
Xcentrisity Business
Information Server for

extend

Micro Focus
The Lawn
22-30 Old Bath Road
Newbury, Berkshire RG14 1QN
UK
http://www.microfocus.com

© Copyright Micro Focus or one of its affiliates.

MICRO FOCUS, the Micro Focus logo and are trademarks or registered trademarks of Micro
Focus or one of its affiliates.

All other marks are the property of their respective owners.

2021-04-13

ii

Contents

Xcentrisity Business Information Server for extend User's Guide5
Introducing the Business Information Server .. 5

Overview .. 5
Installation on Windows ..6
Installation on UNIX ..9
Testing the Installation ..11
Uninstalling BIS for IIS ... 12

Using BIS .. 12
Web Protocols: Requests/Responses ..12
Sessions ...14
Tracking Sessions ...14
Cookies .. 15
The Session Root Path and Session Scope ...15
Timeouts ...16

Server Response Files ..17
Overview .. 17
Rendering Tags .. 18
The Rendering Process ..18
Tag Options and Parameters ..19

Replacement Tag Reference ...22
The {{Handler}} Tag .. 22
The {{ContentType}} Tag .. 23
The {{SessionParms}} Tag ... 23
The {{ServiceOpts}} Tag ...25
The {{ServiceArgs}} Tag ... 26
The {{ServiceLibs}} Tag ..26
The {{StartService}} Tag ...27
The {{RunPath}} Tag ...28
The {{SetEnv}} Tag ... 28
The {{XMLExchange}} Tag ... 29
The {{StopService}} Tag ... 30
The {{SessionComplete}} Tag .. 30
The {{Value}} Tag ..30
The {{Trace}} Tag ..34
The {{TraceDump}} Tag .. 37
The {{Debug}} Tag .. 37

Control Flow Tags ... 41
The {{If}} / {{Else}} / {{EndIf}} Tags ..41
The {{While}} / {{EndWhile}} Tags ...41
The {{ Include }} Tag ... 42
{{//}} Comment Tags ... 42

Service Programs ..43
Introduction ...43
Service Program Lifetime ... 45
The XML Exchange File ... 45
BIS Return Codes .. 46
Service Program Functions .. 48

Server Variables Reference .. 66
Tutorial1 introduction ... 76

Prerequisites .. 76
What is a web service? .. 76

Contents | 3

Create a simple SOAP/RPC web service ...79
Introduction to XML Extensions ..88
How XSLT processes a SOAP response (high level only)90
Data flow in BIS ..91
BIS Session management ..92
Complex design pattern ... 93
Not quite a web service ..94

XML Exchange Request File Format .. 95
Windows/UNIX Portability Considerations .. 98
Regular Expression Syntax ...98

Metacharacters ...98
Abbreviations ..99

BIS Troubleshooting Tips .. 100
Configuring BIS/IIS after Installation ... 101

Command Line Configuration ...101
Configuring the Run As Logon ID ...102
Retrieving or Changing the Configured Identity ... 104
Manual Configuration ... 105
Setting Environment Variables ... 106
Setting the Maximum Thread Count ...106
Notes .. 107

Configuration after Installation (UNIX/Apache) ... 107
Configuring Apache ..107
Service Engine Configuration ...109
xbisctl Utility ..112

Creating a BIS/IIS Web Application .. 113
Running the BISMkApp Program ... 113
Creating the Web Application ...115
Testing the New Directory .. 115
64-Bit Windows Considerations ... 116

Building and Running BIS Samples .. 116
Glossary ..116

4 | Contents

Xcentrisity Business Information Server for
extend User's Guide

Introducing the Business Information Server

Overview
The Xcentrisity Business Information Server (BIS) is a web server environment that manages COBOL
application sessions and makes them available via any web browser or other web user agent that is
granted access to the BIS server. BIS offers application developers a real opportunity to build state-of-the-
art Service Oriented Architecture (SOA) applications incorporating legacy business data and logic freely
mixed with the latest web languages and tools.

With BIS, remote users can access data, perform application functions and execute service programs on
one or multiple servers located anywhere in the world. For example, a sales force can check order status
for customers during the day and enter new orders in the evening as they travel. Emergency room doctors
can read patient histories on primary care physician files in another state and primary care physicians can
see insurance claim's status. Bank customers can see account status, pay bills, transfer funds, and make
investments, all from the comfort of their own homes. Taxpayers can have access to public records from
anywhere. With BIS, any modern application architecture, function, or appearance is possible.

Xcentrisity BIS has two major components:

• A Request Handler, a web server extension that integrates either with Microsoft Internet Information
Server (IIS) or the Apache web server.

• The Service Engine, which executes COBOL code under the control of the Request Handler.

A service program is the application COBOL code that is executed by the Service Engine. This is
application dependent, and provided by the application developer.

In the simplest case, an end user enters a URL into a web browser that specifies a specific web page on a
server. The web browser then formats the request using HTTP or HTTPS and sends the request to the
server specified in the URL. If the requested page is a reference to a simple HTML file (usually denoted by
a file extension of .htm or .html), the contents of the HTML file are sent to the browser without any
further processing.

However, if the reference is to a BIS stencil file (usually denoted by a file extension of .srf), the file is read
and processed by the server before it is sent to the browser. Specifically, BIS interprets the file, processing
any tags embedded in the file's HTML or XML content. A tag is composed of text surrounded by {{ and }}
sequences, and tags may be interpreted as processing instructions or placeholders that are replaced by
plain text, HTML or XML that is generated by the BIS service engine or by the BIS request handler.

Some useful definitions:

User Agent / Client The program that is used to request information from a
server. This program is frequently a web browser, but it
could be any program on the user's machine.

HTTP Hypertext Transport Protocol, a standard encoding
scheme used to transmit requests to web servers and
receive responses from web servers. HTTPS is a secure
version of HTTP.

Xcentrisity Business Information Server for extend User's Guide | 5

URL Uniform Resource Locator, the location of a resource on
the internet. A URL consists of a scheme (in this context,
HTTP or HTTPS), the name of a machine, and a path to
a file. For example, http://
microfocus.com/bis/index.html specifies the
file named index.html from directory bis on server
machine microfocus.com using the HTTP scheme.
When this is typed into a web browser, the browser
issues a HTTP GET request on this file.

Request An HTTP packet that contains a command issued by the
user agent. A request may simply GET a file from a web
server, PUT a file to the web server, DELETE a file from
the web server, or may POST data (such as a form) to the
server, or it may cause a program to be run on the server.
GET and POST are by far the most frequently used
commands.

SOAP SOAP (Simple Object Access Protocol) is an XML-based
web protocol designed to operate on HTTP to facilitate
web services. It is particularly well suited to Remote
Procedure Call (RPC)-style services.

REST REST (Representational State Transfer) is an
architectural style for distributed hypermedia systems and
can be used to implement web services. While there is
not a formal standard like SOAP, it is based on the four
principle HTTP request types (GET, PUT, POST and
DELETE), and URLs. In a REST architecture, a request
payload may be in any format desired, including XML.

Web Server A program that runs on a server and listens for HTTP
requests. When a request is received, the web server
processes the request or sends it on to another program
(such as BIS) for processing.

The two most common web servers are Microsoft's
Internet Information Server (IIS), which BIS supports on
Windows, and Apache, which BIS supports on UNIX.

Response A HTTP packet that contains the response to the request.
The response may be text, to be displayed in a web
browser, or data encapsulated by SOAP for consumption
by the requesting program.

Session Requests are stateless, that is, the web server processes
each request as if it had never received a previous
request from the same user agent. A session is a BIS
concept that allows sequential requests from the same
user agent to be grouped together and preserves state
information across requests on the server.

For more definitions, see the Glossary.

Installation on Windows
This covers installation of Business Information Server on Windows. Installation on UNIX is described in
Installation on UNIX.

Prerequisites
These are the prerequisites for BIS for Microsoft Internet Information Server (IIS) running on Microsoft
Windows. A host machine running one of the following operating systems is required:

6 | Xcentrisity Business Information Server for extend User's Guide

• Windows Server 2008 (64-bit)
• Windows Server 2008 R2 (64-bit)
• Windows 7 (32-bit and 64-bit)
• Windows 8 (32-bit and 64-bit)
• Windows Server 2012 (64-bit)
• Windows 8.1 (32-bit and 64-bit)
• Windows Server 2012 R2 (64-bit)
• Windows 10 (32-bit and 64-bit)

In addition, Internet Information Server (IIS) must be installed before BIS can be installed. The procedure
for installing IIS is dependent on the version of Windows.

When BIS is installed on certain non-server operating systems, such as Windows 7, there are connection
limit restrictions that prevent use as a real-world web server. These systems, however, do work well for
BIS/IIS application development and testing.

1. Go to Start > Control Panel > Programs and Features.

1. Click Turn Windows Features On and Off.
2. From the Windows Features dialog box, as a minimum, make the following selections:

• Internet Information Services

• Web Management Tools

• IIS Management Console 1

• World Wide Web Services

• Application Development Features

• ASP.NET 2

• ISAPI Extensions
• ISAPI Filters

• Common HTTP Features

• Default Document
• HTTP Errors
• HTTP Redirection
• Static Content

• Health and Diagnostics

• HTTP Logging
• Logging Tools
• Request Monitor

• Performance Features

• Static Content Compression
• Security

• Basic Authentication
• Request Filtering

1 Previous versions of BIS required that IIS Metabase and IIS 6 configuration compatibility also be
selected. This was required by the BISMKDIR configuration utility. This version of BIS includes a new
configuration utility, BISMKAPP, that only works on IIS 7 and later. It has all the capabilities of BISMKDIR,
but if BISMKDIR (which is still included with the installation) will be used, be sure to also select IIS
Metabase and IIS 6 configuration compatibility.

2 Selecting ASP.NET is a fast-track way of selecting most of the other prerequisites. However, it is not part of
the minimal set required to run BIS.

Xcentrisity Business Information Server for extend User's Guide | 7

• Windows Authentication

Note that other features may also be required, but are selected by default.

Once configuration is complete, close the Internet Information Server (IIS) Manager window, and reboot if
required.

Installation
Business Information Server is installed as part of the extend® installation. On the Please select the
extend (R) products you with to install page, check the Business Information Server for extend
checkbox. The ACUCOBOL-GT Runtime COBOL Virtual Machine™ is also required.

During the installation, a Logon Information page displays. This is the user account under which the
Business Information Server runs. This account must have sufficient privileges to access the data files for
the COBOL program. If you leave the User Name and Password blank, the Business Information Server
runs as the user who is currently logged in. If no one is logged in, Business Information Server does not
function. Therefore, it is highly desirable to create a user account specifically for the Business Information
Server, especially in a production environment. (See Logon Information for more information.)

Logon Information

This page selects the Windows logon ID that will be used to run BIS services.

The account chosen must have sufficient privileges to access the .COB program files, and the data files
that are required to service BIS requests.

In this page, you must do the following:

• Enter the user name (logon ID) and password that the BIS Service Engine should impersonate when
running programs. The installer will validate the user name and password.

• To search for an existing user, click the Browse button. Enter the name of a domain, server, or press
the browse button to select from a list. Then enter a user name or press the browse button to select
from a list. Finally, click the OK button to paste the result into the User name field.

8 | Xcentrisity Business Information Server for extend User's Guide

• To create a new user, click the Create… button. Select a domain or server, a Group, and specify a user
name to create along with a password.

Once the User Name and Password have been selected, click Next. The installer will validate the
information and report an error if the logon ID or the password is invalid.

Note: The logon ID can be changed at any time on the server-reinstallation is not required. See
chapter Configuring BIS/IIS after Installation for more information.

Installation on UNIX

Prerequisites
BIS on UNIX supports the following machine environment:

• x86 running Linux (glibc 2.5) 32-bit and 64-bit

The Apache 2.4 web server must be installed. Apache normally listens for HTTP requests on port 80 and
for HTTPS requests 443, and when properly configured, routes BIS requests to the BIS Request Handler.
On many versions of UNIX, Apache is available in a binary format that may be installed from the operating
system's installation media or downloaded from the operating system's supplier. In order for Apache to use
the BIS Request Handler, it must have shared object support. If downloading from a binary installation,
make sure that it is configured with shared object support (mod_xbis_so). After downloading the binary
installation, follow the supplier's instructions for installing Apache. If your system does not have Apache
installed, or you wish to download and install the latest version, go to http://httpd.apache.org for more
information.

Installation
This section details installation of Business Information Server on UNIX. Windows installation is described
in section Installation on Windows.

After Apache has been successfully configured, either start or restart it for the configuration to take effect.

BIS for UNIX is installed as part of the extend® shared library installation. Following installation, there are a
couple of configuration scripts that need to be run to complete the installation of BIS and cause it to
execute whenever the UNIX machine boots.

Before running the configuration script, create a new UNIX user account or choose an existing UNIX user
account to run the BIS service engine. This account must have the permissions necessary to access the
data files for the COBOL program. After choosing this user account, login as root and change directory to
the install directory within the installation directory and run the config_bis_daemons.sh shell script.

Xcentrisity Business Information Server for extend User's Guide | 9

HTTP://HTTPD.APACHE.ORG

The config_bis_daemons.sh script asks if you want to configure the BIS Service Engine options;
answer Y. The current Service Engine options appear. Enter 1 to change the user account for the Service
Engine and then enter the user account that you chose or created above. Finally, enter X to begin the
configuration process.

Once the configuration process is complete, the config_bis_daemons.sh script displays the
appropriate command to start the service daemons manually. This command is only necessary if you want
to start the service daemons without rebooting the machine.

The second configuration script to run is config_bis_apache.sh. This script creates a configuration file
named mod_xbis.conf that can be given to Apache to load the BIS Request Handler. On some
distributions of Apache, all that is necessary is to copy this file to the Apache's conf.d directory. On
others, you must edit the Apache conf/httpd.conf file and insert an include directive to the
mod_xbis.conf file. When you run the config_bis_apache.sh script, it displays further instructions
on installing the configuration file. Redirect standard output to a file to refer to these instructions later, or
use the copy feature of your terminal emulator, if it supports that. See Configuring Apache for more details
on configuring Apache.

After Apache has been successfully configured, either start or restart it for the configuration to take effect.

Configuring Apache

Configure the Apache web server so the mod_xbis.conf file produced by the config_bis_apache.sh
script is read by Apache when it starts. If your version of the Apache installation has a conf.d directory,
place the mod_xbis.conf configuration file into this directory. If your version of Apache does not use a
conf.d directory, edit the main httpd.conf configuration file to include the following line:

Include Your-COBOL-Installation-Directory/etc/mod_xbis.conf

Any further changes to the configuration of the Apache portion of BIS should be made to the
mod_xbis.conf configuration file.

See Configuration After Installation for more information on configuring the Apache Request Handler.

Configuring the Service Engine Options

When the config_bis_daemons.sh script is run, it will display the following prompt to give you the
option to modify the default options for the Service Engine's configuration.

Do you want to configure BIS Service Engine options? [y]

Entering N will accept the default options and proceed with the installation. Accepting the default for this
prompt will result in the following messages being displayed:

Current Service Engine options:
 1 User to run services as? bis
 2 Timezone? CST06CDT
 3 Default inactivity timeout, in seconds? 600
 4 Default service timeout, in seconds? . 30
 5 Maximum number of service processes? . 100
 6 Maximum number of request handler sessions? 200
 7 Name of temp directory? /var/tmp
 8 Name of log files directory? . . . /var/tmp/bislogs
 X Done editing the Service Engine options

The following prompt will then be displayed:

If you would like to change an option, enter its number. Press Enter to
redisplay the list of options. Otherwise, enter 'X' to continue [R]:

If there is an option that you wish to change, enter its number and press Enter. For example, entering 1
will result in the following prompt:

User to run services as? [bis]

10 | Xcentrisity Business Information Server for extend User's Guide

Enter the new desired value or accept the default. The prompt requesting the option to change will be
displayed again. Enter R or just press Enter to review your changes. Enter a number to make more
changes. Enter X to save your changes and proceed with the installation.

Starting Apache and BIS
Use the following command to start the BIS service engine on systems other than AIX:

/etc/init.d/xbisengd start

Use the following command to start the BIS Service Engine on AIX:

Your-COBOL-Installation-Directory/bin/xbisctl start

Use the following command to start or restart the Apache server.

apachectl graceful

Testing the Installation
The samples are the best way to verify that BIS was successfully installed. To launch the samples on the
server for BIS installed on a Windows system:

• For BIS installed on a Windows system, click Start > extend x.x.x Start Menu > Start Menu >
Business Information Server > Xcentricity BIS Samples.

To launch the samples on Windows, start a web browser and enter the URL:

http://localhost/acubis10/samples/default.srf

To launch the samples on UNIX, start a web browser and enter the URL:

http://x.x.x.x/acuxbis/samples/default.srf

If you installed BIS on a different machine, replace localhost with the name of the Windows or UNIX
machine running IIS or Apache. If the web browser is running on the same machine as IIS or Apache, then
localhost refers to the current machine and may be used as the host name.

You should see the Welcome to the BIS Samples page:

Xcentrisity Business Information Server for extend User's Guide | 11

As an additional test, click on the link to the first sample, verify. The BIS Verify sample page will be
displayed, which is running the VERIFYBIS service program. Follow the instructions on this page to
complete the verification.

Uninstalling BIS for IIS
To uninstall BIS/IIS, use the Programs and Features control panel applet:

1. Click Start > Control Panel, and select Programs and Features.
2. Click the version of extend, which will contain options for removing BIS only.
3. Click the Uninstall button.
4. When the Program and Features message box appears requesting "Are you sure you want to uninstall

Xcentrisity BIS for extend?", press the Yes button.

Removing Only the Web Application Samples on IIS
To remove the samples from a Windows IIS web site after installation, log onto the server and then:

1. Click Start > Control Panel > Administrative Tools > Internet Information Services.
2. In the Connections pane, expand the machine's name, then expand Sites, then Default Web Site (or

your web site, if renamed).
3. Right-click acubis10 and select Remove from the popup menu.

On IIS version 6 and later (that is Windows 7 or Windows Server 2008 onwards), deleting the web virtual
directory/application will not remove the physical folder. To complete the removal, delete the acubis10
physical directory (usually found under c:\inetpub\wwwroot) using Windows Explorer or from the
Windows command line.

Using BIS
BIS functions as an extension to a web server, providing additional capabilities-namely, the ability to render
and serve .srf stencil files, and the ability to quickly make both new COBOL programs and legacy
COBOL programs available on the Web.

In order to understand how COBOL programs and the Web interoperate, some web concepts must also be
understood. These are described in the next sections.

Web Protocols: Requests/Responses
Web clients and servers communicate by using a request/response protocol called HTTP, which is an
acronym for Hypertext Transfer Protocol. HTTP includes two methods for retrieving and manipulating data:
GET and POST.

GET Retrieves data from the server. The target of the request
(referred to as a resource) is specified as a URI (Uniform
Resource Identifier). This is usually (but not always) an
absolute reference to a file on the server and is referred
to as a URL (Uniform Resource Locator) when used in
this context. Additional parameters, called Query
Parameters, can also be specified.

POST Posts data back to the server. In addition to a URL and
query parameters, a POST request includes a payload.
The payload is usually form data, the aggregated
contents of the various fields (also called controls) that
were in the response.

12 | Xcentrisity Business Information Server for extend User's Guide

There are other methods (HEAD, PUT, DELETE), but the above two are the ones used by BIS for SOAP
based web services. The other methods are available for REST-based web services.

The general form of a URL is familiar to anyone who has used a web browser:

http:// host [:port] / [absolute_path [? query_parameters]]

where:

http:// Indicates that the Hypertext Transfer Protocol is being
used to make the request. In a URI, this is referred to as
the scheme. BIS supports two schemes: http and
https (secure http).

host The name or location of the computer that will receive the
request.

port An optional integer that specifies the port on the server
that will receive the request. If omitted, this defaults to 80
for the http scheme, and 443 for the https scheme.

The combination of host and port (along with host
headers, which is a scheme that allows a single host to
serve multiple domains) specifies a unique web server.

absolute_path The absolute location of the resource being requested on
the host. This is frequently (but not always) the name of a
file. Note that the base directory is not the root directory
of the file system, but the root directory of the web tree
that is being served by the host on the specified port.

query_parameters Optional parameters that are made available to the web
server and to the service program.

To summarize, a client (web browser or program using SOAP) sends an HTTP request to the web server.
The request contains a method (GET or POST), a URI that specifies the file or resource that is being
requested, optional query parameters, and optional form data (if a POST).

If the resource being requested is a resource that is associated with BIS by the web server, for example,
a .srf file (sometimes also called a stencil), then all of the above information (request type, URI, query
parameters, form data) is passed to the BIS Request Handler, which then renders (that is, executes) the
tags in that file. If BIS renders a StartService tag, a COBOL service program is started. If BIS
subsequently renders an XMLExchange tag, the request is sent to the COBOL program, and the COBOL
program's response is rendered into the HTTP response text that is returned to the user agent (browser,
SOAP consumer, etc.).

Xcentrisity Business Information Server for extend User's Guide | 13

Sessions
HTTP requests are innately stateless. The web server does not provide any built-in mechanism to group
consecutive requests together. However, once a service program is started, subsequent requests from the
same user agent should be routed to the same service program. To make this possible, BIS creates a
Session, which is a container of information for the user agent that persists from one request to the next . A
session is automatically created when a request first arrives from a particular user agent. The Session
contains information that BIS uses to recognize requests as belonging to a sequence, and associates
requests with persistent data and services.

A Session is automatically created when BIS receives a request that cannot be associated with an already
existing session. Once a Session is created, it persists until:

1. The Session is complete: this can be requested by either the service program or by a special handler
tag-the SessionComplete tag.

2. A predetermined but adjustable amount of time passes without an additional request from the user
agent, referred to as the Inactivity Timeout period.

Active Sessions use server resources, and if a service program is waiting for a request, this can be
significant. Because site visitors may simply close the browser window without performing any action that
indicates that they are finished with the application, BIS will free those sessions and resources after a
predetermined period of inactivity.

Tracking Sessions
There are three common ways for servers to implement session tracking:

1. A unique ID may be placed into the URL of subsequent pages.
2. A unique ID may be placed in the query parameter of subsequent pages.
3. The server sends a cookie that contains a unique identifier with the response. The user agent saves the

cookie, and then includes the cookie with the next request.

BIS uses the third method, cookies, to identify sessions.

14 | Xcentrisity Business Information Server for extend User's Guide

Cookies
In order to track user agent sessions, the BIS Request Handler places a Cookie in the responses that is
sends to the user agent. The Cookie has a specific name, is associated with a specific URL, and contains
the information that the BIS Request Handler can use to identify the session. When the client sends a
request to the specific URL (or a URL containing the Cookie's URL), the client also sends the Cookie back
in the request.

When the server receives this request, by default, BIS looks for a Cookie in the request to locate a session
created by a previous request from the same user agent. When the BIS Request Handler receives a
request containing the specially-named cookie, it uses the contents of the cookie to search for an existing
session. If the session is located, BIS services the request using that session. If the session is not located,
a new session is created for the request and the new session's cookie is included with the response.

The disadvantage of using cookies is that some user agents purposely disable cookies for privacy reasons:
unscrupulous web sites can use permanent cookies to track the user agent's repeat visits over a long
period of time. BIS uses only session cookies-a type of cookie that is automatically deleted when the user
agent terminates-to avoid these concerns. It is also possible to configure a user agent to ignore session
cookies. This will, unfortunately, prevent BIS applications from working with that user agent.

The Session Root Path and Session Scope
As stated above, when a session is created, the BIS server will include a Session Cookie that uniquely
identifies the session with the response. The user agent saves the cookie, and includes the cookie with
subsequent requests. The BIS server uses the cookie to associate requests with sessions.

Cookies are shared by all instances of a particular user agent. This makes it difficult for a particular user
agent to gain access to more than one session on the server-if multiple browser windows on the same
client machine request the same page, each window will send the same cookie, BIS will see the requests
as originating in a single window, and will not create additional sessions. Multiple sessions are desirable if
the end user wishes to run multiple BIS applications hosted by the same server in separate windows, or the
application developer wishes to include multiple applications in a browser window by using HTML
<OBJECT> or <IFRAME> tags.

Fortunately, there is a solution: the scope of a particular session cookie can be restricted to particular URL
paths on the server. The user agent will only include the session cookie with a request URL that is as
specific as, or more specific than the path that was specified when the cookie was stored in the user agent.

IIS and Apache derive the default application root path differently:

• IIS defines the web application that contains the BIS application as the application root path. A web
application is created during the initial installation, and additional web applications (and hence
Application Root Paths) can be created at any time, either using the IIS Administration tool or by using
the BISMkApp utility program that is provided with BIS.

• Apache uses the value of the BIS_ROOT_PATH environment variable as the application root path. This
is usually defined in the mod_xbis.conf configuration file and is set during installation. Multiple
application root paths may be defined on a single server by defining the environment variable within the
appropriate <Directory> section of the configuration file.

The application root path may be changed by using the {{SessionParms}} tag only during the rendering
of the session's initial page. The session root directory may be set to:

1. DEFAULT: the application root path.
2. The path that directly contains the requested object.
3. Any path that contains the requested object. However, the path cannot be closer to the root directory

than the application root path.

For example, if the request URL is

Xcentrisity Business Information Server for extend User's Guide | 15

http://microfocus.com/xbis/apps/states/texas/default.srf

and the default application root path is

/xbis/apps

then the application root path may be changed to any one of

• /xbis/apps
• /xbis/apps/states
• /xbis/apps/states/texas

See The {{SessionParms}} Tag for more information.

Timeouts
BIS supports two kinds of timeouts:

• Session Inactivity Timeouts
• Service Timeouts

These timeouts are described in detail in the following sections.

Session Inactivity Timeout
Session inactivity timeouts are used to detect abandoned sessions and free server resources by deleting
those sessions. For example, each active service program counts against the BIS Service Engine use
count. If abandoned sessions are allowed to idle for an excessively long time, there may be a number of
idle service programs consuming resources that could be recycled to handle new requests. The purpose of
the session inactivity timeout is to free those resources.

To detect abandoned sessions, BIS stores the time the most recent request was received in the session. At
various intervals, BIS determines if a session has been inactive longer than the timeout period set for the
session. If so, the session is released.

There are two ways to indicate proactively that a session is complete and may be released:

• On the page: embed the SessionComplete tag.
• From a service program: call B_WriteResponse and specify BIS-Response-SessionComplete as

the optional parameter.

In all cases, the session is not released until it is inactive; that is, all services within the session have ended
and there are no active requests using the session.

Setting the Session Inactivity Time

The default inactivity timeout value for a BIS session is 600 seconds (10 minutes). However, the inactivity
timeout value can be changed in several ways:

• The timeout value may be globally set for all BIS sessions on the server with the
BIS_SESSION_INACTIVITY_TIMEOUT environment variable on BIS/IIS and the Service Engine
InactivityTimeout option keyword on BIS/Apache. The value must be specified in seconds. For example,
on Windows:

BIS_SESSION_INACTIVITY_TIMEOUT=600

This environment variable sets the timeout to 600 seconds (10 minutes). See Setting Environment
Variables for information about setting and modifying environment variables on Windows, and Service
Engine Configuration for information on configuring BIS on UNIX.

• The timeout may be set from within a .srf file by using the SessionParms(InactivityTimeout=
seconds) tag (see The {{SessionParms}} Tag). Note that this parameter is specified in seconds and
takes effect as soon as the tag is rendered.

16 | Xcentrisity Business Information Server for extend User's Guide

• The service program may set the timeout with the B_SetInactivityTimeout call. Note that this call
does not take effect until the next time the service program interacts with the BIS Request Handler; that
is, the service calls B_ReadRequest and BIS renders an XMLExchange tag.

Of these, the BIS_SESSION_INACTIVITY_TIMEOUT variable and InactivityTimeout option keyword have
the lowest priority and are overridden by either the B_SetInactivityTimeout call or the
SessionParms tag.

The largest value that the session inactivity timeout interval can be set to is 1,000,000 seconds (about 11
days).

Service Timeouts
When the BIS Request Handler passes a request to a service program, page rendering is suspended while
the program performs the required processing. The service timeout value sets an upper bound on the
amount of time that page rendering will be suspended.

The default service timeout is 30 seconds. This value can be changed in the following ways:

• The service timeout value may be globally set for all BIS sessions on the server with the
BIS_SERVICE_TIMEOUT environment variable on BIS/IIS and with a Service Engine
ServiceTimeout option keyword on BIS/Apache. The value must be specified in seconds. For
example, on BIS/IIS:

BIS_SERVICE_TIMEOUT=30

This environment variable sets the timeout to 30 seconds. See Setting Environment Variables for
information about setting and modifying environment variables on Windows, and Service Engine
Configuration for information on configuring BIS on UNIX.

• The timeout may be set from within a .srf file by using the
SessionParms(ServiceTimeout=seconds) tag. Note that this parameter is specified in seconds
and takes effect as soon as the tag is rendered.

• The service program may set the timeout with the B_SetServiceTimeout call. Calling this function
with a parameter of 0 restarts the timer without changing the current value. This is useful as a keep-
alive function when performing lengthy processing.

Of the above, the BIS_SERVICE_TIMEOUT variable and ServiceTimeout option keyword have the
lowest priority and are overridden by either SessionParms tag or the B_SetServiceTimeout call.

Server Response Files

Overview
The Server Response File is the key control mechanism of BIS and BIS-enabled web applications and
services. Each web application and service will contain at least one unique Server Response File,
identified by the extension .srf. A Server Response File is also sometimes referred to as a stencil, since it
acts as a stencil during the process of composing the content of an HTTP response to a request from a
User Agent.

Server Response Files are can be HTML files augmented by additional information to control dynamic
(program generated) content. In these cases, there are two differences between Server Response Files
and regular HTML files:

• When the user agent (usually a web browser) requests a .srf file that is contained within a directory
served by BIS, the web server automatically loads and activates the BIS Request Handler to serve the
file. A Request Handler is a component invoked by a web server such as Internet Information Server
(IIS) or Apache to service a particular type of request; in this case, a request for a Server Response
File.

Xcentrisity Business Information Server for extend User's Guide | 17

• Server Response Files will normally contain additional, non-HTML Rendering Tags that direct BIS to
perform various kinds of processing and substitution while the page is being used to render the
response content. This process usually includes execution of, and interaction with, ACUCOBOL-GT-
based service programs whose execution is controlled and synchronized by BIS.

If Server Response File is used with web services, the Server Response File only contains the necessary
tags to allow the Request Handler to route the request to the service program implementing the web
service. Care must be taken when creating Server Response Files for web services not to introduce any
extra formatting into the response that will confuse the client.

Rendering Tags
Rendering tags are text strings embedded in the server response file HTML source code. A rendering tag
has this general form:

{{ tag }}
{{ tag (parameter-list) }}

Rendering tags always begin with {{ and end with }} sequence and the tag itself is not case-sensitive,
although parameters within the tag may be case-sensitive. Spaces are used in the examples to increase
readability but are not required.

The optional parameter list may be formatted in a number of ways:

• As a space-separated list of tokens:

{{ ServiceLibs (xmlif mylibrary) }}

• As a comma-separated list of key-value pairs:

{{ SessionParms(InactivityTimeout=600, ServiceTimeout=30) }}

Except where specified, tokens may be enclosed in double or single quotation marks. This is required if a
token contains spaces or a comma.

Under Windows, the total length of a tag (from the opening brace to the closing brace) may not exceed
4096 characters.

Important: Important: Both the opening {{ and the closing }} tag delimiters must be contained on a
single line; that is, a tag may not contain embedded newline characters. Use caution when creating
tags with HTML editors that reformat HTML and make sure that any reformatting does not split tags
across multiple lines. Some strategies to avoid line wrapping problems:

• Turn off line and word wrapping in your HTML editor for .srf files. Note that Visual Studio
properly handles tags within the HTML editor.

• Embed non-rendering tags (that is, tags that do not produce HTML output) in HTML comment
sequences, as HTML editors will preserve formatting within comments. For example:

 {{ ServiceLibs(MyVeryLongLibraryName AnotherVeryLongLibraryName) }}

You may still have to disable word-wrapping and reformatting for .srf files to prevent reformatting, or
create tags that do not contain spaces.

The Rendering Process
When the user agent requests a page from the web server, and the page designates a Server Response
File (that is, the file is in a directory associated with BIS and has a .srf suffix), the page is automatically
served by the BIS Request Handler. The page is processed from top to bottom and tags are rendered as
they are encountered.

There are two basic kinds of rendering tags:

• Processing Control Tags are tags that are completely removed from the final rendered content.
• Substitution Tags are completely replaced in the final content by new (possibly empty) text.

18 | Xcentrisity Business Information Server for extend User's Guide

If a tag is not recognized, it is rendered literally-that is, the tag appears in the output unchanged.

Note: Tags are order-dependent. A particular tag may affect how subsequent tags are rendered; for
example, the StartService tag specifies the service that the XMLExchange tag uses. In addition,
the Handler tag must be the first non-comment tag in every file, and it must appear within the first
4096 characters of the file.

Processing Control Tags
Processing Control Tags control how the page is processed by the BIS Request Handler. There is a tag
that specifies the name of the service program to run to serve the page, tags that set processing options,
and tags that allow for conditional processing (for example, parts of the page may be skipped).

Processing control tags are always removed from the rendered response.

Substitution Tags
Substitution Tags are replaced with new literal text, HTML, or XML. These tags are replaced by output from
the service program or by the BIS Request Handler directly without program interaction.

Tag Options and Parameters
A particular tag may have one or more options or parameters. If this is the case, the options are specified
in parenthesis after the tag name, except for the Handler and Include tags.

Pathnames
There are two kinds of pathnames used within tags:

• A fully qualified pathname begins with a slash. On BIS/IIS, the slash may optionally be preceded by a
drive letter specification.

• A relative pathname is any pathname that does not follow the above rules.

Relative pathnames are interpreted relative to the current directory. Under BIS, the current directory is the
directory that contains the .srf file being processed.

The current directory for the BIS Service Engine is set when the StartService tag is executed. If a .srf
file is subsequently served from a different directory, the current directory of the already-started Service
Engine is not changed. However, any relative pathnames in the new .srf file are still interpreted relative to
the directory that contains that .srf file.

On BIS/IIS, pathname resolution within the BIS service program is affected by the APPLY_FILE_PATH,
CODE_PREFIX, EXPAND_ENV_VARS, FILE_ALIAS_PREFIX, FILE_CASE, and FILE_PREFIX runtime
configuration variables. (See section File Name Interpretation, in the ACUCOBOL-GT Users Guide for
more information.) These may be used to great effect in service programs in conjunction with the SetEnv
tag.

Referencing Files in System Locations
Several techniques are provided that allow files in system locations to be referenced from within a .srf
file.

Under BIS/IIS, the following environment variables are useful in pathnames. Note that EXPAND_ENV_VARS
must be set in the service configuration file for these to be useful.

Variable Description

ProgramFiles The location of the Windows Program Files
directory.

Xcentrisity Business Information Server for extend User's Guide | 19

Variable Description

SystemRoot The drive and directory containing the Windows operating
system.

TEMP

TMP

The fully qualified path to the directory containing
temporary files for the current process. Note that TMP
and TEMP normally refer to the same directory, but this is
not required.

USERPROFILE The user's home directory.

WINDIR Same as SystemRoot .

AllUsersProfile The home directory for All Users.

On BIS/IIS, you can also define synonyms on the server using the configuration file, or directly define
environment variables using the SYSTEM control panel applet:

Start > Control Panel > System > Advanced > Environment Variables

For example, if you add MyPrograms="c:\My Programs" to the environment, and have
EXPAND_ENV_VARS in your configuration file, then you can refer to the file abc.cob by specifying a path
of $MyPrograms/abc.cob. See Setting Environment Variables for information about setting and
modifying environment variables on Windows.

On UNIX, use the xbis.conf configuration file to define BIS environment variables. See Configuring
Apache for details.

Predefined BIS Environment Variables
BIS adds the following variables to the environment under both IIS and Apache. Note that these variables
are dynamically set during execution and are only available in the service program. They are not visible in
your shell environment or in the .srf file.

Variable Description

BIS_PROGRAM_DIR The directory from which the BIS Service Engine is
loaded. On Windows, this is typically XBIS.EXE in C:
\Program Files\Micro Focus\extend
x.x.x\AcuGT\bin .

BIS_FILENAME The fully qualified name of the temporary file created for
this session used to exchange data between the BIS
Request Handler and the COBOL service program.

When the COBOL service program calls
B_WriteResponse, the BIS Web Server reads this file
to obtain the content (XML, HTML or plain text) replacing
the XMLExchange tag in the response.

When the service program calls B_ReadRequest, the
current web request document (XML) is written into this
file. This includes any content such as the POSTed-back
form variables, the request variables, and server
variables, all encoded as an XML document.

By default, this file is created in the Windows TEMP

or, on UNIX, the BIS temp directory. This can be
controlled during the UNIX installation with the "Name of
BIS temp directory?" installation prompt and after the
UNIX installation with the TempDir Server Engine
Configuration. Both the BIS Request Handler and the
Service Engine must have permission to create, read,

20 | Xcentrisity Business Information Server for extend User's Guide

Variable Description

and write files in this directory. The BIS installation
procedure adds the required permissions to this directory.

The FILE_PREFIX and CODE_PREFIX Environment Variables
If a relative filename is specified, the BIS service attempts to locate a data file by searching the directories
specified by the FILE_PREFIX environment variable and a program object file by searching the
CODE_PREFIX environment variable. For full details of how the BIS service program locates files, see
Code and Data File Search Paths of the ACUCOBOL-GT User's Guide.

Note that the RunPath tag may be used to insert additional directories before the default FILE_PREFIX
and CODE_PREFIX variables from the environment. Also note that this will override the contents of the
FILE_PREFIX and CODE_PREFIX configuration variables, so use of the RunPath tag is discouraged.

Troubleshooting Tags
If a tag is not performing the expected function, the tag may be malformed or may have been altered by an
HTML editor. The following steps can help isolate this problem:

Is the tag itself visible in your web browser?

This indicates that BIS is not recognizing the tag. Check the spelling of the tag and be sure that the HTML
editor did not split the tag across multiple lines-tags may not contain line break characters or span lines
(you'll have to use the browser's View > Source to examine the raw HTML to be sure). On UNIX, enabling
tracing (see below) and setting the BISStencilDebug configuration option will cause the generation of a
trace message with the reason why a tag was rejected.

Did the tag fail to perform the requested function?

If a malformed tag is embedded in an HTML comment (see the example in the Rendering Tags section),
the tag may fail to render but not be visible in the rendered output. To see such tags, use your web
browser's View > Source command. Tags should never appear in the raw HTML that is sent to the web
browser.

Does the tag appear in the trace output?

Enable tracing and examine the trace output. If you have access to the .srf file, to quickly enable tracing,
insert this tag after the Handler tag:

{{ Trace(start,page) }}

Then request the page using your web browser. This will cause trace output to be appended to the end of
the current page. The trace output indicates when most tags are rendered and the results of the rendering.

On BIS/IIS, to direct trace output to a file, replace page with file (or specify both using page,file). This
will direct all trace output for the session into a file in the server's temporary directory (normally C:
\Windows\Temp), or the directory specified in the trace dir= parameter. If you use this type of tracing, be
sure to occasionally delete these files from the temporary directory.

The trace files use the following naming convention:

BIS-ssss-trace.txt

Where ssss are the initial characters from the session identifier. The first four non-slash characters of the
session identifier are always used; if a file of that name already exists, BIS will continue to add characters
from the session ID until the filename is unique.

On UNIX, trace output is directed to a file if tracing is enabled. A separate trace file is created for each
session and is placed in the UNIX /tmp directory unless the BISTraceDirectory configuration option is

Xcentrisity Business Information Server for extend User's Guide | 21

specified or redirected with the trace dir= parameter. So on UNIX, Trace(start) is sufficient to create a
trace file.

Note that on UNIX, the BISMasterTrace configuration option must be enabled before any tracing can
occur. See Configuring Apache for details about setting or clearing this option.

Tracing is the most useful of the above techniques and should be enabled during the development process.

Replacement Tag Reference
This section presents and discusses each tag that is implemented in Server Response Files.

Here is an example of a basic .srf file. Tags are italicized.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/
strict.dtd">
<!-- BIS control tags (removed when page is rendered) -->
<!-- {{ handler * }} -->
<!-- {{ Trace(queryparam=trace) }} -->
<!-- {{ StartService(samp03.acu) }} -->
<html>
<head>
 <META http-equiv="Content-Type" content="text/html; charset=UTF-8">
 <title> COBOL Web Server Demonstration Page</title>
</head>

<body>
 <div align="center">
 <h3> COBOL Web Server Demonstration Page</h3>
 </div>
 <p>--- Begin Application-Generated XHTML ---</p>
 <div>
 {{ XMLExchange(OnExit="goodbye.srf") }}
 </div>
 <p>--- End Application-Generated XHTML ---</p>
 {{ TraceDump }}
</body>
</html>

Note that the first three tags in this example are embedded in HMTL comments. This is not strictly
necessary from an operational standpoint (and may be undesirable because empty comments will be sent
to the browser), but useful to keep an HTML editor like Microsoft FrontPage, Expression Web, Visual Studio
or Adobe Dreamweaver from reformatting the text in the handler tag, or possibly splitting the tag across
multiple lines. Some of these products support the server response file syntax directly and do not have this
issue.

The {{Handler}} Tag
This tag must appear at or near the beginning of every server response file that is to be processed by BIS.
It indicates that this particular .srf file contains Xcentrisity BIS rendering tags.

handler *

The handler tag's parameter indicates the name of the handler to be invoked to render the tags within the
stencil, with * indicating the default tag handler. In this release of BIS, the only supported handler tag is the
default, so {{ Handler * }} is the recommended format of this tag.

Future versions of BIS may support additional handlers.

22 | Xcentrisity Business Information Server for extend User's Guide

Notes
• The handler tag must appear in every .srf file, including .srf files included in other .srf files.
• The handler tag must precede all other non-comment tags, and must appear within the first 4096

characters of the file. (Note that BIS/IIS allows include tags to precede the handler tag.)
• Only one handler tag in each .srf file is permitted. On BIS/Apache, multiple handler tags are

allowed, but only the first encountered in the file is relevant.

The {{ContentType}} Tag
This tag sets the content type for the HTML response.

ContentType (value)

BIS does not attempt to interpret the value, which encompasses the entire parameter, including commas
and any quotes.

Examples
1. {{ ContentType(text/html; charset=utf-8) }}
2. {{ ContentType(text/xml) }}

Notes
• If not specified, the default content type is text/html; charset=utf-8. On BIS/Apache, if the

content type of the request message indicates an XML message, the default content type of the
response is text/xml; charset=utf-8.

• If {{ContentType}} is specified multiple times on a page, the last instance is used.

The {{SessionParms}} Tag
This tag allows various session attributes to be set:

SessionParms(InactivityTimeout= seconds | DEFAULT,
 ServiceTimeout= seconds | DEFAULT,
 Path = DEFAULT | path,
 Scope = ALL | ISOLATE)

where:

InactivityTimeout Determines how long a session survives without user
interaction.

• DEFAULT - Resets the timeout to the default setting:
600 seconds or 10 minutes.

• seconds - An integer that specifies the number of
seconds before the session terminates. The minimum
value is 10 seconds (useful for testing) and the
maximum value is 1,000,000 seconds (about 11
days).

ServiceTimeout Determines the maximum length of time the Service
Program may run when a request is received.

• DEFAULT - Resets the timeout to the default setting:
30 seconds.

• seconds - An integer that specifies the number of
seconds before Service Program termination
processing begins. The minimum value is 10 seconds

Xcentrisity Business Information Server for extend User's Guide | 23

(useful for testing) and the maximum value is 3,600
seconds (one hour).

Path Specifies the root path of the current session. This
parameter is ignored unless the page being served is the
initial session page.

• DEFAULT - The session root path is set to the path
of the current request. See The Session Root Path
and Session Scope for more details.

• path - Explicitly sets the session root path to path.
The path may be specified as a relative or an
absolute URL path and must specify a path segment
contained in the URL path of the initial page.

In addition, under IIS, the specified path must contain
at least as many path segments as the application
root path (the base directory for the BIS application)-
that is, the path cannot be closer to the root of the
web than the BIS web application.

For example, if the requested page is

http://microfocus.com/xbis/apps/
states/texas/default.srf

the default session path is

/xbis/apps/states/texas

These paths may be specified to set the session root
path to xbis/apps:

Path="/xbis/apps"
Path=../../

These paths set the default session path to the
directory containing the requested object:

Path=DEFAULT
Path=.
Path=”/xbis/apps/states/texas”

These paths are invalid and are reported as being
invalid in the trace file:

Path=/xbis/apps/states/california
Path=../florida

These directories are not contained in the path.

In addition, for IIS servers, the path cannot be closer
to the root than the application base path (the path
that describes the web application that contains the
BIS server).

Scope Determines the scope of the current session. This
parameter may be specified at any time and is not
inherited by new sessions.

• ALL - All pages served from the session base
directory and subdirectories of the session base
directory are served as part of the current session.
This option is the initial default for all new sessions
and is appropriate for most applications.

• ISOLATE - Only pages served from the session base
directory are included in the current session. A new,
non-isolated session is started when a page is

24 | Xcentrisity Business Information Server for extend User's Guide

requested from a subdirectory of the session base
directory. The ISOLATE option allows a single user
agent to use more than one BIS session as long as
the sessions are based in separate directories on the
server.

Notes
• All parameters are optional, but at least one parameter must be specified for this tag to be useful.
• A change to the timeout takes effect as soon as either timeout parameter is parsed and the timer is

restarted at that point.
• It is strongly recommended that the inactivity and service timeout intervals are kept as short as

possible. Setting the session inactivity limit to the maximum will keep sessions from automatically
terminating when browser sessions are abandoned; this can result in a large number of orphaned BIS
sessions that will not be cleaned up for over a week. It is better to set the inactivity timeout to 10
minutes and use a META REFRESH or a JavaScript timer to pull content from the BIS session every
few minutes to keep the session active only while the browser window remains open.

• Setting the service timeout interval too high can also have detrimental effects if a service programs
unexpectedly runs away. Such a program can use 100% of the available CPU, preventing any other
programs from starting or running effectively. The default setting of 30 seconds will terminate any run-
away program within this reasonable amount of time.

• The session scope determines if pages served from subdirectories of the session base directory are
executed in new sessions. For example, if this page created the initial session:

• http://microfocus.com/xbis/apps/states/default.srf

and the application contains a link to this page, located in a more specific directory:
• http://microfocus.com/xbis/apps/states/texas/default.srf

• If SessionParms(Scope=All) is in effect, the subordinate page will be served from the same
session as the initial page. However, if SessionParms(Scope=Isolate) is in effect, a new session
will be created for the subordinate page.

• For a description of the proper usage of the session base and session scope options, see The Session
Root Path and Session Scope for more details.

The {{ServiceOpts}} Tag
This tag is a support tag for the StartService tag. It is for specifying options to the ACUCOBOL-GT
runtime. See the section Using the Runtime System in the ACUCOBOL-GT User's Guide.

ServiceOpts (options)

where:

options A space separated list of options to be passed to the
runtime. Individual options may be quoted, using either
single or double quotes, with the opening quote type
matching the closing quote type.

Notes
• The options are supplied to the runtime in the order that they are specified in the ServiceOpts tag.

Multiple ServiceOpts tags may be specified, with the options presented in the order that the tags are
encountered in the SRF file. Only options specified up until the StartService tag are passed to the
runtime.

• If ServiceOpts tag is specified without the (options) parameter list, the set of options is emptied.
• The options are not saved in the session.

Xcentrisity Business Information Server for extend User's Guide | 25

The {{ServiceArgs}} Tag
This tag is a support tag for the StartService tag. It is for specifying parameters to the ACUCOBOL-GT
runtime. See section Using the Runtime System in the ACUCOBOL-GT User's Guide.

ServiceArgs (arguments)

where:

arguments A space separated list of parameters to be passed to the
runtime. Individual parameters may be quoted, using
either single or double quotes, with the opening quote
type matching the closing quote type.

Notes
• The arguments are supplied to the runtime in the order that they are specified in the ServiceArgs tag.

Multiple ServiceArgs tags may be specified, with the arguments presented in the order that the tags
are encountered in the SRF file. Only arguments specified up until the StartService tag are passed
to the runtime.

• If the ServiceArgs tag is specified without the (arguments) parameter list, the set of arguments
is emptied.

• The arguments are not saved in the session.

The {{ServiceLibs}} Tag
This tag is a support tag for the StartService tag. It is for specifying libraries to the ACUCOBOL-GT
runtime via the -y option. See section Using the Runtime System in the ACUCOBOL-GT User's Guide.

ServiceLibs (libraries)

where:

libraries A space separated list of libraries to be passed to the
runtime. Individual options may be quoted, using either
single or double quotes, with the opening quote type
matching the closing quote type.

Notes
• The libraries are supplied to the COBOL runtime in the order that they are specified in the

ServiceLibs tag. Multiple ServiceLibs tags may be specified, with the libraries presented in the
order that the tags are encountered in the SRF file. Only libraries specified up until the tag are passed
to the runtime.

• If ServiceLibs tag is specified without the (libraries) parameter list, the set of libraries is
emptied.

• The libraries are not saved in the session.
• On UNIX, if a library does not begin with lib, it is automatically prepended. Furthermore, if the UNIX is a

64-bit operating system, and if 64-bit libraries have a suffix of 64 on this version of UNIX, 64 is
appended to the library name. Finally, if library does not end with the proper extension for the UNIX
operating system (for example .so or .sl), the proper extension is appended as well. These
modifications to the library name are to allow the tag to be portable between Windows and UNIX.

26 | Xcentrisity Business Information Server for extend User's Guide

The {{StartService}} Tag
This tag starts the execution of a service program. Options, parameters and libraries to be used by the
service are specified by ServiceOpts, ServiceArgs and ServiceLibs tags.

StartService (program)

where:

program The name of the service program to run. If a relative path
is specified, the path is relative to the directory that
contains the .srf file. If no directory is specified, the
RUNPATH is searched (see below).

BIS only allows one service program to be active in a session. Note the following:

• If no service program is currently running, the new service is started.
• If the specified service program is already running, this tag is ignored.
• If a service program is running, and program specifies a different service, the currently running

service program is stopped (as if a StopService tag had been specified) and the new service
program is started.

When a service program is started, BIS saves the name of the program. When another service program is
started, BIS compares the new program name against the name of the program currently running. If there
is an exact match (ignoring differences in letter case), the service is the same. If there is any difference, the
new StartService tag refers to a different service and the currently running service program is stopped.

Once the service program is started, page rendering resumes. Rendering and the service program run in
parallel.

Examples:

1. {{ StartService (myapp) }}
2. {{ ServiceLibs (mylibrary.acu) }}
 {{ StartService (myapp) }}
3. {{ ServiceLibs (xmlif mylibrary.acu) }}
 {{ StartService (myapp.cob) }}
4. {{ ServiceOpts (-c alt.cfg) }}
 {{ ServiceLibs (xmlif) }}
 {{ StartService (myapp) }}

In the examples above, the .ACU, and library files must be in a directory specified by CODE_PREFIX,
and .CFG files must be in the FILE_PREFIX.

1. Starts the program in file myapp.acu.
2. Attempts to start program myapp after loading the mylibrary.acu service library. If the library

contains a program called myapp, it is run from the library. If the program is not in the library, then the
first program in myapp.acu is started.

3. Starts the program in myapp.acu after loading xmlif and mylibrary.acu.
4. Starts program myapp.acu after loading xmlif. The alt.cfg file is processed when the service

program is loaded.

The StartService tag follows all the regular Service Engine program loading rules. See the
ACUCOBOL-GT documentation for a detailed description.

Accessing the REQUEST from the Service Program
In many cases, the service program requires access to the information transmitted in the HTTP request
message. This information is passed in the BIS Request XML document that is made available by a call to
B_ReadRequest within the service program.

Xcentrisity Business Information Server for extend User's Guide | 27

Notes
• A given server response file can have multiple StartService tags. An additional StartService tag

is ignored if it specifies a service that is already running. If it specifies a difference service, the service
started by the previous tag is stopped before the new service is started.

• The StartService tag must precede any tags that depend on the service program being active. Such
tags currently include XMLExchange.

The {{RunPath}} Tag
The RunPath tag is a deprecated tag and should not be used. Use the SetEnv tag instead to set the
desired PREFIX environment variable.

This tag is used to modify the RUNPATH environment variable that is passed to the Service Engine. The
BIS Service Engine uses the RUNPATH to locate service program files and libraries.

RunPath ([dir [,dir]…])

Notes
• This tag causes the specified list of directories to be prefixed before the contents of any existing

RUNPATH environment variable that is inherited from the system environment. Any number of directories
may be specified, separated by commas or semi-colons (however, note that colons are not separators).
If any dir contains spaces characters, it must be surrounded by double quotes. Directory names may
not contain commas or semicolons.

• This tag is a session attribute and remains in effect until the session ends or another RunPath tag is
encountered, which will replace the directory list set by the previous RunPath tag. To clear the run path,
specify {{ RunPath() }}. Note that the .srf directory cannot be removed from the RUNPATH sent to
the service program.

• This tag must precede the StartService tag or it will be ignored by the application.
• Relative directories in the list are interpreted to be relative to the directory that contains the .srf file

for the page being processed. This is the current directory that is set when the Service Engine begins to
execute.

• To explicitly reference the directory that contains the current .srf file, add . (that is, current directory)
to the path.

• See Setting Environment Variables for information about setting and modifying environment variables
on Windows.

The {{SetEnv}} Tag
This tag is used to set a variable in the service program's environment.

SetEnv (name[=value])

Examples
{{ SetEnv (printer=lpt1) }}
{{ SetEnv (myfile=”c:\temp\scratchfile.tmp”) }}

Notes
• The SetEnv tag affects only the Service Engine's environment and not the BIS Request Handler's

environment. The Value(variable,ENV) tag will not retrieve variables set by this tag.
• Multiple SetEnv tags may be specified in a .srf file and are processed in the order in which they

occur. Note that these tags must precede the StartService tag.
• On BIS/IIS, the scope of a SetEnv tag is the current request, not the current session. On BIS/Apache,

the scope of the SetEnv tag is the current session.

28 | Xcentrisity Business Information Server for extend User's Guide

• To unset an environment variable, omit the =value. Note that an unset variable is different from a
variable that has a blank (or empty) value.

• All characters to the right of the equal sign up to the first space before the right-most parenthesis are
stored as the value. If the value is quoted as in the example above, quotes will also be set in the
environment.

The {{XMLExchange}} Tag
This tag causes the web server to request text (typically XML, XHTML or HTML) from the currently running
COBOL service program. The response text generated by the COBOL program replaces the
XMLExchange tag in the output stream.

XMLExchange
XMLExchange (OnExit=url)

The optional OnExit parameter determines the action that BIS takes if the service program is not active or
terminates while the XMLExchange is being processed. It causes BIS to return an HTTP return code of
302 (HTTP_REDIRECT_FOUND) to the client. This causes the client to reissue the GET request for the
specified URL.

Notes
• Do not use OnExit with SOAP requests. SOAP clients may not be able to interpret the 302 error that is

returned.
• On BIS/IIS, the OnExit in the first XMLExchange tag following a StartService tag is ignored. This

allows any service startup errors to be reported and corrected.

Recursive Tag Processing in {{XmlExchange}}
BIS recursively processes tags in the service program's response output, as if the response output was a
stencil. Tag substitution occurs as the service output is written to the response page (replacing the
{{XmlExchange}} tag), and substitution is performed in the context of the page that contains the
{{XmlExchange}} tag.

This behavior allows the service program to dynamically generate tags, thereby using BIS tag substitution
features in the HTML, XHTML or XML produced by the service program. For example, if the generated
HTML contains URLs in links, the {{Value}} tag can be used to process those URLs in the context of the
requested page, and make the URLs absolute, based on the URL of the original request. Another example:
the service program can also change the content type or character set of the response by generating a
{{ContentType}} tag.

The {{FormActionTarget}} tag discussed in the next section is a tag that is specifically intended to be
included in generated {{XmlExchange}} output. Also note that any tag may be embedded in the output -
even another {{XmlExchange}}.

The {{FormActionTarget}} Tag in {{XMLExchange}}
This tag is replaced by a URI referencing the current page and includes a query parameter that will be
automatically checked by BIS to ensure proper sequencing of requests. BIS will check any requests to the
current session and will reject (displaying an error page) any request that does not contain the query
parameter served by the FormActionTarget tag. By using this tag, the service program may assume
that any requests that return control to the service are in the sequence expected by the program.

The FormActionTarget tag should normally only be used as the value of the action attribute of an HTML
<form> element. In any case it must be used in such a way that the next expected request will be directed
to the URI represented by the tag.

Xcentrisity Business Information Server for extend User's Guide | 29

If a response page rendered by BIS does not contain the FormActionTarget tag, no sequence checking
will be performed by BIS. The service program may, of course, perform its own checking using other
means, such as hidden fields, if required.

The {{StopService}} Tag
This tag terminates the execution of the service program that is attached to the session.

StopService

Notes
• If the service program is not awaiting a request when this tag is rendered, the program must call

B_ReadRequest within ServiceTimeout seconds. The call then returns with the BIS-Fail-
ProgramTerminated return code. At that point, the program is granted an additional ServiceTimeout
seconds to terminate.

• If the program is still running when either ServiceTimeout period expires, a termination signal is sent.
• Once the StopService tag is rendered, the service program is immediately disconnected from the

session. For example, an XMLExchange tag immediately after a StopService tag is invalid and, if
present, the OnExit parameter in that tag will be processed.

• The StopService tag may be immediately followed by a StartService tag. In this case, a new
service program is started. Once the StopService tag is rendered, the service program is considered
terminated even if it needs a few additional seconds to actually stop.

• This tag is ignored if there is no service program attached to this session.

The {{SessionComplete}} Tag
Indicates that the current session is complete and may be released. The session cookie will be deleted
when the response for the current page is sent to the client.

SessionComplete

Notes
• If a BIS service program is currently active, this tag implicitly performs a StopService at the point this

tag is rendered. See the description of the StopService tag for details about how the service program
is informed the session is ending, and the sequence of events that transpire. Note, however, that the
current or next call to B_ReadRequest returns the BIS-Fail-SessionTerminated result code
instead of BIS-Fail-ProgramTerminated.

• This tag is most useful on a goodbye page, but is optional because sessions are automatically
terminated after a period of inactivity. However, explicitly ending a session can be used to release
system resources, or to force a new session to be started for the active client when the next page is
requested.

The {{Value}} Tag
This tag looks up a value on the server and the tag is replaced with that value.

Value (variable|”variable” [, source] [,operations]…)

By default, variable is a server variable or a special variable (described below). However, options can direct
that the value be obtained from the environment, the server configuration, a submitted form, a cookie, or a
query parameter.

On BIS/IIS, if variable is enclosed in quotes, the variable name is treated as a literal string and is not
resolved further unless one of the source options below is specified.

On BIS/Apache, if variable begins with a quote, it is treated as a literal and no source option is permitted.

30 | Xcentrisity Business Information Server for extend User's Guide

Either single or double quotes may be used as delimiters, and a delimiting quote may be embedded in the
string by specifying the quote twice: "abc'""def" becomes abc"def.

The source option determines from where the variable value is obtained. If specified, the source must be
the second parameter.

SERVER Specifies that variable is a server variable. This is
the default if none of the other sources below are
specified and if the string is not quoted. Under BIS/
Apache, ENV and SERVER are identical.

CONFIG Specifies that variable is a special server
configuration value. A list of CONFIG variables appears
at the end of this section.

COOKIE Specifies that variable is a cookie.

ENV Specifies that variable is an environment variable
instead of a server variable. Note that, on BIS/Apache,
ENV and SERVER are identical. See Setting Environment
Variables for information about setting and modifying
environment variables on Windows.

FORM Specifies that variable is a <form> variable.

QUERYPARAM

QP

Specifies that variable is a URL query parameter. QP
is accepted as an alias for QUERYPARAM .

These operations modify the retrieved value and are applied from left to right and may be applied
multiple times.

DEFAULT=value Specifies a default value for variable if the
variable is empty. This option has no effect unless
the variable is empty at the point the DEFAULT
operation is performed.

• If the variable is empty when the end of the
entire operations list is reached, the Value tag is
simply removed from the output stream.

• If DEFAULT is encountered and the variable is
empty, the tag is replaced by value. If there are
additional operations to the right of the DEFAULT
operation (that is, GETDIR , TOUPPER,
URLENCODE), these are performed on the new
defaulted value.

GETDIR Same as GETPATH

(see below), except only the directory portion of the
pathname is extracted. This is the part of the pathname
that follows the scheme and hostname up to the last
slash in the pathname. Note that if variable is a
pathname that contains a drive letter, the drive letter is
also returned. The extracted pathname never ends in a
slash.

GETQUERYSTRING If variable is a URL, returns the query string. If not
present or if variable is a pathname, an empty string
is returned.

GETHOST If variable is a URL, extracts the hostname. If
variable is a pathname, or no host name is present,
an empty string is returned.

Xcentrisity Business Information Server for extend User's Guide | 31

GETNAME Same as GETPATH , except only the filename portion of
the pathname is extracted. This is the part of the
pathname that follows the last slash but excludes the
#fragment , ?querystring, and ;parameters.

GETPATH If variable is a URL, extracts the path portion of the
URL. This is the portion of the URL that excludes the
scheme, the hostname, and the query string. If variable is
a pathname, it is unchanged.

GETSCHEME If variable is a URL, extracts the scheme. This will
normally be http or https without the terminating
colon or slashes. If variable is a pathname or a URL
without a scheme, an empty string is returned.

SUBSTITUTE= pattern/replacement/

SUB=/pattern/replacement/

Allows you to substitute all occurrences of pattern in
the value with a replacement pattern. The operation is
performed on the current value after all transforms to the
left have been performed. Processing continues with the
modified value.

SUB is accepted in place of SUBSTITUTE for brevity.
Both pattern and replacement are regular
expressions. (For more information, see Regular
Expression Syntax).

TOUPPER Converts the value to all upper-case characters.
Equivalent to SUBSTITUTE="/.*/\U&/".

TOLOWER Converts the value to all lower-case characters.
Equivalent to SUBSTITUTE="/.*/\L&/".

URLDECODE Decodes a string that has been URL-encoded. This is
primarily useful when retrieving a server variable.

URLENCODE Encodes a string for reliable HTTP transmission from the
web server to a client as a URL. For example, This is
a <Test String>. will be encoded as: This
%20is%20a%20%3cTest%20String%3e.

HTMLDECODE Decodes a string that has been HTML-encoded. This is
primarily useful when retrieving a server variable.

HTMLENCODE Encodes a string for reliable HTTP transmission from the
web server to a client as HTML. For example, This is
a <Test String>. will be encoded as: This is
a <Test String>.

MAKEABS Assumes that the string is a relative URL, and makes the
URL absolute, using the location of the stencil that was
requested by the client as the base URL (see
REQUEST_URL in Configuration Variables for details). If
the string is not a URL, it is not altered. If the input string
is an absolute URL, it is cleaned up (that is, redundancies
such as dir/../ are removed) but is otherwise
unchanged.

See RFC 3986 for details about how relative URLs are
resolved by this operation.

Processing stops when the following option is encountered and the tag always renders as an empty string.

MATCH=regexp Applies the regular expression against the current value
and returns true if it matches and false if it does not
match but does not return any text for rendering. This

32 | Xcentrisity Business Information Server for extend User's Guide

allows Value to be used in If tags. See Regular
Expression Syntax.

For example, the tag:

{{ VALUE (HTTP_URL, GETDIR, TOLOWER, URLENCODE) }}

is replaced by the directory that contains the page that is currently being served. The name of the directory
is converted to lowercase and the directory name is URL-encoded (for example, recommended if the value
will be substituted into an HREF attribute). HTTP_URL is a server variable, but it is not necessary to specify
the SERVER source parameter because this is the default.

Notes
• The Value tag can be referenced in an If tag if the MATCH operation is used, but cannot be nested

within any other tags. It can, however, appear anywhere else in the HTML as long as it follows the
Handler tag. This tag can therefore be used to provide content for any HTML element.

• When used in an If tag without the MATCH option, the condition is TRUE if Value evaluates to a non-
empty string; otherwise, FALSE.

• Regular expressions must be delimited. The first nonblank character after the = is the delimiter for the
regular expression. The expression begins at the character following the delimiter and extends up to, but
not including the next occurrence of that character.

Single or double quotes are common delimiters, but the delimiter may be any character. Examples:

1. {{ VALUE (QUERY_STRING, SERVER, MATCH=”?userid=fred\s”) }}
2. {{ VALUE (QUERY_STRING, SERVER, MATCH=/?userid=”fred\s”/) }}

(Note that QUERY_STRING is a server variable that contains the query string part of the URL.)

The second regular expression includes quotes, so a delimiter (/) was chosen that does not occur in
the expression.

Another way to accomplish the above is to use the QUERYPARAM source option:

{{ VALUE(userid, QUERYPARAM, MATCH=”fred\s”, URLENCODE) }}

• Commas cannot occur inside delimited or quoted strings because commas always separate
parameters. If a comma is required, use "%2c" and URLDECODE the string to convert the "%2c" to a
comma.

Configuration Variables
In addition to server variables and environment variables, some special variables are supported. These
variables may not be implemented on all platforms.

HOSTSERVER Returns IIS or Apache. Note that under IIS, the
SERVER_SOFTWARE server variable can be used to
retrieve the version number. However, this server variable
may be undefined under Apache.

MAXTHREADS Resolves to the number of threads configured in the BIS
thread pool. This is the number of threads that are
available for requests. Under Apache, this is undefined
(use DEFAULT=1 if portability is desired).

REQUEST_URL Retrieves the completely qualified URL of the stencil
(.srf) file that was requested by the client. This includes
the scheme, hostname, port number (if non-standard),
path, and parameters, query string, and fragment (if
specified).

REQUEST_BASE_URL Retrieves the completely qualified base URL of the
current stencil (.srf) file that was requested by the

Xcentrisity Business Information Server for extend User's Guide | 33

client. This includes the scheme, hostname, port number
(if non-standard), and the path (which always ends in a
slash).

The base URL is defined as the directory that contains
the stencil that was requested by the client.

STARTSERVICE Returns the entire argument list of the currently active
StartService tag, including commas. If there is no
active service program, the value is considered undefined
and may be overridden with the DEFAULT operation.

SCHEME Returns the scheme that was used to request the current
page: currently returns either http or https. Note that
the :// delimiter that follows the scheme is not included.
This is useful for constructing URLs:

<a href="{{ Value(SCHEME,
CONFIG) }}://
{{ Value(HTTP_HOST,URLENCODE) }}
{{ Value(HTTP_URL,GETDIR,URLDECODE,URL
ENCODE)
}}/default.srf">

(Note that the above must be on a single line, or spaces
will be inserted.) Under BIS/IIS, the scheme is derived
from the SERVER_PORT_SECURE server variable,
where a value of 0 indicates http and nonzero indicates
https.

SERVICENAME Retrieves the name of the currently active service
program. If there is no active service program, the value
is considered undefined and may be overridden with the
DEFAULT operation.

VERSION Retrieves BIS version information. The format of the
version number is aa.bb.cc.yyyy/mm/dd, where
aa.bb.cc indicates the numeric major/minor/patch
level version, and yyyy/mm/dd is the build date.

The {{Trace}} Tag
Enables or disables trace logging for the current session.

Trace (options)

The options in the table below control the internal accumulation of trace information on UNIX. Windows
always accumulates trace information and these options are ignored.

START START causes BIS to begin accumulating trace output. If
tracing has been started, START has no effect.

STOP STOP causes BIS to stop accumulating trace output. If
tracing has not been started, STOP has no effect.

OFF Turns tracing off. Equivalent to
STOP,NOPAGE,NOFILE,NOTAG,NOEXCHFILES,N
OQUERYPARAM,NOIP.

The options in the table below determine where the TRACE output is emitted. They are independent of
each other. The underlined options are the defaults.

PAGE Indicates that the trace is emitted at the end of the page.

NOPAGE Disables end of page trace output.

34 | Xcentrisity Business Information Server for extend User's Guide

FILE Indicates that the trace is written to a file in directory
indicated by the DIR option.

NOFILE Disables trace output to the file.

TAG Enables the TraceDump tag and allows it to write trace
output is written when it is rendered.

NOTAG Causes TraceDump tags to be ignored.

EXCHFILES Enable saving a copy of the XML Exchange request/
response files for each session in the trace directory.

NOEXCHFILES Disables the tracing of XML Exchange request/response
files.

If the FILE option is in effect, these options determine how the TRACE output is written to a file.

DIR=dir dir specifies the directory that will receive trace output
if FILE is in effect. If no dir is specified, this option
has the same effect as NODIR. If a relative directory is
specified for dir , output is written into a directory
relative (on BIS/IIS) to the Windows temporary directory
or (on BIS/Apache) to the /tmp directory. If an absolute
path is specified for dir , output is written into that
directory. On BIS/IIS, this directory must exist or the trace
file will not be written. On BIS/Apache, the specified
directory will be created if it does not exist.

NODIR Disables the trace directory specified by DIR. If file
output is enabled with either FILE or EXCHFILES then
all trace output is written (on BIS/IIS) into the Windows
temporary directory, or (on BIS/Apache) into /tmp.

The options below allow tracing to be controlled using a query parameter or a cookie:

QUERYPARAM=value

QP=value

QUERYPARAM and QP are synonymous and designate a
URL query parameter whose value can be used to
dynamically specify the options above. See the section
The Trace Query Parameter for more information. Since
the ability to dynamically configure the trace system is a
potential security issue, the QUERYPARAM option allows
you to specify your own query parameter name, rather
than BIS supplying a standard one. This will make it
harder for an unscrupulous person to obtain control of the
tracing, but not impossible, so it is strongly suggested that
the QUERYPARAM option not be left in the Trace tag of
stencils files in production systems.

NOQUERYPARAM

NOQP

Disable the query parameter set by QUERYPARAM or QP.

IP=xx.xx.xx.xx [-x.xx.xx.xx]

IP=ipv6addr [- ipv6addr]

IP allows trace output to be restricted to requests
originating at one or more IP addresses. If an IP
restriction is in effect, trace output is restricted exclusively
to requests from those particular IP addresses. A
comma-separated list of IP addresses or ranges may be
specified. The list of IP restrictors is processed from left
to right.

Note that specifying 127.0.0.1 will allow access from
a web browser running on the host's console. In this

Xcentrisity Business Information Server for extend User's Guide | 35

case, access the pages using localhost as the name
of the host.

IPv6 addresses may be specified instead of IPv4. For
example, ::1 specifies the IPv6 loopback address, and
on almost all Windows versions now, localhost
resolves to this IPv6 address; while on older versions of
Windows, localhost resolves to 127.0.0.1. IPv6
and IPv4 addresses may be mixed in a single IP
statement, but not in a single range.

If either an IPv4 or IPv6 loopback address is specified
(that is, 127.*.*.* or ::1), the setting applies to both
IPv4 and IPv6 loopback addresses.

NOIP Disables the restriction of IP addresses.

Notes
• The default trace state is OFF. Note that if Trace(Start) is specified, trace accumulation begins/

continues but trace information is not output until one or more output destinations (that is, PAGE, FILE,
TAG, EXCHFILES) are specified.

• The trace mode is part of the session and is sticky. This means that the trace setting persists in the
session until it is changed by either another trace tag or a query parameter (if enabled). So if you have
more than one page in your application, the trace tag is required only on your initial page.

• Only .srf files may be traced. If you follow a link to an .htm or .asp page, those pages will not be
traced. If those pages link back to a .srf file in this application's virtual directory, then tracing will once
again resume as long as the session is still active.

• Be cautious when enabling tracing in a way that exposes the trace information to site visitors. Trace
information will reveal some information about your system that may be useful to intruders. The
QUERYPARAM is configurable to help secure your web by allowing tracing to be turned on and off using a
keyword that is not easily guessed by intruders.

Examples
{{ trace(page, file, notag, dir=bistrace, ip=127.0.0.1) }}

This Trace tag directs that trace output will be appended to every HTML page, and will also be written to
the trace file in a directory named bistrace-note that, on Windows, this directory is relative to the
Windows temporary directory, and must exist. The notag option causes TraceDump tags in the stencil file
to be ignored and page trace output is only performed if the request originates on the server running BIS
via the localhost alias (always 127.0.0.1).

Note that specifying 127.0.0.1 (or any IPv4 loopback address) also enables tracing from ::1 (the IPv6
loopback address), and vice-versa.

The Trace Query Parameter
If the QUERYPARAM option was specified in the Trace tag, it defines a query parameter that may be
specified on the URL of a request by the client. If that query parameter is present, then its value will be
parsed for trace options to use to configure the tracing. These options are, as with those specified by the
Trace tag itself, persistent and will stay with the session until it completes, or a Trace tag or a trace query
parameter alters it further.

For example, if the .srf contains the following tag:

{{ trace (QueryParam=ClientQuery) }}

Tracing will not occur for normal requests. However, the following request is made:

http://localhost/acubis10/samples/verify?ClientQuery=page

36 | Xcentrisity Business Information Server for extend User's Guide

Page tracing will be turned on for the session, and tracing will be appended to the output for every
subsequent request. See The BIS_TRACE_SUFFIX Environment Variable for another example.

Trace options set using the trace query parameter have the highest priority. Note that, for security, the
query parameter cannot be used to set or clear IP restrictions or set the trace output directory.

The BIS_TRACE_SUFFIX Environment Variable
On BIS/IIS, the BIS_TRACE_SUFFIX environment variable and, on BIS/Apache, the BISTraceSuffix
configuration parameter allows trace parameters to be injected into every trace statement. While this
requires administrative access to the web server, this is useful for globally providing specific clients access
to trace information.

For example, if your trace statements look like this:

{{ trace(page, noip) }}

and you wish to view trace data from the machine at 192.168.3.54, and control such tracing with the
MySecretTrace query parameter, place this into the server environment:

BIS_TRACE_SUFFIX=ip=192.168.3.54,queryparam=MySecretTrace

• This will effectively append these parameters to every Trace tag executed on the server without
requiring the actual .srf file to be edited. Note that the .srf files must contain a Trace tag for this
feature to take effect.

• See Setting Environment Variables for information about setting and modifying environment variables
on Windows. See Configuring Apache for information about setting Apache configuration parameters.

The {{TraceDump}} Tag
This tag directs BIS to output the contents of the trace buffer.

TraceDump

Notes
• This tag is ignored (that is, removed from the output) if tracing is not being performed.
• Because trace information is accumulated as the page is rendered, it is most useful for the TraceDump

tag to be specified near the end of the page.
• If this tag is omitted and page tracing is enabled, BIS/IIS appends trace output to the end of the

response (that is, after the </html> tag).

The {{Debug}} Tag

This tag enables or disables service engine debugging for the current session.

The Debug tag performs the following functions:

• Determines if debugging will be enabled or disabled
• Optionally specifies the addresses of the clients that are allowed to debug this session.

The syntax of the Debug tag:

{{Debug (option [,option]...}}

Options

ON Enables service program debugging in this session.

Xcentrisity Business Information Server for extend User's Guide | 37

ON allows service programs that are subsequently
created in the current session to be debugged.

OFF Disables service program debugging in this session.

OFF prevents service programs created in this session
from being debugged and clears the list of ID strings and
IP restrictions.

TYPE TYPE describes the type of debugging to invoke. This is
an optional parameter. The default is the default for the
runtime. For ACUCOBOL-GT, the valid values are
xterm, term, and acuthin.

Values are case insensitive.

TYPEPARAM TYPEPARAM describes a parameter to be passed to the
debugger when it is initiated. This optional parameter
usually indicates the external source that will control the
debugger.

For ACUCOBOL-GT, when TYPE is xterm,
TYPEPARAM contains the xservername:displaynumber
of the xterm or set to NULL to allow the xterm to use the
default display DISPLAY environment variable.

When TYPE is term, TYPEPARAM contains tty device on
which to send and receive commands.

When TYPE is acuthin, TYPEPARAM contains
client where client is the name of the machine on
which acuthin is executing and port is the port number
on which it is listening.

QUERYPARAM

QP

QUERYPARAM and QP are synonymous and contains the
name of a query parameter that can be used to
dynamically specify debug parameters. Debug options set
with QUERYPARAM will override those set in the DEBUG
tag. However, for security reasons, the query parameter
can only be used to turn debugging on and off.

IP=n.n.n.n [-n.n.n.n]

IP=n.n.n.n /n

IP=ipv6 [- ipv6]

IP=ANY|ALL

Restriction: This option is not currently supported
in BIS/IIS for extend, but there is an alternative
method detailed below.

Allows debugging to be restricted to requests originating
from one or more IP address. If an IP address restriction
is in effect, debug requests will only be accepted from
clients that have IP addresses assigned within the
restricted range. A space-separated list of IP addresses
or ranges may be specified. The list of IP restrictors is
processed from left to right.

If ANY or ALL is specified, requests from any IP may be
debugged.

Note that specifying either 127.0.0.1 or ::1 will allow
access from a web browser running on the host's
console. In this case, access the pages using localhost,
127.0.0.1, or [::1] as the name of the host.

38 | Xcentrisity Business Information Server for extend User's Guide

If the OFF action (above) is specified, the IP restriction
list is cleared (same as IP=ANY), but any IP restrictions
specified in the same or later tags will be processed and
stored.

If either an IPv4 or IPv6 loopback address is specified
(that is, 127.*.*.* or ::1), the setting applies to both IPv4
and IPv6 loopback addresses.

NOIP Same as IP=ANY.

Notes:

While IP address restrictions are not currently supported in BIS/IIS for extend, it is possible to enable the
{{Debug}} tag itself only for specific computers. For example, this block in the .srf file:

{{ if Value(REMOTE_ADDR, SERVER, TOLOWER,MATCH="^192.168.3.54$") }}
{{ Debug(On, Type=Acuthin,TypeParam=DebugHostMachine:5632) }}{{//}}
 {{ EndIf }}

Processes the {{Debug}} tag only for requests from 192.168.3.54. To restrict requests to localhost,
specify 127.0.0.1 or ::1.

IIS Debugging Notes
• To enable debugging and clear all IDs and IP restrictions that may have been previously set for the

current session, specify {{ Debug(OFF,ON) }}.
• When a service is started and the debugging is enabled, the debugger will start running on the host

machine's console. For this reason, it is desirable to restrict debugging to local host.
• The Debug tag is always removed from the rendered page. If this is the last tag on the line, a newline is

output unless this tag is immediately followed by a comment tag. See the Notes section of Comment
Tags.

• The Debug tag is ignored unless debugging is enabled in the BIS web server's configuration.

Tip: To configure debugging for all pages, place the list of authorized users and IPs into the
web.config file and add this tag to all of your .srf files:

{{ Debug(ON,ID={%DEBUG_USERS, CONFIG%},IP={%DEBUG_IPS,CONFIG%}) }}
{{ StartService(MAINPROGRAM) }}
{{ Debug(OFF) }}

Then, create or edit the web.config file in the directory containing the .srf file (or any parent) and
add the variables below:

<app.config>
 <configuration>
 ...
 <configSections>
 <sectionGroup name="BIS">
 <sectionGroup name="Config">
 <section name="Variables"
 type="System.Configuration.NameValueSectionHandler,System"/>
 </sectionGroup>
 </sectionGroup>
 </configSections>
 ...
 <BIS>
 <PreRender>
 <add tag=”Debug(ON,ID=Users,IP=ANY” />
 </PreRender>
 <Config>
 <Variables>

Xcentrisity Business Information Server for extend User's Guide | 39

 <add key="DEBUG_USERS" value="[spaced-list]"/>
 <add key="DEBUG_IPS" value="[spaced-list]"/>
 ...
 </Variables>
 </Config>
 </BIS>
 ...
 </configuration>
</app.config>

• Debug tags are processed in the order that they are encountered during rendering. This means that, in
this example:

{{ Debug(ON, IP=127.0.0.1) }}
{{ Debug(OFF) }}
{{ StartService(MAINPROGRAM) }}

Debugging of MAINPROGRAM will be disabled. However, in this case:

{{ Debug(ON, IP=127.0.0.1) }}
{{ StartService(MAINPROGRAM) }}
{{ Debug(OFF) }}

Debugging of MAINPROGRAM will be. Subsequent programs will not be debugged unless an intervening
{{ Debug(ON) }} is rendered and a new ID and optional IP restriction is set.

Debugging on Windows
Perform the following steps to debug with acuthin:

1. On your Windows machine, navigate to the cobolgt\Debug\Win32\bin directory, and execute the
following command:

acuthin --wait --port 6000 --restart

Where 6000 is the port number it is listening on.
2. On your UNIX machine, in the SRF, create a tag that looks like this:

{{ Debug(On, type=acuthin,
typeparam=my-client.microfocus.com:6000)
}}{{//}}

Where my-client.microfocus.com is the name of the client machine on which acuthin is listening and
6000 is the port number that it is listening on.

When the service program starts, the debugger will appear on your Windows machine. Note that the
request handler will only wait so long before it decides that the service will not take a request, so get to the
B$ReadRequest as soon as possible.

Debugging on UNIX
Perform these steps to debug with xterm:

1. Run your machine in X11 mode. Log into the X11 desktop and set the TYPEPARAM to be set to the
DISPLAY parameter for the desktop, which is usually :0.0.

2. Authorize the user ID that the service engine is running on, which will enable you to start a process that
connects an X server. In a terminal window on the X session issue this command:

xauth list $DISPLAY

You should get output like this:

xauth add tex-mikes-centos54/unix:0
MIT-MAGIC-COOKIE-1
5a823d65948333914f4bcc795cd283de

40 | Xcentrisity Business Information Server for extend User's Guide

3. Using a terminal emulator, log in to the account that the service engine will be running under. This will
probably be root, not the UserName in /etc/xbis.conf. Then enter the command:

xauth add tex-mikes-centos54/unix:0 MIT-
MAGIC-COOKIE-1
5a823d65948333914f4bcc795cd283de

4. Copy the underlined parts from the xauth list to the xauth add.

Control Flow Tags
Control flow tags determine how Business Information Server processes a particular server response
(.srf) file. These tags are similar to the "C" #if/#else/#endif and #include preprocessor macros.

There are two control flow tags:

• If/Else/Endif that may be used to prevent a section of the file from being rendered.
• While/ EndWhile that may be used to repeat a section of HTML code.
• An Include tag that can be used to embed one stencil or into another.

The {{If}} / {{Else}} / {{EndIf}} Tags
These tags can be used to conditionally prevent sections of the stencil file from being rendered.

{{ if Value(parameters) }}
 if-content
{{ else }}
 else-content
{{ endif }}

Notes
• The Value parameters list has the same syntax as the parameters list for the Value tag: see The

{{Value}} Tag. However, note that the parameters list must result in a TRUE/FALSE result, and must
therefore contain a MATCH operation.

• The definition of content includes both HTML/XML and replacement tags.
• Any HTML/XML code in a skipped section is ignored and is not transmitted to the user agent. Server

response file tags in a skipped section are ignored and are not evaluated.
• No special flow layout is implied by this tag: the If, Else, and EndIf tags can be on one line, or can

span multiple lines.
• Blocks may be nested but must be completely nested. It is not permissible to place a While tag in an

If block and have the EndWhile tag in a different block.
• To render on an inverted condition, just omit the if-content: {{ if tag }}{{ else }} content

{{ endif }}.
• If the If / Else / EndIf tag is the last tag on a line, a newline will be added. If this tag is the only tag

on the line, a blank line will be output. To avoid this, place a comment tag at the end of the line. For
example, {{ EndIf }}{{//}}.

The {{While}} / {{EndWhile}} Tags
This tag can be used to omit or duplicate a section of HTML code.

{{ while Value(parameters) }}
 content
{{ endwhile }}

Xcentrisity Business Information Server for extend User's Guide | 41

Notes
• The Value parameters list has the same syntax as the parameters list for the Value tag: see The

{{Value}} Tag. However, note that the parameters list must result in a TRUE/FALSE result, and must
therefore contain a MATCH operation.

• The definition of content includes both HTML/XML and replacement tags.
• No special flow layout is implied by this tag: the While and EndWhile tags can be on one line, or can

span multiple lines. These blocks can also be nested.
• A While block must be completely enclosed within another While block, or the true or false section of

an If block. It is not permissible to use an If block to conditionally render an EndWhile tag unless the
While tag is in the same block.

• If the While / EndWhile tag is the last tag on a line, a newline will be added. If this tag is the only tag
on the line, a blank line will be output. To avoid this, place a comment tag at the end of the line. For
example, {{ EndWhile }}{{//}}.

The {{ Include }} Tag
This tag is replaced by the contents of the specified file.

include filepath

Where filepath is the path to a target file whose contents, when rendered, will replace the include
tag. You may specify an absolute path or a path relative to the physical location of the .srf file that
contains the Include tag.

If the target file is a server response file, and contains a handler tag, the target file is independently
processed (rendered) in its own context, and this is recursively repeated for any tags in the target file.
When rendering is complete, the rendered output replaces the Include tag.

If the target server response file does not contain a Handler tag, it is treated as a text file and replaces
the Include tag without further processing. Any unresolved tags will not be processed, but will remain in
the final response

Notes
• Relative pathnames in filepath are interpreted as relative to the location of the .srf file that

contains the include tag. This is also true for any additional nested Include tags: the path is always
relative to the server response file that is being processed.

• If an included .srf file contains a StartService tag, the service program's working directory is the
directory that contains the .srf file that rendered the tag.

• The included file does not need to be a .srf file. For example, an .html file, a .css (cascading style
sheet) file, or a .js (JavaScript) file can also be included, and in this case, the Include tag is simply
replaced by the content of the specified file.

• On BIS/IIS, an include tag can appear anywhere in a .srf file-even before the handler tag.
• If an Include tag is the last tag on a line, it will be followed by a newline unless immediately followed

by a comment tag.

{{//}} Comment Tags
This tag is ignored and is simply removed from the output. Comment tags differ from HTML comments,
which remain in the output and can be viewed with the browser's View > Source command.

There are two ways to specify a BIS comment:

{{ // comment }}
{{ !-- comment }}

42 | Xcentrisity Business Information Server for extend User's Guide

Notes
• A comment tag can appear anywhere in a server response file-even before the Handler tag.
• If a comment tag is immediately followed by the end-of-line character, the newline character is removed

with the comment tag. This is useful when placing tags into a file where white space is significant. For
example, a server response file could be coded like this:

{{//There must be no whitespace rendered before the exchange tag, }}
{{// hence the newline-eating comment tags }}
{{ Handler * }}
{{ Trace(start,queryparam=trace,ip=127.0.0.1) }}
{{ SetEnv(A_CONFIG=../common/cblconfig.txt) }}
{{ ServiceLibs(xmlif) }}

{{ StartService(webappsample2.acu) }}
{{ XMLExchange(OnExit="gotit.srf") }}

Here, the Handler, Trace, SetEnv, ServiceLibs, and StartService tags are completely
removed from the output, while the XMLExchange tag is replaced by the XML produced by the COBOL
program. However, the new line character that follows each of these tags would remain in the output,
resulting in four blank lines before the start of the XML produced by the XMLExchange tag.

To avoid this in this sample, the non-comment Handler, SetEnv, ServiceLibs, and StartService
tags are followed by empty comments, which suppress the newline characters. The XMLExchange tag
is not followed by a newline-consuming comment because a newline is desirable before the end of the
file and, in this case, the emitted XML does not contain any newline characters.

{{//There must be no whitespace rendered before the exchange tag, }}
{{// hence the newline-eating comment tags }}
{{ Handler * }}{{//}}
{{ Trace(start,queryparam=trace,ip=127.0.0.1) }}{{//}}
{{ SetEnv(A_CONFIG=../common/cblconfig.txt) }}{{//}}
{{ ServiceLibs(xmlif) }}{{//}}

{{ StartService(webappsample2.acu) }}{{//}}
{{ XMLExchange(OnExit="gotit.srf") }}

Here, the comment tags and the Handler, Trace, SetEnv, ServiceLibs, and StartService tags
are completely removed from the output, while the XMLExchange tag is replaced by the XML produced
by the COBOL program.

Service Programs

Introduction
The Service Engine is the BIS component that starts and runs service programs in response to requests.
Currently, all BIS service programs are COBOL programs.

The Service Engine is started when a BIS StartService tag is rendered, and runs asynchronously from
the BIS web components. BIS and the Service Engine synchronize when:

1. BIS renders an XMLExchange tag, and
2. The Service Engine calls B_ReadRequest.

The simplified flow of control is depicted below.

Xcentrisity Business Information Server for extend User's Guide | 43

The BIS Request Handler and the BIS Service Engine synchronize when the Request Handler renders an
XMLExchange tag and the Service Engine calls B_ReadRequest. Ideally, the Service Engine will be
waiting at a synchronization point when the BIS Request Handler is ready to provide a request. To avoid
deadlocks, once BIS begins to process the XMLExchange tag:

• The service program must call the B_ReadRequest function within ServiceTimeout seconds.
• Alternatively, the program may request additional time by calling B_SetServiceTimeout using 0 to

reset the timer.

Once the Service Engine has accepted the request, it is granted a new ServiceTimeout interval to read
the XML request, compute the response, write the XML response, and call B_WriteResponse.
Alternatively, the service program can terminate, which causes the BIS Request Handler to redirect if an
OnExit parameter was specified in the XMLExchange tag. If the response cannot be provided within this
interval, the service program must request more time as described above.

When the BIS Request Handler receives the response, it is placed into the page output stream and
processing continues. At this point, the Service Engine may:

• Wait for the next request for the current session by calling B_ReadRequest.
• Terminate (for example, with GOBACK.)

If the service program does neither of these, but instead keeps running, the Service Engine eventually
terminates it with a Service Timeout.

44 | Xcentrisity Business Information Server for extend User's Guide

Service Program Lifetime
A service program is started when BIS processes a StartService tag on a .srf page. A service
program is considered to be finished when:

• The program terminates by executing a GOBACK (or equivalent).
• The program responds to a request by calling B_WriteResponse with an end program or end

program and session disposition parameter (described in detail in BIS Return Codes).
• A StopService tag is rendered. The service program is disconnected from the session, so a

subsequent StartService can be processed on the same page.
• A SessionComplete tag is rendered. The service program and session both end when the page is

complete. Note that a StopService can also be specified if the service program must stop
immediately.

• The number of seconds specified in the InactivityTimeout pass without a request. Both the
service program and the session are terminated.

• An XMLExchange tag is rendered and the number of seconds specified in the ServiceTimeout
interval pass without a response from the service program. If a service program needs a longer amount
of time to complete processing, it should lengthen the ServiceTimeout interval by calling
B_SetServiceTimeout(), or call this function with a parameter of zero to reset the timer.

The following general rules apply to service programs:

• A given BIS session may have only one active service program at any time.
• When a service program enters the termination state, it is immediately disconnected from the session

but is given 30 seconds to clean up and perform a GOBACK. If the program is still running when the timer
expires, BIS requests that the program stop at the next statement boundary and the service program is
granted another 30 seconds to terminate. If, at the end of the allotted time the program has still not
terminated, the process is forcibly terminated and unloaded from memory.

A new service program may be started as soon as the current service program is disconnected from the
session. In other words, {{StopService}} {{StartService(…)}} is allowed.

ACCEPT and DISPLAY Statements
DISPLAY UPON SYSERR statements are allowed in service programs and the data that would normally
display on the console is instead placed into the BIS trace output. This is a useful way to debug the service
program but this technique cannot be used to communicate with clients.

Because the service program does not have access to the console or the Windows desktop, the behavior
of ACCEPT and DISPLAYS that involve screen or terminal I/O is undefined and must be avoided.

Windows Message Boxes and Dialog Boxes
Because the service program does not have access to the Windows desktop, it is not appropriate to display
a message box or a dialog box. If the service program did attempt to interact with the user in this way, it will
suspend waiting for a response that cannot ever come. To avoid this problem, BIS detects that the service
program is attempting to create a dialog or message box and denies the request.

The XML Exchange File
The Service Engine is started with a special parameter that specifies the name of the file that will be used
for all XML exchange operations. The BIS Request Handler takes the current request, encodes it using
XML, and places the request into this file when the service program calls B_ReadRequest. If desired, the
B_ReadRequest can also pass the XML Exchange information strictly via memory.

Important: The file is not created until B_ReadRequest is called.

Xcentrisity Business Information Server for extend User's Guide | 45

BIS places the fully qualified name of this file into the BIS_FILENAME environment variable when the
Service Engine is started. The filename, therefore, is accessible to the COBOL program via the C$GetEnv
function:

01 BIS-Exchange-File-Info.
 05 BIS-Exchange-File-Result PIC 9 BINARY.
 05 BIS-Exchange-File-Name.
 10 FILLER PIC X OCCURS 200 TIMES.

CALL "C$GetEnv" USING "BIS_FILENAME",
 BIS-Exchange-File-Name,
 BIS-Exchange-File-Result.

On BIS/IIS, the value of this variable is the fully qualified pathname of the file and the filename has this
form:

XMLExchange-hhhhhhhh-hhhh-hhhh-hhhh-hhhhhhhhhhhh.xml

The file is created in the Windows TEMP directory. The h characters are replaced by hexadecimal digits,
and the name is guaranteed to be globally unique.

On BIS/Apache, the value of this variable is the fully qualified pathname of the file and has this form:

bisiiiiiiiiiiiiiiiiiiiiii-ssss.xml

The file is created in the directory indicated by the Service Engine's TempDir configuration keyword. The i
characters are replaced by the session's identifier and the s characters are replaced by a decimal number
representing the number of the service within the session.

Notes
• You do not provide this environment variable. BIS sets the environment variable when a service

program is started and creates the file when B_ReadRequest is called.
• A separate file is created for each service program, and the same file is used by

• B_ReadRequest to receive requests from BIS.
• B_WriteResponse to transmit responses to BIS.

• While the filename is already known when the service engine is started, the file itself is not created until
B_ReadRequest is called for the first time by the service program.

BIS Return Codes
Here are the return codes for the B_ functions. These codes are defined in the bisdef.cpy COPY file
provided in the samples/common directory. Note that the severity of an error condition increases with the
value of the return code

00-09 Success! For B_ReadRequest, the request data is
available in the XML exchange file. For
B_WriteResponse, the response was accepted by
the Request Handler.

• 00 - BIS-Success: The data transfer succeeded
and the XML file contains the result of the operation.

10-19 A non-fatal event occurred, and recovery is possible.
While no such conditions currently exist, these codes are
reserved for future use.

20-29 A failure occurred but the program should be able to
recover. The states of the service program and request
handler have not been affected by this operation.

46 | Xcentrisity Business Information Server for extend User's Guide

• 20 - BIS-Warn-RequestTimeExpired: A
timeout parameter was specified on the
B_ReadRequest call and the timeout expired. To
avoid a potential race condition, the service program
should not terminate when this occurs-instead, it can
do some work and then reissue the request.

• 21 -BIS-Warn-RequestOutstanding: A
request has already been received by
B_ReadRequest and the service program has not
responded.

This code is only returned by BIS/Apache; BIS/IIS
recreates the exchange file and returns

BIS_Success each time that B_ReadRequest is
called for the same request.

• 22 - BIS-Warn-ResponseUnexpected: The
service program called B_WriteResponse without
a pending request.

• 23 - BIS-Warn-CallNotImplemented: A
function was called that is not implemented in this
version of BIS.

30-49 A failure occurred. The service program may attempt to
recover, correct the problem and retry the operation. The
state of the service program and request handler have
not been affected by this operation.

• 30 -BIS-Fail-FileOpen: BIS could not open
the XML Exchange file.

• 31 - BIS-Fail-FileRead: BIS could not read
the XML Exchange file.

• 32 - BIS-Fail-FileWrite:

• 33 - BIS-Fail-FileClose: BIS could not
close the XML Exchange file.

• 34 - BIS-Fail-FileSize: The XML Exchange
file size is too large to load into memory.

• 39 - BIS-Fail-FileTraceFileIO: BIS
could not open or write the trace file.

• 49 - BIS-Fail-FileFormat: The XML
Exchange file format is invalid.

50-79 A failure or possible planned session/service expiration
event occurred and the program cannot continue. The
XML exchange file was not updated and the program
should terminate as soon as possible or BIS will
terminate the program after the service timeout interval
expires.

• 50 - BIS-Fail-SessionAbandoned: The
session timed out.

• 51 - BIS-Fail-SessionComplete: The user
logged out or ended the session. Note that this does
not necessarily indicate a failure-a
SessionComplete tag may have been processed.

• 52 - BIS-Fail-ServiceComplete: The user
logged out or ended the session. Note that this does
not necessarily indicate a failure-a StopService
tag may have been processed.

Xcentrisity Business Information Server for extend User's Guide | 47

80-99 A serious error occurred. The XML exchange file was not
updated and the program must terminate as soon as
possible or BIS will terminate the program after the
service timeout interval expires.

• 80 - BIS-Fail-ServerUnavailable: The
service program is not running in the BIS server
environment.

• 81 - BIS-Fail-ServerUnspecified: An
unspecified error occurred while the service program
was communicating with the BIS Request Handler.

• 88 - BIS-Fail-ServerInternalError: An
internal error occurred while the service program was
communicating with the BIS Request Handler.

• 89 - BIS-Fail-
ServerMemoryManagement: A memory
management failure occurred in the BIS service
program.

• 90 - BIS-Fail-ServerBadMessage: An
internal error occurred while the service program was
communicating with the BIS Request Handler.

• 91 - BIS-Fail-ServerBadLength: An
internal error occurred while the service program was
communicating with the BIS Request Handler.

• 92 - BIS-Fail-ServerBadParameter: An
internal error occurred while the service program was
communicating with the BIS Request Handler.

• 93 - BIS-Fail-ServerWrongMsg: An
internal error occurred while the service program was
communicating with the BIS Request Handler.

• 99 - BIS-Fail-ServerConnectionLost:
The connection between the BIS service program and
the BIS Request Handler failed.

Service Program Functions
The following COBOL-callable functions may be used in BIS service programs to communicate with BIS.
They are detailed in the following sections.

B_ReadRequest
Note: For backward compatibility with products earlier than extend 10, use the B$ prefix to call the
function, instead of B_. From extend 10 onwards, B$ is deprecated.

This function call retrieves the current BIS request for processing by the service program. The syntax of
this function call is:

Call "B_ReadRequest" [using TimeoutInSeconds] giving BIS-Status.

When this function is called, execution of the service program is suspended until one of the following
events occurs:

Event Action

The BIS Request Handler renders an XMLExchange
tag for the current session

This tag causes the current request data to be encoded
into XML and placed into the file specified by the
BIS_FILENAME environment variable.

48 | Xcentrisity Business Information Server for extend User's Guide

Event Action

The BIS Request Handler renders a StopService or
SessionComplete tag for the current session

This indicates that the service is no longer required. The
service program should terminate and is granted
[ServiceTimeout] seconds to do so.

The optional TimeoutInSeconds parameter expires This timeout allows the BIS service program to regain
control and perform some work. When complete, the
program should call B_ReadRequest again.

The InactivityTimeout period expires This indicates that the end user has abandoned the
session. The service program should terminate and is
granted 30 seconds to do so.

The most common result codes are as follows (see BIS Return Codes for a complete table):

BIS-Status Code Event Description

BIS-Success A valid request was received.

BIS-Warn-RequestTimeExpired The TimeoutInSeconds parameter was specified
and no request was received before the time elapsed.

BIS-Warn-RequestOutstanding A request is outstanding. The service program must write
a response before another request can be received.

This code is only returned by BIS/Apache; BIS/IIS
recreates the exchange file and returns BIS_Success
each time that B_ReadRequest is called for the same
request.

BIS-Fail-SessionAbandoned Service termination is being requested because the BIS
session inactivity time has elapsed without a request.

BIS-Fail-SessionComplete Service termination is being requested because a
StopService tag was rendered.

BIS-Fail-ServiceComplete Service termination is being requested because a
SessionComplete tag was rendered.

(These values are defined in file bisdef.cpy). Other codes may also be returned; see BIS Return Codes

When execution resumes and the result code is BIS-Success, the file specified by the BIS_FILENAME
environment variable contains the request in XML format. The exact format of the request is described in
Appendix B, XML Exchange Request File Format.

Notes

• The BIS Service Engine starts the service timer when this function returns. The program is then given
ServiceTimeout seconds to process the request and perform one of these actions:

• Call B_WriteResponse
• Call B_SetServiceTimeout. In particular, a value of 0 resets the timer and starts another

ServiceTimeout interval.
• Terminate the program.

If the service program processes for more than the ServiceTimeout interval without performing one of
the above functions, the BIS Service Engine assumes the service program is lost and begins
termination processing (as if a StopService tag had been rendered).

• If specifying the optional TimeoutInSeconds parameter and a request does not arrive within the
specified amount of time, the function returns a BIS-Warn-RequestTimeExpired status code. The
program can then perform some processing and either exit or reissue the B_ReadRequest.

Xcentrisity Business Information Server for extend User's Guide | 49

Specifying a timeout value

of 0 causes this function to return immediately unless a request is waiting. The routine use of a timeout
value of 0 to poll for requests is strongly discouraged as it may significantly impact server performance.

• If TimeoutInSeconds is not specified, this function does not return until one of the other termination
events occur (that is, the default timeout is infinite).

B_WriteResponse
Note: For backward compatibility with products earlier than extend 10, use the B$ prefix to call the
function, instead of B_. From extend 10 onwards, B$ is deprecated.

This function call transmits a response to the BIS Request Handler to be inserted into the output stream,
replacing the XMLExchange tag in the output stream. The response must be written into the request file
(specified by the BIS_FILENAME environment variable) before B_WriteResponse is called unless
session or service termination is being requested-in this case, the response is optional (see below).

The response file typically contains an requested HTML or XML that is inserted into the .srf file. It may
also contain a SOAP result or anything else that is meaningful to the client program that issued the
request.

The syntax of this function call is:

Call "B_WriteResponse"
 [using ProgramDisposition]
 giving BIS-Status.

If this is the final call to B_WriteResponse by this service, the optional ProgramDisposition
parameter may be used to indicate that the service program is finished, if the session should be destroyed,
and if there is a payload that should be rendered into the response. Here are the values:

 78 BIS-Response-Normal Value 0. *> Default normal response
 78 BIS-Response-ServiceComplete Value 1. *> End program only
 78 BIS-Response-SessionComplete Value 2. *> End program and session
*78*BIS-Response-RecycleService Value 3. *> RESERVED FOR FUTURE USE

The ProgramDisposition codes descriptions are as follows:

BIS-Status Code Event Description

BIS-Response-Normal The default is that BIS makes no assumptions about what
the service program will do next. However, the service
program is granted only 30 seconds to exit or to read the
next request.

This response always requires a valid XML exchange file.
If the file has not been updated with a response, or has
been deleted, this function will return BIS-Fail-
FileNotChanged.

BIS-Response-ServiceComplete BIS assumes that the service has completed processing
and longer needs to interact with the session.

• If the XML exchange file has been updated since the
last call to B_ReadRequest, BIS writes the
response into the output and does not redirect to the
OnExit parameter of the XMLExchange tag.

• If the XML response file has not been updated or has
been deleted, and there is an OnExit parameter in
the XMLExchange tag, BIS redirects to the specified
page.

• If the XML response file has not been updated or has
been deleted and there is no OnExit parameter in

50 | Xcentrisity Business Information Server for extend User's Guide

BIS-Status Code Event Description

the XMLExchange tag, BIS writes nothing, but
removes the XMLExchange tag from the output.

In all cases, the service program disconnects from the
session and has 30 seconds to run to completion in the
background. If the service program subsequently calls
B_ReadRequest it receives a BIS-Fail-
ServiceComplete error status.

The session is not destroyed by this response, and if a
StartService tag is executed before the session
expires, the new service program runs under the current
session. The session can be terminated if the page
requested by OnExit is a stencil and contains a
SessionComplete tag.

This disposition option is logically the same as processing
a StopService tag in the requesting stencil or in the
XML response.

BIS-Response-ServiceComplete-NoPayload Same as BIS-Response-ServiceComplete (see
above), except the XML exchange response file is always
ignored.

• If there is an OnExit parameter in the
XMLExchange tag, BIS redirects to the specified
page.

• If there is no OnExit parameter in the
XMLExchange tag, BIS renders nothing and
removes the XMLExchange tag from the output.

BIS-Response-SessionComplete BIS assumes that the both the service complete and no
longer complete and no longer needed.

• If the XML exchange file has been updated since the
last call to B_ReadRequest, BIS writes the
response to the output and does not redirect to the
OnExit parameter of the XMLExchange tag.

• If the XML response file has not been updated or has
been deleted, and there is an OnExit parameter in
the XMLExchange tag, BIS redirects to the specified
page.

• If the XML response file has not been updated or has
been deleted and there is no OnExit parameter in
the XMLExchange tag, BIS writes nothing and
removes the XMLExchange tag from the output.

In all cases, the service program and the session are
both disconnected (becoming inaccessible to subsequent
requests) and the service program disconnects from the
session and has 30 seconds to run to completion in the
background.. If the service program subsequently calls
B_ReadRequest it receives a BIS-Fail-
SessionComplete error status.

Once the service program terminates, the session is
destroyed. If another request is received, a new session
is created to process the request.

Xcentrisity Business Information Server for extend User's Guide | 51

BIS-Status Code Event Description

This is logically the same as processing a
SessionComplete tag in the requesting stencil or in
the XML response.

BIS-Response-SessionComplete-NoPayload Same as BIS-Response-SessionComplete (see
above), except the XML exchange response file is always
ignored.

1. If there is an OnExit parameter in the
XMLExchange tag, BIS will redirect to the specified
page.

2. If there is no OnExit parameter in the
XMLExchange tag, BIS writes nothing and removes
the XMLExchange tag from the output.

BIS-Response-RecycleService

BIS-Response-RecycleService-NoPayload

Reserved for future use.

The BIS-Status result field and the result codes are defined in bisdef.cpy. Here are the most common
return codes:

BIS-Status Code Event Description

BIS-Success The BIS Request Handler accepted the response. This
does not mean that it was delivered to the user agent.
However, the service program should presume success
and resume processing.

BIS-Warn-ResponseUnexpected There is no pending request to respond to.

BIS-Fail-FileNotChanged The XML exchange file was not written and still contains
the request. Note that this code is only returned for the
BIS-Response-Normal disposition code, as the
exchange file need not be updated if the service or
session are terminating.

Notes

• Unlike B_ReadRequest, this call returns as soon the BIS Request Handler accepts the output file. This
function call does not block waiting for a response from BIS.

• After writing a response, the service program will normally either call B_ReadRequest or terminate.
• The BIS Service Engine starts the service timer when this function returns. The program has 30

seconds to perform one of these actions:

• Call B_ReadRequest.
• Call B_SetServiceTimeout. A parameter of 0 restarts the service timer.
• Terminate.

If the service program processes for more than 30 seconds without performing one of the above
functions, the BIS Service Engine assumes the service program is lost and begins termination
processing (as if a StopService tag had been rendered).

• Other codes may also be returned, but that normally indicates a serious problem has occurred.
• By default, the response is sent back to the client with the HTTP status of OK, which is the value 200.

However, the function B_SetResponseStatus may be used to alter the HTTP status returned.

52 | Xcentrisity Business Information Server for extend User's Guide

B_SetInactivityTimeout
Note: For backward compatibility with products earlier than extend 10, use the B$ prefix to call the
function, instead of B_. From extend 10 onwards, B$ is deprecated.

This function allows the service program to control the length of time that BIS waits for a request before
considering a session to be abandoned.

A timer is started in a session when each request is processed for that session. If a new request is not
received before the timer elapses, any active services in that session are terminated and the session is
terminated.

If a request is subsequently received for a terminated session, BIS creates a new session.

The syntax of this function call is:

Call "B_SetInactivityTimeout" using TimeoutInSeconds giving BIS-Status.

where TimeoutInSeconds may be:

• The actual number of seconds this session waits for a new request. Valid values range from 10 to 3600
seconds. All values out of this range other than 0 are treated as if -1 was specified.

• 0 to restart the inactivity timer without changing the number of seconds allowed between requests.
• -1 to reset the timeout value to the default value of 600 seconds or 10 minutes.

The BIS-Status result field and the result codes are defined in BISDEF.CPY. Here are the most common
return codes:

Event Description

BIS-Success The call is successful.

BIS-Fail-SessionAbandoned Service termination is already being requested because
the BIS session inactivity timeout period has elapsed
without a request. This function call has no effect.

BIS-Fail-SessionComplete Service termination is requested because a
SessionComplete tag was rendered. This function
call had no effect.

BIS-Fail-ServiceComplete Service termination is requested because a
StopService tag was rendered. This function call had
no effect.

Notes

• The default inactivity timeout period is 600 seconds (10 minutes). Session Inactivity Timeout describes
how to change the default for all BIS sessions on this server.

• The inactivity timeout can also be set in a .srf file with the SessionParms tag.
• All calls to this function restart the timer. Specify 0 to restart the timer without changing the value

currently in effect.
• BIS/IIS defers processing this function until an XMLExchange tag is processed. The main implication of

this restriction is that if the client starts the program and then browses pages that do not include an
XMLExchange tag while the program calls B_SetInactivityTimeout() followed by
B_ReadRequest(), the updated inactivity timeout interval does not take effect until an XMLExchange
tag is processed. This is an unlikely scenario because there is no reason to start a service program if
an XMLExchange tag is not imminent.

Xcentrisity Business Information Server for extend User's Guide | 53

B_SetServiceTimeout
Note: For backward compatibility with products earlier than extend 10, use the B$ prefix to call the
function, instead of B_. From extend 10 onwards, B$ is deprecated.

This function allows the service program to control the length of time that the service program is permitted
to run without interacting with BIS.

The service timer is reset when:

• The service program is started.
• The service program calls any B_ function.

If the timer elapses, the service program is terminated. The default service timeout interval is 30 seconds.

The syntax of this function call is:

Call "B_SetServiceTimeout" using TimeoutInSeconds giving BIS-Status.

where TimeoutInSeconds may be:

• The actual number of seconds allowed between calls to BIS B_ functions. Note that the value may
range from 10 to 3600 seconds (1 hour). All values out of this range other than 0 are treated as if -1
was specified.

• 0 to restart the service timer without changing the number of seconds allowed between calls to B_
functions.

• -1 to reset the timeout value to the default value of 30 seconds.

The BIS-Status result field and the result codes are defined in BISDEF.CPY. Here are the most common
return codes:

BIS-Status Code Event Description

BIS-Success The call was successful.

BIS-Fail-SessionAbandoned Service termination is already being requested because
the BIS session inactivity time has elapsed without a
request. This function call had no effect.

BIS-Fail-SessionComplete Service termination is already being requested because a
SessionComplete tag was rendered. This function
call had no effect.

BIS-Fail-ServiceComplete Service termination is already being requested because a
StopService tag was rendered. This function call had
no effect.

Notes

• The default service timeout period is 30 seconds. The section titled Service Timeouts describes how the
default may be changed for all BIS services on this server.

• The service timeout may also be set in a .srf file with the SessionParms tag.
• All calls to this function will restart the timer. Specify 0 to restart the timer without changing the value

currently in effect.
• BIS/IIS defers processing of this function until an XMLExchange tag is processed. The main implication

of this restriction is that if the client starts the program and then browses pages that do not include an
XMLExchange tag while the program calls B_SetServiceTimeout() then B_ReadRequest(), the
updated service timeout interval does not take effect until an XMLExchange tag is processed. This is an
unlikely but possible scenario because there is no reason to start a service program if an
XMLExchange tag is not imminent.

54 | Xcentrisity Business Information Server for extend User's Guide

B_SetResponseStatus
Note: For backward compatibility with products earlier than extend 10, use the B$ prefix to call the
function, instead of B_. From extend 10 onwards, B$ is deprecated.

This function allows the service program to control the HTTP status that is returned with a response. By
default, the response status will be 200, which is an HTTP status of OK. However, if it is desirable to return
a different status, this function may be used to alter the status for the next response. Subsequent
responses return OK again unless B_SetResponseStatus is called before B_WriteResponse.

The syntax of this function call is:

Call "B_SetResponseStatus" using ResponseStatus giving BIS-Status.

where ResponseStatus may be:

• An HTTP status code detailed at http://www.w3.org/Protocols/rfc2616/rfc2616-sec6.html#sec6.1. In
general, one of the 200, 300 or 400 codes should be used to indicate the result of the operation. Avoid
the 500 codes . They are for errors detected by the web server.

• The following table describes the HTTP status codes specified in RFC 2616, their status names, and a
synopsis of the RFC 2616 description.

Status Code Status Name HTTP Standard Description

1xx Informational This class of status code indicates a
provisional response, consisting only
of the Status-Line and optional
headers, and is terminated by an
empty line. There are no required
headers for this class of status code.

A client must be prepared to accept
one or more 1xx status responses
prior to a regular response, even if
the client does not expect a 100
(Continue) status message.
Unexpected 1xx status responses
may be ignored by a user agent.

100 Informational The client should continue with its
request. This interim response is
used to inform the client that the initial
part of the request has been received
and has not yet been rejected by the
server. The client should continue by
sending the remainder of the request
or, if the request has already been
completed, ignore this response. The
server must send a final response
after the request has been
completed.

This status code is generated by the
web server directly and should not be
returned by the service program.

101 Switching Protocols The server understands and is willing
to comply with the client's request, via
the Upgrade message header field,
for a change in the application
protocol being used on this
connection. The server will switch
protocols to those defined by the

Xcentrisity Business Information Server for extend User's Guide | 55

HTTP://WWW.W3.ORG/PROTOCOLS/RFC2616/RFC2616-SEC6.HTML#SEC6.1

Status Code Status Name HTTP Standard Description

response's Upgrade header field
immediately after the empty line
which terminates the 101 response.

This status code is generated by the
web server directly and should not be
returned by the service program.

2xx Successful This class of status code indicates
that the client's request was
successfully received, understood,
and accepted.

200 OK The request has succeeded. The
information returned with the
response is dependent on the method
used in the request.

201 Created The request has been fulfilled and
resulted in a new resource being
created. The newly created resource
can be referenced by the URI(s)
returned in the entity of the response,
with the most specific URI for the
resource given by a Location header
field. The response should include an
entity containing a list of resource
characteristics and location(s) from
which the user or user agent can
choose the one most appropriate.
The entity format is specified by the
media type given in the Content-Type
header field. The origin server must
create the resource before returning
the 201 status code. If the action
cannot be carried out immediately,
the server should respond with 202
(Accepted) response instead.

202 Accepted The request has been accepted for
processing, but the processing has
not been completed. The request
might or might not eventually be
acted upon, as it might be disallowed
when processing actually takes place.
There is no facility for resending a
status code from an asynchronous
operation such as this.

The 202 response is intentionally
non-committal. Its purpose is to allow
a server to accept a request for some
other process (perhaps a batch-
oriented process that is only run once
per day) without requiring that the
user agent's connection to the server
persist until the process is completed.
The entity returned with this response
should include an indication of the
request's current status and either a
pointer to a status monitor or some
estimate of when the user can expect
the request to be fulfilled.

56 | Xcentrisity Business Information Server for extend User's Guide

Status Code Status Name HTTP Standard Description

203 Non-Authoritative
Information

The returned meta information in the
entity-header is not the definitive set
as available from the origin server,
but is gathered from a local or a third-
party copy. The set presented may be
a subset or superset of the original
version. For example, including local
annotation information about the
resource might result in a superset of
the meta information known by the
origin server. Use of this response
code is not required and is only
appropriate when the response would
otherwise be 200 (OK).

204 No Content The server has fulfilled the request
but does not need to return an entity-
body, and might want to return
updated meta information. The
response may include new or
updated meta information in the form
of entity-headers, which if present
should be associated with the
requested variant.

If the client is a user agent, it should
not change its document view from
that which caused the request to be
sent. This response is primarily
intended to allow input for actions to
take place without causing a change
to the user agent's active document
view, although any new or updated
metadata should be applied to the
document currently in the user
agent's active view.

The 204 response must not include a
message-body, and thus is always
terminated by the first empty line after
the header fields.

205 Reset Content The server has fulfilled the request
and the user agent should reset the
document view which caused the
request to be sent. This response is
primarily intended to allow input for
actions to take place via user input,
followed by a clearing of the form in
which the input is given so that the
user can easily initiate another input
action. The response must not
include an entity.

206 Partial Content The server has fulfilled the partial
GET request for the resource.

3xx Redirection This class of status code indicates
that further action needs to be taken
by the user agent in order to fulfill the
request. The action required may be
carried out by the user agent without
interaction with the user if and only if

Xcentrisity Business Information Server for extend User's Guide | 57

Status Code Status Name HTTP Standard Description

the method used in the second
request is GET or HEAD. A client
should detect infinite redirection
loops, since such loops generate
network traffic for each redirection.

300 Multiple Choices The requested resource corresponds
to any one of a set of representations,
each with its own specific location,
and agent- driven negotiation
information is being provided so that
the user (or user agent) can select a
preferred representation and redirect
its request to that location.

Unless it was a HEAD request, the
response should include an entity
containing a list of resource
characteristics and location(s) from
which the user or user agent can
choose the one most appropriate.
The entity format is specified by the
media type given in the Content-Type
header field. Depending upon the
format and the capabilities of the user
agent, selection of the most
appropriate choice may be performed
automatically. However, this
specification does not define any
standard for such automatic selection.

If the server has a preferred choice of
representation, it should include the
specific URI for that representation in
the Location field; user agents may
use the Location field value for
automatic redirection. This response
can be cached unless otherwise
indicated.

301 Moved Permanently The requested resource has been
assigned a new permanent URI and
any future references to this resource
should use one of the returned URIs.
Clients with link editing capabilities
ought to automatically re-link
references to the Request-URI to one
or more of the new references
returned by the server, where
possible. This response can be
cached unless otherwise indicated.

The new permanent URI should be
given by the Location field in the
response. Unless the request method
was HEAD, the entity of the response
should contain a short hypertext note
with a hyperlink to the new URI(s).

If the 301 status code is received in
response to a request other than GET
or HEAD, the user agent must not
automatically redirect the request

58 | Xcentrisity Business Information Server for extend User's Guide

Status Code Status Name HTTP Standard Description

unless it can be confirmed by the
user, since this might change the
conditions under which the request
was issued.

302 Found The requested resource resides
temporarily under a different URI.
Since the redirection might be altered
on occasion, the client should
continue to use the Request-URI for
future requests. This response can
only be cached if indicated by a
Cache-Control or Expires header
field.

The temporary URI should be given
by the Location field in the response.
Unless the request method was
HEAD, the entity of the response
should contain a short hypertext note
with a hyperlink to the new URI(s).

If the 302 status code is received in
response to a request other than GET
or HEAD, the user agent must not
automatically redirect the request
unless it can be confirmed by the
user, since this might change the
conditions under which the request
was issued.

303 See Other The response to the request can be
found under a different URI and
should be retrieved using a GET
method on that resource. This
method exists primarily to allow the
output of a POST-activated script to
redirect the user agent to a selected
resource. The new URI is not a
substitute reference for the originally
requested resource. The 303
response must not be cached, but the
response to the second (redirected)
request may be cached.

The different URI should be given by
the Location field in the response.
Unless the request method was
HEAD, the entity of the response
should contain a short hypertext note
with a hyperlink to the new URI(s).

304 Not Modified If the client has performed a
conditional GET request and access
is allowed, but the document has not
been modified, the server should
respond with this status code. The
304 response must not contain a
message-body, and thus is always
terminated by the first empty line after
the header fields.

Xcentrisity Business Information Server for extend User's Guide | 59

Status Code Status Name HTTP Standard Description

305 Use Proxy The requested resource must be
accessed through the proxy given by
the Location field. The Location field
gives the URI of the proxy. The
recipient is expected to repeat this
single request via the proxy. 305
responses must only be generated by
origin servers.

306 (unused) The 306 status code was used in a
previous version of the specification,
is no longer used, and the code is
reserved.

307 Temporary Redirect The requested resource resides
temporarily under a different URI.
Since the redirection may be altered
on occasion, the client should
continue to use the Request-URI for
future requests. This response can
only be cached if indicated by a
Cache-Control or Expires header
field.

The temporary URI should be given
by the Location field in the response.
Unless the request method was
HEAD, the entity of the response
should contain a short hypertext note
with a hyperlink to the new URI(s) ,
since many pre-HTTP/1.1 user
agents do not understand the 307
status. Therefore, the note should
contain the information necessary for
a user to repeat the original request
on the new URI.

If the 307 status code is received in
response to a request other than GET
or HEAD, the user agent must not
automatically redirect the request
unless it can be confirmed by the
user, since this might change the
conditions under which the request
was issued.

4xx Client Error The 4xxclass of status code is
intended for cases in which the client
seems to have erred. Except when
responding to a HEAD request, the
server should include an entity
containing an explanation of the error
situation, and whether it is a
temporary or permanent condition.
These status codes are applicable to
any request method. User agents
should display any included entity to
the user.

If the client is sending data, a server
implementation using TCP should be
careful to ensure that the client

60 | Xcentrisity Business Information Server for extend User's Guide

Status Code Status Name HTTP Standard Description

acknowledges receipt of the packet(s)
containing the response, before the
server closes the input connection. If
the client continues sending data to
the server after the close, the server's
TCP stack will send a reset packet to
the client, which may erase the
client's unacknowledged input buffers
before they can be read and
interpreted by the HTTP application.

400 Bad Request The request could not be understood
by the server due to malformed
syntax. The client should not repeat
the request without modifications.

401 Unauthorized The request requires user
authentication. The response must
include a WWW-Authenticate header
field containing a challenge
applicable to the requested resource.
The client may repeat the request
with a suitable Authorization header
field. If the request already included
Authorization credentials, then the
401 response indicates that
authorization has been refused for
those credentials. If the 401 response
contains the same challenge as the
prior response, and the user agent
has already attempted authentication
at least once, then the user should be
presented the entity that was given in
the response, since that entity might
include relevant diagnostic
information.

402 Payment Required This code is reserved for future use.

403 Forbidden The server understood the request,
but is refusing to fulfill it. Authorization
will not help and the request should
not be repeated. If the request
method was not HEAD and the server
wishes to make public why the
request has not been fulfilled, it
should describe the reason for the
refusal in the entity. If the server does
not wish to make this information
available to the client, the status code
404 (Not Found) can be used
instead.

404 Not Found The server has not found anything
matching the Request-URI. No
indication is given of whether the
condition is temporary or permanent.
The 410 (Gone) status code should
be used if the server knows, through
some internally configurable
mechanism, that an old resource is
permanently unavailable and has no

Xcentrisity Business Information Server for extend User's Guide | 61

Status Code Status Name HTTP Standard Description

forwarding address. This status code
is commonly used when the server
does not wish to reveal exactly why
the request has been refused, or
when no other response is applicable.

405 Method Not Allowed The method specified in the Request-
Line is not allowed for the resource
identified by the Request-URI. The
response must include an Allow
header containing a list of valid
methods for the requested resource.

406 Not Acceptable The resource identified by the request
is only capable of generating
response entities which have content
characteristics not acceptable
according to the accept headers sent
in the request.

Unless it was a HEAD request, the
response should include an entity
containing a list of available entity
characteristics and location(s) from
which the user or user agent can
choose the one most appropriate.
The entity format is specified by the
media type given in the Content-Type
header field. Depending upon the
format and the capabilities of the user
agent, selection of the most
appropriate choice may be performed
automatically. However, this
specification does not define any
standard for such automatic selection.

If the response could be
unacceptable, a user agent should
temporarily stop receipt of more data
and query the user for a decision on
further actions.

407 Proxy Authentication
Required

This code is similar to 401
(Unauthorized), but indicates that
the client must first authenticate itself
with the proxy. The proxy must return
a Proxy-Authenticate header field
containing a challenge applicable to
the proxy for the requested resource.
The client may repeat the request
with a suitable Proxy-Authorization
header field.

408 Request Timeout The client did not produce a request
within the time that the server was
prepared to wait. The client may
repeat the request without
modifications at any later time.

409 Conflict The request could not be completed
due to a conflict with the current state
of the resource. This code is only
allowed in situations where it is

62 | Xcentrisity Business Information Server for extend User's Guide

Status Code Status Name HTTP Standard Description

expected that the user might be able
to resolve the conflict and resubmit
the request. The response body
should include enough information for
the user to recognize the source of
the conflict. Ideally, the response
entity would include enough
information for the user or user agent
to fix the problem; however, that might
not be possible and is not required.

Conflicts are most likely to occur in
response to a PUT request. For
example, if versioning were being
used and the entity being PUT
included changes to a resource which
conflict with those made by an earlier
(third-party) request, the server might
use the 409 response to indicate that
it can't complete the request. In this
case, the response entity would likely
contain a list of the differences
between the two versions in a format
defined by the response Content-
Type.

410 Gone The requested resource is no longer
available at the server and no
forwarding address is known. This
condition is expected to be
considered permanent. Clients with
link editing capabilities should delete
references to the Request-URI after
user approval. If the server does not
know, or has no facility to determine,
whether or not the condition is
permanent, the status code 404 (Not
Found) should be used instead. This
response can be cached unless
indicated otherwise.

The 410 response is primarily
intended to assist the task of web
maintenance by notifying the recipient
that the resource is intentionally
unavailable and that the server
owners desire that remote links to
that resource be removed. Such an
event is common for limited-time,
promotional services and for
resources belonging to individuals no
longer working at the server's site. It
is not necessary to mark all
permanently unavailable resources as
gone or to keep the mark for any
length of time -- that is left to the
discretion of the server owner.

411 Length Required The server refuses to accept the
request without a defined Content-
Length. The client may repeat the
request if it adds a valid Content-

Xcentrisity Business Information Server for extend User's Guide | 63

Status Code Status Name HTTP Standard Description

Length header field containing the
length of the message-body in the
request message.

412 Precondition Failed The precondition given in one or more
of the request-header fields evaluated
to false when it was tested on the
server. This response code allows the
client to place preconditions on the
current resource meta information
(header field data) and thus prevent
the requested method from being
applied to a resource other than the
one intended.

413 Request Entity Too Large The server is refusing to process a
request because the request entity is
larger than the server is willing or
able to process. The server may
close the connection to prevent the
client from continuing the request.

If the condition is temporary, the
server should include a Retry- After
header field to indicate that it is
temporary and after what time the
client may try again.

414 Request-URI Too Long The server is refusing to service the
request because the Request-URI is
longer than the server is willing to
interpret. This rare condition is only
likely to occur when a client has
improperly converted a POST request
to a GET request with long query
information, when the client has
descended into a URI black hole of
redirection (e.g., a redirected URI
prefix that points to a suffix of itself),
or when the server is under attack by
a client attempting to exploit security
holes present in some servers using
fixed-length buffers for reading or
manipulating the Request-URI.

415 Unsupported Media Type The server is refusing to service the
request because the entity of the
request is in a format not supported
by the requested resource for the
requested method.

416 Requested Range Not
Satisfiable

A server should return a response
with this status code if a request
included a Range request-header
field, and none of the range-specifier
values in this field overlap the current
extent of the selected resource, and
the request did not include an If-
Range request-header field. (For
byte-ranges, this means that the first-
byte-pos of all of the byte-range-spec
values were greater than the current
length of the selected resource.)

64 | Xcentrisity Business Information Server for extend User's Guide

Status Code Status Name HTTP Standard Description

When this status code is returned for
a byte-range request, the response
should include a Content-Range
entity-header field specifying the
current length of the selected
resource. This response must not use
the multi-part/byteranges content-
types.

417 Expectation Failed The expectation given in an Expect
request-header field could not be met
by this server, or, if the server is a
proxy, the server has unambiguous
evidence that the request could not
be met by the next-hop server.

5xx Server Error Response status codes beginning
with the digit 5 indicate cases in
which the server is aware that it has
erred or is incapable of performing
the request. Except when responding
to a HEAD request, the server should
include an entity containing an
explanation of the error situation, and
whether it is a temporary or
permanent condition. User agents
should display any included entity to
the user. These response codes are
applicable to any request method.

In general, these error codes are
generated by HTTP server itself, and
the service program should not use
them.

500 Internal Server Error The server encountered an
unexpected condition which
prevented it from fulfilling the request.

501 Not Implemented The server does not support the
functionality required to fulfill the
request. This is the appropriate
response when the server does not
recognize the request method and is
not capable of supporting it for any
resource.

502 Bad Gateway The server, while acting as a gateway
or proxy, received an invalid response
from the upstream server it accessed
in attempting to fulfill the request.

503 Service Unavailable The server is currently unable to
handle the request due to a
temporary overloading or
maintenance of the server. The
implication is that this is a temporary
condition which will be alleviated after
some delay. If known, the length of
the delay may be indicated in a Retry-
After header. If no Retry-After is
given, the client should handle the

Xcentrisity Business Information Server for extend User's Guide | 65

Status Code Status Name HTTP Standard Description

response as it would for a 500
response.

504 Gateway Timeout The server, while acting as a gateway
or proxy, did not receive a timely
response from the upstream server
specified by the URI (e.g. HTTP, FTP,
LDAP) or some other auxiliary server
(e.g. DNS) it needed to access in
attempting to complete the request.

505 HTTP Version Not
Supported

The server does not support, or
refuses to support, the HTTP protocol
version that was used in the request
message. The server is indicating
that it is unable or unwilling to
complete the request using the same
major version as the client, other than
with this error message. The
response should contain an entity
describing why that version is not
supported and what other protocols
are supported by that server.

The BIS-Status result field and the result codes are defined in BISDEF.CPY. Here are the most common
return codes:

BIS-Status Code Event Description

BIS-Success The call was successful.

Notes

• In general, a SOAP-base web service should imbed its response status inside the SOAP response and
let the Request Handler manage the HTTP Status.

• This function call is of most use to a REST-based web service where using the native URL and status
codes of HTTP are encouraged.

• Many of the status codes are intended to control the interaction of the web server and a browser and
the code may be used safely to communicate between the service program and a web client. Other
codes are intended for consumption by proxy servers (or are intended to be generated by them) and
should be avoided.

• The table of status codes is given here as a reference and is not intended to be a substitute for RFC
2616.

Server Variables Reference
The following table describes the server variables that may be inspected with the Value tag. Note that the
descriptions are taken from Microsoft's IIS SDK documentation and not all server variables are displayed in
the TRACE output if empty.

Variable Platform Description

ALL_HTTP IIS All HTTP headers sent by the client.

ALL_RAW IIS Retrieves all headers in raw form. The
difference between ALL_RAW and
ALL_HTTP is that ALL_HTTP

66 | Xcentrisity Business Information Server for extend User's Guide

Variable Platform Description

places an HTTP_ prefix before
the header name and the header
name is always capitalized. In
ALL_RAW the header name and
values appear as they are sent by the
client.

APP_POOL_ID IIS Returns the name of the application
pool that is running in the IIS worker
process that is handling the request.

APPL_MD_PATH IIS Retrieves the metabase path for the
Application for the BIS server

APPL_PHYSICAL_PATH IIS Retrieves the physical path
corresponding to the metabase path.
IIS converts the APPL_MD_PATH to
the physical (directory) path to return
this value.

AUTH_PASSWORD IIS The value entered in the client's
authentication dialog box. This
variable is available only if Basic
authentication is used.

AUTH_TYPE IIS The authentication method that the
server uses to validate users when
they attempt to access a protected
script.

AUTH_USER IIS The name of the user as it is derived
from the authorization header sent by
the client, before the user name is
mapped to a Windows account. This
variable is no different from
REMOTE_USER. If you have an
authentication filter installed on your
web server that maps incoming users
to accounts, use LOGON_USER to
view the mapped user name.

CERT_COOKIE IIS Unique ID for the client certificate,
returned as a string. This can be
used as a signature for the whole
client certificate.

CERT_FLAGS IIS Bit 0 set to 1 if the client certificate is
present.

Bit 1 is set to 1 if the certification
authority of the client certificate is
invalid (that is, it is not in the list of
recognized certification authorities on
the server).

CERT_ISSUER IIS Issuer field of the client certificate
(O=MS, OU=IAS, CN=user name,
C=USA).

CERT_KEYSIZE IIS Number of bits in the Secure Sockets
Layer (SSL) connection key size. For
example, 128.

CERT_SECRETKEYSIZE IIS Number of bits in server certificate
private key. For example, 1024.

Xcentrisity Business Information Server for extend User's Guide | 67

Variable Platform Description

CERT_SERIALNUMBER IIS Serial number field of the client
certificate.

CERT_SERVER_ISSUER IIS Issuer field of the server certificate.

CERT_SERVER_SUBJECT IIS Subject field of the server certificate.

CERT_SUBJECT IIS Subject field of the client certificate.

CONTENT_LENGTH All The length of the content as given by
the client.

CONTENT_TYPE All The data type of the content. Used
with queries that have attached
information, such as the HTTP
queries GET, POST, and PUT.

DOCUMENT_ROOT Apache Contains the local directory from
which the server is serving pages.

GATEWAY_INTERFACE All The revision of the CGI specification
used by the server. The format is
CGI/revision. Example: CGI/
1.1.

HTTP_HeaderName All The value stored in the HTTP header
HeaderName . Any header other
than those listed below must be
preceded by HTTP in order for the
Value(variable, Server)
collection to retrieve its value. This is
useful for retrieving custom headers.
The server interprets any underscore
(_) characters in HeaderName as
dashes in the actual header. For
example, if you specify
HTTP_MY_HEADER, the server
searches for a request header named
MY-HEADER

.

HTTP_ACCEPT All Returns the value of the Accept
header. For example, image/gif,
image/x-xbitmap, image/
jpeg, image/pjpeg,
application/vnd.ms-excel.

HTTP_ACCEPT_CHARSET IIS The raw contents of the Accept-
Charset header: contains a list of
character sets that are acceptable in
the response. For example,
iso-8859-5,
unicode-1-1;q=0.8

HTTP_ACCEPT_ENCODING All The raw contents of the Accept-
Encoding header: contains a list of
accepted encoding types, for
example, gzip, deflate.

HTTP_ACCEPT_LANGUAGE All The raw contents of the Accept-
Language header

68 | Xcentrisity Business Information Server for extend User's Guide

Variable Platform Description

HTTP_AUTHORIZATION IIS The raw contents of the
Authorization header.

HTTP_CACHE_CONTROL All The raw contents of the Cache-
Control header.

HTTP_CONNECTION All The raw contents of the
Connection header.

HTTP_CONTENT_LENGTH IIS The raw contents of the Content-
Length header.

HTTP_CONTENT_TYPE IIS The raw contents of the Content-
Type header.

HTTP_COOKIE All Returns the cookie string that was
included with the request.

HTTP_DATE IIS The raw contents of the Date
header.

HTTP_EXPECT IIS The raw contents of the Expect
header.

HTTP_FROM IIS The raw contents of the From
header.

HTTP_HOST All Returns the name of the web server.
This may or may not be the same as
SERVER_NAME, depending on type
of name resolution you are using on
your web server (IP address or host
header).

HTTP_IF_MODIFIED_SINCE IIS The raw contents of the If-
Modified-Since header.

HTTP_IF_NONE_MATCH IIS The raw contents of the If-None-
Match header.

HTTP_IF_RANGE IIS The raw contents of the If-Range
header.

HTTP_IF_UNMODIFIED_SINCE IIS The raw contents of the If-
Unmodified-Since header.

HTTP_MAX_FORWARDS IIS The raw contents of the Max-
Forwards header.

HTTP_PRAGMA IIS The raw contents of the Pragma
header.

HTTP_PROXY_AUTHORIZATION IIS The raw contents of the Proxy-
Authorization header.

HTTP_RANGE IIS The raw contents of the Range
header.

HTTP_REFERER All Returns a string that contains the
URL of the page that referred the
request to the current page by using
an HTML <A> tag. Note that the URL
is the one that the user typed into the
browser address bar, which may not
include the name of a default
document.

Xcentrisity Business Information Server for extend User's Guide | 69

Variable Platform Description

If the page is redirected,
HTTP_REFERER is empty.
HTTP_REFERER is not a mandatory
member of the HTTP specification
and some clients allow the end user
to disable this information.

Note that, in this case, REFERER is
spelled with a single R.

HTTP_TE All The raw contents of the TE header.

HTTP_TRAILER All The raw contents of the Trailer
header.

HTTP_TRANSFER_ENCODING All The raw contents of the Transfer-
Encoding header.

HTTP_UPGRADE All The raw contents of the Upgrade
header.

HTTP_URL All Returns the raw, encoded URL.
Example: /xbis/default.srf?
query. Note that the scheme and
host name are not part of this URL.
On Apache, this does not include the
query portion.

HTTP_USER_AGENT All Returns a string describing the
browser that sent the request.

HTTP_VERSION IIS The raw contents of the Version
header.

HTTP_VIA IIS The raw contents of the Via header.

HTTP_WARNING IIS The raw contents of the Warning
header.

HTTPS All Returns ON if the request came in
through a secure channel (for
example, SSL); or it returns OFF, if
the request is for an insecure
channel.

HTTPS_KEYSIZE IIS Number of bits in the SSL connection
key size. For example, 128.

HTTPS_SECRETKEYSIZE IIS Number of bits in the server
certificate private key. For example,
1024.

HTTPS_SERVER_ISSUER IIS Issuer field of the server certificate.

HTTPS_SERVER_SUBJECT IIS Subject field of the server certificate.

INSTANCE_ID IIS The ID for the IIS instance in textual
format. If the instance ID is 1, it
appears as a string. You can use this
variable to retrieve the ID of the web
server instance (in the metabase) to
which the request belongs.

INSTANCE_META_PATH IIS The metabase path for the instance of
IIS that responds to the request.

70 | Xcentrisity Business Information Server for extend User's Guide

Variable Platform Description

LOCAL_ADDR IIS Returns the server address on which
the request came in. This is important
on computers where there can be
multiple IP addresses bound to the
computer, and you want to find out
which address the request used.

LOGON_USER IIS The Windows account that the user is
impersonating while connected to
your web server. Use
REMOTE_USER,
UNMAPPED_REMOTE_USER, or
AUTH_USER to view the raw user
name that is contained in the request
header. The only time LOGON_USER
holds a different value than these
other variables is if you have an
authentication filter installed.

PATH Apache Contains the Apache Server's PATH
environment variable.

PATH_INFO IIS Extra path information, as given by
the client. You can access scripts by
using their virtual path and the
PATH_INFO server variable. If this
information comes from a URL, it is
decoded by the server before it is
passed to the CGI script.

PATH_TRANSLATED IIS A translated version of PATH_INFO
that takes the path and performs any
necessary virtual-to-physical
mapping.

QUERY_STRING All Query information stored in the string
following the question mark (?) in the
HTTP request.

REMOTE_ADDR All The IP address of the remote host
that is making the request.

REMOTE_HOST IIS The name of the host that is making
the request. If the server does not
have this information, it will set
REMOTE_ADDR and leave this
empty.

REMOTE_PORT All The client port number of the TCP
connection.

REMOTE_USER IIS The name of the user as it is derived
from the authorization header sent by
the client, before the user name is
mapped to a Windows account. If you
have an authentication filter installed
on your web server that maps
incoming users to accounts, use
LOGON_USER to retrieve the
mapped user name.

REQUEST_METHOD All The method used to make the
request. For HTTP, this can be GET,
HEAD, POST, and so on.

Xcentrisity Business Information Server for extend User's Guide | 71

Variable Platform Description

REQUEST_URI Apache The complete URI of the request.

SCRIPT_FILENAME Apache The complete file name of the script
being executed.

SCRIPT_NAME All A virtual path to the script being
executed. This is used for self-
referencing URLs.

SERVER_ADDR Apache The IP address to which the request
was sent.

SERVER_ADMIN Apache Contains the email address of the
server's system administrator. (This is
contents of the ServerAdmin
configuration record.)

SERVER_NAME All The server's host name, DNS alias,
or IP address as it would appear in
self-referencing URLs.

SERVER_PORT All The server port number to which the
request was sent.

SERVER_PORT_SECURE IIS A string that contains either 0 or 1. If
the request is being handled on the
secure port, then this is 1. Otherwise,
it is 0.

SERVER_PROTOCOL All The name and revision of the request
information protocol. The format is
protocol/revision . Example:
HTTP/1.1.

SERVER_SIGNATURE Apache The name and version of the Apache
web server, plus the network name
and port number on which the web
server is running. Example:
Apache/2.0.55 (Unix)
mod_ssl/2.0.55 OpenSSL/
0.9.8a Server at
arokh.liant.com Port 80

SERVER_SOFTWARE All The name and version of the server
software that answers the request
and runs the gateway. The format is
name/version. Example:
Microsoft-IIS/5.0

SSL_CIPHER Apache HTTPS The name of the SSL cipher in use.
Example: RC4-MD5

SSL_CIPHER_EXPORT Apache HTTPS Contains true if the cipher is an
export cipher and false otherwise.

SSL_CIPHER_ALGKEYSIZE Apache HTTPS The maximum number of bits
permitted in the cipher's. Example:
128

SSL_CIPHER_USEKEYSIZE Apache HTTPS The number of bits actually in use in
the cipher. Example: 128

SSL_CLIENT_A_KEY Apache HTTPS The signature algorithm used in the
client key. Example:
rsaEncryption

72 | Xcentrisity Business Information Server for extend User's Guide

Variable Platform Description

SSL_CLIENT_A_SIG Apache HTTPS The signature algorithm used in the
client certificate. Example:
sha1WithRSAEncryption

SSL_CLIENT_I_DN Apache HTTPS The client certificate issuer
distinguish name subject. Example: /
CN=neo

SSL_CLIENT_I_DN_CN Apache HTTPS The computer name of the client
certificate issuer distinguish name
subject. Example: neo

SSL_CLIENT_M_VERSION Apache HTTPS The client certificate's version.
Example: 3

SSL_CLIENT_M_SERIAL Apache HTTPS The client certificate's serial number.
Example:
1DFD4318000000000015

SSL_CLIENT_S_DN Apache HTTPS The client certificate distinguished
name subject. Example: /C=US/
ST=TX/L=Austin/O=Liant/
OU=R&D/CN=Mike Schultz/
emailAddress=michael.schu
ltz@microfocus.com

SSL_CLIENT_S_DN_C Apache HTTPS The country of the client certificate
distinguished name subject. Example:
US

SSL_CLIENT_S_DN_CN Apache HTTPS The contact of the client certificate
distinguished name subject. Example:
Mike Schultz

SSL_CLIENT_S_DN_Email Apache HTTPS The email address of the client
certificate distinguished name
subject. Example:
michael.schultz@microfocu
s.com

SSL_CLIENT_S_DN_L Apache HTTPS The location of the client certificate
distinguished name subject. Example:
Austin

SSL_CLIENT_S_DN_O Apache HTTPS The organization of the client
certificate distinguished name
subject. Example: Microfocus

SSL_CLIENT_S_DN_OU Apache HTTPS The organization unit of the client
certificate distinguished name
subject. Example: R&D

SSL_CLIENT_S_DN_ST Apache HTTPS The state of the client certificate
distinguished name subject. Example:
TX

SSL_CLIENT_VERIFY Apache HTTPS Contains SUCCESS if the client
verification was successful.

SSL_CLIENT_V_END Apache HTTPS The client certificate's validity end
time. Example: Dec 16
20:27:44 2006 GMT

Xcentrisity Business Information Server for extend User's Guide | 73

Variable Platform Description

SSL_CLIENT_V_START Apache HTTPS The client certificate's validity start
time. Example: Dec 16
20:17:44 2005 GMT

SSL_PROTOCOL Apache HTTPS The version of the SSL protocol.
Example: SSLv3

SSL_SERVER_M_VERSION Apache HTTPS The server's certificate's version.
Example: 1

SSL_SERVER_M_SERIAL Apache HTTPS The server's certificate's serial
number. Example: 00

SSL_SERVER_S_DN Apache HTTPS The server certificate distinguished
name subject. Example: /C=US/
ST=Texas/L=Austin/O=Micro
Focus/OU=Development/
CN=cent32.microfocmi.com/
emailAddress=michael.schu
ltz@microfocus.com

SSL_SERVER_S_DN_C Apache HTTPS The country of the server certificate
distinguished name subject. Example:
US

SSL_SERVER_S_DN_CN Apache HTTPS The computer name of the server
certificate distinguished name
subject. Example:
cent32.microfocus.com

SSL_SERVER_S_DN_Email Apache HTTPS The email address of the server
certificate distinguished name
subject. Example:
michael.schultz@microfocu
s.com

SSL_SERVER_S_DN_L Apache HTTPS The location of the server certificate
distinguished name subject. Example:
Austin

SSL_SERVER_S_DN_ST Apache HTTPS The state of the server certificate
distinguished name subject. Example:
Texas

SSL_SERVER_S_DN_O Apache HTTPS The organization of the server
certificate distinguished name
subject. Example: Micro Focus

SSL_SERVER_S_DN_OU Apache HTTPS The organization unit of the server
certificate distinguished name
subject. Example: Development

SSL_SERVER_I_DN Apache HTTPS The server certificate issuer's
distinguished name subject.
Example: /C=US/ST=Texas/
L=Austin/O=Micro Focus/
OU=Development/
CN=cent32.microfocus.com/
emailAddress=michael.schu
ltz@microfocus.com

74 | Xcentrisity Business Information Server for extend User's Guide

Variable Platform Description

SSL_SERVER_I_DN_C Apache HTTPS The country of the server certificate
issuer's distinguished name subject.
Example: US

SSL_SERVER_I_DN_CN Apache HTTPS The computer name of the server
certificate issuer's distinguished
name subject. Example:
cent32.microfocus.com

SSL_SERVER_I_DN_Email Apache HTTPS The email address of the server
certificate issuer's distinguished
name subject. Example:
michael.schultz@microfocu
s.com

SSL_SERVER_I_DN_L Apache HTTPS The location of the server certificate
issuer's distinguished name subject.
Example: Austin

SSL_SERVER_I_DN_O Apache HTTPS The organization of the server
certificate issuer's distinguished
name subject. Example: Micro
Focus

SSL_SERVER_I_DN_OU Apache HTTPS The organization unit of the server
certificate issuer's distinguished
name subject. Example:
Development

SSL_SERVER_I_DN_ST Apache HTTPS The state of the server certificate
issuer's distinguished name subject.
Example: Texas

SSL_SERVER_A_KEY Apache HTTPS The signature algorithm of the
server's key. Example:
rsaEncryption

SSL_SERVER_A_SIG Apache HTTPS The signature algorithm of the
server's certificate. Example:
md5WithRSAEncryption

SSL_SERVER_V_END Apache HTTPS The server certificate's validity end
time. Example: Jan 13
08:13:27 2006 GMT

SSL_SERVER_V_START Apache HTTPS The server certificate's validity start
time. Example: Dec 14
08:13:27 2005 GMT

SSL_VERSION_INTERFACE Apache HTTPS The version of the SSL interface.
Example: mod_ssl/2.0.55

SSL_VERSION_LIBRARY Apache HTTPS The version of the SSL library.
Example: OpenSSL/0.9.8a

UNMAPPED_REMOTE_USER IIS The name of the user as it is derived
from the authorization header sent by
the client, before the user name is
mapped to a Windows account. This
variable is no different from
REMOTE_USER. If you have an
authentication filter installed on your
web server that maps incoming users

Xcentrisity Business Information Server for extend User's Guide | 75

Variable Platform Description

to accounts, use LOGON_USER to
view the mapped user name.

URL IIS Gives the base portion of the URL.

Tutorial1 introduction
The goal of this tutorial is to provide an introduction to the terminology of web services, to present current
technology choices facing the software designer when creating web services, and to demonstrate practical
design patterns for web services implemented in extend.

Providing web services involves the use of several technologies: HTTP servers (also known as web
servers), XML, and client-server architecture. While successful use of Xcentrisity BIS does not require
becoming an expert in any of these technologies, you are encouraged to become familiar with them
through the use of tutorials or reference material.

Prerequisites
This tutorial has several prerequisites. Please make sure you have the following available before
proceeding.

• Xcentrisity Business Information Server (BIS) must be installed and operating correctly, as
demonstrated by the verification and samples operating correctly.

• Xcentrisity Business Information Server reference documentation, which can be found in the Docs
subdirectory of the extend installation directory.

• XML Extensions reference documentation, which can be found in A Guide to Interoperating with
ACUCOBOL-GT > Working with Non-Vision Data.

• Tutorial1 is displaying as part of the acubis10 website in Internet Information Server (IIS).
• The tutorial examples, as delivered, create trace information (see the BIS reference documentation for

the {{Trace}} tag). The trace information is placed in a top level directory named /tmp. If this directory
does not exist, either create the directory with permissions that allow BIS to create files in the directory,
or edit the tutorial1.srf, tutorial2.srf and tutorial3.srf files to save the trace information
in a directory of your choice.

• A web services client will be necessary for testing web services. This tutorial uses soapUI, which may
be found at www.soapui.org, as well as Microsoft Visual Studio. Download and install soapUI as a
minimum test client.

What is a web service?
Web services are application services , typically combining data and procedural aspects, that are made
available over a network such as the internet or an intranet. These services are described in terms of
application programming interfaces (API) or web APIs that can be accessed over a network and executed
on a remote system hosting the requested services.

An exhaustive description of web services is beyond the scope of this document. Indeed, often web
services is a term that includes formal W3C specifications such as SOAP along with less formal, but well
described, services such as REST, and even rich internet application (RIA) technologies such as AJAX.
Our focus will be on the more formal web services, SOAP and REST, with a brief consideration of RIA
techniques.

The role of HTTP in web services
The familiar Hypertext Transfer Protocol (HTTP) is most often associated with the World Wide Web. This is
but one of the transfer protocols in use on the internet; others include File Transfer Protocol (FTP), Simple

76 | Xcentrisity Business Information Server for extend User's Guide

http://www.soapui.org/

Mail Transfer Protocol (SMTP), and the like. HTTP is by far the most used transport protocol for web
services, and it plays a crucial role in REST.

Xcentrisity Business Information Server (BIS) is an application server that 'plugs in' to the two most popular
HTTP servers, Microsoft IIS and the Apache HTTP Server. BIS receives requests from and supplies
responses to web-based 'user agents'. BIS will be described in more detail elsewhere.

The HTTP specification describes messages that represent requests from a client to a server and
responses from a server to a client. A message from a client to a server indicates a method (i.e., an action)
that is desired for a specific resource designated by a URI, or Universal Resource Identifier. URIs are
simply formatted strings which identify by name, location or some other characteristic, a resource located
on the internet.

HTTP methods include GET, PUT, POST, DELETE, HEAD, TRACE and CONNECT. For the purpose of
creating web services using BIS, only the first four methods are important. The last three methods are
handled by the HTTP server above (in architectural terms) the BIS service programs.

SOAP versus REST
Web Services fall into two architectural styles, SOAP and REST.

SOAP, originally defined as Simple Object Access Protocol but now simply SOAP, is a formal specification
for the exchange of structured information via Web Services. It relies on XML for its message format, and
uses HTTP (which is really an application layer protocol) as its transport protocol. Historically, HTTP was
the mechanism used to get through firewalls (since almost all firewalls allow HTTP traffic to pass through)
and remains in use today. Note also that HTTPS may also be used, since HTTP and HTTPS are identical
at the application layer. The XML based message format consists of three parts: - , and a convention for
representing procedure calls and responses.

• An envelope, which defines what is in the message and how to process it.
• A set of encoding rules for expressing instances of application-defined data types.
• A convention for representing procedure calls and responses.

Representational State Transfer (REST) is not a formal specification, but a style of software architecture for
distributed hypermedia systems. For example, the World Wide Web is considered a REST system. The
term Representational State Transfer was defined by Roy Fielding in 2000 in his doctoral dissertation.
REST was initially described in terms of the HTTP application layer protocol (Fielding was one of the
principal authors of the HTTP specification) but is not limited to HTTP.

REST uses the HTTP methods as its verbs to implement a create/read/update/delete model for resources
described by URIs. In particular, the HTTP GET method is a read-only access to a resource, PUT is a
create request, POST is update, and DELETE is delete. There are additional constraints on a (so-called)
REST-ful system, of which statelessness is the most pertinent to the programmer using BIS.

Proponents of REST consider REST to be superior to SOAP for several reasons:

• REST makes consistent use of the HTTP methods, whereas SOAP uses only POST, although a GET
on a service endpoint URL is interpreted as a request for the WSDL that describes the service. SOAP
overloads the POST method which obscures the nature of a request. This interferes with caching and
other performance related techniques used on the web.

• Similarly, REST uses URIs to identify the unique resource being affected by a request. SOAP uses a
single URI to identify a 'service endpoint' and describes the resource being affected by a request
somewhere in the body of the request. As described above, this interferes with web performance
techniques.

• SOAP is tied to XML, and is considered by some to be wordy. However, modern HTTP servers have
built-in compression capability which may counteract this disadvantage for SOAP.

• REST can be associated with just about any web resource, whether XML-based or not. Remember that
the World Wide Web is REST-ful.

Whether to use SOAP or REST in creating BIS service programs is probably decided by requirements
external to the application system that cannot be considered in this tutorial. However, it is important to

Xcentrisity Business Information Server for extend User's Guide | 77

remember that Xcentrisity BIS provides the flexibility to participate in HTTP-based systems of either
architecture.

SOAP binding style – RPC versus Document
If SOAP web services are to be used, there are additional design considerations. SOAP, as a specification
created by committee, has several variations (known as bindings) that are possible. The two main
variations in use are called RPC/encoded and Document/literal, with the latter being extended to
Document/literal wrapped.

The Remote Procedure Call (RPC) pattern is used in situations where the consumer views the web service
as a single logical application or component with encapsulated data. The request and response messages
map directly to the input and output parameters of the procedure call. Examples of this type the RPC
pattern might include a payment service or a stock quote service.

The document-based pattern is used in situations where the consumer views the web service as a longer
running business process where the request document represents a complete unit of information. In fact,
this type of web service might involve human interaction. An example of this type of service would be a
credit application request document with a response document containing bids from lending institutions.
Because longer running business processes may not be able to return the requested document
immediately, the document-based pattern is more commonly found in asynchronous communication
architectures. The Document/literal variation of SOAP is used to implement the document-based web
service pattern.

The RPC/encoded SOAP variation was the initial SOAP mechanism to implement the RPC design pattern.
However, inefficiencies and other difficulties in large scale enterprise systems have led to RPC/encoded
falling into disuse; it is most likely that eventually this variation will be deprecated by the web
standardization committee responsible. A form of the Document/literal variation, called 'document/literal
wrapped', has been developed and has become the de facto standard for RPC pattern web services.

WSDL
WSDL (which stands for Web Services Definition Language or Web Services Description Language) is an
XML-based language for describing web services as well as how to locate web services. WSDL is a W3C
(web standardization organization) recommendation. The term WSDL is often used to mean the
description of a specific web service, as in, "The WSDL for that web service describes three web service
methods," or referring generically to a document implemented in WSDL.

The WSDL document describes a web service using four major elements:

1. <types> - a description of the data elements and type(s) used by the web service;
2. <message> - a description of the data elements used by each operation available in the web service;
3. <portType> - a description of the operations performed by the web service; and
4. <binding> - a description of the message format and communication protocols used for each port

described in the <portType> section.

In the RPC pattern, the <portType> element describes the functions, or methods, that are available in the
web service; the <message> section describes the input and output parameters; and the <types> section
describes those parameters. It is not unusual for RPC pattern WSDLs to be derived from underlying
functions in standard programming languages, the so-called bottom-up approach. In Xcentrisity Business
Information Server, this capability is included and is described in detail in the next section.

In the document-based pattern, WSDLs are often developed by the architects of the system using a top-
down approach, before any implementation of the service or the clients of the service. The documents that
are exchanged are typically designed before the WSDLs that use them; these documents are described
using XML Schema, another XML-based language used to describe XML documents. (The <types>
section of a WSDL is actually an embedded XML Schema document. WSDL has an import capability that
allows importation of externally defined XML Schema documents.)

78 | Xcentrisity Business Information Server for extend User's Guide

Create a simple SOAP/RPC web service
Within legacy systems, creating web services using the bottom-up, RPC pattern methodology is often the
quickest means to expose exiting functionality in the legacy system. Xcentrisity Business Information
Server, using XML Extensions, provides a simple mechanism to create such web services.

While a more complex example will be created later, we will use a simple data lookup for our first example.
A desired company name, which may be a fragment of a name, will be provided. The desired result is the
data from the 'first' record for which the company name is greater than or equal to the desired company
name. (Note that the data used for the sample programs in this tutorial is excerpted from North American
Numbering Plan data. The data are not complete and contain inaccuracies to render the data unsuitable for
any commercial application.)

Data naming convention for input/output parameters and methods
BIS uses a set of naming conventions to define a data area which in turn is used to define an RPC pattern
web services interface. It is important to follow the naming conventions; the benefit is the ability to create a
WSDL, process web service requests, and provide web service responses with a level of simplicity.

Here is the data area definition for the simple look up:

 78 Service-URI VALUE "{{Value(""tutorial.srf"",HTMLDECODE,MAKEABS)}}".
 78 Service-Name VALUE "tutorial".
 78 SOAP-Action-URI VALUE "http://tempuri.org/bis/samples/action/tutorial".
 78 Method-Namespace-URI VALUE "http://tempuri.org/bis/samples/tutorial/".
 78 HTTP-Method-POST VALUE "POST".
 78 HTTP-Method-GET VALUE "GET".
 01 SOAP-Request-Response.
 10 HTTP-Method VALUE HTTP-Method-POST.
 88 HTTP-Method-Is-POST VALUE HTTP-Method-POST.
 88 HTTP-Method-Is-GET VALUE HTTP-Method-GET.
 10 Method-Name PIC X(100) VALUE SPACES.
 88 Method-Is-Find VALUE "find".
 10 Fault-Area.
 20 FaultCode PIC X(10) VALUE SPACES.
 20 FaultString PIC X(30) VALUE SPACES.
 20 FaultDetail PIC X(80) VALUE SPACES.
 10 Find--Method-Parameters.
 20 Input-Parameters.
 30 desired-company-name PIC X(50).
 20 Output-Parameters.
 30 Result PIC X(80).
 copy "offcode.rec" replacing ==05== by ==30==.

First a series of constants (level 78) is defined, to collect many of the service-specific values into a single
block.

1. The Service-URI is a string that encodes a BIS value tag. (See the Xcentrisity Business Information
Server user's Guide for reference information.) This tag specifies the SRF file that will be the service
endpoint; the value tag attributes HTMLDECODE and MAKEABS indicate to the BIS request handler
(described below) that the SRF filename (tutorial1.srf in this case) should be synthesized into a
URI by adding the additional parts of the URI to the filename. When this value tag is returned in the
WSDL, it will be replaced by the actual URI of the service endpoint before the WSDL is sent to the
client.

2. The Service-Name is a string that is used to identify the service to clients; it becomes the value of the
name attribute in the <wsdl:service> tag. The actual use of the Service-name depends on the
programming language of the client, but it will appear in the client's API, so a meaningful name is
recommended.

3. The SOAP-Action-URI is a string that is used to uniquely identify a <soap:operation>. This string
should take the form of a URI. As shown in this example, you may use the tempuri.org domain for

Xcentrisity Business Information Server for extend User's Guide | 79

testing purposes. However, you are encouraged to use a unique, permanent URI for published web
services; you could use your company's domain as part of the URI value. Note that this URI does not
point to an actual resource on the web.

4. The Method-Namespace-URI is a string that is used in the targetNamespace attribute of the
<wsdl:definitions> tag. Like the SOAP-Action-URI, this URI should be unique, and otherwise
follow the same guidelines.

In the definition of the 01-level SOAP-Request-Response, the first items (through 10 Fault-Area) should be
defined as they are here. These definitions convey values to the XSLT stylesheets that create the WSDL,
import the SOAP request, and form the SOAP response, and the names of these items must remain the
same. However, condition-names (level 88) may be added, as these do not affect the values. Condition-
names may be convenient for enumerating the possible method name values; note that, by default, method
name values are all 'folded' to lower case by the XSLT style sheets.

Method parameter definitions follow 10 Fault-Area, with a separate level 10 group data item defined for
each method (function) in the service. The naming convention for these group items is: methodname--
method-parameters, where methodname is the desired name of the method, followed by two hyphens. In
this first example, there is only one method, named find. (Note that the method name is 'folded' to lower
case, so Find, FIND and fInD all result in a method named find.)

Within each method parameter group item, zero, one, two or three group items may exist. The names of
these group items are: INPUT-PARAMETERS, OUTPUT-PARAMETERS, and INPUTOUTPUT-
PARAMETERS. Input and output parameters are defined within each of these groups as appropriate.
(Note: complex structures and arrays of structures can sometimes cause difficult programming issues on
clients. More about this below.)

Simple design pattern
The COBOL service program for the web service takes the form of a controller. (In the modelview-
controller, MVC, web architecture for applications, the controller is the component that receives the GET or
POST input and invokes domain objects - i.e. the model - that contain the business rules that perform a
specific task and produce the output.)

First, the controller has to receive the input. Let's look at the code that does this.

 Preset Section.
 A.
 XML INITIALIZE
 If Not XML-OK Go To Z.
 Preset-Request-Data.
 CALL "C$GetEnv" USING "BIS_FILENAME",
 BIS-Exchange-File-Name,
 BIS-Exchange-File-Result.
 If not BIS-Exchange-File-Result = 0
 DISPLAY "Could not obtain the BIS Exchange filename"
 STOP RUN.
 Display "BIS Exchange File: " BIS-Exchange-File-Name.
 Perform Process-SOAP-Requests.
 Stop Run.

The code to this point is normal 'reference manual' initialization for a BIS service program. The XML
Extensions package is initialized and the exchange document file, which contains the request from the
client, is located. The dispatcher (Process-SOAP-Requests) is PERFORMed. (The term 'dispatcher' is
used in the model-view-controller architecture. The dispatcher is the code that determines what is being
requested, and calls the code to perform the request.)

 Process-SOAP-Requests Section.
 Get-Request.
 XML SET XSL-PARAMETERS
 "Method_Namespace" Method-Namespace-URI. *> all
 If Not XML-OK Go To Z End-If.
 Call "B$ReadRequest" Giving BIS-Status
 If Not BIS-OK Go To Z.

80 | Xcentrisity Business Information Server for extend User's Guide

 * At this point, the SOAP request payload elements
 * are available to the application in the exchange file.
 Initialize SOAP-Request-Response.
 move HTTP-Method-POST To HTTP-Method.
 move Service-URI to SOAP-Address.
 move SOAP-Action-URI to SOAP-Action-Prefix.
 move Method-Namespace-URI to Method-Namespace.
 move Service-Name to Interface-Name.

 XML IMPORT FILE
 SOAP-Request-Response *> data item to import into
 BIS-Exchange-File-Name *> import document file name
 "SOAP-Request-Response" *> model data-name
 "soap_request_to_cobol.xsl". *> stylesheet for transform
 If Not XML-OK Go To Z.
 * The request has been imported into SOAP-Request-Response
 If HTTP-Method-Is-GET
 * GET is the HTTP method that is used to obtain WSDL
 Perform Write-WSDL
 Stop Run
 End-If.

Dispatch-Request.

The dispatcher code first calls B$ReadRequest, which is a synchronization routine that will wait until the
BIS request handler (running in the HTTP server) has actually placed the input request document in the
exchange file. The request is then imported from the exchange file into the level 01 record area. At this
point the dispatcher makes its first decision. If the request is a GET, the WSDL for the web service is
created as the response to the client. Otherwise, the controller knows this is a POST request that is
invoking a method.

WSDL creation/response

WSDL creation is almost entirely handled by a supplied XSLT style sheet. Again, let's look at the code.

 Write-WSDL.

 XML ENABLE ATTRIBUTES
 If Not XML-OK Go To Z.

 XML ENABLE ALL-OCCURRENCES
 If Not XML-OK Go To Z.

 XML SET XSL-PARAMETERS
 "SOAP_Address" Service-URI *> WSDL
 "SOAP_Action_Prefix" SOAP-Action-URI *> WSDL
 "Interface_Name" Service-Name *> WSDL
 "Method_Namespace" Method-Namespace-URI. *> all
 If Not XML-OK Go To Z End-If.

 XML EXPORT FILE
 SOAP-Request-Response *> data item to export from
 BIS-Exchange-File-Name *> exported document file name
 "SOAP-Request-Response" *> model data-name
 "cobol_to_wsdl.xsl" *> stylesheet for transform
 If Not XML-OK Go To Z End-If.
 Call "B$WriteResponse" Using
 BIS-Response-SessionComplete
 Giving BIS-Status
 If Not BIS-OK Go To Z End-If.

This paragraph exports the WSDL to the exchange file using the cobol_to_wsdl.xsl style sheet. This
style sheet is somewhat special in that it uses the structure of the SOAP-Request-Response record area
to derive much of the information for the WSDL. (More 'normal' exports are focused on exporting data

Xcentrisity Business Information Server for extend User's Guide | 81

within a structure, rather than the structure itself.) It is for that reason that attributes and all occurrences are
enabled. Additional metadata values are passed to the style sheet as XSL parameters. Furthermore this
style sheet depends on the previously described naming conventions properly to identify all the methods
and their parameters. B$WriteResponse is then called to notify the request handler that the response is in
the exchange file; the request handler will send the contents of the exchange file to the client.

SOAP request/response

When a SOAP request is detected, the dispatcher is responsible for invoking the business rules associated
with the requested method.

Dispatch-Request.
 If Not Method-Namespace-Is-OK
 Move "env:client" To FaultCode
 Move "bis:WrongNamespace" To FaultString
 Move "Wrong namespace for this interface"
 To FaultDetail
 Perform Indicate-Hard-Fault
 Else
 Evaluate True
 When Method-Is-Find
 Perform Process-Find-Method
 When Other
 Move "env:client" To FaultCode
 Move "bis:WrongMethod" To FaultString
 Move
 "Method invoked is unknown to this interface" To
 FaultDetail
 Perform Indicate-Hard-Fault
 End-Evaluate
 End-If.
 Stop Run.
Process-Find-Method.
 open input office-code-file.
 move spaces to output-parameters of Find--method-parameters.
 if office-code-success
 move desired-company-name of input-parameters of Find--method-parameters
 to company-name of office-code-file
 start office-code-file key Not < company-name of office-code-file
 invalid key move "Not Found" to result of Find--method-parameters
 not invalid key
 read office-code-file next
 at end move "Not Found" to result of Find--method-parameters
 not at end
 move corr office-code-record
 to output-parameters of Find--method-parameters
 end-read
 end-start
 else
 move "Unrecoverable Error" to result of Find--method-parameters
 end-if.
 perform Issue-response.
Issue-Response.
 XML EXPORT FILE
 SOAP-Request-Response *> data item to export from
 BIS-Exchange-File-Name *> exported document file name
 "SOAP-Request-Response" *> model data-name
 "cobol_to_soap.xsl". *> stylesheet for transform
 If Not XML-OK Go To Z.
 Call "B$WriteResponse" Using
 BIS-Response-SessionComplete
 Giving BIS-Status
 If Not BIS-OK Go To Z.

82 | Xcentrisity Business Information Server for extend User's Guide

After an import of a request, the method-name field contains the requested method (folded to lower case)
and the input (and input-output) parameters have been stored in the appropriate --method-parameters
area. (This again is the result of the style sheet using the naming conventions described earlier.) The
dispatching code checks for some errors (for example, being called erroneously by a client wanting to use a
different service) and then uses EVALUATE method-name to invoke business rules appropriate to the
method. After the business rules execute (the paragraph Process-Find-Method in the example), the SOAP
response is exported to the exchange file (once again, the style sheet uses the method-name along with
the naming conventions to 'know' which output-parameters contain the desired result data) and B
$WriteResponse is called to notify the request handler that the response is in the exchange file; the
request handler will send the contents of the exchange file to the client.

Invoke web service using soapUI tool
Once you have created a web service, it is time to take it out for a 'test drive.' Probably the best known web
services test tools is soapUI, which is available in both open source and 'Pro' forms, the former being free
to download. soapUI is available for most modern operating systems. (soapUI is implemented in Java, so
you will be immediately testing in a cross-language environment.) Install soapUI according to its
instructions. (Please note that soapUI has many capabilities that will not be exploited in this tutorial.)

When you start soapUI and dismiss its start up screen, you are presented with a work area similar to
below:

The left pane provides an area to define 'projects' and the right pane contains windows that are associated
with a selected project. Follow these steps to create a project to test the first example.

1. From the File menu, select New SOAP Project. A dialog box is displayed which allows you to provide a
name for your project, as well as the location for finding the WSDL.

Xcentrisity Business Information Server for extend User's Guide | 83

Since our web service provides a WSDL as the result of a GET on the endpoint, we simply enter a
name for the project and the URL of the web service end point. Make sure the Create Requests: option
is checked so that soapUI creates a prototype request document for each method. After fetching and
processing the WSDL, the result is displayed in the left pane:

Note that tutorial1SoapBinding has a single method named: find.
2. Expand the selection for the find method, exposing a prototype request named Request1. Double click

Request1 to open the prototype request in the right pane:

84 | Xcentrisity Business Information Server for extend User's Guide

The prototype request has the question mark (?) character in those areas that need input values to
create a valid request. In the case of this tutorial example, we need to supply an alphanumeric value
which the web service will use to determine which company name to return.

3. Enter BO and press the green arrowhead at the upper left of the request window.

soapUI sends the request to the web service and displays the result:

Xcentrisity Business Information Server for extend User's Guide | 85

This indicates that the web service has created a WSDL and successfully processed a web service
request.

Create clients in PHP, Perl, Java, Python
Using a web service involves creation of a client that will marshal input parameters, create and transmit the
SOAP request, receive the SOAP response and de-marshal the output parameters into a form usable by
the client language. This client is often called a proxy for the web service, presenting the web service as a
function call in the client's programming language.

Because web services are so pervasive, each language has one or more tools available for creating web
service clients. Some of these are:

• PHP: native xml-soap extension, SoapClient , NuSOAP
• Perl: SOAP::Lite, SOAP::WSDL
• Python: SUDS
• Java: Many exist including those from Sun and Apache

Using these various packages is beyond the scope of this tutorial. However, there are some cautions about
using tools to create web service clients. First, unless you expect the contract represented by the WSDL to
change frequently, be sure that the proxy either fetches the WSDL at design time or that the WSDL is
cached between multiple invocations of a web service. Second, if you wish to pass typical COBOL
hierarchical structures (known as complex types), investigate first to see if the tool you wish to use
supports such structures. You may have to simplify your input and output parameters to be able to
interoperate with some less capable tools.

Add a web service to a Visual Studio project
Visual Studio provides a sophisticated ability to include web services in projects. Let's take a closer look at
this popular programming IDE.

Note: The following instructions were carried out using Visual Studio 2017; instructions for other
versions may vary.

1. Firstly, create a new project:

2. After the project is created, add a service reference to the project:

86 | Xcentrisity Business Information Server for extend User's Guide

3. In the Add Service Reference dialog box, enter the URL of the .srf file that is the endpoint of the
service:

4. Click Go to fetch the WSDL, which is then displayed in the dialog box.

Xcentrisity Business Information Server for extend User's Guide | 87

The methods available in the service are listed in the Operations column.
5. Click OK to complete adding the service to the project.

Proxy functions are created for the operations (methods) and the service appears in the Solution
Explorer.

The generated proxy functions allow you to use the web service's methods in a manner identical to any
other function.

Introduction to XML Extensions
XML Extensions is a facility that allows extend applications to interoperate freely and easily with other
applications that use the XML standard. XML Extensions provide the ability to import and export XML
documents to and from COBOL working storage in a natural and intuitive way to the COBOL programmer.

Concept of XSLT
XSLT, which stands for Extensible Stylesheet Language Transformations, is a declarative, XML-based
language used for the transformation of XML documents into other XML documents. The input document is
used to create a new output document using the data in the input document along with the rules described

88 | Xcentrisity Business Information Server for extend User's Guide

in the XSLT document. The style of programming is that of a functional language with string matching,
rather than a procedural language. Learning to create XSLT 'programs' is not difficult, but changing to the
functional programming paradigm for those accustomed to procedural languages does require a different
approach to problem solving.

Note: The term XSL is often used to mean XSLT. XSL is actually a family of standards that includes
XSLT. For most practical purposes, this subtle distinction can be ignored.

XML Extensions creates (exports) or consumes (imports) only documents which 'match' the hierarchical
structure of a COBOL record area. When the external requirements for an XML document do not achieve
this match, XSLT is used. For example, SOAP web services require the creation of a very complicated XML
document, the WSDL, to describe the web service. Xcentrisity BIS uses XSLT to create the WSDL from a
COBOL data description - matching the relatively simple data layout to the complex WSDL XML document.

Note: The following discussion uses terminology that presumes an understanding of XSLT. A
thorough explanation of XSLT is beyond the scope of this tutorial. Several excellent books and online
tutorials are available that teach XSLT.

How XSLT creates a BIS WSDL (high level only)
As described earlier, a BIS service program describes its API using a 01-level group item named
SOAPRequest-Response. This data item has specific naming conventions that describe input and output
parameters for each method within the web service. The XSLT that describes the transformation from the
basic XML document that is exported from SOAP-Request-Response to the WSDL XML document that is
returned to the web client is named cobol_to_wsdl.xsl.

cobol_to_wsdl.xsl differs somewhat from other 'normal' XSLT used with XML Extensions. While most
XSLT are focused on rearranging data being exported from or imported to the COBOL program,
cobol_to_wsdl.xsl instead uses the metadata in the XML document being exported from the COBOL
web service program to create another metadata document, the WSDL. The metadata used consists of the
values of some XSL parameters, the element names (resulting from the naming conventions used), and
information exported due to the use of XML ENABLE ATTRIBUTES.

Let's have a brief review of the naming conventions found in SOAP-Request-Response. Each method in
the web service is defined by a group item immediately subordinate to SOAP-Request-Response with the
name methodname--method-parameters (note the two hyphens after methodname), where methodname is
the name of the method being defined. Within each of these groups, one to three group items, named
input-parameters, output-parameters and/or input-output-parameters, may be defined. The first use of this
naming convention can be seen at the beginning of the first <xsl:template>, where a variable named
$methods is created and contains all the elements whose names end in --method-parameters. The
$methods variable is then used throughout the rest of the template to iterate over all methods.

Let's look at the major sections of cobol_to_wsdl.xsl, which correspond to the four sections of a
WSDL.

The internal schema, which contains most of the complexity of a WSDL, is created inside the
<wsdl:types> element. While there is a fairly large amount of code involved, this essentially involves
iterating over all the methods and creating XML Schema descriptions of each of the request and response
parameters. Special attention is paid to arrays (OCCURS) and to structures (COBOL group items). In
particular, arrays must be named in a manner such that the arrays can be identified by the naming
convention in an incoming SOAP request where the metadata of the COBOL structure is not available to
assist interpretation. 'Wrapper' request and response elements are also created which conform to the
requirements of document/literal wrapped SOAP requests.

Next, the <wsdl:message> elements are created for each method, followed by the <wsdl:operation>
elements (within the <wsdl:portType> element). These elements are relatively simple in document/
literal wrapped SOAP requests.

Finally, the <wsdl:operation> elements for each method are generated within the <wsdl:binding>
element. The WSDL is then completed with the <wsdl:service> element creation.

Xcentrisity Business Information Server for extend User's Guide | 89

How XSLT processes a SOAP request (high level only)
When importing a SOAP request, three things are necessary:

1. The BIS service program must know the HTTP method being used,
2. The SOAP method being requested, and
3. The input parameter values for the SOAP request.

The soap_to_cobol.xsl is the XSLT document that describes this transformation. The BIS request
document consists of four major parts.

The actual payload of the request is wrapped inside a <bis:content> element. ,

1. The cookie values passed by the client are wrapped inside a <bis:cookies> element,
2. The server variable values are wrapped inside a <bis:server-variables> element, and
3. The query parameters from the URL are wrapped inside a <bis:query-params> element.

The latter three sets of values may be obtained by the service program by including the following group
items (preserving the names) in the SOAP-Request-Response group item:

 05 s--cookies.
 07 s--cookie occurs 20.
 09 s--name pic x(40).
 09 s--value pic x(100).
 05 s--query-parameters.
 07 s--query-parameter occurs 20.
 09 s--name pic x(40).
 09 s--value pic x(100).
 05 s--variables.
 07 s--variable occurs 100.
 09 s--name pic x(40).
 09 s--value pic x(100).

Cookies, query parameters and server variables are typically presented as name-value pairs. The name-
value pairs are stored in the arrays described above.

As part of the retrieval of the server variables, the value of the server variable named
REQUEST_METHOD is placed in the http-method.

The remainder of the XSLT is devoted to retrieving the payload information from the <bis:content>
element. The payload is a SOAP envelope, which in turn contains a <SOAP:body> element that contains
the actual method request.

A document/literal wrapped SOAP request has a single element (the so-called wrapper element) inside the
SOAP:body. The name of this element is the name of the requested method. By concatenating the element
(method) name with the string xx the subsequent parameter values may be directed (imported) into the
appropriate method's input parameter group.

After the method name has been determined, the elements subordinate to the wrapper element are
processed to obtain the input parameter values. This processing is straightforward with the exception of
discovering array elements which use a naming convention (see the description of WSDL processing
above).

How XSLT processes a SOAP response (high level
only)
Exporting a SOAP response involves forming a correct SOAP envelope which conforms to the response
defined by the WSDL. The cobol_to_soap.xsl XSLT is the document that describes this
transformation.

The method name for the response is exported, along with all the other data in SOAP-Request-Response.
The method name is used to determine which output-parameters contains actual output parameters of

90 | Xcentrisity Business Information Server for extend User's Guide

interest. And, as in the import of a SOAP request, item names for array elements are adjusted to conform
to the naming convention described in the WSDL.

Data flow in BIS
While an in-depth understanding of the inner workings of BIS is not necessary for the successful
implementation and use of web services, it is useful to understand the steps the request and response
messages go through during the processing of a single web service request. More information about
particulars can be found in the reference manual for Xcentrisity Business Information Server.

A BIS server is composed of two cooperating processes: a request handler running under the control of an
HTTP server (IIS or Apache), and a service program, programmed in COBOL, running under the control of
the Xcentrisity service engine, which is very similar to the AcuCOBOL-GT runtime. A third process is also
involved: the web client agent.

Request handling
A web service request begins when a web client agent (for example, JavaScript in a browser) sends an
HTTP request for a URL designating an SRF file (also known as a BIS stencil file). When the HTTP server
receives this request, it determines that the appropriate 'request handler extension' for such a request is
the BIS Request Handler.

The BIS request handler interprets the tags in the SRF file in the order in which the tags appear. A tag is
composed of text surrounded by {{ and }} sequences, and tags may be interpreted as processing
instructions or placeholders that are replaced by plain text, HTML or XML that is generated by the BIS
service engine or by the BIS request handler. In the case of SOAP web services the SRF file is very
succinct as shown below.

One of the tags, the XMLExchange tag, causes the request handler to format the request information,
including the state of the HTTP server variables, cookies, query parameters and the request payload., into
a standard BIS request. The BIS request is transmitted to the service program via the 'exchange file'. Then,
the request handler suspends its processing of the request until the service program informs it that a
response is available.

SRF file
Let's look at an SRF file for a SOAP web service.

{{ Handler * }}{{//}}
{{ RunPath(bin,../common) }}{{//}}
{{ StartService(tutorial2 -v) }}{{//}}
{{ XMLExchange }}

First, let's understand the rather curious looking tag, {{//}}. This tag has the job of consuming whitespace
(that is, preventing the {{//}} tag and any surrounding whitespace from being rendered back into the
response payload). Whitespace includes spaces, tabs, form feeds and the like, between the other tags.
The use of this tag allows us to write an SRF file that presents each tag on a separate line even though the
rules of SOAP responses preclude the inclusion of such whitespace to make the response more human-
readable.

The {{Handler}} tag is basically a signature tag that must appear within the first few hundred characters of
the SRF file. It is replaced with a zero-length string in the response and is used internally by the HTTP
server and request handler.

The {{RunPath}} tag is used to set environment variables for the service program so that the service
program can find its object and data files. This is similar to shell script commands that are used to set
these environment variables in the normal runtime environment. The {{RunPath}} tag is replaced by a zero-
length string in the response.

The {{StartService}} tag is used to request that a service program be started by the service engine. (Note
that in stateful applications, the StartService tag is used to determine whether the correct service program

Xcentrisity Business Information Server for extend User's Guide | 91

is running in the saved state of the session. See the reference documentation for more information.) The
{{RunPath}} tag is replaced by a zero-length string in the response.

Finally, the {{XMLExchange}} tag functions as the synchronization point between the request handler and
the service program. The request handler suspends processing the request until signaled by the service
program.

Service program
The service program designated in the {{StartService}} tag is activated when that tag is processed.
However, the contents of the request may not yet be available in the exchange file. It is for this reason that
the service program calls B$ReadRequest to wait for the request to be made available.

When the request becomes available, B$ReadRequest returns control to the service program. At that
point, the request XML document that is in the exchange file may be imported, using XML Extensions, into
the service program's working-storage data area. A provided XSLT style sheet transformation is applied
when the only expected request is a SOAP web service request. (Note that a more flexible service program
might import the request XML document more than once, in order to determine what kind of request was
being presented.)

After the request document is imported, the service program acts upon the request and produces a
response, which is placed in the exchange file. Note that this response does not have to be an XML
document (for some examples see below) but in the case of a SOAP response, it is the entire SOAP
response envelope.

After the response is in the exchange file, the service program signals this fact by calling B
$WriteResponse. In a stateless web service environment, the call should include the option that indicates
that the session should be terminated. The service program then terminates in a normal, orderly manner.

Response handling
When the service program signals that a response is available, the request handler replaces the
XMLExchange tag with the entire contents response contained in the exchange file. During this process,
the request handler also examines the contents of the exchange file for certain request handler tags, and
processes those tags before sending the response back to the web client. These tags are useful in
controlling information such as the MIME type of the response and other information that may only be
determined by the service program. Likewise, the service program may wish to send information in the
response that is known only by the request handler; replacement tags are used for this purpose.

When the request handler encounters the end of the SRF file, the response that has been accumulated is
sent back to the web client.

BIS Session management
The Xcentrisity BIS has session management capabilities that may be exploited. Session management
involves the reservation of certain web server resources - memory, processes, etc. - for the use by a
specific web client. In the case of BIS, the state of a service program, including data values, open files,
current record pointers, etc., may be maintained between requests from a specific web client.

Session management is useful for interacting with services that must return large amounts of data under
controlled circumstances. However, session management carries some inefficiency as well; the web client's
request must be routed to a specific server, and significant memory and process resources may be held
waiting for a misbehaving client that fails to return to use them. Use caution if you are considering a stateful
BIS implementation.

BIS uses a cookie hold a session identification key. When a service program indicates that a session is to
be maintained, and there are not SRF tags indicating otherwise, a cookie is sent to the web client with the
response. The web client then sends this cookie back with its next request; the request handler uses the
cookie value to reconnect the request with the correct session, thereby routing the request to a service
program already waiting for it.

92 | Xcentrisity Business Information Server for extend User's Guide

Complex design pattern
While there may be situations where a simple web service implementing a single method is appropriate, a
somewhat more complex design pattern may be illustrative of the controller concept.

Using a simple indexed file, create a web service that implements
CRUD
One popular organizing design pattern is the Create, Read, Add, Delete (CRUD) function group for
persistent storage in an application. The acronym CRUD is often used to describe this function group. By
adding the capability to browse on one or more fields (as provided by tutorial1), and by a careful renaming
of the functions, we can create a design pattern known as BREAD (Browse, Read, Edit, Add, Delete).

The BREAD design pattern applied to an indexed file, or a multiple related indexed files, is useful in
exposing data in an existing application. tutorial2 provides an example of a web service implementing
the BREAD function set on a single indexed file.

tutorial2 illustrates a few more naming conventions that are useful in communicating information
between the COBOL service program and the XSLT style sheet. First, if you wish to control the case of the
characters that spell a method name, you may override the default behavior of folding the method name to
lower case. This is shown on each of the methods. In particular, you place a method--METHOD-NAME
data item at the same level as the method--METHOD-PARAMETERS group item. The desired spelling
(differing in case only) is entered as the value of the method--METHOD-NAME data item. Note that the
values in the method--METHOD-NAME items must be maintained for both WSDL and response export.

In a similar manner, one can control the externally visible naming of parameters. This is illustrated in the
Browse method output-parameter definition, where the data item found-item--name is used to rename the
very COBOL-like name found-record to FoundRecord. Note that, unlike method names, the desired
spelling can be different for data item names that are output parameters; however, spellings for input
parameters may differ only in case.

Finally, also in the Browse method output-parameters, the specially named data item found-record--count is
used to communicate the number of occurrences that should be exported. A --count data item may also be
used on an imported data item array so that the actual number of array items imported may be known

Optimistic concurrency
Many, if not most, multiuser applications that use indexed files use pessimistic concurrency (record locks)
to avoid having two users attempt to update a record at once, thereby losing one of the updates. The name
pessimistic concurrency is used because record locks are often obtained and held while a user is making
changes.

If pessimistic concurrency (i.e. normal record locks) is used in a web services environment, the service
program must be stateful. That is, the service program must continue to exist while the web client is acting
on the data, waiting for the web client to release the lock, or to time out. In reality, though, it is often the
case that the web client may never return (consider JavaScript in a browser when the user closes the
browser window).

The answer to the operation difficulties in a web service environment of pessimistic concurrency is the use
of optimistic concurrency. In optimistic concurrency, the contents of a record are recorded or remembered
at the time a record is read. Then, when a user desires to change or delete the record, the original
contents of the record are compared to the current contents of the record. If the contents have not
changed, the update of delete operation is completed. If the contents have changed, the user is notified
and the change is not made.

tutorial2 demonstrates a tactic for detecting a change in record contents without storing a copy of the
original contents of a record. A message digest (also known as MD5) is computed when the record is
originally read, and is sent to the client along with the record contents. (One of the characteristics of a

Xcentrisity Business Information Server for extend User's Guide | 93

message digest is the fact that changing a single bit in the message - in this case, the record contents - will
cause a change in the message digest.) When the client desires to update or delete the record, the original
message digest is sent as one of the input parameters of the request. As part of processing the update or
delete request, the server first reads the record with lock, recomputes the message digest and compares
the computed digest to the digest sent by the client. If the digests are equal, the record has not changed
and the request is completed. If the record has changed, it is unlocked and the client is notified that the
record contents have changed. (Note that the -Cr option must be used to compile the program that
computes the message digest.)

Not quite a web service
The architecture of Xcentrisity Business Information Server does not restrict its use to SOAP web services.
As noted above, BIS can support web applications that use the REST architecture. In addition, BIS may be
used to implement other XML- and HTTP-based web technologies. These might include Atom, RSS, Ajax,
SVG, and JSON.

AJAX/JSON
As an example of the versatility of the combination of BIS and XML extensions, consider tutorial3,
which is a BIS service program similar to the tutorial2 browse method that can produce either an XML
response or, if the ACTION=JSON query parameter is included on the URL, the service program uses a
different XSLT style sheet to export identical data in JSON (JavaScript Object Notation) format.

When invoked with a URL ending in tutorial3.srf?STARTSWITH=C the following XML is returned:

<?xml version="1.0" encoding="utf-8"?>
<companies>
 <company>
 <statecode>IA</statecode>
 <areacode>712</areacode>
 <officecode>723</officecode>
 <companyname>C-M-L TELEPHONE COOP. ASSN. OF MERIDEN,
 IOWA</companyname>
 <ratecenter>ARCHER</ratecenter>
 <assignmentcode>AS</assignmentcode>
 </company>
 <company>
 <statecode>TX</statecode>
 <areacode>512</areacode>
 <officecode>316</officecode>
 <companyname>C3 COMMUNICATIONS, INC. - TX</companyname>
 <ratecenter>AUSTIN</ratecenter>
 <assignmentcode>AS</assignmentcode>
 </company>
 <company>
 <statecode>MT</statecode>
 <areacode>406</areacode>
 <officecode>935</officecode>
 <companyname>CABLE & COMMUNICATIONS
 CORPORATION</companyname>
 <ratecenter>BROADUS</ratecenter>
 <assignmentcode>AS</assignmentcode>
 </company>

When invoked with a URL ending in tutorial3.srf?STARTSWITH=C&ACTION=JSON the following text
is returned:

{ "companies" : [
 {
 "statecode" : "IA",
 "areacode" : 712,
 "officecode" : 723,

94 | Xcentrisity Business Information Server for extend User's Guide

 "companyname" : "C-M-L TELEPHONE COOP. ASSN. OF MERIDEN, IOWA",
 "ratecenter" : "ARCHER",
 "assignmentcode" : "AS"
 },
 {
 "statecode" : "TX",
 "areacode" : 512,
 "officecode" : 316,
 "companyname" : "C3 COMMUNICATIONS, INC. - TX",
 "ratecenter" : "AUSTIN",
 "assignmentcode" : "AS"
 },
 {
 "statecode" : "MT",
 "areacode" : 406,
 "officecode" : 935,
 "companyname" : "CABLE & COMMUNICATIONS CORPORATION",
 "ratecenter" : "BROADUS",
 "assignmentcode" : "AS"
 },

Additional usage examples may be found on the Micro Focus SupportLine Knowledge Base.

XML Exchange Request File Format
Here is a sample request, as written to the file specified by the BIS_FILENAME environment variable. The
request is transmitted in XML and is wrapped in the following top-level element:

<?xml version="1.0" encoding="UTF-8" ?>
< bis:request xmlns:bis=http://www.xcentrisity.com/2003/bis/request >
 content, cookies, queryparams, server variables
</ bis:request >

The content , cookies , queryparams , server variables contains the four elements described
in the following table:

< bis:content >
 payload data
</ bis:content >

Contains the content part of the request (such as form
variables POSTed back to the server). This element will
be empty if there is no content data in the request-as is
typically true of the first (GET) request.

< bis:cookies >
 < bis:cookie name=name >
 cookie data
 < /bis:cookie >
 …
</ bis:cookies >

Contains an attributed <bis:cookie> element for
each cookie that was transmitted with the request.

< bis:query-params >
 < bis:query-param name=name >
 parameter data
 </ bis:query-param >
 …
</ bis:query-params >

Contains an attributed <bis:query-param> element
for each query parameter that was transmitted with the
request.

< bis:server-variables >
 < bis:server-variable name=name >
 server variable data
 </ bis:server-variable >
 …
</ bis:server-variables >

Contains an attributed <bis:server-variable>
element for each server variable associated with this
request.

Xcentrisity Business Information Server for extend User's Guide | 95

The content of a sample request file is below. Note that this is also visible in the trace output, if tracing is
enabled. Also note that the <bis:content> section is application-dependent. This particular example is
from the http://localhost/acubis10/samples/sample3 application with the following data entered into the form
fields:

Element Attribute Value

numberOne 5

numberTwo 2

cookie BISKIT Vos9tBgZknXRMTyI4GaJKw

Because this is a web service sample, there are no form fields or query parameters to store into the
<bis:content> and <bis:query-params> elements. However the cookies are stored as attributed
elements into the <bis:cookies> section. Finally, all server variables are output into the <bis:server-
variables> section (not depicted above). Using Xcentrisity XML Extensions and XSLT, the service
program can selectively extract any or all of these elements and ignore elements that are not important to
the application.

Here is the complete XML exchange file for this example. Note that the XML tags are indented to make the
example easier to read.

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>
<bis:request xmlns:bis="http://www.xcentrisity.com/2003/bis/request">
 <bis:content>
 <SOAP-ENV:Envelope
 xmlns=""
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:s="http://www.w3.org/2001/XMLSchema"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:tns="http://tempuri.org/bis/samples/Calculator/"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <SOAP-ENV:Body>
 <Add xmlns="http://tempuri.org/bis/samples/Calculator/">
 <A>5
 2
 </Add>
 </SOAP-ENV:Body>
 </SOAP-ENV:Envelope>
 </bis:content>
 <bis:cookies>
 <bis:cookie name="cookies">true</bis:cookie>
 <bis:cookie name="BISKIT">Vos9tBgZknXRMTyI4GaJKw</bis:cookie>
 </bis:cookies>
 <bis:query-params/>
 <bis:server-variables>
 <bis:server-variable name="BIS_ROOT_PATH">
/acubis10/samples
 </bis:server-variable>
 <bis:server-variable name="HTTP_ACCEPT">*/*</bis:server-variable>
 <bis:server-variable name="HTTP_ACCEPT_LANGUAGE">
en-us
 </bis:server-variable>
 <bis:server-variable name="HTTP_REFERER">
http://tex-mikes-centos54/acubis10/samples/sample3/
 </bis:server-variable>
 <bis:server-variable name="HTTP_SOAPACTION">
"http://tempuri.org/bis/samples/action/Calculator.Add"
 </bis:server-variable>
 <bis:server-variable name="CONTENT_TYPE">
text/xml; charset="UTF-8"

96 | Xcentrisity Business Information Server for extend User's Guide

HTTP://LOCALHOST/ACUBIS10/SAMPLES/SAMPLE3

 </bis:server-variable>
 <bis:server-variable name="HTTP_ACCEPT_ENCODING">
gzip, deflate
 </bis:server-variable>
 <bis:server-variable name="HTTP_USER_AGENT">
 Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 6.0; WOW64; Trident/4.0;
GTB6.5; SLCC1; .NET CLR 2.0.50727; .NET CLR 3.5.30729; InfoPath.2;
OfficeLiveConnector.1.3; OfficeLivePatch.0.0; .NET CLR 1.1.4322; MS-RTC EA 2;
MS-RTC LM 8; .NET CLR 3.0.30729)
 </bis:server-variable>
 <bis:server-variable name="HTTP_HOST">
tex-mikes-centos54
 </bis:server-variable>
 <bis:server-variable name="CONTENT_LENGTH">613</bis:server-variable>
 <bis:server-variable name="HTTP_CONNECTION">
Keep-Alive
</bis:server-variable>
 <bis:server-variable name="HTTP_CACHE_CONTROL">
no-cache
 </bis:server-variable>
 <bis:server-variable name="HTTP_COOKIE">
cookies=true; BISKIT=Vos9tBgZknXRMTyI4GaJKw
 </bis:server-variable>
 <bis:server-variable name="PATH">
/usr/kerberos/sbin:/usr/kerberos/bin:/usr/local/sbin:/usr/local/bin:/sbin:/
bin:/usr/sbin:/usr/bin:/root/bin
 </bis:server-variable>
 <bis:server-variable name="SERVER_SIGNATURE"></bis:server-variable>
 <bis:server-variable name="SERVER_SOFTWARE">
Apache/2.2.14 (Unix) mod_ssl/2.2.14 OpenSSL/0.9.8l
 </bis:server-variable>
 <bis:server-variable name="SERVER_NAME">
tex-mikes-centos54
 </bis:server-variable>
 <bis:server-variable name="SERVER_ADDR">10.64.26.41</bis:server-variable>
 <bis:server-variable name="SERVER_PORT">80</bis:server-variable>
 <bis:server-variable name="REMOTE_ADDR">10.64.26.22</bis:server-variable>
 <bis:server-variable name="DOCUMENT_ROOT">
/usr/local/apache22/htdocs
 </bis:server-variable>
 <bis:server-variable name="SERVER_ADMIN">
michael.schultz@microfocus.com
 </bis:server-variable>
 <bis:server-variable name="SCRIPT_FILENAME">
/var/local/acubis10/samples/sample3/calculator.srf
 </bis:server-variable>
 <bis:server-variable name="REMOTE_PORT">63994</bis:server-variable>
 <bis:server-variable name="GATEWAY_INTERFACE">CGI/1.1</bis:server-
variable>
 <bis:server-variable name="SERVER_PROTOCOL">HTTP/1.1</bis:server-variable>
 <bis:server-variable name="REQUEST_METHOD">POST</bis:server-variable>
 <bis:server-variable name="QUERY_STRING"></bis:server-variable>
 <bis:server-variable name="REQUEST_URI">
/acubis10/samples/sample3/calculator.srf
 </bis:server-variable>
 <bis:server-variable name="SCRIPT_NAME">
/acubis10/samples/sample3/calculator.srf
 </bis:server-variable>
 <bis:server-variable name="HTTP_URL">
/acubis10/samples/sample3/calculator.srf
 </bis:server-variable>
 </bis:server-variables>
</bis:request>

Xcentrisity Business Information Server for extend User's Guide | 97

Windows/UNIX Portability Considerations
BIS is designed to allow web applications and services to be portable between Windows and UNIX-based
web servers and operating systems. This means that, with some care, the developer can produce stencils
(that is, .srf files) and service programs that do not depend on platform-specific features or
characteristics and are, thus, portable. If a portable application is the goal, the following issues must be
considered.

• The Handler tag is required for all platforms; however the parameter has no effect when rendered on
UNIX. For portability, specify {{ Handler * }}.

• Pathnames referenced by stencils and service programs are subject to the differences between
Windows and UNIX file naming conventions/rules. If portability is an objective, they must be chosen
carefully. In particular, UNIX file naming is case-sensitive, and Windows is not. This means that a
portable application should be consistent in its use of case within file names, and the files themselves
should be named in accordance with that consistent use.

If there is any possibility that a BIS application will be moved between UNIX and Windows, it is a good
practice to restrict filenames to all lower-case names without any embedded spaces.

• Pathnames are also subject to the different conventions regarding the directory edge-name separator (/
vs. \). In order to enable portable .srf files, BIS allows the / to be used on both Windows and UNIX
everywhere except in the Handler tag. If portability is the goal, the \ character should not be used as a
pathname separator.

• There are a few features that are implemented in BIS/IIS on Windows, but have not yet been

implemented on UNIX. These are called out with the icon in the section of this document where the
feature is described.

• Newer versions of BIS support tags that may not be recognized by older versions.

No application should be assumed to be portable unless it has been tested in every environment to which it
is expected to be deployed.

Regular Expression Syntax
Regular expressions may be used in the MATCH and SUBSTITUTE parameters of the Value tag.

Metacharacters
This table lists the metacharacters that may be used in {{Value(…MATCH= regexp)}} and
{{Value(…SUBSTITUTE= regexp)}}.

Metacharacter Meaning

. Matches any single character.

[] Indicates a character class. Matches any character inside
the brackets (for example, [abc] matches a, b, and c).

^ If this metacharacter occurs at the start of a character
class, it negates the character class. A negated character
class matches any character except those inside the
brackets (for example, [^abc] matches all characters
except a, b, and c).

If ^ is at the beginning of the regular expression, it
matches the beginning of the input (for example,

98 | Xcentrisity Business Information Server for extend User's Guide

Metacharacter Meaning

^[abc] will only match input that begins with a, b, or
c).

- In a character class, indicates a range of characters (for
example, [0-9] matches any of the digits 0 through 9).

? Indicates that the preceding expression is optional: it
matches once or not at all (for example, [0-9][0-9]?
matches 2 and 12).

+ Indicates that the preceding expression matches one or
more times (for example, [0-9]+ matches 1, 13, 666,
and so on).

* Indicates that the preceding expression matches zero or
more times.

??, +?, *? Non-greedy versions of ?, +, and *. These operators
match as little as possible, unlike the greedy versions
which match as much as possible. Example: given the
input <abc><def>, <.*?> matches <abc> while
<.*> matches <abc><def>.

() Grouping operator. Example: (\d+,)*\d+ matches a
list of numbers separated by commas (such as 1 or
1,23,456).

{ } Indicates a match group.

\ Escape character: interpret the next character literally (for
example, [0-9]+ matches one or more digits, but
[0-9]\+ matches a digit followed by a plus character).
Also used for abbreviations (such as \a for any
alphanumeric character; see the table below).

If \ is followed by a number n , it matches the n th
match group (starting from 0). Example:

<{.*?}>.*?</\0> matches <head>Contents</
head>.

$ At the end of a regular expression, this character matches
the end of the input. Example: [0-9]$ matches a digit
at the end of the input.

| Alternation operator: separates two expressions, exactly
one of which matches (for example, T|the matches
The or the).

! Negation operator: the expression following ! does not
match the input. Example: a!b matches a not followed
by b.

Abbreviations
Abbreviations such as \d instead of [0-9] are allowed. The following abbreviations are recognized:

Abbreviation Expansion Matches

\a ([a-zA-Z0-9]) Any alphanumeric character

\b ([\t]) White space (blank)

\c ([a-zA-Z]) Any alphabetic character

Xcentrisity Business Information Server for extend User's Guide | 99

Abbreviation Expansion Matches

\d ([0-9]) Any decimal digit

\h ([0-9a-fA-F]) Any hexadecimal digit

\n (\r|(\r?\n)) Newline (both Windows and UNIX)

\q (\"[^\"]*\")|(\'[^\']*\') A quoted string (either single or
double quotes)

\w ([a-zA-Z]+) A simple word

\z ([0-9]+) An integer

BIS Troubleshooting Tips
This Appendix outlines the symptoms of some common abnormal conditions, and provides insight as to the
possible cause(s) and corrective action(s).

Before troubleshooting, if you are using Internet Explorer, be sure that the Show Friendly HTTP error
messages option is not checked. This option can be found in Tools > Internet Options > Advanced >
Browsing in either Internet Explorer or Control Panel > Internet Options.

• Symptom:
Server Error in Application "Default Web Site/acubis10"

HTTP Error 500.0 - Internal Server Error
Description: Handler "AboMapperCustom-24582078" has a bad module
 "IsapiModule" in its module list
Error Code: 0x8007000d
Notification: ExecuteRequestHandler
Module: IIS Web Core
Requested URL: http://localhost:80/acubis10/samples/default.srf?trace=page
Physical Path: C:\inetpub\wwwroot\acubis10\samples\default.srf

Logon User: Anonymous
Logon Method: Anonymous
Handler: AboMapperCustom-24582078

• Possible Cause: Indicates that IIS ISAPI extension support is not installed.
• Suggestion: In Windows 2008 Server, start Programs and Features in the Windows control panel,

and ensure that ISAPI Extensions are enabled (that is, the option is checked) under Internet
Information Services > World Wide Web Services > Application Development Features.

• Symptom:
Business Information Server Error
An error occurred while BIS was processing your request. Additional
information is below.
XMLExchange failed: the service program returned error
"80004004", which is "Operation aborted". The session has ended.

• Possible Cause: Indicates that there was a problem starting the Service Engine.
• Suggestion: To narrow the problem, turn on tracing by adding this tag to your .srf file:

{{ Trace(start, page) }}

Then, refresh the page. You should now see a table headed Request Details at the end of the page.
Scroll down to Trace Information and look for Service in the left-most column.

The BIS samples are pre-configured for tracing and tracing may be turned on and off with a query
parameter defined in the Trace tag. For example, if the problem occurred running the VERIFYBIS
program, log into the server running BIS and use this URL:

http://localhost/acubis10/verify/default.srf?trace=page

100 | Xcentrisity Business Information Server for extend User's Guide

Trace output will appear at the bottom of the page, and this will include the BIS Service Engine startup
messages that should reveal the problem.

• Symptom: An error 500 occurs.
• Possible Cause: A replacement tag precedes the Handler tag.
• Suggestion: The only tags allowed before the Handler tag are comment tags. Move all tags that

precede the Handler tag to follow it.
• Symptom: One of the following error messages is reported:

Cannot create the trace file for session "nH6shZykCtbZmdDZHo0LhJhiVSq5"
(the last attempted filename is "D:\Documents and Settings\UserID\Local
Settings\Temp\BIS-nH6s-trace.txt"). The last error code was 80070005

Cannot reopen the trace file for session "nH6shZykCtbZmdDZHo0LhJhiVSq5"
(the last attempted filename is "D:\ Documents and Settings\UserID\Local
Settings\Temp\BIS-nH6s-trace.txt"). The last error code was 80070005

Could not write the trace file to the directory "D:\ Documents and Settings
\UserID\Local Settings \Temp\": the error code was 80004005.

• Suggestion: To correct this error, give the IWAM_* account write access to this directory. See the
Troubleshooting appendix in the User's Guide for more information.

• Symptom: The following error message appears in the web browser:

Server Error
LoadLibrary failed.

• Possible Cause: The Handler tag is missing, invalid, or refers to a missing or invalid library.
• Suggestion: Make sure that your .srf page has a {{ Handler * }} tag, and that this tag is the

first non-comment/non-include tag in the file. For Windows, it must also appear in the first 4096
characters of the .srf file.

Configuring BIS/IIS after Installation
The Business Information Server Service Engine must be registered with Windows. If it becomes
necessary to re-register the server, registration can be performed:

• by reinstalling BIS/IIS (choose the Repair option), or
• from the command line

This section describes how to configure the BIS/IIS Service Engine from the command line.

Command Line Configuration
BIS is self-registering. Registration is performed by the XBIS.EXE program, which can be found in the
installation directory (normally C:\Program Files\Micro Focus\extend x.x.x\AcuGT\bin).
Registration includes these three steps:

• The BIS Service Engine contained in XBIS.EXE is registered.
• The Run As identity, that is, the identity that will be used to execute service programs, is set.

The server registration syntax is:

XBIS registration-options

The registration options are detailed below:

/REGSERVER Registers the Service Engine. Also registers the runtime
system located in the same directory as XBIS.EXE.

/UNREGSERVER Unregisters the BIS Service Engine and the runtime
system.

Xcentrisity Business Information Server for extend User's Guide | 101

/SHOWSERVER Displays a dialog box that shows the location of the
currently registered BIS and Service Engine.

The server registration option has three additional variations:

/REGSERVERQ Quietly registers the BIS Service Engine and the runtime
system located in the same directory as XBIS.EXE. No
confirmation dialog box is displayed .

/REGSERVERO Only registers the BIS Service Engine. The runtime
system registration remains unchanged. This is useful if
you want to install the runtime system in a directory
separate from the BIS Service Engine.

/REGSERVERQO Combines the above two options.

The /REGSERVER and /REGSERVERQ options have an additional optional parameter: the pathname of the
runtime system or the directory containing the runtime system. It is specified as in these examples:

1. /REGSERVER:pathname
2. /REGSERVERQ:pathname
3. /REGSERVER:directory
4. /REGSERVERQ:directory

If the pathname or directory is specified, the specified file or the server in the specified directory is
registered and BIS does not search for the runtime system in the path.

If a directory is specified, it may end with a trailing backslash to differentiate it from a filename. Also note
that if the specified name contains spaces, it must be surrounded by single or double quotes.

Configuring the Run As Logon ID
To execute service programs, Business Information Server must assume the identity of a user authorized
to run the programs and access data files required by the programs. This is accomplished by specifying a
Logon ID during installation, reinstallation, or server registration.

The Run As identity may be configured during registration interactively with a dialog box, or by specifying
options on the command line.

Note that the /RUNAS options below must be specified along with one of the /REGSERVER options
described above.

If none of the options in the table below are specified, the server displays the Run As configuration dialog
box on the right even if /REGSERVERQ (quiet mode) is specified.

The Run As dialog box has three options that determine the context in which BIS will execute:

102 | Xcentrisity Business Information Server for extend User's Guide

/RUNASI

/RUNASIP

Causes the server to run as the INTERACTIVE USER.
This is the identity of the user that is logged on to the
server's console. This is most useful for developers but is
not recommended for deployment.

If the P suffix is specified, BIS prompts for credentials
using the dialog box if an error occurs.

/RUNASL

/RUNASLP

Runs the server under the identity of the launching
(usually anonymous) user. This will normally be the
account named IUSR_machinename, where
machinename is the name assigned to the machine.

For example, if your machine is named HILO, the
anonymous user's name is IUSR_HILO. It is possible for
a system administrator to change this, either for all IIS
accounts or for just the BIS. If the name of the machine
was changed after IIS was installed, this will be the
original name of the machine, not the current name. In
this case, please see Manual Configuration, below.

Note that this account usually has very limited privileges
and BIS will not even be able to start unless you manually
give this account write permission in the BIS installation
directory. BIS will not be able to access files in other
directories, unless you also give it access to those
directories, and will not be able to access files on any
network volumes unless your machine is joined to a
domain and this name is known to the domain server.
See your system administrator for details.

If the P suffix is specified, BIS prompts for credentials
using the dialog box if an error occurs.

/RUNAS: id, pw

/RUNASP: id, pw

Runs the server using the specified identity. This is the
recommended option. id is the login ID and pw is the
password. The password is encrypted by Windows, is
stored in the registry, and is not retrievable as plain text
once the server is registered. However, caution is
required when embedding a clear-text password in a
batch file that issues the /RUNAS command.

If an id is specified without a pw , the program prompts
for the password. This may be a good compromise
between convenience and security.

Either the pw id or the pw may be quoted with single or
double quotes (required if either contains spaces). The
entire parameter string may also be quoted.

Examples:

/RUNAS:myuserid, mypassword
/RUNAS:”my user id”,”my password”
/RUNAS:”my user id,my password”
/RUNAS:”INTERACTIVE USER”

As a special case, the special logon ID of
INTERACTIVE USER is recognized and handled as
if /RUNASI were specified. Any password is ignored,
and quotes are required due to the embedded space.

If the P suffix is specified, BIS prompts for credentials
using the dialog box if an error occurs.

Xcentrisity Business Information Server for extend User's Guide | 103

Retrieving or Changing the Configured Identity
The Windows Component Services configuration utility may be used to examine and change the current
Business Information Server configuration.

There are two ways to start the utility:

• Select Start > Control Panel > Administrative Tools > Component Services. (Alternatively, select
Start > Run, enter dcomcnfg in the Open box, and click the OK button.)

• Select Start > Control Panel > Administrative Tools > Component Services. The program should
look like this:

1. Find Xcentrisity Business Information Server xx in the list, right-click, and select Properties from
the popup menu.

2. Click the Identity tab. The dialog box depicted below displays the current Run As configuration.

104 | Xcentrisity Business Information Server for extend User's Guide

Note that you can change the identity and/or the password that BIS/IIS uses to run service programs
here.

Manual Configuration
To manually change the user ID and password that the Service Engine uses to execute programs, follow
these steps after completing the installation:

1. Select Start > Control Panel > Administrative Tools > Component Services.

Alternatively, select Start > Run, enter dcomcnfg in the Open box, and click the OK button.
2. Expand Console Root > Component Services > My Computer > DCOM Config. The program should

look like this:

3. Locate Xcentrisity Business Information Server xx in the list, right-click, and select Properties from
the popup menu.

4. Click the Identity tab, then This user. Enter the user ID and the password that you want to use to run
service programs under Business Information Server. Then click the Apply button.

5. Click the Security tab and under Launch Permissions, click Customize and then click Edit. Click Add
and enter the name of your anonymous internet account (see below). Click the Add button; make sure
Allow is checked next to Launch Permission and click OK. Then click Apply.

6. Still on the Security tab, repeat the above step for Access Permissions.
7. You do not need to change Configuration Permissions. Click OK to close the dialog box.

The name of your anonymous internet account is normally IUSR_machine, where machine is the
hostname assigned to your machine. However, the system administrator can change the name of this
account, and this is common if you are running more than one web site.

To determine the name of your anonymous internet account:

1. Select Start > Control Panel > Administrative Tools > Internet Information Services.
2. Expand Internet Information Services > Local Computer > Web Sites > Default Web Site. (Replace

the last node with your site if IIS is serving multiple web sites).

Xcentrisity Business Information Server for extend User's Guide | 105

3. Find the web application that was created to contain the BIS service program. This will be acubis10 for
the sample program. Right-click that node and select Properties.

4. Click Directory Security, then Edit.
5. The User Name box contains the name of the anonymous account that you can enter above.

Note that the above configuration is very flexible. You can control what users will have access to the
COBOL program on a site-by-site, or even a directory-by-directory basis on your web site.

Alternatively, instead of specifying IUSR_machine, you can specify GUEST, or any other group that
contains all your anonymous access accounts. However, be cautious before granting too many privileges to
too many anonymous processes.

Setting Environment Variables
Some BIS settings are set from the server environment. To set a BIS environment variable:

• Log in as Administrator, or an account that is a member of the Administrators group.
• Click Start > Control Panel > System.
• Click the Advanced tab.
• Click the Environment Variables button.
• Under System Variables, click the New button. Alternatively, if the environment variable has already

been set, click the variable name in the list box and then click the Edit button.
• Enter the variable name and the value and select OK.
• When done, click OK to dismiss the dialog box.

The changes take effect immediately.

Setting the Maximum Thread Count
BIS uses a system resource called a Thread to render pages. For efficiency, BIS maintains an internal pool
of threads, and when a request for a BIS page arrives, a thread from the pool is dispatched to serve the
page. When the page is completely rendered, the thread returns to the pool to await the next request.

If there are no available threads in the pool, the request must wait for a thread to become available. A
request will wait for some period of time (normally about 60 seconds) before being denied with a server
too busy error page.

106 | Xcentrisity Business Information Server for extend User's Guide

BIS pages that do not communicate with the Service Engine normally execute very quickly. However, if a
page contains an XMLExchange tag, the BIS thread serving that page must wait until the Service Engine
provides the replacement text for the XMLExchange tag. If this is a lengthy process, it is conceivable that
BIS will not have enough threads to serve all pending requests. In this case, it may be desirable to increase
the size of the BIS thread pool so more pages can be rendered simultaneously.

The BIS_MAX_THREADS environment variable may be used to increase (or decrease) the size of the
thread pool. The syntax is:

BIS_MAX_THREADS=value

where:

n Is an integer that specifies the number of threads that will
be used by BIS to service requests.

Notes
• Since each BIS thread requires system resources, even when idle, it is not desirable to set this value to

a large number. The default value, 5 threads, is sufficient for a moderately busy server and should only
be increased if requests are being denied or users are waiting for their requests to be serviced.

• BIS dynamically creates additional threads for each Service Engine started by the StartService tag.
These Service Engine threads do not count against the BIS_MAX_THREADS value.

• The BIS_MAX_THREADS option is only examined when the BIS Request Handler is loaded. The handler
is loaded on demand, for example, when the first BIS request arrives after a server restart, and then the
handler is automatically unloaded after about 20 minutes of inactivity.

• The current setting can be retrieved with Value(MaxThreads, Config). On UNIX, this always
returns 1.

Configuration after Installation (UNIX/Apache)

Configuring Apache
The Apache configuration file for BIS is named mod_xbis.conf and is included in the Apache server
configuration by an Include directive placed in the main httpd.conf configuration file. This shows the
Include directive.
3Include /opt/microfocus/acuxxx/etc/mod_xbis.conf

If available, copy or link the mod_xbis.conf file to the /etc/httpd/conf.d directory. This circumvents
the necessity of editing the main httpd.conf configuration file.

The BIS Configuration File

The BIS configuration file contains several sets of Apache configuration directives. The first set of directives
configures Apache direct requests to the BIS Request Handler module. This sample shows this set of
directives.

LoadFile /opt/microfocus/acuxxx/lib/libxml.so
LoadModule xbis_module /opt/microfocus/acuxxx/lib/mod_xbis22.so
AddHandler bis-stencil srf
AddType text/html srf
AddType text/x-component .htc

The LoadFile directive is required and should not be changed. It causes Apache to dynamically load the
shared object containing the BIS Request Handler's XML parser when Apache starts.

3 xxx represents the version of extend that you are running

Xcentrisity Business Information Server for extend User's Guide | 107

The LoadModule directive is required and should not be changed. It causes Apache to dynamically load
the shared object containing the BIS Request Handler when Apache starts.

The AddHandler directive causes all URIs that request files ending with srf to be processed by the BIS
Request Handler. If it is desired to have the Request Handler process requests with other file extensions,
add additional AddHandler directives.

The AddType directive causes the default content type of a response for a URI ending with srf to be text/
html. An AddType directive should be added for each AddHandler directive added to serve an addition file
extension.

The AddType directive for the .htc extension is necessary to cause Apache to serve HTML Components
files (a Microsoft extension) with the correct content type.

These directives affect the amount and location of trace information produced by BIS.

BISTraceDirectory /var/xbis
BISTraceFile trace.log
BISKeepTraceFiles Off
BISTruncateTraceFile Off
BISTraceSuffix Page
BISMasterTrace On
BISMainDebug On
BISStencilDebug On
BISSEDebugLevel 0

The BISTraceDirectory directive specifies the directory where trace files are written. The default is /var/
xbis. If this directive does not specify an absolute path, it is assumed to be relative to a default (/tmp on
some systems).

The BISTraceFile directive indicates the name of the trace file. This directive should only be used when all
tracing for all requests are written to the same file. If this directive does not specify an absolute path, it is
relative to the directory specified by BISTraceDirectory.

The BISKeepTraceFiles directive controls whether trace files are kept after a session completes. The value
of Off is the default, and it causes trace files to be deleted, unless a FILE option in a Trace tag (in a stencil
file) requests that they be kept. The value of On causes trace files to be retained regardless of the
presence of a FILE trace option.

The BISTruncateTraceFile directive controls whether trace files are truncated at the beginning of each
request. The value of Off is the default and causes all requests of a session to be placed in the trace file.
The value of On cause only the last request of the session to be placed in the trace file.

The BISTraceSuffix directive adds additional options to Trace tags (in a stencil file) whenever one is
processed. The value of this directive is processed after the options specified in the Trace tag, but before
the options specified in the trace query parameter. There is no default for this directive. The options are
described in the Trace tag section. All Trace tag options are allowed.

The BISMasterTrace directive is a master switch that controls all tracing activity. The value of Off is the
default and will prevent all tracing. This is the appropriate value for a production environment. The value of
On allows tracing to occur.

The BISMainDebug directive controls tracing of tags as they are executed. The value of Off is the default
and prevents trace messages. The value of On allows trace messages during execution of the stencil. This
tracing approximates the tracing performed by BIS/IIS.

The BISStencilDebug directive controls tracing tags as they are parsed. The value of Off is the default and
prevents trace messages. The value of On will cause trace messages diagnosing syntax errors in tags to
be produced.

108 | Xcentrisity Business Information Server for extend User's Guide

The BISSEDebugLevel directive controls tracing of the BIS Service Engine. The values are 0, 1, and 2. 0 is
the normal level of tracing and is appropriate for seeing DISPLAY statements from the service program. 1
and 2 supply additional tracing and should only be used when directed by customer support.

BISRefreshDirectory /var/tmp/xbis.refresh

The BISRefreshDirectory directive names a directory where server responses are stored temporarily, in
case the client user agents such as web browsers request a refresh (see the XMLExchange tag.) The
indicated directory should have permissions which allow create, reading, write, and delete access by the
Apache child process. If no directory is named, or if this directive is omitted, the BIS Request Handler will
not attempt to provide correct responses to refresh requests which lead to unnecessary session sequence
errors.

BISErrorMessage ErrorName Error Text

The BISErrorMessage directive overrides the text for one of the BIS Request Handler's error messages.
One reason to do this is to provide error messages in a language other than English. The first operand of
the directive is the name of the error to be overridden. The remainder of the directive is the new text to be
displayed when ErrorName is encountered. The current set of the Request handler's error names and their
text are present within mod_xbis.conf as commented out BISErrorMessage directives.

BISSesDaemonKey xxxxxxxx

The optional BISSesDaemonKey directive allows the shared memory key with which to contact the Service
Engine to be specified. This directive should only be used when it is desired to run multiple Service Engine
daemons on the same UNIX server. This is rare. The value is an 8-hex digit value that must match the
SharedMemory option keyword of the configuration of the Service Engine to use.

Alias URL-Path Directory-Path

This standard Apache directive allows stencils (as well as other documents) to be served from directories
outside of the Apache web server's document root. The URL-Path value is a string that is to be matched to
the leading part of the path of desired URLs. When a match occurs, it is removed and replaced with the
Directory-Path value to produce the actual file name of the requested document. When an Alias directive is
used, create a corresponding Directory directive to specify additional configuration directives for the
directory named Directory-Path.

<Directory Directory-Path>
 SetEnv BIS_ROOT_PATH /xbisvc22/samples
 SetEnv TEMP /var/xbis
 DirectoryIndex default.srf
</Directory>

This set of standard Apache directives demonstrates tailoring Apache directives to document directories.
The Directory-Path value is the name of the directory to which the directives apply.

The SetEnv directives demonstrate setting server environment variables. The value of such a variable is
available in a stencil in a Value tag. It is also available by enclosing its name between "%" characters. In
the above example, %TEMP% in a stencil served from this directory would be replaced by /var/xbis.

The DirectoryIndex directive specifies the name of the default document to serve if only the directory name
is specified in the requested URL.

Service Engine Configuration
The BIS Service Engine runs as a UNIX daemon process and one or more service processes which the
daemon creates, as needed. There are always one or more idle service processes waiting for the Request
Handler (the Apache part) to process a StartService tag.

Because the Service Engine runs as daemon, it normally starts when the operating starts, without any
direct user interaction. It gets all of its options from a configuration file, its command line and its
environment. The configuration file is usually named /etc/xbis.conf, but this can be changed by the -f
command-line option. Each line in the configuration file is either a blank line, comment line or an option

Xcentrisity Business Information Server for extend User's Guide | 109

line. A comment line is a line in which the first nonblank character is a # character. On an option line, the
line begins with a keyword, which is followed by one or more spaces or tabs and then by the option value.
A # character may follow the option value to introduce an in-line comment.

The configuration file option keywords are:

BinDir Specifies the name of the directory where the BIS binary
executable files are located.

There is no reason for a user to alter this parameter after
installation.

LibDir Specifies a colon separated list of directory names that
will be placed into the standard search path environment
variable for the UNIX platform when the Service Engine is
started. Usually the environment variable is
LD_LIBRARY_PATH, but it is LIBPATH for AIX,
SHLIB_PATH for 32-bit HP-UX, and
LD_LIBRARY_PATH_64 for 64-bit Solaris. The value of
this option is prepended to the current value of the library
search environment variable. There is no reason for a
user to alter this parameter after installation.

LogDir Specifies the name of the directory where the BIS log
files are placed.

MaxChildren Specifies the maximum number of service (child)
processes.

This is normally set to 250.

MaxSessions Specifies the maximum number of BIS sessions. It
defaults to twice the MaxChildren value.

PageSize Specifies the amount of space allocated in the Sessions
file for each session. This holds the information about a
session between requests. It must be a power of two and
it must be at least 512 but no more than 16384. It defaults
to 2048, which should be sufficient unless your stencils
define unusually long paths or a large number of
environment variables.

SaveFiles If specified, copies of all request and response files are
saved in the temporary directory.

This is a debugging tool, typically used during
development of a web site.

ServiceTimeout Default service timeout, in seconds.

This is the preferred way to set the default service
timeout. If BIS_SERVICE_TIMEOUT is set in the
Apache configuration file for BIS (bis.conf), the
Request Handler uses that value to override the value of
the -T option. Doing so delays the start of each service
program slightly.

SharedMemory If present, specifies the shared memory key that the
Service Engine is to use. This directive should only be
used when it is desired to run multiple Service Engine
daemons on the same UNIX server. The value is an 8-
hex digit value that must be matched by the value
BISSesDaemonKey directive in use by the Request
Handler. Only specify this keyword option when directed
by Micro Focus Technical Support.

110 | Xcentrisity Business Information Server for extend User's Guide

Socket Specifies the name of the socket used by the Request
Handler to communicate with the Service Engine
daemon.

There is no reason for a user to alter this parameter after
installation.

TempDir Specifies the name of the directory where temporary files
are created.

UserName Specifies the UNIX user name used by each service
(child) processes. Although the Service Engine daemon
process runs as root, each of the child service
processes runs as the user specified by this option. This
determines the files that a service process can read and
write, as well as the home directory of each service
process.

Options on the Service Engine daemon's command line may modify the configuration as determined by the
configuration file and the built-in defaults. The command-line options are in a string that is assigned to an
environment variable named OPTIONS. All of the Service Engine's environment variables, including
OPTIONS, are set in a file named /etc/sysconfig/xbis. This file is created during the install of BIS.

The command-line options are:

-f file Specifies the name of the Service Engine configuration
file.

If this option is present, it must be the first option on the
command line. If omitted, the configuration file name
defaults to /etc/xbis.conf.

-c count Specifies the maximum number of service (child)
processes.

This is normally set to 9999 to indicate that the number
of service processes is limited only by the license, but it
may be set to a smaller value as a throttle.

-i count Specifies the number of idle service (child) processes.

This is normally set to 1 but a small increase in this may
improve response time on a server which receives many
requests in rapid succession.

-T timeout Default service timeout, in seconds.

This is the preferred way to set the default service
timeout. If BIS_SERVICE_TIMEOUT is set in the
Apache configuration file for BIS (bis.conf), the
Request Handler uses that value to override the value of
the -T option. Doing so delays the start of each service
program slightly.

-u user Specifies the UNIX user name used by each service
(child) processes.

Although the Service Engine daemon process runs as
root, each of the child service processes runs as the
user specified by this option. This determines the files
that a service process can read and write, as well as the
home directory of each service process.

-t dir Specifies the name of the directory where temporary files
are created.

Xcentrisity Business Information Server for extend User's Guide | 111

-r If specified, copies of all request and response files are
saved in the temporary directory.

This is a debugging tool, typically used during
development of a web site.

-L file Specifies the name of the Service Engine event log file.

The Service Engine records certain important events in
this file. This is a debugging tool.

-s file Specifies the name of the socket used by the Request
Handler to communicate with the Service Engine
daemon.

There is no reason for a user to alter this parameter after
installation.

-U file Specifies the name of a file used by the Service Engine
daemon to communicate with the Request Handler.

There is no reason for a user to alter this parameter after
installation.

If the BIS Service Engine options need to be changed, the configuration file (/etc/xbis.conf) may be
edited or (on systems other than AIX) the file /etc/sysconfig/xbis may be edited. If the configuration
file is changed, the Service Engine can be instructed to reread it by using a kill command to send the
Service Engine daemon a SIGHUP signal. However, the Service Engine does not read /etc/sysconfig/
xbis directly. Instead, the shell script which starts the Service Engine reads this file. For any changes to
take effect, the Service Engine must be restarted, either by restarting the operating system, by changing
the runlevel, or by executing the shell script which starts the Service Engine (/etc/init.d/xbisengd).
This script accepts one parameter, which must be one of the following:

Start Starts the BIS Service Engine.

Stop Stops the BIS Service Engine.

Restart Stops the BIS Service Engine, and then starts it again.

Condrestart If the Service Engine is running, stop it, and then start it
again. Otherwise, do nothing.

Status Displays the status of the Service Engine.

Note that stopping the Service Engine stops all of the service processes immediately, terminating any
running service programs. This should not be used when users are connected to the server.

xbisctl Utility
The xbisctl utility can be used by a root user to control the Service Engine and the BIS Session/Logging
daemon. It can also display the BIS sessions and, if necessary terminate a session. The xbisctl utility
may be copied or linked to a directory in the user's path; it is located in the bin subdirectory of the
directory where BIS was installed.

The xbisctl utility may be run in one of two ways. If no parameters are specified on the command line, it
reads commands from standard input. Alternatively, a single command may be specified on the command
line. The following table lists the commands that xbisctl recognizes:

Start Starts the Service Engine and the Session/Logging
daemon.

Stop Stops the Service Engine and the Session/Logging
daemon.

112 | Xcentrisity Business Information Server for extend User's Guide

Status Displays a one-line status for Service Engine and the
Session/Logging daemon.

Refresh Refreshes the Service Engine and the Session/Logging
daemon. This tells the BIS daemons to reread their
configuration file.

Sessions List the current sessions.

Kill Terminate a session.

Exit Stop reading standard input. Alternatively, press ctrl-D to
end input.

Status information can be displayed in a browser window. At the end of the supplied mod_xbis.conf file,
there are two ScriptAlias directives. Uncomment one or both of these to enable this feature. The path
may be changed to suit your needs. These run a shell script that executes the xbisctl utility with the
status command on the command line.

Creating a BIS/IIS Web Application
You can use the BISMkApp program to create and configure a web application that is ready to run a BIS
application. The BISMkApp program is installed in:

C:\Program Files\Micro Focus\extend x.x.x\AcuGT\bin

Running the BISMkApp Program
Run this program from the Start menu: click Start > All Programs > extend x.x.x > Business
Information Server > Create BIS Xcentricity BIS Web Application.

Alternatively, to run this program from Windows Explorer or the command line, navigate to the following
directory and either double-click the BISMkApp icon or run BISMkApp.exe.

 C:\Program Files\Micro Focus\extend x.x.x\AcuGT\bin

On 64-bit Windows when a 32-bit-only system is installed, replace Program Files with Program Files
(x86).

When execution begins, you will see the following dialog box:

Xcentrisity Business Information Server for extend User's Guide | 113

This dialog box has the following fields:

• Server Name

In this release, always contains localhost. Note that this program currently has to be run on the system
that contains the IIS server.

• Target Website on Server

Select the website on the server that will serve the new web application.
• New Web Application Name

Enter the name of the web application that you wish created. For example, the default installation
creates a web application named acubis10.

Note that, in this version of BISMkApp, the At Root checkbox is always disabled.
• Physical Directory for Web Application

Enter the pathname of the physical directory that will contain the files that are served when the user
issues requests against the Web Application Name.

For example, when BIS is installed in the default way and you request this page:

http://localhost/acubis10/samples/default.srf

The requested content is served from:

C:\inetpub\wwwroot\acubis10\samples\default.srf

This is because the BIS installer creates a physical directory named acubis10 in the default web tree,
and copies the sample programs into this directory. The installer then creates a virtual root directory
named acubis10, configures it so it runs a BIS application (see below) and points it at the previously
created physical directory.

Notes:

114 | Xcentrisity Business Information Server for extend User's Guide

• The physical directory is not created if it does not exist.
• The physical directory must also have the appropriate permissions (for example, anonymous user

read access) or BIS will not be able to serve files from this directory.
• It is usually convenient to create the physical directory in the web tree (for example, c:\inetpub

\wwwroot) because the physical directory will inherit the permissions from the IIS parent directory.
Otherwise, IIS will only manage the web application permissions (read, write, execute), and the
physical directory permissions must be separately managed.

• You may use the Browse button to browse for the directory.
• Application Pool

The content of this drop-down list depends on the version of Windows that you are running. For
versions of IIS that support application pools, this drop-down contains a list of application pools that
were found on the server. The name of the application pool will be suffixed with (32-bit) or (64-
bit).

• Checkboxes

The checkboxes control how the web application is created.

• Read determines if web clients will have read permission to this web application. This must be
checked if BIS programs will be run in this web application.

• Write determines if web clients will be able to write to this web application.

Note: This should be enabled only for special purposes, as it is a security risk.

• Execute determines if programs can be executed in this web application. This should not be
enabled unless you are also using this web application as a CGI-type directory and plan to run
programs out of this web application on the web server.

• Script determines if scripts can be executed in this web application. This must be checked if BIS
programs will be run in this web application.

• NTLM Authentication should be checked to use this kind of authentication in this web
application. In general, this box should be checked.

• BIS Installation Path

This is the path to the BIS server program directory (the directory that contains BISISAPI.DLL).
This field is preset to the directory where you last installed BIS. You can override this by pressing the
Browse button and browsing to a new directory; by typing a directory name; or by typing the full path
where BISISAPI.DLL can be found.

Creating the Web Application
When all of the above fields are filled, click the Create BIS Web Application button to begin the process of
creating the web application. Be patient-it can take 30 seconds to create the directory. Once the program
finishes, messages will appear in the box at the bottom of the window. At that point, you can create another
web application or close the program.

Testing the New Directory
To determine if the newly created web application is functional, create a text file named default.srf in
the physical directory that you specified above. Type the following:

<html>
{{handler *}}
<head>
</head>
<body>
You requested page:
http://{{Value(HTTP_HOST,HTMLENCODE)}}{{Value(HTTP_URL,URLDECODE,HTMLENCODE)}}
</body>
</html>

Xcentrisity Business Information Server for extend User's Guide | 115

Then enter the following into your web browser:

http://localhost/vdir

(replacing vdir with the name of your web application).

You should see a page containing only this text:

You requested page: http://localhost/vdir/

Notice how the Value tags were replaced with the server variables. If the Value tags were properly
substituted, BIS is operational in this directory.

64-Bit Windows Considerations
On 64-bit versions of Windows that run Internet Information Server version 7 or later and on which a 64-bit
system is installed, a 64-bit application pool is created during installation and is detected when BISMkApp
is launched.

In a Windows Internet Information Server (IIS) environment, the security for your BIS web application and
its program (service) and data files is provided by the built-in security mechanisms of IIS. These are based
on the Web Application system maintained by IIS and can be manipulated by any user with sufficient
Administrator privileges.

Within the IIS 6.0 Help system, go to Internet Information Services | Server Administration Guide | Security
section. There you will find an extensive description of the Windows web security mechanism.

Building and Running BIS Samples
The BIS Samples include an installation verification application and several simple applications that
illustrate the major Xcentrisity techniques for constructing web applications and services using BIS. These
samples include complete source code as well as all of the XSLT transforms necessary to run them. In
addition, each includes a batch file (or shell script) that will build the operational web application from
source. This is convenient if you wish to experiment with modifications to the samples, or if you want to use
the samples as the basis for your own web application.

Ensure that a command prompt is present and the current directory is the src directory for the sample that
you are building. The build script may rely on environment variables - open the script in an editor and set
the necessary environment variables before executing the script. Execute the script by typing:

acubuild.bat

or (for BIS/Apache):

acubuild.sh

After the processing has been completed and a command prompt appears, you will have rebuilt the sample
and generated new files in the bin directory

Glossary
Application Root Path

A URL path that groups all of the pages of a BIS application. Under IIS, this is the URL path of the web
application that was specified during installation, or was created with the BISMkApp utility.

BIS Request Handler
The BIS components activated when a Stencil (Server Response File) is the target of an HTTP request.
The BIS Request Handler performs the processing of the Stencil, including the management of Sessions
and the creation and destruction of Service Instances.

HTTP

116 | Xcentrisity Business Information Server for extend User's Guide

HyperText Transport Protocol, a standard protocol and encoding scheme used to transmit requests to web
servers and receive responses from web servers. HTTPS is a secure version of HTTP.

Response Content
The data included in the content area of an HTTP Response message.

Request Content
The data included in the content area of an HTTP Request message.

Request Document
An XML document produced by the BIS Web Server and including the information contained in an HTTP
Request message as well as various values indicating the user agent and server environment in which the
request was issues and is being processed.

Server Response File
A file, usually with the extension .srf, which is used to direct the BIS Web Server in responding to a
request. Also referred to as a Stencil.

Service Engine
The BIS components responsible for performing the execution of a user-supplied Service Program and the
synchronization and interaction between the Service Program and the BIS Web Server.

Service Instance
An execution of a Service Program within a particular Session.

Service Program
A user-supplied ACUCOBOL-GT program object file that is invoked by the BIS Request Handler and
executed by the BIS Service Engine.

Session
A stateful sequence of HTTP request/response interactions between a web user agent (for example,
browser) and a BIS Request Handler. The session identification is preserved in the user agent by means of
a session cookie provided in the response to the first request of the session. All subsequent requests
containing that cookie are assumed to be for the designated session.

Session Root Path

The URL path that contains the object that caused the current session to be created. For example, if the
requested URL is http://localhost/acubis10/default.srf, the session root path is acubis10. By default, all
pages that contain the session root path in their URL path will be served using the same session. This can
be overridden by specifying Scope=ISOLATE in a SessionParms tag.

Stencil
A file, usually with the extension .srf, which is used to direct the BIS Request Handler in responding to a
request. Also referred to as a Server Response File.

URI
A Uniform Resource Identifier, the naming convention for objects on the Internet. A URI consists of a
scheme, followed by a colon, followed by a scheme specific name. A URI can be further classified as a
Locator, or a Name, or both. The term "Uniform Resource Locator" (URL) refers to the subset of URI that
identify resources via a representation of their primary access mechanism (e.g., their network "location"),
rather than identifying the resource by name or by some other attribute(s) of that resource. The term
"Uniform Resource Name" (URN) refers to the subset of URI that are required to remain globally unique
and persistent even when the resource ceases to exist or becomes unavailable.

URL
A Uniform Resource Locator, the location of a resource on the internet. A URL is a type of URI (Uniform
Resource Identifier), and consists of a scheme (in this context, HTTP or HTTPS), the name of a machine
(sometimes also called the authority), and a path to a resource (for example, a file). For example, http://
localhost/acubis10/index.html specifies the file named index.html from directory acubis10 on
server machine localhost using the HTTP scheme. When this is typed into a web browser, the browser
issues an HTTP GET request on this resource.

URL Path
The path portion of a URL - that is, the part after the server identifier up to the end of the URL, the query
string, or fragment (whichever comes first). For example, in the URL http://localhost/acubis10/
default.srf?query=yes#top, the URL path is acubis10/default.srf.

Xcentrisity Business Information Server for extend User's Guide | 117

	Contents
	Xcentrisity Business Information Server for extend User's Guide
	Introducing the Business Information Server
	Overview
	Installation on Windows
	Prerequisites
	Installation
	Logon Information

	Installation on UNIX
	Prerequisites
	Installation
	Configuring the Service Engine Options

	Starting Apache and BIS

	Testing the Installation
	Uninstalling BIS for IIS
	Removing Only the Web Application Samples on IIS

	Using BIS
	Web Protocols: Requests/Responses
	Sessions
	Tracking Sessions
	Cookies
	The Session Root Path and Session Scope
	Timeouts
	Session Inactivity Timeout
	Setting the Session Inactivity Time

	Service Timeouts

	Server Response Files
	Overview
	Rendering Tags
	The Rendering Process
	Processing Control Tags
	Substitution Tags

	Tag Options and Parameters
	Pathnames
	Referencing Files in System Locations
	Predefined BIS Environment Variables
	The FILE_PREFIX and CODE_PREFIX Environment Variables
	Troubleshooting Tags

	Replacement Tag Reference
	The {{Handler}} Tag
	Notes

	The {{ContentType}} Tag
	Examples
	Notes

	The {{SessionParms}} Tag
	Notes

	The {{ServiceOpts}} Tag
	Notes

	The {{ServiceArgs}} Tag
	Notes

	The {{ServiceLibs}} Tag
	Notes

	The {{StartService}} Tag
	Accessing the REQUEST from the Service Program
	Notes

	The {{RunPath}} Tag
	Notes

	The {{SetEnv}} Tag
	Examples
	Notes

	The {{XMLExchange}} Tag
	Notes
	Recursive Tag Processing in {{XmlExchange}}
	The {{FormActionTarget}} Tag in {{XMLExchange}}

	The {{StopService}} Tag
	Notes

	The {{SessionComplete}} Tag
	Notes

	The {{Value}} Tag
	Notes
	Configuration Variables

	The {{Trace}} Tag
	Notes
	Examples
	The Trace Query Parameter
	The BIS_TRACE_SUFFIX Environment Variable

	The {{TraceDump}} Tag
	Notes

	The {{Debug}} Tag
	IIS Debugging Notes
	Debugging on Windows
	Debugging on UNIX

	Control Flow Tags
	The {{If}} / {{Else}} / {{EndIf}} Tags
	Notes

	The {{While}} / {{EndWhile}} Tags
	Notes

	The {{ Include }} Tag
	Notes

	{{//}} Comment Tags
	Notes

	Service Programs
	Introduction
	Service Program Lifetime
	ACCEPT and DISPLAY Statements
	Windows Message Boxes and Dialog Boxes

	The XML Exchange File
	Notes

	BIS Return Codes
	Service Program Functions
	B_ReadRequest
	Notes

	B_WriteResponse
	Notes

	B_SetInactivityTimeout
	Notes

	B_SetServiceTimeout
	Notes

	B_SetResponseStatus
	Notes

	Server Variables Reference
	Tutorial1 introduction
	Prerequisites
	What is a web service?
	The role of HTTP in web services
	SOAP versus REST
	SOAP binding style – RPC versus Document
	WSDL

	Create a simple SOAP/RPC web service
	Data naming convention for input/output parameters and methods
	Simple design pattern
	WSDL creation/response
	SOAP request/response

	Invoke web service using soapUI tool
	Create clients in PHP, Perl, Java, Python
	Add a web service to a Visual Studio project

	Introduction to XML Extensions
	Concept of XSLT
	How XSLT creates a BIS WSDL (high level only)
	How XSLT processes a SOAP request (high level only)

	How XSLT processes a SOAP response (high level only)
	Data flow in BIS
	Request handling
	SRF file
	Service program
	Response handling

	BIS Session management
	Complex design pattern
	Using a simple indexed file, create a web service that implements CRUD
	Optimistic concurrency

	Not quite a web service
	AJAX/JSON

	XML Exchange Request File Format
	Windows/UNIX Portability Considerations
	Regular Expression Syntax
	Metacharacters
	Abbreviations

	BIS Troubleshooting Tips
	Configuring BIS/IIS after Installation
	Command Line Configuration
	Configuring the Run As Logon ID
	Retrieving or Changing the Configured Identity
	Manual Configuration
	Setting Environment Variables
	Setting the Maximum Thread Count
	Notes

	Configuration after Installation (UNIX/Apache)
	Configuring Apache
	Service Engine Configuration
	xbisctl Utility

	Creating a BIS/IIS Web Application
	Running the BISMkApp Program
	Creating the Web Application
	Testing the New Directory
	64-Bit Windows Considerations

	Building and Running BIS Samples
	Glossary
	Application Root Path
	BIS Request Handler
	HTTP
	Response Content
	Request Content
	Request Document
	Server Response File
	Service Engine
	Service Instance
	Service Program
	Session
	Session Root Path
	Stencil
	URI
	URL
	URL Path

