkEx. Forall
other anchor types, call fpGetAnchor () with the same parameters you were passed.

« pszAnchor must be assigned. It can be derived from the cbAnchorMax, pcHTML, and cbHTML
values, which are also provided.

e pcHTML can be null if the graphic is an internal part of the document.

GetAuxOutputQ

This callback function enables the calling application to specify an auxiliary output stream for a block or
graphic.

Syntax

BOOL (pascal *GetAuxOutput) (
void *pCallingContext,
KVHTMLXMLAnchorTypeEx eAnchorTypeEx,
char *pszAnchor,
KVOutputStream *pNewOutput);

Arguments

pCallingContext A pointer passed back to the caller-provided callback functions. This pointer,
which can be NULL, is specified as the second parameter of the call to
fpConvertStream().

eAnchorTypeEx A graphic or block anchor as defined by the enumerated types in
KVHTMLAnchorTypeEx.

pszAnchor KeyView will have set this to the anchor associated with this stream. pszAnchor
is based on the call to GetAnchor().

pNewOutput A pointer to a KVOutputStream structure that can be used to write data to the
current block.

Returns

« To continue the conversion, return TRUE.

« Toterminate the conversion process without completing the conversion, return FALSE.

IDOL KeyView (12.9) Page 212 of 482



HTML Export SDK C and COM Programming Guide
Chapter 9: HTML Export API Callback Functions

Discussion

o If GetAuxOutput() is NULL, the pszDefaultOutputDirectory member of the instance of
KVHTMLOptionsEx is used as the base storage location for auxiliary output files. If
pszDefaultOutputDirectory is also NULL, auxiliary files are placed in the current working
directory.

« This function must fill out the provided stream function by setting an appropriate function for each
member. Memory allocated to the I/O structure must be tracked and freed within the call to Close

OF

UserCB(Q

This callback function is triggered by including the $USERCB token in a member of KVYHTMLTemplateEx.
For example, placing "$USERCB=my_callback " inpszFirstH1Start results in a callback at the point
when pszFirstH1Start is processed. The user callback function is identified by the text assigned to
$USERCB, which in this example is my_callback. This identifier is passed to the argument
pszUserCBid.

Syntax
BOOL (pascal *UserCB) (
void *pCallingContext,
char *pszUserCBid,
KVOutputStream *pNewOutput
void *pReserved);
Arguments

pCallingContext A pointerthat gets passed back to the caller-provided callback function. This
pointer, which can be NULL, is specified as the second parameter of the call to
fpConvertStream().

pszUserCBid A pointer to a string that identifies the source of the callback. The identifier must
be delimited by a trailing white space. For example, "my_callback ".

pNewOutput A pointer to a KvOutputStream structure that can be used to write data to the
current block.

pReserved Reserved for future use.

IDOL KeyView (12.9) Page 213 of 482



HTML Export SDK C and COM Programming Guide
Chapter 9: HTML Export API Callback Functions

Returns

« To continue the conversion, return TRUE.

« Toterminate the conversion process without completing the conversion, return FALSE.

IDOL KeyView (12.9) Page 214 of 482



Chapter 10: HTML Export
API Structures

This section provides information on the structures used by the HTML Export API. These structures
are defined in kvhtml.h, kvtypes.h, and adinfo.h.

® ADD OCINFO ... 216
® KV INPUE St aM 216
® KVMemOry Stream ... 217
® KV OU UL St aM .. 218
® KVPartitionDimeNnSioNS ... ... o e 218
® KV PartitioNINfO ... 219
® KVPartitionInfolist ... . . 220
® KV PartitionSetON . . 221
® KVRMSCredentials . ... 221
& KV ST R 222
® KV StreamIngO .. 223
® KV StructHead ... . 224
O RV S Y e 224
KV SUMINfOBIeMEX .. 226
® KVSummary InfOEX ... 226
® KV X CONfIgINfO .. 227
¢ KVHTMLCAIIDACKSEX ... e 228
* KVHTMLHeadingInfo ... . 229
® KVHTMLHIghIght . 231
® KVHTMLINterfaceEX ... 232
® KVHTMLINterfaCeEX 2 .. 234
¢ KVHTMLOPUONSEX .. ..o 237
® KVHTMLT T emplateEX ... o e 246
® KVHTMLTOCOPRLONS ... . 250
® KVREVISIONMarK ... ... 252
O KV RM Tl L 253

IDOL KeyView (12.9) Page 215 of 482



HTML Export SDK C and COM Programming Guide
Chapter 10: HTML Export API Structures

ADDOCINFO

This structure provides the format, file class, and version number of the source document. It is defined
in adinfo.h, and is initialized by calling the fpGetStreamInfo() function. See fpGetStreamInfo(), on
page 182.

typedef struct

{
ENdocClass eClass;
ENdocFmt eFormat;
long 1Version;
unsigned long ulAttributes;
}

ADDOCINFO, *ADDOCINFOPTR;

Member Descriptions

eClass The file class of the source document (for example, spreadsheet, word processor, or
encapsulation format) as defined by the ENdocClass enumerated type in adinfo.h.

eFormat The major format of the source document (such as Microsoft Word or Corel
Presentation) as defined by the ENdocFmt enumerated type in adinfo.h.

1lVersion The version number of the file format. The number is multiplied by 1000. For
example, 1.02 is represented by 1020.

ulAttributes Other attributes of the document as defined by the ENDocAttributes, on page 256
enumerated type in adinfo.h.

Discussion

When format detection is enhanced in future releases, new format IDs might be added to the ENdocFmt
enumerated type. When you use this type, your code should ensure binary compatibility with future
releases. For example, if you use an array to access format information based on a format 1D, your
code should check that the format ID is less than Max_Fmt before accessing the data. This ensures that
new format codes are detected when you add KeyView binary files from new releases to your existing
installation.

KVInputStream

This structure defines an input stream for the HTML conversion. The structure is defined in
kvstream.h.

IDOL KeyView (12.9) Page 216 of 482



HTML Export SDK C and COM Programming Guide
Chapter 10: HTML Export API Structures

typedef struct tag_InputStream
{

void *pInputStreamPrivateData;

long lcbFilesize;

BOOL (pascal *fpOpen) (struct tag InputStream *);

UINT (pascal *fpRead) (struct tag_InputStream *, BYTE *, UINT);
BOOL (pascal *fpSeek) (struct tag_InputStream *, long, int);
long (pascal *fpTell) (struct tag_InputStream *);

BOOL (pascal *fpClose)(struct tag_InputStream *);

}
KVInputStream;

Member Descriptions

All member functions are equivalent to their counterparts in the ANSI standard library, except fpoOpen
(), which returns FALSE on failure. On fpOpen (), if the size of the stream is known, assign that value to
lcbFilesize. Otherwise, set 1cbFilesize to@.

KVMemoryStream

This structure defines an optional memory allocator to be used by HTML Export. It is initialized by
calling fplnit() or fpInitWithLicenseData().

typedef struct tag_MemoryStream
{

void *pMemoryStreamPrivateData;

void * (pascal *fpMalloc)(struct tag_MemoryStream*,size t);

void (pascal *fpFree) (struct tag_MemoryStream*, void *);

void * (pascal *fpRealloc)(struct tag_MemoryStream*,void *, size_t);
void * (pascal *fpCalloc)(struct tag_MemoryStream*, size t, size t);

}

KVMemoryStream;

Member Descriptions

All member functions are equivalent to their counterparts in the ANSI standard library.

Discussion

o fpRealloc() must handle a NULL pointer.

« Forsystems that do not support fpRealloc (), referto the callback sample program, which
demonstrates how to use the memory management features.

o If KVMemoryStreamis not provided, the default C run-time memory allocation is used.

IDOL KeyView (12.9) Page 217 of 482



HTML Export SDK C and COM Programming Guide
Chapter 10: HTML Export API Structures

KVOutputStream

This structure defines an output stream for the HTML conversion. The structure is defined in
kvstream.h.

typedef struct tag_OutputStream

{

void *pOutputStreamPrivateData;

BOOL (pascal *fpCreate)(struct tag OutputStream *,TCHAR *);

UINT (pascal *fpWrite) (struct tag_OutputStream *, BYTE *, UINT);
BOOL (pascal *fpSeek) (struct tag OutputStream *, long, int);
long (pascal *fpTell) (struct tag_OutputStream *);

BOOL (pascal *fpClose) (struct tag OutputStream *);

}
KVOutputStream;

Member Descriptions

All member functions are equivalent to their counterparts in the ANSI standard library.

KVPartitionDimensions

This structure contains the dimensions of a partition. This structure is defined in kvpartition.h.

typedef struct tag_KVPartitionDimensions
{
KVStructHeader;
//These values are in pixels
int width;
int height;
int left_margin;
int right_margin;
int top_margin;
int bottom_margin;
}

KVPartitionDimensions;

Member Descriptions

KvStructHeader  The KeyView version of the structure. See KV StructHead, on page 224.

IDOL KeyView (12.9) Page 218 of 482



HTML Export SDK C and COM Programming Guide
Chapter 10: HTML Export API Structures

width The partition width in pixels.

height The partition height in pixels.

left_margin The partition left margin in pixels.

right_margin The partition right margin in pixels.

top_margin The partition top margin in pixels.

bottom_margin The partition bottom margin in pixels.
Discussion

The pixel values use the CSS definition of a pixel (that is, 1/96 inch).

The dimensions are derived from the values stored in the processed document, and can be zero if no
values were stored. In particular:

« Documents that were converted by using the spreadsheet structured access layer never produce
partitions with dimension information.

« Documents that were converted by using the presentation graphic structured access layer never
produce partitions with margins.

For documents that were converted by using the word processing structured access layer, this
structure gives the page height that the document specifies. Export does not support partitioning at soft
page breaks, and therefore it is unlikely that the height of the converted document will match the
reported height. You can use the reported height to ensure that partitions do not display with a smaller
height than native pages.

KVPartitioninfo

This structure defines the individual partition information objects. This structure is defined in
kvpartition.h.

typedef struct tag_KVPartitionInfolist

{

KVStructHeader;
const char* anchor;
KVPartitionStartReason startReason;
KVPartitionDimensions dimensions;
const char* backgroundColor;

}

KVPartitionInfo;

IDOL KeyView (12.9) Page 219 of 482



HTML Export SDK C and COM Programming Guide
Chapter 10: HTML Export API Structures

Member Descriptions

KvVStructHeader  The KeyView version of the structure. See KV StructHead.

anchor The anchor name corresponding to the file or stream this partition was written
to.
startReason The reason this partition was created. The reasons are defined in the

KVPartitionStartReason enum in kvpartition.h.
dimensions The dimensions of the partition, given as a KVPartitionDimensions structure.

backgroundColor The background color of the partition, as a hex code of the form #RRGGBB. If
KeyView does not find background color information in the source document,
this value is NULL.

KVPartitioninfolList

This structure provides a count of the number of partitions, and a pointer to the first partition of the array
of individual partitions. You fill out the structure by calling the fpGetPartitionInfolList() function.
See fpGetPartitionInfoList, on page 181.

This structure is defined in kvpartition.h.

typedef struct tag_KVPartitionInfolist

{
KVStructHeader;
KVPartitionInfo* partitionInfolist;
int partitionInfolListLength;

}

KVPartitionInfolist;

Member Descriptions

KVStructHeader The KeyView version of the structure. See KV StructHead, on
page 224.
partitionInfolist Points to the first element of the array of partition information objects,

defined by the KVVPartitionInfo structure.

partitionInfolListLength The number of partitions contained in the array.

IDOL KeyView (12.9) Page 220 of 482



HTML Export SDK C and COM Programming Guide
Chapter 10: HTML Export API Structures

KVPartitionSetOn

This structure defines the reason for creating a new partition. This structure is defined in
kvpartition.h

typedef struct tag_KVPartitionSetOn
{

KVStructHeader;

BOOL formatStandard;

BOOL headings;

BOOL hardBreaks;

BOOL pageSizeChange;

}
KVPartitionSetOn;

Member Descriptions

KVStructHeader The KeyView version of the structure. Before you initialize the
KVPartitionSetOn structure, use the macro KVStructInit to initialize the
KVStructHead structure. See KVStructHead.

formatStandard The format standard start reason. For more information, see Partitioning, on

page 119.
headings A heading in a Word Processing document.
hardBreaks A hard page break in a Word Processing document.

pageSizeChange A page size change in a Word Processing document.

NOTE: You can also partition documents into evenly sized blocks, but you do not configure that in
KVPartitionSetOn. See KVHTMLTemplateEx, on page 246.

KVRMSCredentials

This structure defines each element of the RMS credentials. This structure is defined in
kvdecryptionsettings.h

typedef struct _KVRMSCredentials
{
KVStructHeader;

const char* tenantID;

IDOL KeyView (12.9) Page 221 of 482



HTML Export SDK C and COM Programming Guide
Chapter 10: HTML Export API Structures

const char* clientID;
const char* clientSecret;

}
KVRMSCredentials;

Member Descriptions

KvStructHeader  The KeyView version of the structure. See KV StructHead, on page 224.

tenantID The tenant ID of the domain.
clientID The client ID of the application.
clientSecret The client secret for the application.

For KeyView to access the protected contents of Microsoft Azure Rights Management System (RMS)
protected files, your end-user application must be registered on the relevant Azure domain. For more
information about how to register an app, refer to the Microsoft

documentation: https://docs.microsoft.com/en-us/azure/active-directory/develop/quickstart-register-

app.

After you register an application, you can find the client and tenant IDs in the Azure Portal, in the
Overview section. You can find the client secret in the Certificates & Secrets section.

CAUTION: This information is linked to the domain itself, rather than to a specific user. Providing
this information allows KeyView to access the contents of all files protected by this domain.
Therefore you must handle these three pieces of information securely.

KVSTR

This structure is used to identify string types (string text and byte count) for the first three members of
KvStyle. See KVStyle, on page 224.

typedef struct tag KVSTR

{
char *pcString;
int cbString;
}
KVSTR;

IDOL KeyView (12.9) Page 222 of 482


https://docs.microsoft.com/en-us/azure/active-directory/develop/quickstart-register-app
https://docs.microsoft.com/en-us/azure/active-directory/develop/quickstart-register-app

HTML Export SDK C and COM Programming Guide
Chapter 10: HTML Export API Structures

Member Descriptions

pcString A text string.

cbString Thelength of pcString, excluding the terminating NULL(s). This allows UNICODE or
double bytes to be employed.

KVStreaminfo

This structure defines a document's character set and format. It is initialized by calling
fpGetStreamInfo(). See fpGetStreamlinfo(), on page 182.

typedef struct tag_KVStreamInfo

{
KVCharSet charset;
ADDOCINFO adInfo;
}
KVStreamInfo;

Member Descriptions

charset The character set of the source document, if that information is ascertainable. The
available character sets are enumerated in KVCharSet in kvcharset.h. See Convert
Character Sets, on page 83.

adInfo Thefile class, major format, and version of the source document. A pointer to the
ADDOCINFO structure. The structure of ADDOCINFO is defined in adinfo.h. See
ADDOCINFO, on page 216.

« adInfo.eClass represents the class of the source document, as defined by the
ENdocClass enumerated type.

« adInfo.eFormat represents the format of the source document, as defined by the
ENdocFmt enumerated type.

« adInfo.lVersion represents the version number of the file format. The number is
multiplied by 1000. For example, 1.02 is represented by 1020.

« adInfo.ulAttributes represents other attributes of the document as defined by the
ENdocAttributes enumerated type.

Discussion

When format detection is enhanced in future releases, new format IDs might be added to the ENdocFmt
enumerated type. When you use this type, your code should ensure binary compatibility with future

IDOL KeyView (12.9) Page 223 of 482



HTML Export SDK C and COM Programming Guide
Chapter 10: HTML Export API Structures

releases. For example, if you use an array to access format information based on a format ID, your
code should check the format ID is less than Max_Fmt before accessing the data. This ensures that
new format codes are detected when you add KeyView binary files from new releases to your existing
installation.

KVStructHead

This structure contains the current KeyView version number and is the first member of other structures.
It enables Micro Focus to modify the structures in future releases, but to maintain backward
compatibility. Before initializing a structure that contains the KvStructHead structure, use the macro
KvStructInit toinitialize it as illustrated in the example below. You do not need to set any of the
members of KVStructHead because this is handled by KvStructInit. The structure and macro are
defined in kvstructhead.h.

typedef struct _KVStructHead
{

WORD  version;
WORD size;
DWORD reserved;
void *internal;
} KVStructHeadRec, *KVStructHead;

Member Descriptions

version  The current KeyView version number. This is a symbolic constant (KeyviewVersion)
defined in kvtypes.h. This constant is updated for each KeyView release.

size The size of the KVStructHeadRec structure.
reserved Reserved forinternal use.

internal Reserved forinternal use.

Example

KVOpenFileArgRec openArg;
KVStructInit(&openArg);

KVStyle

This structure defines the style mapping support for KvSTR-defined styles. The first three members of
KVStyle are KVSTR structures (see KVSTR, on page 222). Each KVSTR structure contains the text

IDOL KeyView (12.9) Page 224 of 482



HTML Export SDK C and COM Programming Guide
Chapter 10: HTML Export API Structures

string and byte count for StyleName, MarkUpStart, and MarkUpEnd. The structure is initialized by
calling the function fpSetStyleMapping().

See fpSetStyleMapping(), on page 188 and Map Styles, on page 87.

HTML Export supports both paragraph styles and character styles. It works on the assumption that
each style has a unique name. Only one paragraph style can be active at one time; therefore, the
opening of a new paragraph style automatically closes the previous paragraph style. By contrast,
several character styles can be active at once. When HTML Export receives an EndCharStyle token
from the format parser, the most recent character style is terminated.

typedef struct tag_KVStyles

{
KVSTR StyleName;
KVSTR MarkUpStart;
KVSTR MarkUpEnd;
DWORD dwFlags;

}

KVStyle;

Member Descriptions

StyleName The name of the word processing style (for example, "Heading 1") to which style
mapping applies. A pointer to the KVSTR structure. See KVSTR, on page 222.

Style names are case sensitive.

MarkUpStart The markup added to the beginning of a paragraph or character style. A pointer to the
KVSTR structure. See KVSTR, on page 222.

MarkUpEnd The markup added to the end of a paragraph or character style. A pointer to the KVSTR
structure. See KVSTR, on page 222.

dwFlags Instructions on how to process the content associated with a paragraph or character
style. The flag can be one of the types defined in kvtypes.h. They are described in
Flags for Defining Styles, on page 89.

The value associated with each flag is a hexadecimal number. You can set an option
by either entering the converted decimal value, or by entering the flag's text (for
example, KVSTYLE_PRE).

The value of Flags in the template files is passed to this member of KvStyle.

Discussion

« This structure applies to word processing documents only.

« By default, HTML Export maps the heading style "Heading 1" to <h1></h1>, and so on, for
heading levels 1 through 6. If you use style mappings, the default mapping is overridden.
Therefore, you must supply markup for all heading levels.

IDOL KeyView (12.9) Page 225 of 482



HTML Export SDK C and COM Programming Guide
Chapter 10: HTML Export API Structures

« When the user-defined markup in KvStyle conflicts with other markup generated by HTML
Export, the user-defined markup takes precedence.

KVSuminfoElemEx

This structure defines the individual metadata elements.

typedef struct tag_KVSumInfoElemEx

{
int isvalid;
KVSumInfoType type;
void *data;
char *pcType;

}

KVSumInfoElemEx;

Member Descriptions

isvalid Specifies whether the data value is present in the document. The setting 1 specifies that
the value is valid and exists.

type The data type of the metadata element. The types are defined in the KVSumInfoType
structure in kvtypes.h. See KVSumlInfoType, on page 271.

data The content of the metadata field.

If the type member is KV_Int4 orKV_Bool, this member contains the actual value.
Otherwise, this member is a pointer to the actual value.

KV_DateTime and KV_IEEES point to an 8-byte value.

KV_String and KV_Unicode point to the beginning of the string that contains the text.

pcType A pointer to the name of the metadata field.

KVSummarylInfoEx

This structure provides a count of the number of metadata elements, and a pointer to the first element
of the array of individual elements. The structure is initialized by calling the fpGetSummaryInfo()
function. See fpGetSummarylInfo(), on page 182.

typedef struct tag_KVSummaryInfoEx
{

int nElem;
KVSumInfoElemEx *pElem;

IDOL KeyView (12.9) Page 226 of 482



HTML Export SDK C and COM Programming Guide
Chapter 10: HTML Export API Structures

}

KVSummaryInfoEx;

Member Descriptions

nElem The number of metadata elements contained in the array. nElem can be zero. This indicates
that the document did not contain metadata, such as an ASCII text document.

pElem Points to the first element of the array of document metadata elements defined by the
KvSumInfoElemExstructure. See KVSuminfoElemEXx, on the previous page.

KVXConfiginfo

This structure defines an XML document type and the element extraction settings for that type. The
settings can be applied based on the file format ID, or the file's root element. This structure is in
kvtypes.h and is initialized by calling the KVHTMLConfig() function. See Convert XML Files, on
page 111 and KVHTMLConfig(), on page 190.

typedef struct TAG_KVXConfigInfo

{
ENdocFmt

char*
char*
char*
char*
char*
char*

}KVXConfiglInfo;

eKVFormat;
pszRoot;
pszInMeta;
pszExMeta;
pszInContent;
pszExContent;
pszInAttribute;

Member Descriptions

eKVFormat

pszRoot

IDOL KeyView (12.9)

The format ID as detected by the KeyView detection module. This determines the
file type to which these extraction settings apply. The format ID is defined by the
ENdocFmt enumerated type in adinfo.h. See File Format Detection, on page 454
for more information on format ID values.

If you are adding configuration settings for a custom XML document type, this is
not defined.

The file's root element. When the format ID is not defined, the root element is
used to determine the file type to which these settings apply.

To further qualify the element, specify its namespace. See Specify an Element's
Namespace and Attribute, on page 115.

Page 227 of 482



HTML Export SDK C and COM Programming Guide
Chapter 10: HTML Export API Structures

pszInMeta

pszExMeta

pszInContent

pszExContent

pszInAttribute

The elements extracted from the file as metadata. All other elements are
extracted as text. Multiple entries must be separated by commas.

To further qualify the element, specify its namespace, its attributes, or both. See
Specify an Element's Namespace and Attribute, on page 115.

The child elements in the included metadata elements that are not extracted from
the file as metadata. For example, the default extraction settings for the Visio
XML format extract the DocumentProperties element as metadata. This element
includes child elements such as Title, Subject, Author, Description, and so
on. However, the child element PreviewPicture is defined in pszExMeta
because it is binary data and should not be extracted.

You cannot exclude any metadata elements from the output for StarOffice files.
All metadata is extracted regardless of this setting.

To further qualify the element, specify its namespace, its attributes, or both. See
Specify an Element's Namespace and Attribute, on page 115.

The elements extracted from the file as content text. An asterisk (*) extracts all
elements including child elements.

To further qualify the element, specify its namespace, its attributes, or both. See
Specify an Element's Namespace and Attribute, on page 115.

The child elements in the included content elements that are not extracted from
the file as content text.

To further qualify the element, specify its namespace, its attributes, or both. See
Specify an Element's Namespace and Attribute, on page 115.

The attribute values extracted from the file. If attributes are not defined, attribute
values are not extracted. The namespace (if used), element name, and attribute
name must be defined in the following format:

namespace: eLementname@attributename
For example:

microfocus:division@name

KVHTMLCallbacksEx

This structure provides all callbacks that can result from a call to fpConvertStream() or
KVHTMLConvertFile(). See fpConvertStream(), on page 171 and KVHTMLConvertFile(), on page 198.
Any and all of the function pointers can be NULL.

typedef BOOL (pascal *KVHTMLCB_CONTINUE) (

void
int

*pcallingContext,
nPercentDone);

typedef BOOL (pascal *KVHTMLCB_GETANCHOREX)(

void

*pCallingContext,

KVHTMLAnchorTypeEx eAnchorTypeEx,

IDOL KeyView (12.9)

Page 228 of 482



HTML Export SDK C and COM Programming Guide
Chapter 10: HTML Export API Structures

char *pszAnchor,
int cbAnchorMax,
BYTE *pcHTML,
UINT cbHTML);
typedef BOOL (pascal *KVHTMLCB_GETAUXOUTPUTEX) (
void *pCallingContext,
KVHTMLAnchorTypeEx eAnchorTypeEx,
char *pszAnchor,
KVOutputStream *pNewOutput);
typedef BOOL (pascal *KVHTMLCB_USERCBEX) (
void *pCallingContext,
char *psUserCBid,
KVOutputStream *pOutput,
void *pReserved);
typedef struct tag_KVHTMLCallbacksEx
{
KVHTMLCB_CONTINUE Continue;
KVHTMLCB_GETANCHOREX GetAnchor;
KVHTMLCB_GETAUXOUTPUTEX GetAuxOutput;
KVHTMLCB_USERCBEX UsercCB;
}
KVHTMLCallbacksEx;

Member Descriptions

« The members of this structure are pointers to the functions described in HTML Export API
Callback Functions, on page 209.

o If GetAuxOutput() is NULL, the pszDefaultOutputDirectory member of the instance of
KVHTMLOptionsEx is used as the base storage location for auxiliary output files. If
pszDefaultOutputDirectory is also NULL, auxiliary files are placed in the current working
directory. See KVHTMLOptionsEx, on page 237.

KVHTMLHeadinginfo

This structure defines how HTML Export creates heading information based on the source document's
content and attributes. Source text is converted to a heading and included in the table of contents if

« it meets all the criteria defined by this structure, and

« the headingCreateType member of KVYHTMLTOCOptions is set to allow automatic heading
generation.

HTML Export evaluates the text against each member in the order in which the members appear below.

See KVHTMLTOCOptions, on page 250 for more information on automatic generation of headings.

IDOL KeyView (12.9) Page 229 of 482



HTML Export SDK C and COM Programming Guide
Chapter 10: HTML Export API Structures

When you convert PDF files to HTML by using the default reader, pdfsr, the table of contents is
generated from "bookmarks" within the PDF file. This structure is not used. The table of contents
appear either at the beginning of the HTML file or in a separate frame.

typedef struct tag_KVHTMLHeadingInfo

{
int minParalLen;
int maxParalLen;
int fontSizeMin;
int fontSizeMax;
BOOL bMustBeBold;
BOOL bMustBeItalic;
BOOL bMustBeUnderlined;
BOOL bNonZeroIndent;
BOOL bNoTabs;
BOOL bNoMultiSpaces;
int mSpaceBefore;
int mSpaceAfter;

}

KVHTMLHeadingInfo;

Member Descriptions

minParalen The minimum number of characters that text in the source document can
contain for the text to meet the criteria for heading conversion.

This option applies to word processing documents only.

The default is 3 for heading levels 1 to 3.

maxParalLen The maximum number of characters that text in the source document can
contain for the text to meet the criteria for heading conversion.

This option applies to word processing documents only.

The default is 80 for heading levels 1 to 3.

fontSizeMin The minimum font size of text in the source document for the text to meet the
criteria for heading conversion.

The default is 14 for heading level 1, and 12 for heading levels 2 and 3.

fontSizeMax The maximum font size of text in the source document for the text to meet the
criteria for heading conversion.

The default is 20 for heading level 1, and 14 for heading levels 2 and 3.

bMustBeBold If you set bMustBeBold to TRUE, the text in the source document must be bold
to meet the criteria for heading conversion.

The default is TRUE for heading levels 1 and 2, and FALSE for heading level 3.

bMustBeItalic If you set bMustBeItalic to TRUE, the text in the source document must be

IDOL KeyView (12.9) Page 230 of 482



HTML Export SDK C and COM Programming Guide
Chapter 10: HTML Export API Structures

bMustBeUnderlined

bNonZeroIndent

bNoTabs

bNoMultiSpaces

mSpaceBefore

mSpaceAfter

italic to meet the criteria for heading conversion.

The default is FALSE.

If you set bMustBeUnderlined to TRUE, the text in the source document must
be underlined to meet the criteria for heading conversion.

The default is FALSE.

If you set bNonZeroIndent to TRUE, the text in the source document must be
indented to meet the criteria for heading conversion. If you set
bNonZeroIndent to FALSE, the text must be aligned left.

The default is FALSE.

If you set bNoTabs to TRUE, the text in the source document must not contain
tabs to meet the criteria for heading conversion.

The default is FALSE.

If you set bNoMultiSpaces to TRUE, the text in the source document must not
contain two or more contiguous white spaces to meet the criteria for heading
conversion.

The default is FALSE.

The amount of space in TWIPS (20th of a point) that must come before a
paragraph in the source document for the text to meet the criteria for heading
conversion. If —1 is used, the amount of space before the paragraph is not
considered in the heading generation.

The default is 0.

The amount of space in TWIPS (20th of a point) that must follow a paragraph
in the source document for the text to meet the criteria for heading conversion.
If —1 is used, the amount of space after the paragraph is not considered in the
heading generation.

The default is 0.

KVHTMLHighlight

This structure defines the search terms that are found and highlighted in the HTML output. It is
initialized by calling KVHTMLSetHighlight () and is defined in kvtypes.h. See KVHTMLSetHighlight(),

on page 202.

typedef struct tag_|

{
KVStructHeader;

char

int
KVCharset
char

IDOL KeyView (12.9)

KVHTMLHighlight

**ppHLTerms;
nSize;
eCharset;
*pHLStart;

Page 231 of 482



HTML Export SDK C and COM Programming Guide
Chapter 10: HTML Export API Structures

char

BOOL

int

void
}
KVHTMLHighlight;

*pHLENnd;
bMatchCase;
nReserved;
*pReserved;

Member Descriptions

KVStructHeader The KeyView version of the structure. See KVStructHead, on page 224.

ppHLTerms
nSize

eCharset

pHLStart

pHLENnd

bMatchCase

nReserved

pReserved

An array of terms to be found and highlighted in the HTML output.
The number of terms to be found and highlighted in the HTML output.

The character set of the terms. The available character sets are enumerated in
KVCharSet in kvcharset.h. See Convert Character Sets, on page 83.

The start tag that specifies the text attributes used to highlight the text string.

NOTE: If you output images as SVG, KeyView uses this tag to highlight the
terms found in images, so you must make sure that the tag works as expected.
In particular, CSS that applies a style to a class does not affect a tag with that
class that is inside an SVG.

For example:

<span style="color:#ff0000;background-color:#00FF00;">

The end tag used to close the highlighting start tag. The end tag for the example
above would be </span>

This Boolean applies only to searches on documents with a target character set
of 1252. If this Boolean is set, the text search is case sensitive. By default, the
text search is case insensitive.

Reserved for future use.

Reserved for future use.

KVHTMLInterfaceEx

NOTE: This structure has been superseded by KVHTMLInterfaceEx2; KVHTMLInterfaceEx2
should be used instead of KVHTMLInterfaceEx.

The members of this structure are pointers to the API functions described in HTML Export API
Functions, on page 167.

IDOL KeyView (12.9)

Page 232 of 482



HTML Export SDK C and COM Programming Guide
Chapter 10: HTML Export API Structures

typedef void* (pascal *KVHTML_INITEX) (

KVMemoryStream *pMemAllocator,
char *pszKeyViewDir,
char *pszDataFile,
KVErrorCode *pError,

DWORD dword);

typedef void (pascal *KVHTML_SHUTDOWN)(void*);
typedef BOOL (pascal *KVHTML_CONVERT_STREAMEX) (

void *pContext,

void *pCallingContext,
KVInputStream *pInput,
KVOutputStream *pOutput,
KVHTMLTemplateEx *pTemplatesEx,
KVHTMLOptionsEx *pOptionsEx,

KVHTMLTOCOptions *pTOCCreateOptions,
KVHTMLCallbacksex  *pCallbacksEx,

BOOL bIndex,
KVErrorCode *pError);

typedef char** (pascal *KVHTML_GET_FILE_LIST)(
void *pContext,
int *pnSize );

typedef BOOL (pascal *KVHTML_GET_STREAM_INFO)(
void *pContext,
KVInputStream *pInput,
KVStreamInfo *pStreamInfo );

typedef BOOL (pascal *KVHTML_GET_ANCHOREX) (
void *pCallingContext,
KVHTMLAnchorTypeEx  eAnchorTypeEx,
char *pszAnchor,
int cbAnchorMax,
BYTE *pcHTML,
UINT CbHTML);

typedef BOOL (pascal *KVHTML_INPUTSTREAM_CREATE) (
void *pContext,
char *pszFileName,
KVInputStream *pInput);

typedef BOOL (pascal *KVHTML_INPUTSTREAM_FREE) (
void *pContext,
KVInputStream *pInput);

typedef BOOL (pascal *KVHTML_OUTPUTSTREAM_CREATE) (
void *pContext,
char *pszFileName,
KVOutputStream *pOutput );

typedef BOOL (pascal *KVHTML_OUTPUTSTREAM_FREE)(
void *pContext,
KVOutputStream *pOutput );

typedef KVLanguageID (pascal *KVHTML_LANGUAGE_ID) (void
typedef BOOL (pascal *KVHTML_GET_SUMMARY_INFO)(
void *pContext,

IDOL KeyView (12.9)

*pContext);

Page 233 of 482



HTML Export SDK C and COM Programming Guide
Chapter 10: HTML Export API Structures

KVInputStream *pInput,
KVSummaryInfoEx *pSummary,
BOOL bFree );

typedef BOOL (pascal *KVHTML_SET_STYLE_MAPPING) (
void *pContext,
KVStyle *pStyles,
int iStyles,
BOOL bCopy);

typedef BOOL (pascal *KVHTML_VALIDATE_TEMPLATE)(
void *pContext,
KVOutputStream *pOutput,
KVHTMLTemplate *pTemplate,
KVHTMLOptions *pOptions,
KVHTMLTOCOptions *pTOCOptions,
KVHTMLCallbacks *pCallBalls,
KVMemoryStream *pMemStream)

typedef struct tag_KVHTMLInterfaceEx

{
KVHTML_INITEX fpInit;
KVHTML_SHUTDOWN fpShutDown;
KVHTML_CONVERT_STREAMEX fpConvertStream;
KVHTML_GET_FILE_LIST fpGetConvertFilelList;
KVHTML_GET_STREAM_INFO fpGetStreamInfo;
KVHTML_GET_ANCHOREX fpGetAnchor;
KVHTML_INPUTSTREAM_CREATE fpFileToInputStreamCreate;
KVHTML_INPUTSTREAM_FREE fpFileToInputStreamFree;
KVHTML_OUTPUTSTREAM_CREATE  fpFileToOutputStreamCreate;
KVHTML_OUTPUTSTREAM_FREE fpFileToOutputStreamFree;
KVHTML_GET_SUMMARY_INFO fpGetSummaryInfo;
KVHTML_SET_STYLE_MAPPING fpSetStyleMapping;
KVHTML_VALIDATE_TEMPLATE fpValidateTemplate;

KVHTMLInterfaceEx;

Member Descriptions

The members of this structure are function pointers to the functions described in HTML Export API
Functions, on page 167.

KVHTML_LANGUAGE_ID and KVHTML_VALIDATE_TEMPLATE are currently not implemented.

KVHTMLInterfaceEx2

The members of this structure are pointers to the API functions described in HTML Export API
Functions, on page 167.

IDOL KeyView (12.9) Page 234 of 482



HTML Export SDK C and COM Programming Guide
Chapter 10: HTML Export API Structures

This structure supersedes KVHTMLInterfaceEx. KVHTMLInterfaceEx2 should be used instead of

KVHTMLInterfaceEx.

Compared to KVHTMLInterfaceEx, KVYHTMLInterfaceEx2 adds two functions for checking error codes,

and allows for binary compatible extensibility in future releases.

typedef void* (pascal *KVHTML_INITEX) (

KVMemoryStream *pMemAllocator,
char *pszKeyViewDir,
char *pszDataFile,
KVErrorCode *pError,
DWORD dWord);

typedef void (pascal *KVHTML_SHUTDOWN) (void*);

typedef BOOL (pascal *KVHTML_CONVERT_STREAMEX) (
void *pContext,
void *pCallingContext,
KVInputStream *pInput,
KVOutputStream *pOutput,
KVHTMLTemplateEx *pTemplatesEx,
KVHTMLOptionsEx *pOptionsEx,
KVHTMLTOCOptions *pTOCCreateOptions,
KVHTMLCallbacksEx *pCallbacksEx,
BOOL bIndex,
KVErrorCode *pError);

typedef char** (pascal *KVHTML_GET_FILE_LIST)(
void *pContext,
int *pnSize );

typedef BOOL (pascal *KVHTML_GET_STREAM_INFO)(
void *pContext,
KVInputStream *pInput,
KVStreamInfo *pStreamInfo );

typedef BOOL (pascal *KVHTML_GET_ANCHOREX) (
void *pCallingContext,
KVHTMLAnchorTypeEx eAnchorTypeEx,
char *pszAnchor,
int cbAnchorMax,
BYTE *pcHTML,
UINT cbHTML);

typedef BOOL (pascal *KVHTML_INPUTSTREAM_CREATE) (

void *pContext,
char *pszFileName,
KVInputStream *pInput);
typedef BOOL (pascal *KVHTML_INPUTSTREAM_FREE) (
void *pContext,
KVInputStream *pInput);

typedef BOOL (pascal *KVHTML_OUTPUTSTREAM_CREATE) (

void *pContext,
char *pszFileName,
KVOutputStream *pOutput );
typedef BOOL (pascal *KVHTML_OUTPUTSTREAM_ FREE)(
void *pContext,

IDOL KeyView (12.9)

Page 235 of 482



HTML Export SDK C and COM Programming Guide
Chapter 10: HTML Export API Structures

KVOutputStream *pOutput );
typedef KVLanguageID (pascal *KVHTML_LANGUAGE_ID)(void *pContext);
typedef BOOL (pascal *KVHTML_GET_SUMMARY_INFO)(

void *pContext,

KVInputStream *pInput,

KVSummaryInfoEx *pSummary,

BOOL bFree );
typedef BOOL (pascal *KVHTML_SET_STYLE_MAPPING) (

void *pContext,

KVStyle *pStyles,

int iStyles,

BOOL bCopy);
typedef BOOL (pascal *KVHTML_VALIDATE_TEMPLATE)(

void *pContext,

KVOutputStream *pOutput,

KVHTMLTemplate *pTemplate,

KVHTMLOptions *pOptions,

KVHTMLTOCOptions *pTOCOptions,

KVHTMLCallbacks *pCallBalls,

KVMemoryStream *pMemStream);
typedef KVErrorCode (pascal *KVHTML_GET_KV_ERROR_CODE)(void *);
typedef KVErrorCodeEx (pascal *KVHTML_GET_KV_ERROR_CODE_EX)(void *);

typedef struct tag_KVHTMLInterfaceEx2

{
KVStructHeader;
KVHTML_INITEX fpInit;
KVHTML_SHUTDOWN fpShutDown;
KVHTML_CONVERT_STREAMEX fpConvertStream;
KVHTML_GET_FILE_LIST fpGetConvertFilelist;
KVHTML_GET_STREAM_INFO fpGetStreamInfo;
KVHTML_GET_ANCHOREX fpGetAnchor;
KVHTML_INPUTSTREAM_CREATE fpFileToInputStreamCreate;
KVHTML_INPUTSTREAM_FREE fpFileToInputStreamFree;
KVHTML_OUTPUTSTREAM_CREATE fpFileToOutputStreamCreate;
KVHTML_OUTPUTSTREAM_FREE fpFileToOutputStreamFree;
KVHTML_GET_SUMMARY_INFO fpGetSummaryInfo;
KVHTML_SET_STYLE_MAPPING fpSetStyleMapping;
KVHTML_VALIDATE_TEMPLATE fpValidateTemplate;
KVHTML_GET_KV_ERROR_CODE fpGetKvErrorCode;
KVHTML_GET_KV_ERROR_CODE_EX fpGetKvErrorCodeEx;

}
KVHTMLInterfaceEx2;

IDOL KeyView (12.9) Page 236 of 482



HTML Export SDK C and COM Programming Guide
Chapter 10: HTML Export API Structures

KVHTMLOptionsEx

This structure defines the options that control the HTML markup written in response to the general style
and attributes (font, color, and so on) of the document. A pointer to this structure is passed as an
argument to the function fpConvertStream() or KVYHTMLConvertFile().

typedef struct tag_KVHTMLOptionsEx

{
KVCharSet OutputCharSet;
BOOL bUseDocumentColors;
BOOL bUseDocumentFontInfo;
BOOL bSupportFontFace;
BOOL bSupportUserFontSizeMapping;
KVFontSizeMap FontSizeMap;
BOOL bDisplayRelativeFontSize;
BOOL bSupportRFC1942 cols;
BOOL bNbspEmptyCells;
ENSATableBorder SATableBorder;
int nTableBorderWidth;
char *pszBaseURL;
char *pszMainURL;
char *pszDefaultOutputDirectory;
char *pszPicPath;
char *pszPicURL;
char *pszJavaURL;
char *pszJavaArchive;
BOOL bRemoveFileNameSpaces;
BOOL bRasterizeFiles
KVHTMLGraphicType OutputRasterGraphicType;
KVHTMLGraphicType OutputVectorGraphicType;
int cxVectorToRasterXRes;
int cyVectorToRasterYRes;
BOOL bGenerateURLs;
long lcbMaxMemUsage;
BOOL bSupportColumnHeadings;
BOOL bSupportRowHeadings;
BOOL bSupportCellSpan;
BOOL bSupportRowSpan;
BOOL bSupportColumnWidth;
BOOL bRemoveEmptyColumns;
BOOL bRemoveEmptyRows;
int nRowsBeforeSplit;
KVLanguageID OutputlLanguagelD;
KVHTMLStyleSheetType eStyleSheetType
BOOL bTabsToTables;
BOOL bForceOutputCharSet;
BOOL bEnableEmptyRows;

IDOL KeyView (12.9)

Page 237 of 482



HTML Export SDK C and COM Programming Guide
Chapter 10: HTML Export API Structures

BYTE cReplaceChar;
BYTE cRedact;
KVCharSet eSrcCharSet;
BOOL bForceSrcCharSet;
int nCompressionQuality;
}
KVHTMLOptionsEx;

Member Descriptions

OutputCharSet

bUseDocumentColors

bUseDocumentFontInfo

bSupportFontFace

bSupportUserFontSizeMapping

FontSizeMap

IDOL KeyView (12.9)

The character set to use for textual output. The available
character sets are enumerated in KVCharsSet in kvcharset.h.
See Convert Character Sets, on page 83

To make sure that the character set defined here is used, you
must set bForceOutputCharSet to TRUE.

The default is KVCS_UNKNOWN.

Set buseDocumentColors to TRUE to retain the color attributes
information contained in the source document. If you set
bUseDocumentColors to FALSE, no color attributes appear in the
<font> tags of the output.

The default is FALSE.

Set bUseDocumentFontInfo to TRUE to retain the font information
contained in the source document. If you set
bUseDocumentFontInfo to FALSE, no font information appears in
the <font> tags in the output.

The default is FALSE.

Set bSupportFontFace to TRUE to retain the font face information
contained in the source document. If you set bSupportFontFace
to FALSE, no FACE attributes appear in the <font> tags of the
HTML output.

This applies only when you set eStyleSheetType to
STYLESHEET_DISABLED. The default is TRUE.

Set bSupportUserFontSizeMapping to TRUE to use the font
sizes specified in the FontSizeMap. If you set
bSupportUserFontSizeMapping to FALSE, HTML Export uses
default size attributes.

This applies only when you set eStyleSheetType to
STYLESHEET _DISABLED. The default is FALSE.

The font sizes to which the HTML tags <font size=1> through
<font size=7> correspond. If bSupportUserFontSizeMapping
is FALSE, this member can be left blank.

Page 238 of 482



HTML Export SDK C and COM Programming Guide
Chapter 10: HTML Export API Structures

bDisplayRelativeFontSize

bSupportRFC1942_ cols

bNbspEmptyCells

SATableBorder

nTableBorderWidth

pszBaseURL

pszMainURL

pszDefaultOutputDirectory

pszPicPath

IDOL KeyView (12.9)

See the Discussion section for more information.

Set bDisplayRelativeFontSize to TRUE to use relative font size
tags in the HTML output. For example, the tag <font size=+1>
adds one to the base font size, which is normally three.

The default is FALSE.

Set bSupportRFC1942_cols to TRUE toinclude cols=integer
specifications in the <table> tags of the HTML output.

The default is TRUE.

Set bNbspEmptyCells to TRUE to include a non-breaking space
(<td>&nbsp;</td>)in the markup for empty table cells in the
source document. If you set bNbspEmptyCells to FALSE,
<td></td> is generated for empty table cells.

This option applies to word processing documents and
spreadsheets only.

The default is TRUE.

Specifies whether table borders are based on the setting in the
source document, are always on, or are always off. The options
are enumerated in ENSATableBorder in kvtypes.h. See
ENSATableBorder, on page 257.

This option applies to word processing documents only.

The default is SA_BaseOnDocument.

Sets the width of the table border in pixels.
This option applies to word processing documents only.

The default is 1.

The base URL that replaces the $BASE token in the HTML output.
See $BASE, on page 451.

The default is NULL.

The URL that replaces the $MAINURL token in the HTML output.
See SMAINURL, on page 452.

The default is NULL.

The default output directory for auxiliary files created during the
conversion.

The default is NULL, and the files are placed in the directory in
which your application is running.

The output directory for graphics created during the conversion. If
specified, this member can also be used by the callback
functions KVHTMLGetAnchorEx and KVHTMLGetAuxOutputEx.

Page 239 of 482



HTML Export SDK C and COM Programming Guide
Chapter 10: HTML Export API Structures

pszPicURL

bRemoveFileNameSpaces

bRasterizeFiles

OutputRasterGraphicType

OutputVectorGraphicType

IDOL KeyView (12.9)

This option applies to word processing documents only.

The default is NULL, and the files are placed in the directory in
which your application is running.

The URL of the picture files created from embedded graphics in
the source document. To specify a complete image source, this
element must be combined with pszAnchor of the GetAnchor ()
callback function. See GetAnchor(), on page 210.

For example, setting pszPicURL to ../cgi-bin/ and setting
pszAnchor to pic. jpg results in the following markup:

<IMG SRC="../cgi-bin/pic.jpg">

This element applies to word processing documents only. The
default is NULL.

Set bRemoveFileNameSpaces to TRUE to remove spaces from
generated output file names.

The default is FALSE.

Set bRasterizeFiles to TRUE to rasterize slides from
presentations into single images. For this setting to take effect,
you must set the bNoPictures, on page 244 member to FALSE.
The format the images are converted to is determined by the
OutputRasterGraphicType, below member.

Set bRasterizeFiles to FALSE to convert the text in slides to
HTML. When you set this member to FALSE, images do not
appear in the HTML output.

The default is FALSE.

NOTE: When bRasterizeFiles is FALSE, the export process
uses the ordering in the file to produce the output, which does
not necessarily match the logical reading order for the
presentation. To use a logical reading order instead, you can
set the LogicalOrder parameterin the [Options] section of
formats_e.ini. See Convert Presentation Files, on page 110.

The output format of rasterized embedded graphics. There are six
options enumerated in KVHTMLGraphicType in kvhtml.h. See
KVHTMLGraphicType, on page 266.

The output format of vector graphics. The options are enumerated
in KYHTMLGraphicType in kvhtml.h. See KVHTMLGraphicType,
on page 266. For more information on displaying vector graphics
on UNIX or Linux, see Display Vector Graphics on UNIX and
Linux, on page 91.

If you turn on highlighting by using KVHTMLSetHighlight (),
KeyView highlights matching terms that occur in vector graphics.

Page 240 of 482



HTML Export SDK C and COM Programming Guide
Chapter 10: HTML Export API Structures

When you output to SVG, it highlights the terms by using the
HTML you specify in KVHTMLHighlight. When you output to any
other format, KeyView highlights the terms by changing the text
color.

cxVectorToRasterXRes Specifies the horizontal resolution when converting presentation
files and vector graphics. This is set in conjunction with
cyVectorToRasterYRes. For more information, see Set the
Resolution of Presentations and Vector Graphics, on page 245.

The default value is @, which means the original resolution is
retained.

cyVectorToRasterYRes Specifies the vertical resolution when converting presentation
files and vector graphics. This is set in conjunction with
cxVectorToRasterXRes. For more information, see Set the
Resolution of Presentations and Vector Graphics, on page 245.

The default value is @, which means the original resolution is
retained.

bGenerateURLs Set bGenerateURLs to TRUE to add anchor tags
(<a ...></a></a>)totext starting with "www", "http:" or
"file:".

This option applies to word processing documents only. The
default is FALSE.

lcbMaxMemUsage The maximum memory allocated dynamically for token buffers
during file processing. If this maximum is reached, Export
performs a swap-to-disk operation internally, and then reuses the
memory blocks. Export maintains an internal minimum memory
size.

This option applies to word processing or text documents only.
The default is LONG_MAX. The unit is in bytes.

bSupportColumnHeadings Set bSupportColumnHeadings to TRUE to include column
headings from the source spreadsheet in the output.

This option applies to spreadsheets only. The default is FALSE.

bSupportRowHeadings Set bSupportRowHeadings to TRUE to include row headings from
the source spreadsheet in the output.

This option applies to spreadsheets only. The default is FALSE.

bSupportCellSpan Set bSupportCellSpan to TRUE to include colspan="n" markup
in the output. If text in the source document spans across empty
columns, and bSupportCellSpan is enabled, the text is output
across columns in the HTML. If this option is disabled, text that
spans across columns is output in a single cell.

This option applies to spreadsheets only. The default value is
FALSE.

IDOL KeyView (12.9) Page 241 of 482



HTML Export SDK C and COM Programming Guide
Chapter 10: HTML Export API Structures

bSupportRowSpan

bSupportColumnWidth

bRemoveEmptyColumns

bRemoveEmptyRows

nRowsBeforeSplit

OutputLanguagelID

eStyleSheetType

bTabsToTables

IDOL KeyView (12.9)

Set bSupportRowSpan to TRUE to include row span data from the
source spreadsheet in the output.

This option applies to spreadsheets only. The default value is
FALSE. Currently not supported.

Set bSupportColumnWidth to TRUE to include column width data
from the source document in the output.

This option applies to spreadsheets only. The default value is
FALSE.

Set bRemoveEmptyColumns to TRUE to remove columns that do
not contain text or color. To remove empty columns, you must set
bSupportCellSpan to FALSE.

This option applies to spreadsheets only. The default is FALSE.

Set bRemoveEmptyRows to TRUE to remove empty rows that do not
contain text or color. This option applies to spreadsheets only.

The default is FALSE.

The approximate number of spreadsheet rows to be processed
before splitting a table. This helps to prevent large spreadsheet
tables from occurring in a single document, which can cause
speed and processing problems for the browser.

This option applies to spreadsheets only. The default is e.

The language for the textual output of language-specific data
such as time and date. OutputLanguageID must be in the system
locale. If outputLanguagelD is invalid or not supplied, the
system default is used. Language IDs are defined in
KVLanguagelID in kvtypes.h.

The default is Language_UNKNOWN.

One of the enumerated options for processing style sheet
information. The options are defined in KVHTMLStyleSheetType in
kvhtml.h. See KVHTMLStyleSheetType, on page 264.

STYLESHEET_DISABLED—Disables Cascading Style Sheet (CSS)
formatting.

CSS_INLINE—Enables CSS formatting, and adds style sheet
information inline to the HTML output file.

CSS_TOFILE—Enables CSS formatting, and generates an
external file or uses an existing external file, which is referenced
ina<link...>element.

The default is STYLESHEET_DISABLED.

Set bTabsToTables to TRUE to convert tabbed columns to tables.
This option applies to word processing documents only.

Page 242 of 482



HTML Export SDK C and COM Programming Guide
Chapter 10: HTML Export API Structures

bForceOutputCharSet

bEnableEmptyRows

cReplaceChar

cRedact

eSrcCharSet

bForceSrcCharSet

IDOL KeyView (12.9)

When you use bTabsToTables, the original font in the cells is not
maintained. The bTabsToTables option is intended for use on
plain text files. Its purpose is to make the text more readable
when viewed in a browser. Font information is not written into the
table cells that are generated. Instead, the default font of the
browser is used.

The default is FALSE.

Set bForceOutputCharSet to TRUE to use the output character
set specified in OutputCharSet. Forcing a character set to KVCS_
UNKNOWN is always ignored. See Convert Character Sets, on
page 83.

The default is FALSE.

Set bEnableEmptyRows to TRUE to display empty rows in
spreadsheets. If you set bEnableEmptyRows to FALSE, empty
rows are not displayed. This option applies only to 20 or more
consecutive empty rows.

This option applies to spreadsheets only. The default is FALSE.

The character used when a character in the source document's
character set cannot be mapped to the output character set.

The default replacement character is a question mark (?).

The character used to replace text that is designated through
style mapping to be omitted from the output. This functionality is
useful when you need to hide confidential or sensitive
information.

The specified character is used for all text that is mapped to a
style processed with the KVSTYLE_REDACT flag (defined in
kvtypes.h). See Map Styles, on page 87.

This option applies to word processing documents only. The
default replacement character is "X".

Specifies the source character set of the document. The available
character sets are enumerated in KVCharSet in kvcharset.h.
See Convert Character Sets, on page 83.

To make sure that the character set defined here is used, you
must set bForceSrcCharSet to TRUE.

The default is KVCS_UNKNOWN.

Set bForceSrcCharsSet to TRUE to use the source character set
specified in eSrcCharSet, regardless of the internal document
information. See Convert Character Sets, on page 83.

Forcing a character set to KVCS_UNKNOWN is always ignored.

The default is FALSE.

Page 243 of 482



HTML Export SDK C and COM Programming Guide
Chapter 10: HTML Export API Structures

nCompressionQuality Controls the output quality of graphics that support compression
quality (for example, JPEG). A value of @ means default quality
(85 compression); 1 is the lowest quality (highest compression
and therefore the smallest file size); 100 is the highest quality (no
compression and therefore the largest file size).

This option applies to word processing documents only. The
default is 0.

bNoPictures This member is only available in the structure in the template
files. It is not part of the structure in the API.

If you set bNoPictures to TRUE, embedded graphics in a
document are not generated as separate files, image tags are not
included in the output, CSS files do not work, and verbose
markup is generated. Because graphics are not generated, the
conversion is faster.

NOTE: If you want to use CSS files, you must set
bNoPictures to FALSE and use the KVHTMLSetStyleSheet()
function to request the CSS file (see Use Style Sheets, on
page 90).

If you set bNoPictures to FALSE, embedded graphics in a
document are regenerated as separate files, stored in the output
directory, and image tags are included in the output.

This member is passed to the bindex argument of the
fpConvertStream() or KVYHTMLConvertFile() functions.

The default is FALSE.

Discussion

« A pointer to this structure is passed as an argument to fpConvertStream() or
KVHTMLConvertFile(). If the pointer to the structure is not NULL, the values of the members
specified in the structure are used. If the pointer to the structure is NULL, the default values are
used.

o bNoPictures is similarto the KVCFG_BLANKPICTURE flaginthe call to KVHTMLConfig(). Unlike
bNoPictures, the KVCFG_BLANKPICTURE flag generates image tags with an empty src attribute.
KVHTMLConfig(), on page 190.

« To output graphics for presentations, you must set bNoPictures to FALSE, and set
bRasterizeFiles to TRUE.

« Thevalues in FontSizeMap, on page 238 indicate the range for the HTML tag <font size=#>.
For example, if you specify 8, 10, 12, 14, 18, and 24:

o font size <= 8 in the source document is mapped to <font size=1> inthe output HTML
o else, font size <=10in the source document is mapped to <font size=2> inthe output HTML

o else, font size <=12in the source document is mapped to <font size=3> in the output HTML

IDOL KeyView (12.9) Page 244 of 482



HTML Export SDK C and COM Programming Guide
Chapter 10: HTML Export API Structures

o else, font size <=14 in the source document is mapped to <font size=4> inthe output HTML
o else, font size <=18 in the source document is mapped to <font size=5> inthe output HTML
o else, font size <=24 in the source document is mapped to <font size=6> inthe output HTML

o font size >24 in source the document is mapped to <font size=7> in the output HTML

When the HTML output is viewed, the browser maps <font size=#> to a specific font size.

Set the Resolution of Presentations and Vector Graphics

The cxVectorToRasterXRes and cyVectorToRasterYRes members are set in conjunction to specify
the resolution (width and height) at which presentation files and vector graphics are converted.

You can specify the resolution as an absolute size in pixels, or as a proportion of the original size.

KeyView always maintains the aspect ratio of the original graphic and does not increase the resolution.
If you set values that would enlarge a graphic, KeyView only changes the size of the HTML element.

To set the resolution in pixels

To specify the resolution in pixels, specify the width (cxvectorToRasterXRes) and/or height
(cyvectorToRasterYRes).

To export the largest image that fits within a bounding box, without changing the original aspect ratio,
set both the width and height. For example, to export the largest image that fits in an 800x500 bounding
box:

cxVectorToRasterXRes=800
cyVextorToRasterYRes=500

Alternatively you can fix one of the dimensions. Set one value and set the other to zero. For example, to
export images with a height of 1500 pixels and whatever width is necessary to maintain the original
aspect ratio:

cxVectorToRasterXRes=0
cyVextorToRasterYRes=1500

The maximum size permitted for either dimension is 4000 pixels.

To set the resolution proportionally

To set the resolution proportionally, set cxvectorToRasterXRes to a negative value. A negative value
represents a percentage of the original resolution. Set cyvectorToRasterYRes to @ (zero). Negative
(percentage) values for cyvVectorToRasterYRes are ignored.

The following example exports a graphic at 50 percent of its original resolution:

cxVectorToRasterXRes=-50
cyVectorToRasterYRes=0

IDOL KeyView (12.9) Page 245 of 482



HTML Export SDK C and COM Programming Guide
Chapter 10: HTML Export API Structures

KVHTMLTemplateEx

This structure defines the overall framework of the HTML output. Members in this structure define the
HTML markup written at specific points in the output stream. The pointers contain HTML markup that
might include embedded KeyView tokens. See Export Tokens, on page 451 for more information on
tokens. The structure is initialized by calling the fpConvertStream() or KVHTMLConvertFile()
function. See fpConvertStream(), on page 171 or KVHTMLConvertFile(), on page 198.

typedef struct tag KVHTMLTemplateEx

{
char *pszMainTop;
char *pszMainBottom;
char *pszFirstH1Start;
char *pszFirstH1End;
char *pszMiddleH1Start;
char *pszMiddleH1End;
char *pszLastH1Start;
char *pszLastH1End;
char *pszH[2..6]HTML;
char *pszTOCH[1..6]Start;
char *pszTOC_H[1..6];
char *pszTOCH[1..6]End;
char *pszXFile;
char *pszStartBlock;
char *pszEndBlock;
BOOL bPutBlocksInSeparateFiles;
BOOL bHardPageMakesNewBlock
long 1cbBlockSize;
char *pszChunkTemplate;
char *pszTableHTML;
BOOL bTableHTMLForSpreadsheetOnly;
char *pszUserSummary;
char *pszXStartBlock;
char *pszXEndBlock;
char *pszTOCH[1..6]LeafNode;
}
KVHTMLTemplateEx;

Member Descriptions

pszMainTop The markup and tokens inserted at the beginning of the main
HTML file. Most of the template files feature <meta> tags with
tokens that store the input document's metadata. This member
should at least contain the <html> and <body> tags. For frame-

IDOL KeyView (12.9) Page 246 of 482



HTML Export SDK C and COM Programming Guide
Chapter 10: HTML Export API Structures

style output, this member must include the <frame> tag.

The default is NULL.

pszMainBottom The markup and tokens inserted at the end of the main HTML
file. This member should at least contain the </html> and
</body> tags, and should close the elements that are opened by
pszMainTop.

The default is NULL.

pszFirstHiStart The markup and tokens inserted at the beginning of the first
created H1 HTML block (that is, the block associated with the
first H1 table of contents entry).

The default is NULL.

pszFirstH1End The markup and tokens inserted at the end of the first created
H1 HTML block (that is, the block associated with the first H1
table of contents entry).

The default is NULL.

pszMiddleH1Start The markup and tokens inserted at the beginning of those H1
HTML blocks that are neither the first nor the last H1 blocks
created (that is, blocks associated with all but the first and last
H1 table of contents entries).

The default is NULL.

pszMiddleH1End The markup and tokens inserted at the end of those H1 HTML
blocks that are neither the first nor the last H1 blocks created
(that is, blocks associated with all but the first and last H1 table
of contents entries).

The default is NULL.

pszLastH1Start The markup and tokens inserted at the beginning of the last
created H1 HTML block (that is, the block associated with the
last H1 table of contents entry).

The default is NULL.

pszLastH1End The markup and tokens inserted at the end of the last created
H1 HTML block (that is, the block associated with the last H1
table of contents entry).

The default is NULL.

pszH[2..6]HTML The markup and tokens inserted in an HTML block for heading
levels 2 through 6.

The default is NULL.

pszTOCH[1..6]Start The markup and tokens inserted at the beginning of a table of
contents block for heading levels 1 through 6 entries. For
example:

IDOL KeyView (12.9) Page 247 of 482



HTML Export SDK C and COM Programming Guide

Chapter 10: HTML Export API Structures

pszTOC_H[1..6]

pszTOCH[1..6]End

pszXFile

pszStartBlock

pszEndBlock

bPutBlocksInSeparateFiles

IDOL KeyView (12.9)

<ol type="I">

<ol type="1">

<ol type="1i">
The default is NULL.

The markup and tokens required to process the table of contents
entries for heading levels 1 through 6. For example:

<a href="$ANCHOR" target="right">$TOCTE</a>
The default is NULL.

The markup and tokens inserted at the end of a table of contents
block for heading levels 1 through 6 entries. For example:

</ol>

The default is NULL.

The markup and tokens generated and placed in an extra HTML
file. This file holds content from the source document. For
example, it could contain the table of contents (using the $TOC
token), which could then be displayed in an HTML frame. To
process this file, you would use the $XANCHOR token.

For example, if the extra file contains the table of contents in
frame-based HTML, set pszXFile=$T0C and place the following
HTML markup in the pszMainTop element:

<frame src="$XANCHOR" name="left" scrolling="auto"
target="right">

See Export Tokens, on page 451 for more information on Export
tokens.

The default is NULL.

The markup and tokens inserted at the beginning of each block
created as a result of 1cbBlockSize or
bHardPageMakesNewBlock.

The default is NULL.

The markup and tokens inserted at the end of each block
created as a result of the of 1cbBlockSize or
bHardPageMakesNewBlock

The default is NULL.

Set bPutBlocksInSeparateFiles to TRUE to create a separate
HTML file for each heading level 1 block. Each new block uses
the markup defined in pszStartBlock and pszEndBlock. If you
set bPutBlocksInSeparateFiles to FALSE, each heading level
1 block is placed sequentially in the same file after the initial
markup is written.

Page 248 of 482



HTML Export SDK C and COM Programming Guide

Chapter 10: HTML Export API Structures

bHardPageMakesNewBlock

1cbBlockSize

pszChunkTemplate

pszTableHTML

IDOL KeyView (12.9)

The default is FALSE.

Set bHardPageMakesNewBlock to TRUE to have hard page
breaks in the source document generate new HTML files during
the conversion process. The bPutBlocksInSeparateFiles, on the
previous page member must also be set to TRUE, and the
pszChunkTemplate, below member must specify a table of
contents entry for the new file.

This option applies to word processing documents and
spreadsheets only. Page boundaries in PDF documents are
considered page breaks.

The default is FALSE.

The maximum size (in bytes) of heading level 1 HTML output
files. This number is used as a guideline and can be exceeded to
break content at a logical location. This setting is not used when
exporting spreadsheets. To use 1cbBlockSize, it must be set to
a non-zero number, the bPutBlocksInSeparateFiles, on the
previous page member must be set to TRUE, and the
pszChunkTemplate, below member must specify a table of
contents entry for new files created when the maximum size is
reached.

The default is 0. This means that the size is undefined and
unlimited.

If a heading level 1 HTML block is subdivided into separate files
because the block exceeds the size limitations specified in
1cbBlockSize, or bHardPageMakesNewBlock is set, or
partitioning on hard breaks or page size changes is turned on by
using fpSetPartitionOn, this member defines the table of
contents entry for the new file.

The page number can be included in the table of contents entry
by inserting the $SPLITBLOCKNUMBER token. For example:

Page $SPLITBLOCKNUMBER
The default is NULL.

Specifies the markup (no tokens) inserted at the beginning of
each table created during the conversion process. If you set
pszTableHTML, table cell color and border information from the
document is ignored. This is used in conjunction with
bTableHTMLForSpreadsheetOnly to control the look of
generated spreadsheets.

For example, to center the table, set the background color to
teal, and set the border width to 13, use:

pszTableHTML=<table bgcolor="teal" border="13"
align="center">

Page 249 of 482



HTML Export SDK C and COM Programming Guide
Chapter 10: HTML Export API Structures

The default is NULL.

bTableHTMLForSpreadsheetOnly If set to TRUE, bTableHTMLForSpreadsheetOnly controls how
spreadsheets are displayed in the output. If set to FALSE, cell
color and border information from the source document is used.
Use this member in conjunction with pszTableHTML.

The default is FALSE.

pszUserSummary The markup and tokens generated when the tokens
$USERSUMMARY or $SUMMARY are used. For example:

<meta name="$NAME" content="$CONTENT" />
The default is NULL.

pszXStartBlock The markup and tokens inserted at the beginning of each HTML
block generated by the $XANCHOR token. If either this member or
pszXEndBlock is defined, both pszStartBlock and
pszEndBlock are ignored. See Export Tokens, on page 451 for
more information on $XANCHOR.

The default is NULL.

pszXEndBlock The markup and tokens inserted at the end of each HTML block
generated by the $XANCHOR token. If either this member or
pszXStartBlock is defined, both pszStartBlock and
pszEndBlock are ignored.See Export Tokens, on page 451 for
more information on $XANCHOR.

The default is NULL.

pszTOCH[1..6]LeafNode The markup that replaces pszTOC_H[1..6] entries for leaf
nodes in the table of contents. A leaf node is a node that has no
children.

The default is NULL.

Discussion

A pointer to this structure is passed as an argument to fpConvertStream() and KVHTMLConvertFile
(). If the pointer to the structure is not NULL, the values of the members specified in the structure are
used. If the pointer to the structure is NULL, the default values are used.

KVHTMLTOCOptions

This structure defines whether a heading is included in the table of contents. Source text is converted
to a heading in the HTML output if

IDOL KeyView (12.9) Page 250 of 482



HTML Export SDK C and COM Programming Guide
Chapter 10: HTML Export API Structures

« it meets all the criteria defined by the members of KVHTMLHeadingInfo (see
KVHTMLHeadinglnfo, on page 229), and

o the headingCreateType member of KVYHTMLTOCOptions is set to allow automatic heading

generation.

The structure is initialized by calling the fpConvertStream() or KVHTMLConvertFile() function. See
fpConvertStream(), on page 171 or KVHTMLConvertFile(), on page 198.

When PDF files are converted to HTML by using the default reader, pdfsr, the table of contents is
generated from "bookmarks" within the PDF file. This structure is not used.

Typedef struct tag_KVHTMLTOCOptions

{
BOOL bAllowHeadingsInTables;
KVHeadingCreateOptions headingCreateType;
KVHTMLHeadingInfo *pH1;
KVHTMLHeadingInfo *pH2;
KVHTMLHeadingInfo *pH3;
KVHTMLHeadingInfo *pH4 ;
KVHTMLHeadingInfo *pH5;
KVHTMLHeadingInfo *pH6 ;

}

KVHTMLTOCOptions;

Member Descriptions

bAllowHeadingsInTables This option determines if the text in tables is considered for automatic

headingCreateType

IDOL KeyView (12.9)

heading generation. If you set bAllowHeadingsInTables to TRUE, the
text in tables is included in the determination of headings and table of
contents entries.

This option applies to word processing documents and spreadsheets
only.

The default is FALSE.

This option determines how HTML Export subdivides the source
document into table of contents entries. This should be set to one of the
two options that are enumerated in KVHeadingCreateOptions in
kvhtml.h. See KVHeadingCreateOptions, on page 267.

The determination of table of contents entries is based on whether the
source document contains heading styles or whether text attributes
conform to the criteria defined in the KVHTMLHeadingInfo structure.
See KVHTMLHeadinglnfo, on page 229.

Heading styles are predefined style tags, such as "Heading 1" and
"Heading 2" tags in a Microsoft Word document. Text attributes are
bold, underlined, italic, and so on.

This option applies to word processing documents only.

Page 251 of 482



HTML Export SDK C and COM Programming Guide
Chapter 10: HTML Export API Structures

KVHTMLHeadingInfo

Discussion

The default is KVCS_DocHeadingsOnly.

A pointer to the KVHTMLHeadingInfo structure.
SeeKVHTMLHeadinglnfo, on page 229.

When the table of contents entries are not based on the source
documents heading styles, the table of contents entries are determined
by whether text attributes (such as bold, underlined, and italic text) in

the source document meet all the criteria defined in
KVHTMLHeadingInfo.

A pointer to this structure is passed as an argument to fpConvertStream() and KVHTMLConvertFile
(). If the pointer to the structure is not NULL, the values of the members specified in the structure are

used. If the pointer to the structure is NULL, the default values are used.

KVRevisionMark

This structure defines the information generated when the revision feature is enabled and how the
information is displayed. (see Include Revision Information, on page 92). It defines the following:

« the contents of the title attribute foran <ins> or <del> tag. See Configure the Revision Title, on

page 93.

« the style used to display revised text by different reviewers. See Configure the Revision Style, on

page 94.

« the revision summary file. See Generate a Revision Summary, on page 95.

typedef struct tag_|

{
KVStructHeader;

KV_RM_Title
KV_RM_Title
char

int

BOOL

char

char

int

void

}

KVRevisionMark;

IDOL KeyView (12.9)

KVRevisionMark

InsTitle;

DelTitle;
**ppAuthorStyles;
nAuthorStyles;
bCreateSummary;
*pszRevSumStartBlock;
*pszRevSumEndBlock;
nReserved;
*pReserved;

Page 252 of 482



HTML Export SDK C and COM Programming Guide
Chapter 10: HTML Export API Structures

Member Description

KVStructHeader The KeyView version of the structure. See KV StructHead, on page 224.

InsTitle The prefix and revision information for the <ins> tag, as defined by the Kv_
RM_TITLE structure in kvtypes.h. See KV_RM Title, below.

DelTitle The prefix and revision information for the <del> tag, as defined by the Kv_
RM_TITLE structure in kvtypes.h. See KV_RM Title, below.

ppAuthorStyles The HTML style you want applied to the revised content for a particular
reviewer.

nAuthorStyles The number of HTML styles to be defined.

bCreateSummary When you set this flag, a revision summary file is created in the directory

where the HTML output is generated. The default file name is output_
filename.revsum.htm. You can change this file name by using the
fpGetAnchor callback function. See GetAnchor(), on page 210.

pszRevSumStartBlock The markup and tokens inserted at the beginning of the revision summary
file.

pszRevSumEndBlock The markup and tokens inserted at the end of the revision summary file.
nReserved Reserved for internal use.

pReserved Reserved for internal use.

KV_RM_Title

This structure defines the contents (prefix, reviewer name, date, and time) of the tit1le attribute for the
InsTitle and DelTitle members of KVRevisionMark (see KVRevisionMark, on the previous page).

typedef struct tag_KV_RM_Title

{
RM_Title_Flag eFlag;
BYTE *pPrefix;
int nSize;
KVCharSet eCharSet;
}

KV_RM_Title;

Member Description

eFlag Specifies whether the reviewer name, date, and time appear in the title attribute. The

IDOL KeyView (12.9) Page 253 of 482



HTML Export SDK C and COM Programming Guide
Chapter 10: HTML Export API Structures

options are enumerated inRM_Title_Flagin kvtypes.h. See RM Title Flag, on
page 276.

pPrefix A pointer to the text string that is prefixed to the eFlag value in the title attribute of the
<ins> or<del> tags. By default, the string "inserted:" or"deleted:" is the first entry in
the attribute.

nSize The size of the prefix.

eCharSet The character set of the prefix characters. The available character sets are enumerated
in KVCharSet in kvcharset.h. See Convert Character Sets, on page 83.

If you set eCharSet to KVCS_UNKNOWN, the character set of the prefix is not converted and
the prefix is written directly to the HTML output.

IDOL KeyView (12.9) Page 254 of 482



Chapter 11: Enumerated Types

This section provides information on some of the enumerated types used by the HTML Export API.

O INtrOdUCH ON ... 255
® ENDOCAIDULES ... e 256
® ENSATableBOrder . ... 257
O KV CredKeY Ty Pe . 258
® KVEMOrCOAE . ... 258
O KVEMOrCOdeEX .. 260
® KVHTMLStyleSheet Ty pe ... 264
® KVHTMLANChOITYPEEX .. . 264
® KVHTMLGIraphiCTYPe ..ot 266
® KVHeadingCreateOplions .. ... ...t 267
® KVMetadata Ty Pe ... 267
® KVMetaName Ty pe il 269
® KVPartitionStartReason ... ... e 269
O KV SUMIN O T Y P .o 271
O KV S UM Y P ..o 272
® LPDF _DIRECTION il 275
® RM_Title _Flag .. ... 276
Introduction

The enumerated types are in adinfo.h, kvcharset.h, kverrorcodes.h, kvtypes.h, kvhtml.h, and
kvxtract.h. These header files are in the include directory. The first entry in an enumerated type
structure should be set to zero (0). Each subsequent entry is increased by 1. For example, the first five
entries of KVCharSet in kvcharset. h are:

KVCS_UNKNOWN
KVCS_SJIS
KVCS_GB
KVCS_BIG5
KVCS_KSC

They would be set in the following way:

IDOL KeyView (12.9) Page 255 of 482



HTML Export SDK C and COM Programming Guide
Chapter 11: Enumerated Types

Enumerated Type Setting

KVCS_UNKNOWN )
KVCS_SJIS 1
KVCS_GB 2
KVCS_BIGS 3
KVCS_KSC 4

You can also set many enumerated types by entering the appropriate symbolic constant, or TRUE or
FALSE.

Programming Guidelines

When KeyView is enhanced in future releases, some enumerated types might be expanded. For
example, new format IDs might be added to the ENdocFmt enumerated type, or new error codes might
be added to the KVErrorCodeEx enumerated type. When you use these expandable types, your code
should ensure binary compatibility with future releases.

For example, if you use an array to access error messages based on an error code, your code should
check that the error code is less than KVError_Last before accessing the data. This ensures that new
error codes are detected when you add KeyView binary files from new releases to your existing
installation.

The following enumerated types are expandable:
KVErrorCodeEx

KVMetadataType

KVCharSet

KVLanguageID

KVSubfileType

ENdocFmt

ENDocAttributes

This enumerated type provides additional information about a file during auto-detection. This
enumerated type is defined in adinfo.h.

NOTE: The attributes in this enumerated type are set when a particular characteristic is detected.
However, if the attribute is not set it does not necessarily mean that the characteristic is not
present. For example, KeyView sets kEncrypted when it detects encryption on the file, but if it
does not detect encryption it does not necessarily mean the file is not encrypted.

IDOL KeyView (12.9) Page 256 of 482



HTML Export SDK C and COM Programming Guide
Chapter 11: Enumerated Types

Enumerators

kEncrypted The file is encrypted.
kWindowRMSEncrypted The file is encrypted with Windows RMS encryption.

kBigEndian Where a format has big and little endian variants, this value indicates that
this file is in the big endian variant.

kLittleEndian Where a format has big and little endian variants, this value indicates that
this file is in the little endian variant.

k32Bit Where a format has 64- and 32-bit variants, this value indicates that this file
is in the 32-bit variant.

k64Bit Where a format has 64- and 32-bit variants, this value indicates that this file
is in the 64-bit variant.

ENSATableBorder

This enumerated type defines the type of border to display around tables. This enumerated type is
defined in kvtypes.h.

Definition

typedef enum tag_ENSATableBorder
{

SA_BaseOnDocument,
SA_NoBorder,
SA_Border

}
ENSATableBorder;

Enumerators

SA_BaseOnDocument Bordertype is based on the document.
SA_NoBorder Table borders are always off.

SA Border Table borders are always on.

IDOL KeyView (12.9) Page 257 of 482



HTML Export SDK C and COM Programming Guide
Chapter 11: Enumerated Types

KVCredKeyType

This enumerated type defines the type of credential used to open a protected file. See
KVCredential Component, on page 152. This enumerated type is defined in kvxtract.h.

Definition
typedef enum tag_KVCredKeyType
{
KVCredKeyType_UserName,
KVCredKeyType UserIdFile,
KVCredKeyType_Password,
}
KVCredKeyType;
Enumerators
KVCredKeyType_ The credential in KvCredentialComponent is a user name.
UserName
KvCredKeyType_ The credential in KVCredentialComponent is a path to a file that
UserIdFile contains user IDs.
KVCredKeyType_ The credential in KvCredentialComponent is a password.
Password

KVErrorCode

This enumerated type defines the type of error generated if Export fails. This enumerated type is
defined in kverrorcodes.h.

Definition

typedef enum tag_KVErrorCode

{

KVERR_Success, /* @ Success*/

KVERR_DLLNotFound, /* 1 DLL or shared library not found*/
KVERR_OutOfCore, /*¥ 2 memory allocation failure*/
KVERR_processCancelled, /* 3 fpContinue() returns FALSE*/
KVERR_badInputStream, /* 4 Invalid/corrupt input stream*/

IDOL KeyView (12.9) Page 258 of 482



HTML Export SDK C and COM Programming Guide
Chapter 11: Enumerated Types

KVERR_badOutputType, /*¥ 5 1Invalid output type requested*/
KVERR_General, /* 6 General error.... */
KVERR_FormatNotSupported, /* 7 Format not supported*/
KVERR_PasswordProtected, /* 8 File is Password Protected*/
KVERR_ADSNotFound, /* 9 Adobe Document Server not found*/
KVERR_AutoDetFail, /* 10 Autodetect error*/
KVERR_AutoDetNoFormat, /* 11 Unable to detect file format*/
KVERR_ReaderInitError, /* 12 Error initializing the reader*/
KVERR_NoReader, /* 13 No reader available for this format*/
KVERR_CreateOutputFileFailed, /* 14 Unable to create output file*/
KVERR_CreateTempFileFailed, /* 15 Unable to create temp file*/

KVERR_ErrorWritingToOutputFile, /* 16 Error writing to output file*/
KVERR_CreateProcessFailed, /* 17 Error creating a child process*/
KVERR_WaitForChildFailed, /* 18 Wait for child process failed*/

KVERR_ChildTimeOut, /* 19 Child process hung / timed out*/
KVERR_ArchiveFileNotFound, /* 20 Attempt to extract nonexistent file*/
KVERR_ArchiveFatalError /* 21 Fatal error processing archive - should abort*/
}
KVErrorCode;
Enumerators

KVERR_SUCCESS The function completed successfully.

KVERR_DLLNotFound A DLL or shared library was not found.

KVERR_OutOfCore Memory allocation failure.

KVERR_processCancelled The callback function fpContinue() returns FALSE.

KVERR_badInputStream Invalid or corrupt input stream.
KVERR_badOutputType Invalid output is requested.
KVERR_General General error.

KVERR_FormatNotSupported The file format is not supported.

KVERR_PasswordProtected  Thefile is encrypted or password-protected. KeyView supports only
secure PST files.

KVERR_ADSNotFound Adobe Document Server not found. This error is obsolete.
KVERR_AutoDetFail Autodetect error.

KVERR_AutoDetNoFormat Unable to detect file format.

KVERR_ReaderInitError Error initializing the reader.

KVERR_NoReader No reader is available for this format.

IDOL KeyView (12.9) Page 259 of 482



HTML Export SDK C and COM Programming Guide
Chapter 11: Enumerated Types

KVERR_ Unable to create outpuit file.

CreateOutputFileFailed
reatebutputiileratle This error is generated if the overwrite flag in KVExtractSubFileArg is

FALSE, and a subfile has the same name as a file in the target path.

KVERR_ Unable to create temporary file.
CreateTempFileFailed
KVERR_ There was an error writing to the output file.

ErrorWritingToOutputFile

KVERR_ There was an errror creating a child process.
CreateProcessFailed

KVERR_WaitForChildFailed The wait for child process failed.

KVERR_ChildTimeOut The child process hung or timed out.
KVERR_ Attempt to extract nonexistent file.
ArchiveFileNotFound

KVERR_ArchiveFatalError A fatal error occurred processing an archive file.

KVErrorCodeEx

This enumerated type defines extended error codes. The type is defined in kverrorcodes. h.

Definition

typedef enum tag_KVErrorCodeEx

{
KVError_OpenStreamFailure = KVERR_ArchiveFatalError + 1, /* 22 */
KVError_InterfaceFunctionNotFound, /* 23 */
KVError_InputFileNotFound, /* 24 */
KVError_OpenOutputFileFailed, /* 25 */
KVError_MemoryLeak, /* 26 */
KVError_MemoryOverwrite, /* 27 */
KVError_GPF, /* 28 */
KVError_OopCore, /* 29 */
KVError_KVoopLogFailed, /* 30 */
KVError_OverNestedFilelLimit, /* 31 */
KVError_PSTAccessFailed, /* 32 */
KVError_PasswordRequired, /* 33 */
KVError_InvalidArgs, /* 34 */
KVError_ReaderUsageDenied, /* 35 */
KVError_OopBadConfig, /* 36 */
KVError_OopBrokenPipe, /* 37 */
KVError_OopPipeOEF, /* 38 */

IDOL KeyView (12.9) Page 260 of 482



HTML Export SDK C and COM Programming Guide

Chapter 11: Enumerated Types

KVError_IPCTimeOut, /* 39 */
KVError_InvalidOopDriverSignature, /* 40 */
KVError_InvalidOopServiceSignature, /* 41 */
KVError_ZeroFile, /* 42 */
KVError_CompressionNotSupported, /* 43 */
KVError_NoTemplates, /* 44 */
KVError_NoMainTemplate, /* 45 */
KVError_InvalidTemplate, /* 46 */
KVError_TemplateError, /* 47 */
KVError_IsADirectory, /* 48 */
KVError_RMSDecryptionFailed, /* 49 */
KVError_InvalidlLicense, /* 50 */
KVError_Last /* 51 */

}

KVErrorCodeEx;

Enumerators

KVError_OpenStreamFailure

KVError_

InterfaceFunctionNotFound

KVError_InputFileNotFound

KVError_

OpenOutputFileFailed

KVError_MemoryLeak

KVError_MemoryOverwrite

KVError_GPF

KVError_OopCore

IDOL KeyView (12.9)

Failed to open a stream during out-of-process filtering. This is an
extended error for the KVERR_General code. This enumerator is
used by KeyView Filter.

An interface function was not found during out-of-process filtering.
This is an extended error for the KVERR_General code. This
enumerator is used by KeyView Filter.

Could not find the input file during out-of-process filtering. This is
an extended error for the KVERR_General code. This enumerator is
used by KeyView Filter.

Could not open the output file during out-of-process filtering. This
is an extended error for the KVERR_General code. This enumerator
is used by KeyView Filter.

A memory leak occurred during out-of-process filtering. This is an
extended error for the KVERR_General code. This enumerator is
used by KeyView Filter.

A memory overwrite occurred during out-of-process filtering. This
is an extended error for the KVERR_General code. This enumerator
is used by KeyView Filter.

An exception occurred during out-of-process filtering. This is an
extended error for the KVERR_General code. This enumerator is
used by KeyView Filter.

A memory dump was generated in a child process during out-of-
process filtering. This is an extended error for the KVERR_General
code. This enumerator is used by KeyView Filter.

Page 261 of 482



HTML Export SDK C and COM Programming Guide

Chapter 11: Enumerated Types

KVError_KVoopLogFailed

KVError_
OverNestedFilelLimit

KVError_PSTAccessFailed

KVError_PasswordRequired

KVError_InvalidArgs

KVError_ReaderUsageDenied

KVError_OopBadConfig

KVError_OopBrokenPipe

IDOL KeyView (12.9)

The creation of the out-of-process error log failed. This is an
extended error for the KVERR_General code. This enumerator is
used by KeyView Filter.

The container file has more than the allowable number of child
documents. One or more child documents were not converted.
Currently, this enumerator is not used.

The PST file could not be converted. This error might be returned
when a call to fpopenFile() returns NULL for one of the following
reasons:

« A Microsoft Outlook client is not installed.

« A Microsoft Outlook client is installed, but is not the default
email client.

« A Microsoft Outlook client is installed, but is not configured
correctly.

o The PST file is corrupt.

« The PST file is read-only (PST files must allow read and
write access).

« The MAPI call fails.

« The bit editions of Microsoft Outlook do not match the bit
editions of the KeyView software.

For example, if 32-bit KeyView is used, 32-bit Outlook must
be installed. If 64-bit KeyView is used, 64-bit Outlook must
be installed.

To open the file, you must provide credentials. This error might be
returned when a call to fpOpenFile() returns NULL.

The input argument or structure is invalid. This error is generated
by the File Extraction APlIs.

The current license key does not enable the document reader
required to convert the file. This error might be returned when a call
to fpOpenFile() returns NULL.

Some document readers are considered advanced features and
are licensed separately from the KeyView SDK (for example, the
PST and MBX readers). Contact your Micro Focus sales
representative to get an updated license key.

Information in the kvxconfig. ini file is incomplete and cannot be
used to filter the XML file. This is used by KeyView Filter.

Data was not transferred between the parent and child processes
during out-of-process filtering because either the parent or child
failed. This is used by KeyView Filter.

Page 262 of 482



HTML Export SDK C and COM Programming Guide

Chapter 11: Enumerated Types

KVError_OopPipeOEF

KVError_IPCTimeOut

KVError_

InvalidOopDriverSignature

KVError_

InvalidOopServiceSignature

KVError_ZeroFile

KVError_
CompressionNotSupported

KVError_NoTemplates
KVError_NoMainTemplate
KVError_InvalidTemplate
KVError_TemplateError
KVError_IsADirectory

KVError_
RMSDecryptionFailed

KVError_InvalidlLicense

KVError_Last

Discussion

Data was not transferred between the parent and child processes
during out-of-process filtering because the parent process was
shut down. This is used by KeyView Filter.

Either the parent or child process is waiting for a reply or request
during out-of-process filtering. This is used by KeyView Filter.

A client sent a request to an out-of-process server, but the context
driver does not exist on the server. This is used by KeyView Filter.

A client sent a request to a File Extraction service that does not
exist.

If this error is generated on the call to fpClose(), you can ignore
it. This is used by KeyView Filter.

The input file is empty or zero bytes.

The file or subfile is compressed with an unsupported
compression method.

KeyView was not able to access the protected contents of an
RMS file.

The license used to initialize KeyView is not valid for this
operation.

« When error reporting is enhanced in future releases, new error messages might be added to this
enumerator type. When you use this type, your code must ensure binary compatibility with future
releases. See Programming Guidelines, on page 256.

« If an extended error code is called for a format to which the error does not apply, the KVError_

Last code is returned.

IDOL KeyView (12.9)

Page 263 of 482



HTML Export SDK C and COM Programming Guide
Chapter 11: Enumerated Types

KVHTMLStyleSheetType

This enumerated type defines the options for processing style sheet information. This enumerated type
is defined in kvhtml. h.

Definition

typedef enum tag_KVHTMLStyleSheetType{ STYLESHEET_DISABLED = 0,
CSS_INLINE,

CSS_TOFILE

}
KVHTMLStyleSheetType;

Enumerators
STYLESHEET_ Disables Cascading Style Sheet (CSS) formatting.
DISABLED

CSS_INLINE Enables CSS formatting and adds style sheet information inline to the HTML output
file.

CSS_TOFILE Enables CSS formatting, and generates an external file or uses an existing external
file, which is referenced ina <1ink...> element. If CSS_TOFILE is set, you must use
the $STYLESHEET token to specify the URL of the style sheet in the HTML output.

The -c option can be used in the htmlini sample program to specify the full path and
file name of an external CSS file.

Applies to word processing documents only.

KVHTMLANchorTypeEXx

This enumerated type defines the anchor types for the output stream. This enumerated type is defined
in kvhtml.h.

Definition
typedef enum tag KVHTMLAnchorTypeEx
{

VectorPictureAnchorEx = 0,

IDOL KeyView (12.9) Page 264 of 482



HTML Export SDK C and COM Programming Guide
Chapter 11: Enumerated Types

RasterPictureAnchorEx,

H1AnchorEx,
H2AnchorEx,
H3AnchorEx,
H4AnchorEx,
H5AnchorEx,
H6ANnchorEx,
XAnchorEx,
AnimatedGIFAnchorEx,
CSSAnchorEx,
GeneralAnchorEx,
DBAnchorEx,
JPEGAnchorEx
}
KVHTMLAnchorTypeEx;
Enumerators
VectorPictureAnchor An anchor for embedded vector graphics.
RasterPictureAnchor An anchor for embedded raster graphics.
H1Anchor An anchor for level 1 heading blocks (H1).
H2Anchor An anchor for level 2 heading blocks (H2).
H3Anchor An anchor for level 3 heading blocks (H3).
H4Anchor An anchor for level 4 heading blocks (H4).
H5Anchor An anchor for level 5 heading blocks (H5).
H6Anchor An anchor for level 6 heading blocks (H6).
XAnchor An anchor for an external file.
AnimatedGIFAnchor An anchor for embedded animated GIF graphics.
CSSAnchor An anchor for an external CSS file.
GeneralAnchor Reserved for future use.
DBAnchor Used internally.
JPEGAnchor An anchor for an embedded JPEG graphic.

IDOL KeyView (12.9)

Page 265 of 482



HTML Export SDK C and COM Programming Guide
Chapter 11: Enumerated Types

KVHTMLGraphicType

This enumerated type defines graphic formats to which embedded graphics and presentations are
converted. This enumerated type is defined in kvhtml.h.

Definition

typedef enum tag_KVHTMLGraphicType

{

KVGFX_GIF,
KVGFX_JPEG,
KVGFX_PNG,
KVGFX_CGM,
KVGFX_WMF,
KVGFX_JAVA,
KVGFX_HTML,
KVGFX_SVG

}

KVHTMLGraphicType;

Enumerators

KVGFX_
GIF

KVGFX_
JPEG

KVGFX_
PNG

KVGFX_
CGM

KVGFX_
WMF

KVGFX_
JAVA

KVGFX_
HTML

KVGFX_
SVG

Specifies GIF (Graphics Interchange Format) as the graphic type.

Specifies JPEG (Joint Photographic Experts Group) as the graphic type.

Specifies PNG (Portable Network Graphics) as the graphic type.

Deprecated.

Specifies WMF (Windows Metafile) as the graphic type.

Deprecated.

Specifies that text in presentations are converted to HTML.

Specifies SVG (Scalable Vector Graphics) as the graphic type. Only text in vector
graphics is included in SVG output.

NOTE: Text inside charts in presentation graphic files are not output to SVG.

IDOL KeyView (12.9) Page 266 of 482



HTML Export SDK C and COM Programming Guide
Chapter 11: Enumerated Types

KVHeadingCreateOptions

This enumerated type defines whether Export generates blocks and block chunks based only on the
heading styles defined in a source document (if they are available), or based on both the source
document’s heading styles and headings that are created automatically by Export. Headings that are
created automatically by Export are based on the text attributes of the source document as defined by
KVHTMLHeadingInfo). This enumerated type is defined in kvhtml.h.

Definition

typedef enum tag_KVHeadingCreateOptions

{
KVHC_DocHeadingsOnly,

KVHC_CreateHeadingsAlways

}
KVHeadingCreateOptions;

Enumerators

KVHC_DocHeadingsOnly This instructs Export to rely exclusively on heading styles defined in the
source document. However, if the source document does not contain
heading styles, Export generates blocks on its own using the criteria
defined by the structure KVHeadingInfo.

KVHC_ This instructs Export to use the heading styles in the source document
CreateHeadingsAlways when available, and to also automatically create table of contents entries
based on the criteria defined by the structure KVHeadingInfo.

KVMetadataType

This enumerated type defines the data type of metadata that can be extracted from a subfile in a mail
message or mail store. If a metadata field has a corresponding KeyView type in KVMetadataType, the
metadata is converted to the K\VVMetadataElem structure, and the structure member isbatavalid is 1.
This enumerated type is defined in kvtypes.h.

Definition

typedef enum

{
KVMetadata_Unknown = 0,

IDOL KeyView (12.9) Page 267 of 482



HTML Export SDK C and COM Programming Guide
Chapter 11: Enumerated Types

KVMetadata_Bool =
KVMetadata_Binary =
KVMetadata_Int4 =
KVMetadata_UInt4 =
KVMetadata_Int8 =
KVMetadata_UInt8 =
KVMetadata_String =
KVMetadata_Unicode =
KVMetadata_DateTime =
KVMetadata_Float =
KVMetadata_Double =

. v .

-

P P2 O o0ONOUVA, WNEBR
P ® %« « v v .
.- .

KVMetadata_Last

}

KVMetadataType;

Enumerators
KVMetadata_  The value in the property is of an unknown type.
Unknown
KVMetadata_  The value in the property is a Boolean value. The corresponding MAPI type is PT_
Bool BOOLEAN.
KVMetadata_  The value in the property is a byte array. The corresponding MAPI type is PT_
Binary BINARY.
KvMetadata_  The value in the property is a signed 4-byte integer. The corresponding MAPI types
Int4 are PT_I2, PT_SHORT, PT_I4, and PT_LONG.
KVMetadata_  The value in the property is an unsigned 4-byte integer. This type is not currently
UInt4 supported.
KVMetadata_  The value in the property is a signed 8-byte integer. This type is not currently
Int8 supported.
KVMetadata_  The value in the property is an unsigned 8-byte integer. This type is not currently
UInt8 supported.
KVMetadata_  The value in the property is a string. The corresponding MAPI type is PT_STRINGS.
String
KVMetadata_  The value in the property is a Unicode string. The corresponding MAPI type is PT_
Unicode UNICODE.
KVMetadata_  The value in the property is a date and time. The corresponding MAPI type is PT_
DateTime SYSTIME.
KVMetadata_  The value in the property is a 4-byte float. The corresponding MAPI type is PT_
Float FLOAT.
KVMetadata_  The value in the property is an 8-byte double. The corresponding MAPI type is PT_
Double DOUBLE.

IDOL KeyView (12.9)

Page 268 of 482



HTML Export SDK C and COM Programming Guide
Chapter 11: Enumerated Types

Discussion

New types might be added to this enumerated type. When you use this type, your code should ensure
binary compatibility with future releases. See Programming Guidelines, on page 256.

KVMetaNameType

This enumerated type defines the type of metadata fields extracted from a subfile in a mail message or
mail store. See KVMetaName, on page 159. This enumerated type is defined in kvxtract.h.

Definition

typedef enum

{
KVMetaNameType_Integer

KVMetaNameType_String

nn
R o
-

}
KVMetaNameType;

Enumerators

KVMetaNameType_Integer The metadata fieldis an integer.

KVMetaNameType_String The metadata field is a string.

KVPartitionStartReason

This enumerated type defines the reasons for starting a new partition. This enumerated type is defined
in kvpartitions.h. For more information, see Partitioning, on page 119.

Definition

typedef enum tag_KVPartitionStartReason
{
KVPartition_Invalid,
KVPartition_PGStart,
KVPartition_SSStart,
KVPartition_WPStart,
KVPartition_FormatStandard,

IDOL KeyView (12.9) Page 269 of 482



HTML Export SDK C and COM Programming Guide
Chapter 11: Enumerated Types

KVPartition_Heading,

KVPartition_HardBreak,

KVPartition_BlockSize,

KVPartition_PageSizeChange
}

KVPartitionStartReason;

Enumerators
KVPartition_ Used internally.
Invalid
KVPartition_ The first partition of a document that was converted by using the presentation
PGStart graphic structured access layer.
KVPartition_ The first partition of a document that was converted by using the spreadsheet
SSStart structured access layer.
KVPartition_ The first partition of a document that was converted by using the word processing
WPStart structured access layer.
KVPartition_ The format standard start reason. This start reason applies only to documents

FormatStandard that were converted by using the presentation graphic or spreadsheet structured
access layers. The format standard start reason is:

« anew worksheet for spreadsheet formats
« atable for database formats
« aslide for presentation graphic formats

« agraphic for image/graphic formats

Export starts a new partition for this reason only if bPutBlocksInSeparateFiles
is set to TRUE. See KVHTMLTemplateEx, on page 246.

KVPartition_ A heading in a Word Processing document.

Heading

KVPartition_ A hard page break in a Word Processing document.
HardBreak

KVPartition_ The block size limit was reached.

BlockSize

KVPartition_ A page size change in a Word Processing document.
PageSizeChange

IDOL KeyView (12.9) Page 270 of 482



HTML Export SDK C and COM Programming Guide

Chapter 11: Enumerated Types

KVSuminfoType

This enumerated type defines the data type of the metadata field extracted from a document. This

enumerated type is defined in kvtypes. h.

Definition

typedef enum tag_KVSumInfoType

{
KV_String =
KV_Int4 =
KV_DateTime =
KV_ClipBoard =
KV_Bool =
KV_Unicode =
KV_IEEE8 =
KV_Other =

}

KVSumInfoType;

Enumerators

KV_String The value in the metadata field is a string.

KV_Int4 The value in the metadata field is an integer.

ox1,
ox2,
0x3,
ox4,
0x5,
0x6,
ox7,
0x8

KV_ The value in the metadata field is a date and time. This type is a 64-bit value
DateTime representing the number of 100-nanosecond intervals since January 1, 1601 (Windows
FILETIME EPOCH). You might need to convert this value into another format.

KV Currently not supported.

ClzpBoard

KV_Bool The value in the metadata field is a Boolean value.

KV The value in the metadata field is a Unicode string.

Unicode

KV_IEEE8 The value in the metadata field is an IEEE 8-byte integer.

KV_Other  The value in the metadata field is user-defined.

IDOL KeyView (12.9)

Page 271 of 482



HTML Export SDK C and COM Programming Guide
Chapter 11: Enumerated Types

KVSumType

This enumerated type defines the metadata fields that can be extracted from a document. This
enumerated type is defined in kvtypes. h.

« Types 0to 34 and type 42 are Office summary fields.
« Types 35 to 40 are computer-aided design (CAD) metadata fields.

o Type 41, KV_OrigAppVersion, is shared by Office software and CAD.

Types 43 or greater are reserved for any non-standard metadata field defined in a document.

Definition

typedef enum tag_KVSumType

KV_CodePage =0,
KV_Title =1,
KV_Subject = 2,
KV_Author = 3,
KV_Keywords = 4,
KV_Comments =5,
KV_Template = 6,
KV_LastAuthor =17,
KV_RevNumber = 8,
KV_EditTime =9,
KV_LastPrinted = 10,
KV_Create_DTM = 11,
KV_LastSave_DTM = 12,
KV_PageCount = 13,
KV_WordCount = 14,
KV_CharCount = 15,
KV_ThumbNail = 16,
KV_AppName =17,
KV_Security = 18,
KV_Category = 19,
KV_PresentationTarget = 20,
KV_Bytes = 21,
KV_Lines = 22,
KV_Paragraphs = 23,
KV_Slides = 24,
KV_Notes = 25,
KV_HiddenSlides = 26,
KV_MMClips = 27,
KV_ScaleCrop = 28,
KV_HeadingPairs = 29,

IDOL KeyView (12.9) Page 272 of 482



HTML Export SDK C and COM Programming Guide
Chapter 11: Enumerated Types

KV_TitlesofParts 30,
KV_Manager 31,
KV_Company 32,
KV_LinksUpToDate 33,
KV_HyperlinkBase 34,
KV_Layouts 35,
KV_Objects 36,
KV_FileVersion 37,
KV_LastFileVersion 38,
KV_OrigFileVersion 39,
KV_OrigFileType 40,
KV_OrigAppVersion 41,
KV_ContentStatus 42,
KV_UserDefined 43

}
KVSumType;

Enumerators

KV_CodePage
KV_Title
KV_Subject
KV_Author

KV_Keywords

KV_Comments

KV_Template

KV_LastSavedby

KV_RevNumber

KV_EditTime

KV_LastPrinted

KV_Create_DTM

KV_LastSave_DTM

IDOL KeyView (12.9)

The code page of the document.

The contents of the "Title" property field taken from the source document.
The contents of the "Subject" property field taken from the source document.
The contents of the "Author" property field taken from the source document.

The contents of the "Keywords" property field taken from the source
document.

The contents of the "Comments" property field taken from the source
document.

The contents of the "Template" property field taken from the source
document.

The contents of the "Last saved by" property field taken from the source
document.

The contents of the "Revision number" property field taken from the source
document.

The contents of the "Total editing time" property field taken from the source
document.

The contents of the "Printed" property field taken from the source document.

The contents of the "Created" property field taken from the source
document.

The contents of the "Modified" property field taken from the source

Page 273 of 482



KV_PageCount
KV_WordCount
KV_CharCount

KV_ThumbNail

KV_AppName
KV_Security
KV_Category

KV_
PresentationTarget

KV_Bytes
KV_Lines
KV_Paragraphs
KV_Slides
KV_Notes
KV_HiddenSlides
KV_MMClips
KV_ScaleCrop
KV_HeadingPairs

KV_TitlesofParts

IDOL KeyView (12.9)

HTML Export SDK C and COM Programming Guide
Chapter 11: Enumerated Types

document.

The contents of the "Pages" property field taken from the source document.
The field provides the number of pages in the document.

The contents of the "Words" property field taken from the source document.
The field provides the number of words in the document.

The contents of the "Characters" property field taken from the source
document. The field provides the number of characters in the document.

A thumbnail image of a document.

The contents of the "Type" property field taken from the source document.
This field identifies the application used to read the document.

The contents of the "Attributes" property field taken from the source
document.

The contents of the "Category" property field taken from the source
document.

The target format for presentations (35mm, printer, video, and so on).

The contents of the "Size" property field taken from the source document.
The field provides the size of the file in bytes.

The contents of the "Lines" property field taken from the source document.
The field provides the number of lines in the document.

The contents of the "Paragraphs” property field taken from the source
document. The field provides the number of paragraphs in the document.

The contents of the "Slides" property field taken from a presentation
document. The field provides the number of slides in the document.

The contents of the "Notes" property field taken from a presentation
document. The field provides the number of notes in the document.

The contents of the "Hidden slides" property field taken from a presentation
document. The field provides the number of hidden slides in the document.

The contents of the "Multimedia clips" property field taken from a
presentation document. The field provides the number of multimedia clips in
the document.

A Boolean value that specifies whether thumbnails are cropped or scaled.

An internally-used property indicating the grouping of different document
parts and the number of items in each group.

The contents of the "Document Contents" property field taken from the
source document. The field contains a list of the parts of the file, such as the
names of macro sheets in Microsoft Excel or the headings in Word.

Page 274 of 482



KV_Manager

KV_Company

KV_LinksUpToDate

KV_HyperlinkBase
KV_Layouts
KV_Objects
KV_FileVersion

KV_LastFileVersion

KV_OrigFileVersion

KV_OrigFileType

KV_OrigAppVersion

KV_ContentStatus

KV_UserDefined

HTML Export SDK C and COM Programming Guide
Chapter 11: Enumerated Types

The contents of the "Manager" property field taken from the source
document.

The contents of the "Company" property field taken from the source
document.

A Boolean value that specifies whether links in the document are resolved
and current.

The base address used for all relative links in the file.

The number of layouts in the AutoCAD drawing.

The approximate number of objects in the AutoCAD drawing.
The AutoCAD version (for example, R13, R14) of the drawing.

The AutoCAD version (for example, R13, R14) that the AutoCAD drawing
was last saved as.

The AutoCAD version (for example, R13, R14) of the original source file.

The AutoCAD file type (for example, DWG, DXF, or DWB) of the original
source file.

The AutoCAD version (for example, R13, R14) of the application that
created the original source file.

The status of the content, for example Draft, Reviewed, or Final.

The contents of the first entry in the array of non-standard metadata. This
could be user-defined metadata, or metadata unique to a file type.

LPDF_DIRECTION

This enumerated type defines the paragraph direction of extracted paragraphs from a PDF file when
logical order is enabled. This enumerated type is defined in kvtypes.h.

Definition

typedef enum{
LPDF_RAW = O,
LPDF_LTR,
LPDF_RTL,
LPDF_AUTO

} LPDF_DIRECTION ;

IDOL KeyView (12.9)

Page 275 of 482



HTML Export SDK C and COM Programming Guide
Chapter 11: Enumerated Types

Enumerators

LPDF_ Unstructured paragraph flow. This is the default behavior.
RAW

LPDF_ Logical reading order and left-to-right paragraph direction.
LTR

LPDF_ Logical reading order and right-to-left paragraph direction.
RTL

LPDF_ Logical reading order. The PDF reader determines the paragraph direction for each PDF
AUTO  page, and then sets the direction accordingly. This is the default when logical order is
enabled.

RM_Title_Flag

This enumerated type defines the information that appears in the title attribute in the <ins> and
<del> tags for the eFlag member of the KV_RM_Tit1le structure. This applies when revision information
is enabled and included in the HTML output.

Definition

typedef enum

{
RMT_Off = 0,
RMT_Author,
RMT_Datetime,
RMT_AuthorDatetime

}

RM_Title_Flag;

Enumerators

RMT_Off A title attribute is not included in the <ins>
and <del> tags. This would generate markup
similar to the following:

<ins cite="mailto:JohnD"
datetime="2006-04-24T14:47:00">This
text was added</ins>

IDOL KeyView (12.9) Page 276 of 482



HTML Export SDK C and COM Programming Guide

Chapter 11: Enumerated Types

RMT_Author

RMT_Datetime

RMT_AuthorDatetime

IDOL KeyView (12.9)

The reviewer's name is generated in the
title attribute of the <ins> and <del> tags.
This would generate markup similar to the
following:

<ins title="Inserted: JohnD"
cite="mailto:JohnD" datetime="2006-
04-24T14:47:00">This text was
added</ins>

The date and time is included in the title
attribute of the <ins> and <del> tags. The
date is in ISO-8601 format: YYYY-MM-
DDThh:mm:ss. This would generate markup
similar to the following:

<ins title="Inserted: 2006-04-
24T14:47:00" cite="mailto:JohnD"
datetime="2006-04-24T14:47:00">This
text was added</ins>

The reviewer's name, date, and time are
included in the title attribute of the <ins>
and <del> tags. This would generate markup
similar to the following:

<ins title="Inserted: JohnD, 2006-04-

24T14:47:00" cite="mailto:JohnD"
datetime="2006-04-24T14:47:00">This
text was added</ins>

This is the default.

Page 277 of 482



Part 4: COM API Reference

This section provides detailed reference information for the COM implementation of the HTML Export API.
o COM Interface Methods and Events
o COM Interface Properties

IDOL KeyView (12.9) Page 278 of 482



Chapter 12: COM Interface Methods
and Events

This section describes the methods that HTML Export uses to manage the input and output streams,
and to perform the actual document conversion. It also describes the events that allow the calling
application to monitor and affect the HTML conversion while it is in progress.

The methods' syntax are described as they would be used from within Visual Basic, where HTM is the
COM Automation Server object. The events are described with the Interface Description Language
(IDL). See the Template Wizard or comsamp sample programs for examples of how to use the events
from Visual Basic.

Methods

« AddStyleMapping, below

« ConvertFileToFile, on the next page
« GetFilelnfo, on the next page

« GetStyleMapping, on page 281

« GetSummarylnfo, on page 281

« RemoveStyleMapping, on page 282
« Unload, on page 282

« UpdateFromlniFile, on page 282

« HTMLConfig, on page 283

Events

« Continue, on page 283

« UserCallback, on page 283

AddStyleMapping

This method maps a character or paragraph style to arbitrary markup. See Map Styles, on page 87 for
more information on style mapping.

HTM.AddStyleMapping(StyleName, MarkupStart, MarkupEnd, nFlags)

IDOL KeyView (12.9) Page 279 of 482



HTML Export SDK C and COM Programming Guide
Chapter 12: COM Interface Methods and Events

where:

« StyleName is the name of the word processing style (for example, "Heading 1") to which style
mapping is applied. Style names are case sensitive.

« MarkupStart is the markup to be added at the beginning of the content (for example, <h1>).
« MarkupEnd is the markup to be added at the end of the content (for example, <\h1>).

o nFlags is the flag set for this markup. A flag specifies how the content associated with the style
should be processed. Possible values are enumerated in kvtypes.h. See Flags for Defining
Styles, on page 89 for a description of the flags.

NOTE: By default, HTML Export maps the heading style "Heading 1" to <h1></h1>, and so on, for
heading levels 1 through 6. If you use style mappings, the default mapping is overridden. Therefore,
you must supply markup for all heading levels. HTML Export uses heading levels to define the
overall structure of the HTML output.

ConvertFileToFile

This method converts a specified file to HTML.
nRet = HTM.ConvertFileToFile(szTargetFile)
where:
o szTargetFile is the complete path and file name of the HTML output.

« nRet is the return error code as defined in the KVErrorCode enumerated type defined in
kverrorcodes.h

GetFilelnfo

This method retrieves information about the source file (as defined in the pszInputFile property).

HTM.GetFileInfo(lcharSet, ldocClass, ldocFmt, ldocVersion,
ldocAttributes)

where:
o lcharSet is the same as the InputCharSet property
o docClass is the same as the adInfo_docClass property
o ldocFmt is the same as the adInfo_docFmt property
« ldocVersion is the same as the adInfo_docVersion property

o ldocAttributes is the same as the bAllowHeadingsInTables property

See COM Interface Properties, on page 284 for a description of these properties.

IDOL KeyView (12.9) Page 280 of 482



HTML Export SDK C and COM Programming Guide
Chapter 12: COM Interface Methods and Events

| NOTE: This method fills in all of these parameters (long) based on the source document.

GetStyleMapping

This method gets the formatting specifically assigned to various styles.

HTM.GetStyleMapping(nItem, StyleName, MarkupStart, MarkupEnd,
nFlags)

See AddStyleMapping, on page 279 for a description of StyleName, MarkupStart, MarkupEnd, and
nFlags.

By specifying nItem (which can be any value from 0 to NumStyles —1 where pszBaseURL is a property),
the StyleName, MarkupStart, MarkupEnd, and nFlags parameters are filled in.

GetSummaryinfo

This method retrieves metadata from the input file.
HTM.GetSummaryInfo(nItem, lTotaltems, 1lvalid, 1Type, 1lVal, szVal, szValUser)
where:

« nItemis anintegerwhich is the metadata item number. See KvSumtype in kvtypes.h for a list of
values.

For example, KV_Author is value 3, so setting nItem to 3 would retrieve the Author of the source
document if this information was available. This is identical to using the pszAuthor property
(some common metadata items are exposed as properties as well as being accessible through
this method).

o lTotalItems is along which is returned to give the total number of metadata items possible. This
is 34 for most documents (as defined in KVSumType in kvtypes . h), although all 34 might not be
valid (see 1valid parameter). If there is user-defined metadata available, 1TotalItems might be
greater than 34.

« lvalidis along whichis 0 if the item is invalid (not available) and 1 if the information associated
with this item is available.

« 1Typeis along which corresponds to the KvSumInfoType enumerated type defined in kvtypes.h.
A value of 1 indicates that szval contains the string associated with this item (if 1valid is also
1). A value of 2 indicates that 1val contains along associated with this item (if 1valid is also 1).
See KVSumType, on page 272.

« szValUser is a string description of the metadata item.

IDOL KeyView (12.9) Page 281 of 482



HTML Export SDK C and COM Programming Guide
Chapter 12: COM Interface Methods and Events

Sample Code

The following code from the comsamp sample program demonstrates how to use the GetSummaryInfo
method:

Dim nTotal As Long

Dim nvalid As Long

Dim nType As Long

Dim nVal As Long

Dim szVal As String

Dim szUserVal As String

On Error GoTo Handler

' Get the Author if available (item 3 is the Author. See KVSumType
' in kvtypes.h for a list of items and their values)

Call MyRef.GetSummaryInfo(3, nTotal, nValid, nType, nVal, szVal, szUserVal)
MsgBox szUserVal & " = " & szVal

RemoveStyleMapping

This method disables an instance of style mapping.
HTM.RemoveStyleMapping(nItem)
where:

« nItemis the style mapping item to remove (See GetStyleMapping, on the previous page).

Unload

This method unloads the htmserv object.
HTM.Unload()

This method applies only to the out-of-process COM object and normally is not necessary. Note that
using this method forces an unload, even if the object's reference count is not zero.

UpdateFromliniFile

This method updates parameters from the template file.
HTM.UpdateFromIniFile(szIniFile)

where:

IDOL KeyView (12.9) Page 282 of 482



HTML Export SDK C and COM Programming Guide
Chapter 12: COM Interface Methods and Events

o szIniFile is the complete path and file name of a supplied template file (see the directory
install\htmlexport\programs\ini for examples of template files).

HTMLConfig

This method provides a way to configure options prior to document conversion. Currently, the function
is used to specify a PDF reader. For more information, see Convert PDF Files to Raster Images, on
page 98.

HTM.HTMLConfig(nType, nValue, p)
where:

« nType is a symbolic constant defined in kvhtml. h and used to configure options. Currently, you
can set this to KVCFG_SETHIFIPDF. This option specifies that the graphic-based PDF reader
(kppdfrdr)is used to convert PDF documents. See Convert PDF Files to Raster Images, on
page 98.

o nValue is an integer value defined for the above type.

« pisreserved, and must be NULL.

The comsamp sample program demonstrates how to use this method. See comsamp, on page 138.

Continue

This event has two purposes: to enable the calling process to monitor the progress of the HTML
conversion, and to provide a way of terminating a conversion before it is completed.

Continue([in] int PercentDone,
[out, retval] int *bQuit);

The sample program compsamp demonstrates how to use this event.

UserCallback

This event allows the calling process to insert optional data into selected points of the HTML output.
This event is triggered by the inclusion of the $USERCB=X token in one of the properties, where X
identifies the callback. The text in szUserString is inserted in the HTML. See $SUSERCB, on

page 453.

UserCallback([in] BSTR szUserString,
[out, retval] BSTR *pszval);

The compsamp sample program demonstrates how to use this event.

IDOL KeyView (12.9) Page 283 of 482



Chapter 13: COM Interface Properties

This section contains an alphabetized list of all the properties in the COM Interface.

Some of the descriptions refer to enumerated types in adinfo.h, kvcharset.h kvhtml.h, or
kvtypes.h. These header files are located in the include directory. See Enumerated Types, on
page 255 for more information on enumerated types.

Some of the classes use HTML Export tokens. See Export Tokens, on page 451 for a description of
these tokens.

adInfo_docAttributes

This is a read-only property.

The attributes of the source document. The document attributes are enumerated in ENdocAttributes
of adinfo.h:

e kEncrypted

¢ kMacBinaryEncoded

e kAppleSingleENcoded
e kAppleDoubleEncoded

e kWangGDIencoded

adInfo_docClass

This is a read-only property.
The class of the source document. The format classes are enumerated in ENdocClass of adinfo.h.

A value of —1 indicates that HTML Export encountered an error while attempting to detect the class of
the source document. Zero (0) indicates that HTML Export is unable to determine the format of the
source document.

adIinfo_docFmt

This is a read-only property.

The format of the source document. This information determines which document reader is used to
generate stream information during the conversion. The formats are enumerated in ENdocFmt of
adinfo.h.

IDOL KeyView (12.9) Page 284 of 482



HTML Export SDK C and COM Programming Guide
Chapter 13: COM Interface Properties

adIinfo_docVersion

This is a read-only property.
The version of the source document's format.

This property is a long integer corresponding to the version number of the format version# * 1000. For
example, version number 1.02 would be 1020.

bAllowHeadingsInTables

This is a read and write property.

This property determines whether or not the contents of tables are considered for automatic heading
generation. If you set bAllowHeadingsInTables to TRUE, HTML Export considers converting the
contents of tables to headings in the HTML output.

See headingCreateType, on page 293 for more information on automatic generation of headings.

This property applies to word processing documents and spreadsheets only.

bDisplayRelativeFontSize

This is a read and write property.

Set bbisplayRelativeFontSize to TRUE to use relative font size tags in the HTML output. For
example, the tag <font size=+1> adds one to the base font size, which is normally three.

bEnableEmptyRows

This is a read and write property.

Set bEnableEmptyRows to TRUE to display empty rows in a spreadsheet format. If you set
bEnableEmptyRows to FALSE, empty rows are not displayed. This property applies only to 20 or more
consecutive empty rows. The default is FALSE.

This property applies to spreadsheets only.

bForceOutputCharSet

This is a read and write property.

IDOL KeyView (12.9) Page 285 of 482



HTML Export SDK C and COM Programming Guide
Chapter 13: COM Interface Properties

Set bForceOutputCharSet to TRUE to use the output character set specified in OutputCharsSet,
regardless of the internal document information or the source character set specified by SrcCharSet.

See Convert Character Sets, on page 83 for more information on character set mapping.

| NOTE: Forcing a character set to KVCS_UNKNOWN is always ignored.

bForceSrcCharSet

This is a read and write property.

Set bForceSrcCharSet to TRUE to use the source character set specified in SrcCharSet, regardless of
the internal document information.

See Convert Character Sets, on page 83 for more information on character set mapping.

| NOTE: Forcing a character set to KVCS_UNKNOWN is always ignored.

bGenerateURLs

This is a read and write property.

Set bGenerateURLs to TRUE to add anchor tags (<a ...></a>)to text starting with "www", "http:", or
"file:".

This property applies to word processing documents only.

bHardPageMakesNewBlock

This is a read and write property.

Set bHardPageMakesNewBlock to TRUE to have hard page breaks in the source document generate new
HTML files during the conversion process. pszchunktemplate provides the appropriate table of
contents entry for the new block. See pszChunkTemplate, on page 302.

This property applies to word processing documents and spreadsheets only.

bNbspEmptyCells

This is a read and write property.

IDOL KeyView (12.9) Page 286 of 482



HTML Export SDK C and COM Programming Guide
Chapter 13: COM Interface Properties

Set bNbspEmptyCells to TRUE to include a non-breaking space (<td>&nbsp;</td>)in the markup for
empty table cells in the source document. If you set bNbspEmptyCells to FALSE, <td></td> is
generated for empty table cells.

This property applies to word processing documents and spreadsheets only.

bNoPictures

This is a read and write property.

Set bNoPictures to TRUE to generate verbose markup only. Embedded graphics are not generated as
separate files, image tags are not included in the output, and CSS files do not work.

If you set bNoPictures to FALSE, embedded graphics in a document are regenerated as separate files,
stored in the output directory, and image tags are included in the output.

To output graphics for presentations, you must set bNoPictures to FALSE, and set bRasterizeFiles to
TRUE.

To use CSSfiles, you must set bNoPictures to FALSE and use the KVHTMLSetStyleSheet () function
to request the CSS file (see Use Style Sheets, on page 90).

bPutBlocksInSeparateFiles

This is a read and write property.

Set bPutBlocksInSeparateFiles to TRUE to create a separate HTML file for each heading level 1
block. Each new block uses the markup defined in pszStartBlock and pszEndBlock. See
pszStartBlock, on page 306 and pszEndBlock, on page 302. If you set bPutBlocksInSeparateFiles
to FALSE, each heading level 1 block is placed sequentially in the same file, after the initial markup is
written.

bRasterizeFiles

This is a read and write property.

Set bRasterizeFiles to TRUE to rasterize slides from presentations into single images. For this setting
to take effect, you must also set the bNoPictures property to FALSE. The format the images are
converted to is determined by the OutputRasterGraphicType property.

Set bRasterizeFiles to FALSE to convert the text in slides to HTML. When you set this property to
FALSE, images do not appear in the HTML output.

IDOL KeyView (12.9) Page 287 of 482



HTML Export SDK C and COM Programming Guide
Chapter 13: COM Interface Properties

bRemoveEmptyColumns

This is a read and write property.

Set bRemoveEmptyColumns to TRUE to remove spreadsheet columns that do not contain data and to
disable cell merge. The default is FALSE.

This property applies to spreadsheets only.

bRemoveFileNameSpaces

This is a read and write property.

Set bRemoveFileNameSpaces to TRUE to remove spaces from generated output file names.

bSupportCellSpan

This is a read and write property.

Set bSupportCellSpan to TRUE to include colspan="n" markup in the output. If text in the source
document spans across empty columns, and bSupportCellSpan is enabled, the text is output across
columns in the HTML. If this option is disabled, text that spans across columns is output in a single
cell. This property applies to spreadsheets only. The default value is FALSE.

bSupportColumnHeadings

This is a read and write property.

Set bSupportColumnHeadings to TRUE to include column headings from the source spreadsheet in the
HTML output. This property applies to spreadsheets only. The default is FALSE.

bSupportColumnWidth

This is a read and write property.

Set bSupportColumnWidth to TRUE to include column width data from the source spreadsheet in the
HTML output. This property applies to spreadsheets only. The default value is FALSE.

IDOL KeyView (12.9) Page 288 of 482



HTML Export SDK C and COM Programming Guide
Chapter 13: COM Interface Properties

bSupportFontFace

This is a read and write property.

Set bSupportFontFace to TRUE to retain the font face information contained in the source document. If
you set bSupportFontFace to FALSE, no FACE attributes appear in the <font> tags of the HTML output.

bSupportRFC1942 cols

This is a read and write property.

Set bSupportRFC1942_cols to TRUE to include cols=x specifications in the <table> tags of the HTML
output markup.

bSupportRowHeadings

This is a read and write property.

Set bSupportRowHeadings to TRUE to include row headings from the source spreadsheet in the HTML
output. This property applies to spreadsheets only. The default is FALSE.

bSupportRowSpan

This is a read and write property.

Set bSupportRowSpan to TRUE to include row span data from the source spreadsheet in the HTML
output. This property applies to spreadsheets only. The default value is FALSE.

bSupportUserFontSizeMapping

This is a read and write property.

Set bSupportUserFontSizeMapping to TRUE to use the font sizes specified in the FontSizeMap (see
FontSizeMap_nSize[1...7], on page 293). If you set bSupportUserFontSizeMapping to FALSE, HTML
Export uses default SIZE attributes.

IDOL KeyView (12.9) Page 289 of 482



HTML Export SDK C and COM Programming Guide
Chapter 13: COM Interface Properties

bTableHTMLForSpreadsheetOnly

This is a read and write property.

Set bTableHTMLForSpreadsheetOnly to TRUE to control how spreadsheets are displayed in the HTML
output. If you set bTableHTMLForSpreadsheetOnly to FALSE, cell color and border information from the
source document is used. Use this parameter in conjunction with pszTableHTML.

bTabsToTables

This is a read and write property.

Set bTabsToTables to TRUE to convert tabbed columns to tables. This property applies to word
processing documents only.

bUseDocumentColors

This is a read and write property.

Set bUseDocumentColors to TRUE to retain the color attributes information contained in the source
document. If you set buseDocumentColors to FALSE, no color attributes appear in the <font> tags of
the HTML output.

bUseDocumentFontinfo

This is a read and write property.

Set buseDocumentFontInfo to TRUE to retain the font information contained in the source document. If
you set bUseDocumentFontInfo to FALSE, no font information appears in the <font> tags in the HTML
output.

CodePage

This is a read-only property.
The character encoding of the document if available.

See GetSummarylInfo, on page 281 for more information on all metadata that you can obtain from a
document.

IDOL KeyView (12.9) Page 290 of 482



HTML Export SDK C and COM Programming Guide
Chapter 13: COM Interface Properties

cRedact

This is a read and write property.

The character used to replace tagged text designated through style mapping to be omitted from the
HTML output. This functionality is useful when you need to hide confidential or sensitive information.
The default replacement character is "X".

The specified character is used for all text that is mapped to a style which is processed by using the
KVSTYLE_REDACT flag (defined in kvtypes . h). See Flags for Defining Styles, on page 89 for more
information on style mapping and the REDACT flag.

This property applies to word processing documents only.

cReplaceChar

This is a read and write property.

The character used when a character in the source document's character set cannot be mapped to the
output character set. The default replacement character is a question mark (?).

cxVectorToRasterXRes

This is a read and write property.

This property controls the horizontal resolution at which presentations and vector graphics are
converted. The default value is 8, which means that HTML Export retains the original resolution.

This property is set in conjunction with cyVectorToRasterYRes, on the next page.
You can specify the resolution as an absolute size in pixels, or as a proportion of the original size.

KeyView always maintains the aspect ratio of the original graphic and does not increase the resolution.
If you set values that would enlarge a graphic, KeyView only changes the size of the HTML element.

To set the resolution in pixels

To specify the resolution in pixels, specify the width (cxVectorToRasterXRes) and/or height
(cyvectorToRasterYRes).

To export the largest image that fits within a bounding box, without changing the original aspect ratio,
set both the width and height. For example, to export the largest image that fits in an 800x500 bounding
box:

cxVectorToRasterXRes=800
cyVextorToRasterYRes=500

IDOL KeyView (12.9) Page 291 of 482



HTML Export SDK C and COM Programming Guide
Chapter 13: COM Interface Properties

Alternatively you can fix one of the dimensions. Set one value and set the other to zero. For example, to
export images with a height of 1500 pixels and whatever width is necessary to maintain the original
aspect ratio:

cxVectorToRasterXRes=0
cyVextorToRasterYRes=1500

The maximum size permitted for either dimension is 4000 pixels.

To set the resolution proportionally

To set the resolution proportionally, set cxvectorToRasterXRes to a negative value. A negative value
represents a percentage of the original resolution. Set cyVectorToRasterYRes to @ (zero). Negative
(percentage) values for cyVectorToRasterYRes are ignored.

The following example exports a graphic at 50 percent of its original resolution:

cxVectorToRasterXRes=-50
cyVectorToRasterYRes=0

cyVectorToRasterYRes

This is a read and write property.

This property controls the vertical resolution at which presentations and vector graphics are converted.
The default value is 8, which means HTML Export retains the original resolution.

This property is set in conjunction with cxVectorToRasterXRes, on the previous page.
You can specify the resolution as an absolute size in pixels, or as a proportion of the original size.

KeyView always maintains the aspect ratio of the original graphic and does not increase the resolution.
If you set values that would enlarge a graphic, KeyView only changes the size of the HTML element.

To set the resolution in pixels

To specify the resolution in pixels, specify the width (cxVectorToRasterXRes) and/or height
(cyvectorToRasterYRes).

To export the largest image that fits within a bounding box, without changing the original aspect ratio,
set both the width and height. For example, to export the largest image that fits in an 800x500 bounding
box:

cxVectorToRasterXRes=800
cyVextorToRasterYRes=500

Alternatively you can fix one of the dimensions. Set one value and set the other to zero. For example, to
export images with a height of 1500 pixels and whatever width is necessary to maintain the original
aspect ratio:

cxVectorToRasterXRes=0
cyVextorToRasterYRes=1500

The maximum size permitted for either dimension is 4000 pixels.

IDOL KeyView (12.9) Page 292 of 482



HTML Export SDK C and COM Programming Guide
Chapter 13: COM Interface Properties

To set the resolution proportionally

To set the resolution proportionally, set cxvectorToRasterXRes to a negative value. A negative value
represents a percentage of the original resolution. Set cyvVectorToRasterYRes to @ (zero). Negative
(percentage) values for cyVectorToRasterYRes are ignored.

The following example exports a graphic at 50 percent of its original resolution:

cxVectorToRasterXRes=-50
cyVectorToRasterYRes=0

dwFlags

This is a read and write property.

Instructions on how to process the content associated with a paragraph or character style. See Flags
for Defining Styles, on page 89 for descriptions of each flag.

| NOTE: The value of Flags in the template files is used in dwFlags.

This property applies to word processing documents only.

FontSizeMap_nSize[1...7]

This is a read and write property.

The font sizes to which the HTML tags <font size=1>through <font size=7> correspond. If you set
bSupportUserFontSizeMapping to FALSE, this parameter can be left blank.

The values in FontSizeMap indicate the range for the HTML tag <font size=#>. For example if you
specify 6, 9, 12, 18, 21, 24, and 28:

« font size 6 in the source document is mapped to <font size=1> inthe output HTML
« font size 9 in the source document is mapped to <font size=2> inthe output HTML
« font size 12 in the source document is mapped to <font size=3> in the output HTML

« andsoon, up to <font size=7>

When the HTML output is viewed, the browser maps <font size=#> to a specific font size.

The default font sizes are 8, 10, 12, 14, 18, 24, and 36.

headingCreateType

This is a read and write property.

IDOL KeyView (12.9) Page 293 of 482



HTML Export SDK C and COM Programming Guide
Chapter 13: COM Interface Properties

This property determines how HTML Export subdivides the source document into table of contents
entries. This should be set to one of the two options that are enumerated in KVHeadingCreateOptions
in kvhtml.h. The determination of table of contents entries is based on whether the source document
contains heading styles or whether text attribute