
DevPartner Java Edition
User’s Guide

Release 4.5

Copyright © 2001–2009 Micro Focus (IP) Ltd.
All rights reserved.

Micro Focus (IP) Ltd. has made every effort to ensure that this book is correct and accurate,
but reserves the right to make changes without notice at its sole discretion at any time. The
software described in this document is supplied under a license and may be used or copied
only in accordance with the terms of such license, and in particular any warranty of fitness of
Micro Focus software products for any particular purpose is expressly excluded and in no
event will Micro Focus be liable for any consequential loss.

Animator®, COBOLWorkbench®, EnterpriseLink®, Mainframe Express®, Micro Focus®,
Net Express®, REQL® and Revolve® are registered trademarks, and AAI™, Analyzer™,
Application Quality Workbench™, Application Server™,
Application to Application Interface™, AddPack™, AppTrack™, AssetMiner™,
BoundsChecker™, CARS™, CCI™, DataConnect™, DevPartner™, DevPartnerDB™,
DevPartner Fault Simulator™, DevPartner SecurityChecker™,Dialog System™,
Driver:Studio™, Enterprise Server™, Enterprise View™, EuroSmart™, FixPack™,
LEVEL II COBOL™, License Server™, Mainframe Access™, Mainframe Manager™,
Micro Focus COBOL™, Micro Focus Studio™, Micro Focus Server™, Object COBOL™,
OpenESQL™, Optimal Trace™,Personal COBOL™, Professional COBOL™, QACenter™,
QADirector™, QALoad™, QARun™, Quality Maturity Model™, Server Express™,
SmartFind™, SmartFind Plus™, SmartFix™, SoftICE™, SourceConnect™, SupportLine™,
TestPartner™, Toolbox™, TrackRecord™, WebCheck™, WebSync™, and Xilerator™ are
trademarks of Micro Focus (IP) Ltd. All other trademarks are the property of their respective
owners.

No part of this publication, with the exception of the software product user documentation
contained on a CD-ROM, may be copied, photocopied, reproduced, transmitted, transcribed,
or reduced to any electronic medium or machine-readable form without prior written consent
of Micro Focus (IP) Ltd. Contact your Micro Focus representative if you require access to the
modified Apache Software Foundation source files.

Licensees may duplicate the software product user documentation contained on a
CD-ROM, but only to the extent necessary to support the users authorized access to the
software under the license agreement. Any reproduction of the documentation, regardless of
whether the documentation is reproduced in whole or in part, must be accompanied by this
copyright statement in its entirety, without modification.

U.S. GOVERNMENT RESTRICTED RIGHTS. It is acknowledged that the Software and the
Documentation were developed at private expense, that no part is in the public domain, and
that the Software and Documentation are Commercial Computer Software provided with
RESTRICTED RIGHTS under Federal Acquisition Regulations and agency supplements to
them. Use, duplication or disclosure by the U.S. Government is subject to restrictions as set
forth in subparagraph (c)(1)(ii) of The Rights in Technical Data and Computer Software clause
at DFAR 252.227-7013 et. seq. or subparagraphs (c) (1) and (2) of the Commercial Computer
Software Restricted Rights at FAR 52.227-19, as applicable. Contractor is Micro Focus (IP)
Ltd., 9420 Key West Avenue, Rockville, Maryland 20850. Rights are reserved under copyright
laws of the United States with respect to unpublished portions of the Software.

20091014135434

2 DevPartner Java Edition User’s Guide

Table of Contents
Preface . 9
Who Should Read This Manual . 9
What This Manual Covers . 9
Conventions Used In This Manual . 10
Getting Help . 10

Chapter 1 · Introduction to DevPartner Java Edition . 13
DevPartner Java Edition Architecture . 13
How DevPartner Java Edition Profiles Code . 14

Improving Program Understanding . 14
Multiple Processes . 14
About Entry Points and Transactions . 15
Sharing the DevPartner Java Edition Server . 15
Understanding Java Platform Performance . 16

Licensing . 16
License Types and Features . 16
Activating a License for DevPartner Java Edition . 16
Using a Server License . 17
Changing the DevPartner Java Edition Web Server Port . 17

Chapter 2 · Getting Started . 19
Configuring Application Servers . 19

Using the Administration Console . 19
Invoking the Profiler Through Your Application Server . 19

Up and Running in 60 Seconds . 20
Starting from a Command Line . 20
Manually Invoking the Profiler . 21

Invoking the Profiler Through the JVM Settings . 21
Application Testing . 23
Starting Through an Application Server . 24

Application Server Status . 25
DevPartner Java Edition User Interface . 27

Opening the DevPartner Java Edition User Interface . 27
DevPartner Java Edition Start Page . 27
Session Control Page . 28
Results Summary Page . 29
Call Graph . 29
Entry Points Page . 32
Method List . 34
Source View . 39
Call Graph, Allocation Trace Graph, and Object Reference Path Common Features . . 42
 DevPartner Java Edition User’s Guide 3

Table of Contents
Printing Profiling Data . 44
Accessing Source Code on Remote Computers . 44

Providing Java Plug-ins for Remote Users . 45
Hosting Java Plug-ins for Remote Users . 47

Using DevPartner Java Edition with Distributed Application Analysis 47
Problem Scenario . 47
Solution . 47

Profiling Applets . 48

Chapter 3 · Command Line Utilities . 49
nmappletviewer . 49
nmextract . 50
nmjava . 53
nmserver . 53
nmshell . 55
Metrics Publishing Utility . 56
Session Control API . 56

Using a Session Control API . 56
Methods in Class Session Controls . 56
Calling a Session Control API When Profiling an Applet . 57

Chapter 4 · Configurations . 59
Creating and Managing Configurations . 60
Viewing Configurations . 61
Configuration — General Parameters . 61

Trivial Methods . 62
Configuration — API Categorization and Transaction . 62

Using Entry Points . 63
Assigning Categories . 63
Creating a New Category . 63

Configuration — Object Retention . 63
Configuration — Packages and Classes . 64

Default Exclusions . 65
Regular Expressions . 65

Configuration — Source File Paths . 66
Configuration — Thread Viewer . 67
Configuration — Session Control Rules . 67

Adding a Session Control Rule . 68

Chapter 5 · Sessions . 69
Viewing Active Sessions . 69
Session Results — Session Details Tab . 70

General Session Details . 70
Machine Session Details . 71
Java Virtual Machine Session Details . 71
Performance Analysis Session Details . 71
Coverage Session Details . 71
Merged Coverage File Session Details . 72
Memory Analysis Session Details . 72
4 DevPartner Java Edition User’s Guide

Table of Contents
About Session Files . 72
Naming Conventions . 72
Using Session Files . 73
File Errors . 73
File Locations . 73

Viewing Session Files . 74
Displaying Session Files . 74
Options in the Session Files Tab . 74
Deleting a Configuration . 74

Exporting Session Data . 75
Exporting Data from the Command Line . 75
Exporting Data Through the Session Files Tab . 75
Exported Data File Contents . 76

Comparing Two Sessions . 80

Chapter 6 · Memory Analysis . 81
Short-, Medium-, and Long-Lived Objects . 82

Short-Lived Objects . 82
Medium-Lived Objects . 82
Long-Lived Objects . 82
Performance and Scalability Implications . 83
Example Demonstrating Object Differentiation . 83

Memory Analysis Session Control . 84
RAM Footprint . 84
Object-Lifetimes Analysis . 85
Memory Leaks . 85
Session Control Tabs . 85
Memory Analysis Session Control Class List . 86

Memory Analysis Results Summary . 86
Hints for Analyzing Data . 86
Classes of Leaked Objects . 87
Classes of Live Objects . 87
Classes of Retained Objects . 88
Allocation Trace Graph . 89
Instance List . 90
Object Reference Path . 91

Memory Leaks . 93
Scenario 1 . 93
Scenario 2 . 94
Memory Leaks Results Summary . 95

Object Retention . 97
Temporary Objects . 97
Object-Lifetimes Results Summary . 97
Temporary Objects Results Summary . 98

RAM Footprint . 99
JVM Reserved Memory . 99
Profiled Instances vs. Total Instances . 100
RAM Footprint Results Summary . 100
 DevPartner Java Edition User’s Guide 5

Table of Contents
Chapter 7 · Performance Analysis . 103
Thread Time . 103
Recursive Calls . 104
Performance Session Control . 105

Thread Viewer . 105
Session Controls . 106
Tabs . 106
Viewing Session Results . 107

Performance Results Summary . 107
Entry Points with the Slowest Average Response Time . 108
API Category Statistics . 108
Methods Using the Most Clock Time . 108
Methods Spending the Most Time Waiting . 108

Chapter 8 · Coverage Analysis . 109
Volatility . 109
Out-of-Order Thread Synchronization . 110

Monitoring Out-of-Order Thread Synchronization . 110
Out-of-Order Thread Synchronization Analysis Results . 111

Coverage Session Control . 112
Coverage Results Summary . 112
Merging Session Files . 113

Performing a Merge . 113
When Merging Causes Differences Between Files . 114
Merging Existing Session Files . 114
Automatically Merging Session Files . 115
Merged Session History Graph . 115
Merge States for Methods and Classes . 116

Merging Coverage Analysis Results with JUnit Reports . 117
Prerequisites . 117
Creating a Merged Report . 117
Sample Project — Merging Coverage Analysis Results with JUnit Reports 118
Ant Script Code for Merging JUnit and Coverage Analysis Reports 120

Chapter 9 · IDE Integration . 123
Using the Java IDE Add-in Manager . 123
Borland JBuilder . 124

Manual integration with JBuilder 2008 . 124
Compuware OptimalJ . 125

Profiling an OptimalJ Application . 125
Profiling a Specific Application Module . 126
Profiling a Specific Java Class . 127

Eclipse . 128
Profiling Within Eclipse . 128
Starting JBoss and Tomcat with Eclipse WTP . 128
Starting WebLogic with Eclipse WTP . 129

IBM Rational Application Developer . 130
Profiling an Application or Applet . 130
Profiling Java Beans . 131
6 DevPartner Java Edition User’s Guide

Table of Contents
Profiling a Web Server Application . 131
Oracle JDeveloper . 132
Using the Java IDE Add-in Uninstallation Utility . 133

Chapter 10 · Sample Applications . 135
Performance Analysis . 135

Finding Performance Bottlenecks . 136
Finding Excessive Wait Times . 138
Using the Thread Viewer in Performance Profiling . 141

Coverage Analysis . 143
Coverage Sample — Part 1: Generating Data . 143
Coverage Sample — Part 2: Working with Merged Files . 145
Exporting and Viewing Line-Level Code Coverage Data . 146

Memory Analysis . 149
Finding Memory Leaks . 150
Finding Retained Objects . 152
Identifying Temporary Objects . 154

Index . 157
 DevPartner Java Edition User’s Guide 7

Table of Contents
8 DevPartner Java Edition User’s Guide

Preface
This manual describes how to get started using Micro Focus DevPartner Java Edition.

Who Should Read This Manual

This manual is intended for new DevPartner Java Edition users and for users of previous
versions who want an overview of new functions and interface changes. It is designed to help
you understand how DevPartner Java Edition can help you be a more productive software
developer, and to get you started using the software. It is not a comprehensive user’s guide.

New users should read Chapter 1 for a survey of DevPartner Java Edition concepts. Subse-
quent chapters show how to use individual features during a software development cycle.

Users of previous versions of DevPartner Java Edition should read the Release Notes to see
how this version differs from previous versions.

This manual assumes that you are familiar with the Windows or UNIX operating environ-
ments and with Java software development concepts.

What This Manual Covers

This manual contains the following chapters and appendixes:

� Chapter 1, “Introduction to DevPartner Java Edition” — Overview of DevPartner Java
Edition architecture, system requirements, and licensing.

� Chapter 2, “Getting Started” — High-level descriptions of DevPartner Java Edition fea-
tures and interface.

� Chapter 3, “Command Line Utilities” — Descriptions of and syntax for the command line
utilities.

� Chapter 4, “Configurations” — Details of the configuration options for profiling.

� Chapter 5, “Sessions” — Information for using the Session Control pages and session
files.

� Chapter 6, “Memory Analysis” — Details for running a Memory analysis and viewing the
results.

� Chapter 7, “Performance Analysis” — Details for running a Performance analysis and
viewing the results.

� Chapter 8, “Coverage Analysis” — Details for running Code Coverage analysis and using
the session files.
 DevPartner Java Edition User’s Guide 9

Preface
� Chapter 9, “IDE Integration” — Instructions for integrating DevPartner Java Edition into
supported IDEs.

� Chapter 10, “Sample Applications” — Instructions for running sample applications that
demonstrate DevPartner Java Edition features.

Conventions Used In This Manual

This book uses the following conventions to present information.

� Interactive features of the DevPartner Java Edition user interface appear in bold typeface.
For example:

To update the information displaying in the Application Testing tab of the Start page,
click Refresh.

� Computer commands appear in monospace typeface. For example:

Execute the nmjava command.

� File names and paths appear in boldfaced monospace typeface. For example:

The session file is saved in the \var\sessionfiles folder of your product folder.

� Variables within computer commands and file names (for which you must supply values
appropriate for your installation) appear in italic monospace type. For example:

Enter http://servername/cgi-win/itemview.dll, where servername is the
designation of your server.

Getting Help

If ever you have any problems or you would like additional technical information or advice,
there are several sources. In some countries, product support from Micro Focus may be avail-
able only to customers who have maintenance agreements.

If you obtained this product directly from Micro Focus, contact us as described below. If you
obtained it from another source, such as an authorized distributor, contact them for help first.
If they are unable to help, contact us as described below.

However you contact us, please try to include the information below, if you have it. The more
information you can give, the better Product Support can help you. But if you don't know all
the answers, or you think some are irrelevant to your problem, please give whatever informa-
tion you have.

� The name, release (version), and build number of the product.

� Installation information, including installed options, whether the product uses local or net-
work databases, whether it is installed in the default folders, whether it is a standalone or
network installation, and whether it is a client or server installation.

� Environment information, such as the operating system and release on which the product
is installed, memory, hardware/network specifications, and the names and releases of other
applications that were running.
10 DevPartner Java Edition User’s Guide

Preface
� The location of the problem in the product software, and the actions taken before the prob-
lem occurred.

� The exact product error message, if any.

� The exact application, licensing, or operating system error messages, if any.

� Your Micro Focus client, office, or site number, if available.

Contact

Our Web site gives up-to-date details of contact numbers and addresses. The product support
pages contain considerable additional information, including the WebSync service, where you
can download fixes and documentation updates. To connect, enter www.microfocus.com in
your browser to go to the Micro Focus home page.

If you are a Micro Focus Product Support customer, please see your Product Support
Handbook for contact information. You can download it from our Web site or order it in
printed form from your sales representative. Support from Micro Focus may be available only
to customers who have maintenance agreements.
 DevPartner Java Edition User’s Guide 11

http://supportline.microfocus.com/

Preface
12 DevPartner Java Edition User’s Guide

Chapter 1

Introduction to DevPartner Java Edition
DevPartner Java Edition is a comprehensive suite of software development productivity
features that help developers build reliable, high-performance applications and components
using Java technology. DevPartner Java Edition adapts easily to multi-tier, e-business
solutions which combine diverse technologies that could easily sacrifice run-time perfor-
mance, optimized memory utilization, and adequate code coverage. Developers can more
quickly resolve a wide variety of issues, producing more robust Java applications.

DevPartner Java Edition can perform:

� Memory analysis — Detect memory leaks, overall RAM footprint, and use of temporary
objects.

� Performance analysis — Identify bottlenecks in your code.

� Coverage analysis — Ensure that your code is thoroughly tested.

Use DevPartner Java Edition to gain an understanding of the memory usage, performance, and
test coverage of your:

� Java 2 Standard Edition (J2SE) programs, including applications, applets, and Java Web
Start applications.

� Java 2 Enterprise Edition (J2EE) programs, including servlets, Java Server Pages (JSP)
and Enterprise Java Beans (EJBs).

� Third-party pure Java components.

DevPartner Java Edition Architecture

DevPartner Java Edition consists of:

� A small control service (NCSP) that coordinates communication between the monitored
program, the DevPartner Java Edition Web server, and the application under test.

� A Web server, which creates and maintains session files and configuration files. You
access the Web server with a Web browser.

� A command line interface, which lets you begin a profiling session by running your Java
programs from the command shell.

The Web server, the control service, and all applications being tested must be on the same
computer.

If DevPartner Java Edition is installed using concurrent licensing, multiple users can access
the Web server from browsers on computers other than the DevPartner Java Edition Web
Server computer.
 DevPartner Java Edition User’s Guide 13

Chapter 1 · Introduction to DevPartner Java Edition
DevPartner Java Edition can be integrated with some Java IDEs, so you can begin a profiling
session by running your Java program from your IDE.

How DevPartner Java Edition Profiles Code

To profile your code, DevPartner Java Edition modifies the byte code for each class as it is
loaded by the Java Virtual Machine (JVM). This enables DevPartner Java Edition to collect
profiling data while your application is running. It does not change the actual .class file on
disk; it only modifies the in-memory representation that the JVM holds.

When your Java applet or application runs with DevPartner Java Edition, each class is instru-
mented as it is loaded into the JVM. As methods of the class are executed, DevPartner Java
Edition collects profiling information. In addition, the Java Virtual Machine Profiling Inter-
face (JVMPI) is used to collect profiling information.

Improving Program Understanding

After you have run your code using DevPartner Java Edition, created a session file, and
viewed the Results Summary, your attention will be drawn to the areas of your code that might
consume excess memory, might be bottlenecks, or might not be covered in your tests.

You can go directly to the source to understand the problem (clicking on an object generally
provides the View Source option), but it is often useful to understand the relationship of an
object to other objects before attempting to correct a problem.

DevPartner Java Edition enables you to better understand your program in several ways,
including the following three useful tools:

� Call Graph — Shows the parent/child relationships of method calls

� Allocation Trace Graph — Shows the chain of calls leading to allocation of memory for an
object

� Object Reference Graph — Shows which objects are holding a reference to an object

Multiple Processes

An application can run in the context of multiple processes in a variety of situations such as
the following:

� A programmer explicitly creates several processes.

� An application is distributed (such as a Java client exchanging data with a Java server).

� An application server creates multiple processes automatically.

It is often useful to create a single session file containing data from all processes to get a
complete picture of your application's performance or test coverage.

DevPartner Java Edition enables you to gather the data from multiple processes into one
session file with a single setting in the Configuration file.

Consider the following when running multiple processes:
14 DevPartner Java Edition User’s Guide

Chapter 1 · Introduction to DevPartner Java Edition
� You cannot mix Coverage and Performance processes. You can only correlate multiple
processes running the same profiling type and configuration. Each analysis type generates
separate session files.

� The name of a session file that is generated from multiple processes is
Correlated_number, where _number is incremented each time a session file is gener-
ated.

About Entry Points and Transactions

Some code in your application is beyond your control. The packages and classes that comprise
an application server or an IDE, low-level database drivers, and graphics libraries are all
examples of code that becomes part of your application, but that you will generally not want to
profile. DevPartner Java Edition lets you control which packages and classes are included in
(or excluded from) analysis.

By default, DevPartner Java Edition excludes Java, application server, and IDE classes from
monitoring. (You can modify this list in the configuration file.)

An entry point is a profiled method that is called by excluded code. For example, each Java
Server Page (JSP) would be considered an entry point. A small program might have only a
single entry point (Main). Methods that are called only by other profiled methods, however,
are not entry points.

When your program runs, monitoring begins with the first call to a method not on your exclu-
sion list. This is the user-code entry point. All calls made from that point until the return to
excluded code are part of that entry point.

When you analyze your data, DevPartner Java Edition organizes the data by entry point so you
immediately know where to focus your tuning efforts.

Beyond Entry Points

To enable you to focus your analysis on a specific area of your code, DevPartner Java Edition
provides three ways for you to manually determine when monitoring should begin:

� For Memory Leak analysis, you manually control the point at which monitoring begins
without regard for entry points by using the Start Tracking feature on the Session Control
page.

� Using Session Control Rules, you can begin monitoring at a specific point.

� In the Configurations tab, select API Categorization and Transaction, then select the
option to use entry point tracking.

Sharing the DevPartner Java Edition Server

With the DevPartner Java Edition client, you can access remote computers running the server,
to start and stop application servers, and you can profile applications on application servers.
For more information, see “Starting Through an Application Server” on page 24.

Several users can use the same DevPartner Java Edition server at the same time. The following
information describes how this can happen:
 DevPartner Java Edition User’s Guide 15

Chapter 1 · Introduction to DevPartner Java Edition
� Several users can profile simultaneously their applications on the remote server.

� Several users can act on the same active session simultaneously. All changes made by one
user will automatically be reflected to all other users.

� Only one application can be profiled at a time per application server. Users can check the
Application Server Testing tab on the Start page. For more information, see “Application
Server Status” on page 25.

Each computer running DevPartner Java Edition must have a Java plug-in installed. Option-
ally, administrators of the server can provide these required plug-ins for remote users who
need them. For more information, see “Providing Java Plug-ins for Remote Users” on page 45.

Understanding Java Platform Performance

The DevPartner Java Edition help system includes links to the online version of the book Java
Platform Performance Strategies and Tactics by Steve Wilson and Jeff Kesselman. This online
book is available through the Sun Microsystems Web site (http://java.sun.com).

Java Platform Performance Strategies and Tactics provides the reader with a solid understand-
ing of performance tuning, including both high-level strategies and code-level performance
tuning tactics.

Licensing

DevPartner Java Edition can be used locally on a single computer, locally on multiple comput-
ers, or remotely across networks. It can be installed for use by a single user or by multiple
users using concurrent licensing.

License Types and Features

A node-locked license enables use of DevPartner Java Edition on a single computer.

A server license enables a user with remote access to the DevPartner Java Edition server
computer (through a browser) to create or view session files, and to create or use configuration
files on the DevPartner Java Edition server. The server license may be for a single server, or
concurrent.

Note: If using DevPartner Java Edition through remote access, you must have both
a DevPartnerJava license and a DevPartnerJavaServer license. If your server
platform is AIX or HP-UX, you must use remote access, because these
platforms do not support the DevPartner Java Edition web-based interface.

Concurrent licensing requires Distributed License Manager.

For more information, see the Distributed License Management License Installation Guide
(LicInst4.pdf), installed by default in C:\Program Files\Common Files\Compu-
ware.

Activating a License for DevPartner Java Edition

When you install DevPartner Java Edition, you have the option to install a valid user license
and server license or use an evaluation license. The evaluation license is active for 14 days.
16 DevPartner Java Edition User’s Guide

http://java.sun.com

Chapter 1 · Introduction to DevPartner Java Edition
After DevPartner Java Edition is installed, you can update your license as needed.

If you want remote access to the DevPartner Java Edition server, you must install a DevPartner
Java Edition server license. See the DevPartner Java Edition Installation Guide for informa-
tion on using server licensing.

Note: The server evaluation license is automatically installed as part of the DevPart-
ner Java Edition installation process, even if you select a user license during
the installation procedure.

Using a Server License

To access DevPartner Java Edition from a remote Web browser, enter

http://DPmachinename:21578/ui

where DPmachinename is the name of the computer on which DevPartner Java Edition
resides.

Changing the DevPartner Java Edition Web Server Port

The DevPartner Java Edition control service (NCSP), which controls communications
between the Web server, the application under test, and your browser, takes requests on port
21578 and passes them to the Web server on port 21580 (the Web server also uses port 21579
for auxiliary communications).

You must open ports 21578 and 21580 in your firewall if you want to use DevPartner Java
Edition through the firewall.

If you need to use different ports, you must make changes to certain files that reside in the
DevPartner installation folder.

Note: You should select port numbers that are greater than 21000. Although not
required, you should allocate three consecutive ports for NCSP, the Web
Server, and the Web Server auxiliary port.

To illustrate each step below, the following example port numbers are used:

� The NCSP port, defined in the NCSP_PORT field = 41000

� The WebServer (Tomcat in this example) port, defined in the TOMCAT_PORT field = 41002

� The WebServer (Tomcat in this example) auxiliary port, defined in the TOMCAT_AUX_Port
field = 41001

The location of the var folder depends on the operating system:

� Windows XP or 2003 Server — C:\Documents and Settings\All Users\Appli-
cation Data\Micro Focus\DevPartner Java Edition\var\conf

Note: By default, the Application Data folder is hidden. To display the conf folder
and its contents, type the path in the Address bar of Windows Explorer and
press Enter.

� Other supported Windows operating systems — C:\Program Data\Micro
Focus\DevPartner Java Edition\var\conf
 DevPartner Java Edition User’s Guide 17

Chapter 1 · Introduction to DevPartner Java Edition
� UNIX — DPJ_dir/var/conf
where DPJ_dir is the path of the DevPartner Java Edition product folder

Change the DevPartner Java Edition configurations as needed:

1 In the file /var/conf/DPJ.conf, edit the values for NCSP_PORT, TOMCAT_PORT, and
TOMCAT_AUX_PORT. For example:

#base port number for NCS communications
NCSP_PORT=41000
DPJ UI server ports must match the port designations
in the server.xml file
TOMCAT_PORT=41002
TOMCAT_AUX_PORT=41001

2 In the file /var/conf/DPJServer.cmd, change the line containing the com.compu-
ware.dpj.ncsPort definition to the new port definition for NCSP. For example:

-Dcom.compuware.dpj.ncsPort=41000

3 In the file DPJ_dir/tomcat/conf/server.xml, the port designation for the Web
server port (TOMCAT_PORT in this example) is defined in the <Connector...> tag. Replace
the old port designation for TOMCAT_PORT with the new port designation. For example:

<Connector className="org.apache.catalina.connector.http.HttpCon-
nector" port="41002" minProcessors="5" maxProcessors="75"
inet="localhost" enableLookups="true" redirectPort="8443" accept-
Count="10" debug="0" connectionTimeout="60000"/>

The port designation for the Web server auxiliary port (TOMCAT_AUX_PORT in this example)
is defined in the <Server...> tag before the service description. Replace the old port
designation for TOMCAT_AUX_PORT with the new port designation. For example:

<Server port="41001" shutdown="SHUTDOWN" debug="0">

When you have completed these steps, stop all profiling and restart the NCSP service for the
changes to take effect.
18 DevPartner Java Edition User’s Guide

Chapter 2

Getting Started
This chapter contains high-level descriptions of DevPartner Java Edition features and its user
interface.

Configuring Application Servers

Before DevPartner Java Edition can monitor code executing on an application server, you
must configure the application server.

Using the Administration Console

If your application server is the Administration Console, use the console to modify the list of
application servers that DevPartner Java Edition is able to monitor. You can add application
servers to the list, remove application servers, and modify the configuration details for each
application server entry.

Once an application server has been added to the list (and its configuration details properly
set), you can start that application server from the Application Server Testing tab on the Start
page to monitor your code as it executes on that application server. You can also use the
nmserver command from a command line to execute the application server directly for
monitoring your code with DevPartner Java Edition.

You can define application server configurations for more than one of a particular type of
application server within the Administration Console. The console appends an incremental
integer at the end of the name of additional application servers of identical type. For example,
if your user name is rg and you have more than one Tomcat installation, the first name
assigned by the Administration Console might be rg:Tomcat, the next would be rg:Tomcat_1,
then rg:Tomcat_2, and so on.

For additional information, refer to the online help in the DevPartner Java Edition Administra-
tion Console.

Invoking the Profiler Through Your Application Server

You can invoke the profiler through your application server by adding an argument to the
server's JVM settings. For more information, see “Invoking the Profiler Through the JVM
Settings” on page 21.
 DevPartner Java Edition User’s Guide 19

Chapter 2 · Getting Started
Up and Running in 60 Seconds

If you can run your program, you can use DevPartner Java Edition to profile your code.

Determine how your code will start:

� From a command line or batch file — See “Starting from a Command Line” on page 20.

� Through an application that is already running — See “Application Testing” on page 23.

� Through an application server — See “Starting Through an Application Server” on
page 24.

� Through an Integrated Development Environment (IDE) — See Chapter 9, “IDE Integra-
tion”.

You can profile code using the DevPartner Java Edition API or Session Control Rules. You
can also profile applets using the nmappletviewer command, or directly in the browser.

Starting from a Command Line

DevPartner Java Edition includes four utilities that enable you to profile your program from
the command line. For example, nmjava can be used as a standalone replacement of
java.exe.

If you normally type:

$ java com.mycompany.Main args

instead, type:

$ nmjava option [-batch] com.mycompany.Main args

where option is with one of the following:

If you specify -batch in the command line, DevPartner Java Edition runs in batch mode and
does not invoke the Web interface.

For a detailed description of the command line utilities, see Chapter 3, “Command Line Utili-
ties”.

The following is an overview of the profiling process when you use one of the command line
utilities to launch your program from a command line:

Option Description

-perf Performs computational Performance analysis (the default).

-mem Performs Memory analysis: Memory Leak, Object Retention, Temporary
Object, and RAM Footprint.

-cov Performs Coverage analysis.
20 DevPartner Java Edition User’s Guide

Chapter 2 · Getting Started
1 Specify a Configuration in the command line if you want to use a predefined configura-
tion.

A configuration specifies the level of detail to be gathered, rules to be executed during the
session, and so on.

If you do not specify a configuration, a new configuration is created for you. This new
configuration uses the default configuration settings.

To specify a configuration, include a line similar to the following in the list of parameters
for your command line, where Configuration_name is the name of your configuration:

-config Configuration_name

2 Specify an analysis type; or use the default, which is Performance analysis.

3 Include -batch to profile in batch mode (that is, without displaying the DevPartner Java
Edition interface).

4 When your program starts, DevPartner Java Edition begins a session and displays a Ses-
sion Control page while the data is being collected (unless you are running in batch mode).
When the program terminates or when you take a snapshot, DevPartner Java Edition saves
data to a session file and displays analysis results.

Specify all Java options after all DevPartner Java Edition options on the command line.

Note: A separate utility, dpj, is also available to start the DevPartner Java Edition
Web interface. You cannot start the user interface on AIX with the dpj utility.
Access the DevPartner Java Edition server through one of the supported
browsers on a computer that is running one of the other supported platforms.

You can also test your application from a supported IDE.

Manually Invoking the Profiler

Invoking the Profiler Through the JVM Settings

You can invoke the profiler by adding an argument to the JVM settings.

� If you are using JDK 5.0 or below with JVMPI, use the -Xrun parameter. For more infor-
mation, see “Using -Xrun to Invoke the Profiler” on page 22.

� If you are using JDK 6.0 or above with JVMTI, use the -agentlib parameter. For more
information, see “Using -agentlib to Invoke the Profiler” on page 22.

Note: JVMPI is deprecated as of JDK 5.0. JDK 6.0 and above will have only JVMTI.

You can specify the default profiler as JVMPI or JVMTI by changing the setting in the
DPJ.conf file. For more information, see “Specifying the Default Profiler” on page 23.
 DevPartner Java Edition User’s Guide 21

Chapter 2 · Getting Started
Using -Xrun to Invoke the Profiler

Note: If you are using DevPartner Java Edition with JVMTI (JDK 6.0 and above), use
the -agentlib parameter. For more information, see “Using -agentlib to Invoke
the Profiler” on page 22. As of JDK 5.0, JVMPI is deprecated. JDK 6.0 and
above will have only JVMTI. You can specify the default profiler as JVMPI or
JVMTI by changing the setting in the DPJ.conf file. For more information, see
“Specifying the Default Profiler” on page 23.

If you are using DevPartner Java Edition with JVMPI, you can invoke the profiler by adding
the following argument (as one line) to the JVM settings:

-XrundpjCore:NM_ANALYSIS_TYPE={coverage,perfor-
mance,memory}:NM_CONFIG_NAME={name of DPJ Configuration}:NM_BATCH={1}

� NM_ANALYSIS_TYPE is the type of profiling session to launch. This field is mandatory. One
of the three values — coverage, performance, or memory — must be supplied. You can
change the analysis type after launch by using the detach/reattach feature in the Applica-
tion Testing tab of the DevPartner Java Edition Start page.

� NM_CONFIG_NAME is the name of the profiling configuration to use in the launched session.
This field is mandatory. If a configuration with the specified name does not already exist,
a new configuration will be created using that name. You can change the configuration
after launch by using the detach/reattach feature in the Application Testing tab of the
DevPartner Java Edition Start page.

� NM_BATCH controls whether DevPartner Java Edition opens the Session Control page in
your browser upon launch. This field is optional. Including NM_BATCH=1 prevents the
browser window from opening. Omitting the field or setting NM_BATCH to any value other
than one (1) allows the browser to open the Session Control page.

For instructions for using this argument with JDeveloper, see “Oracle JDeveloper” on page
132. For other IDEs, see the product documentation.

For instructions for using this argument with application servers, see Chapter 7 of the
DevPartner Java Edition Installation Guide.

Using -agentlib to Invoke the Profiler

Note: If using DevPartner Java Edition with JVMPI (JDK 5.0 or below), use -Xrun to
invoke the profiler. For more information, see “Using -Xrun to Invoke the
Profiler” on page 22. You can specify the default profiler as JVMPI or JVMTI
by changing the setting in the DPJ.conf file. For more information, see “Speci-
fying the Default Profiler” on page 23.

If you are using DevPartner Java Edition with JVMTI, you can invoke the profiler by adding
the following argument (as one line) to the JVM settings:

-agentlib:dpjJvmtiCore=NM_ANALYSIS_TYPE={coverage,perfor-
mance,memory},NM_CONFIG_NAME={name of DPJ Configuration},NM_BATCH={1}

� NM_ANALYSIS_TYPE is the type of profiling session to launch. This field is mandatory. One
of the three values — coverage, performance, or memory — must be supplied. You can
change the analysis type after launch by using the detach/reattach feature in the Applica-
tion Testing tab of the DevPartner Java Edition Start page.
22 DevPartner Java Edition User’s Guide

Chapter 2 · Getting Started
� NM_CONFIG_NAME is the name of the profiling configuration to use in the launched session.
This field is mandatory. If a configuration with the specified name does not already exist,
a new configuration will be created using that name. You can change the configuration
after launch by using the detach/reattach feature in the Application Testing tab of the
DevPartner Java Edition Start page.

� NM_BATCH controls whether DevPartner Java Edition opens the Session Control page in
your browser upon launch. This field is optional. Including NM_BATCH=1 prevents the
browser window from opening. Omitting the field or setting NM_BATCH to any value other
than one (1) allows the browser to open the Session Control page.

For instructions for using this argument with JDeveloper, see “Oracle JDeveloper” on page
132. For other IDEs, see the product documentation.

For instructions for using this argument with application servers, see Chapter 7, “Configuring
Application Servers”, in the DevPartner Java Edition Installation Guide.

Specifying the Default Profiler

You can specify the default profiler as JVMPI or JVMTI by commenting out the appropriate
DPJ_CORE setting in the DPJ.conf file. This file is located in the folder /var/conf. The
location of this folder depends on the operating system:

� Windows XP or 2003 Server — C:\Documents and Settings\All Users\Appli-
cation Data\Micro Focus\DevPartner Java Edition\var\conf

Note: By default, the Application Data folder is hidden. To display the conf folder
and its contents, type the path in the Address bar of Windows Explorer and
press Enter.

� Other supported Windows operating systems — C:\Program Data\Micro
Focus\DevPartner Java Edition\var\conf

� UNIX — DPJ_dir/var/conf
where DPJ_dir is the path of the DevPartner Java Edition product folder

The DPJ_CORE value for JVMPI is dpjCore. For JVMTI, it is dpjJvmtiCore.

For example, to make JVMTI the default profiler, comment/uncomment the settings as
follows:

DPJ core base name
DPJ_CORE=dpjJvmtiCore

DPJ core base name
DPJ_CORE=dpjCore

Application Testing

To profile an application, start the application using one of the following command line utili-
ties:

� nmshell — Java programs run in the shell

� nmjava — Standalone Java programs
 DevPartner Java Edition User’s Guide 23

Chapter 2 · Getting Started
� nmjavaw — Standalone Java programs (hides the output messages in the command win-
dow)

� nmappletviewer — Java applets

Note: Information about applications started under nmserver is displayed in the
Application Server Testing tab.

While the application is running, the Application Testing tab of the Start page displays the
following information about it:

� Application — The path of the application.

� PID — The process ID for the application

� State

� Running under session analysis type — Currently being profiled; the analysis type can
be Memory, Performance, or Coverage. Use View to display the Session Control page,
or Detach to stop profiling.

� Detaching — In the process of detaching from the application while the application
continues to run.

� Available — Not currently being profiled, but running and able to be reattached. Use
Attach to begin another profiling session.

� Attaching — In the process of reattaching to the running application.

The default refresh interval for the tab is 15 seconds. To view changes as soon as you make
them, click Refresh.

When the application is detached, you can select a different Configuration or Analysis Type
before reattaching it.

Starting Through an Application Server

Note: Before you can profile your code through an application server, you must
configure the server for DevPartner Java Edition. For more information, see
“Configuring Application Servers” on page 19.

If the code to be profiled runs through an application server:

1 Start the DevPartner Java Edition Web interface. You can start the Web interface with the
dpj utility or, on Windows systems, from Start>Programs>Micro Focus>DevPartner
Java Edition>DevPartner Java Edition.

Note: You cannot start the user interface on AIX or HP-UX with the dpj utility. Access
the server by running one of the supported browsers from a Windows, Solaris,
or Linux computer. Enter the URL http://my_box:21578/ui, where my_box
is the name of your AIX or HP-UX computer.

2 From the Application Server Testing tab, select the application server to be profiled. (If
the server is not listed, use the Administration Console to configure the server.)
24 DevPartner Java Edition User’s Guide

Chapter 2 · Getting Started
3 Select the default configuration. A configuration specifies how much data is to be gath-
ered, rules to be executed during the session, and so on. The default configuration is
appropriate for general use. You can create configurations specific to your needs.

4 Select the analysis type: Performance, Memory, or Coverage.

5 Click Start to start the session, and then exercise your code.

Any code run through the application server (except code excluded by the configuration)
will be monitored. DevPartner Java Edition displays a Session control screen while the
data is being collected.

6 When the program terminates or when you stop collection, DevPartner Java Edition saves
data to a session file and displays analysis results.

For more information, see “Application Server Status” on page 25.

Notes:

• If your application server is already running, you must stop and restart that application
server with DevPartner Java Edition for DevPartner Java Edition to properly hook into the
application server and profile your application.

• WebLogic 9.x uses the JVM JRockit 5.0 by default. Because of an issue with this version of
JRockit, Memory analysis cannot be performed on Java applications running under it. To
perform Memory analysis, point the JVM to Sun in the WebLogic script (default location
BEA_domain\bin\SetDomainEnv.cmd).

• If your application server is BEA WebLogic or Oracle OC4J Standalone and you started the
server through the Application Server Testing tab of the Start page, then stopping the
application server by using the Stop button causes an abnormal termination and a session
file named AbnormalTermination_number (where _number is an incremental number)
is created.

• You can generate an accurate session file for these application servers by doing either of
the following:

• In the Application Server Testing tab, use Detach rather than Stop to end the profiling
session. When you use Detach, the application server continues to run after you end the
session.

• Stop the server from outside DevPartner Java Edition by using the server console or run-
ning a script.

Application Server Status

To test your application, use DevPartner Java Edition to start your application server by select-
ing the configuration and analysis type and then clicking Start.

The Application Server Testing tab of the Start page displays the server state.

Table 2-1. Server States in the Start Page Application Tab

State Description

Uninitialized The application server properties are not set.

Starting The application server is in the process of starting.

Available The application server is running and available for profiling.
 DevPartner Java Edition User’s Guide 25

Chapter 2 · Getting Started
If your server state is Running Under Session, then DevPartner Java Edition is collecting
data.

If your server state is Available, then the server is already running with DevPartner Java
Edition instrumentation, although no test is currently active.

Running not available The application server has been started outside of DevPartner
Java Edition and is not available for profiling.

Running under session The application server is being profiled.

Stopping The application server is stopping.

Stopped The application server is stopped and available for profiling.

Initialization error The application server agent cannot be properly initialized.

Configured Application
Server Not Found

DevPartner Java Edition was unable to find a configured appli-
cation server.

Command Not Found The application server start or stop script cannot be found.

Inappropriate status The application server returns a status that indicates it is in an
inappropriate state to execute the most recent command.

Table 2-2. Actions for Running Under Session Server State

Use this button... To perform this action...

View Go to the active session where you can monitor the current test or
stop it.

Detach Stop a test and leave the server running. This option is the normal
way to stop a test, because it leaves the application server running
and waiting for your next test. It is fairly quick to detach from a server
and later reconnect to the server as you start a new test (by clicking
Start). When the detach is complete, the server state is Available.

Stop Stop a test and stop the server. Use this option when you want to
stop an application server completely. This option is useful when you
have completed all tests and you want to start your application server
normally (without any DevPartner Java Edition instrumentation). You
also need to stop and restart a server when you change configuration
settings. Stopping a server might take some time.

Table 2-3. Actions for Available Server State

Use this button... To perform this action...

Start Start a new test. This option reconnects to the server and starts a new
test session.

Table 2-1. (Continued)Server States in the Start Page Application Tab

State Description
26 DevPartner Java Edition User’s Guide

Chapter 2 · Getting Started
If your server state is Stopped, then the server is not running.

If your server state is Running not available, then the server is running, but without any
DevPartner Java Edition instrumentation. To start a test, click Stop to stop the server, then
click Start to restart the server and start a test.

If your application server is not listed, configure the server for use with DevPartner Java
Edition. For more information, see “Configuring Application Servers” on page 19.

DevPartner Java Edition User Interface

This topic describes features of the Web interface for DevPartner Java Edition.

Opening the DevPartner Java Edition User Interface

The DevPartner Java Edition Web interface is automatically started when you use a command
line utility or your IDE to begin profiling your code, unless you are profiling in batch mode.

Alternately, you can start the Web interface on Windows or UNIX by entering dpj at a
Windows command prompt or UNIX shell prompt.

Note: You cannot start the Web interface on AIX or HP-UX with the dpj utility. Start
the DevPartner Java Edition server by running one of the supported browsers
from a Windows, Solaris, or Linux computer. Enter the URL http://
my_box:21578/ui, where my_box is the name of the AIX or HP-UX computer.

On Windows operating systems, you can start the Web interface from the Start menu by
choosing Program Files>Micro Focus>DevPartner Java Edition>DevPartner Java
Edition.

DevPartner Java Edition Start Page

Required: If your browser includes a popup blocker, configure it to disable blocking for
the DevPartner Java Edition window. If the popup blocker is enabled, the
Start page will not operate correctly.

Stop Stop the server completely. Use this option when you want to stop an
application server completely. This option is useful when you have
completed all tests and you want to start your application server nor-
mally (without any DevPartner Java Edition instrumentation). You also
need to stop and restart a server when you change configuration set-
tings. Stopping a server might take some time.

Table 2-4. Actions for Stopped Server State

Use this button... To perform this action...

Start Start a new test. This option reconnects to the server and starts a new
test session.

Table 2-3. (Continued)Actions for Available Server State

Use this button... To perform this action...
 DevPartner Java Edition User’s Guide 27

Chapter 2 · Getting Started
The Start page contains these tabs for the DevPartner Java Edition user interface:

� Welcome — Provides overview information and provides links to help text.

� Application Testing — Lets you detach and reattach an application started by a DevPart-
ner Java Edition command-line utility.

� Application Server Testing — Lets you start a session to collect profiling data on code
run through an application server.

� Session Files — Lists all session files grouped by configuration, whether created by run-
ning your code through the command line, through an IDE, or through an application
server.

� Active Sessions — Lists all sessions that are currently being profiled. For more informa-
tion, see Chapter 5, “Sessions”.

� Configurations — Lets you review the options that DevPartner Java Edition uses to con-
trol data collection from your code; you can modify or delete a configuration, or create
new configuration based on an existing file.

To release the DevPartner Java Edition license:

� Internet Explorer — If you navigate to another Web site in your browser or close the cur-
rent browser instance, Internet Explorer automatically releases the license.

Note: Before DevPartner Java Edition can profile code run through an application
server, you must configure the application server. For more information, see
“Configuring Application Servers” on page 19.

Session Control Page

When you start a session interactively, either from the Web interface, through an IDE, or
through a command line utility (unless in batch mode), DevPartner Java Edition displays a
Session Control page. The options on this page enable you to focus data collection on the
portions of your code that are significant to you.

The options on the Session Control page vary depending on the type of analysis being
performed:

� Memory analysis, including Object Retention and Temporary Object analysis

� Performance

� Coverage

Note: For Internet Explorer users, when running multiple profiling sessions simulta-
neously, you can select whether the Session Control page should reuse the
existing browser window. By default, the browser window is reused. To change
this option, open the Internet Options dialog box from the from the Tools
menu in Internet Explorer, select the Advanced tab, and clear the Reuse
windows for launching shortcuts option.
28 DevPartner Java Edition User’s Guide

Chapter 2 · Getting Started
Results Summary Page

A Results Summary displays the contents of a session file.

The Results Summary graphically displays the most significant data gathered in your profiling
session. From this page, you can drill down into specific areas to analyze performance bottle-
necks, memory allocation problems, or gaps in test coverage.

The content of the Results Summary varies depending on analysis type. For information
specific to each, visit the following:

� Memory analysis: Object-Lifetime, Temporary Objects, Memory Leaks, or RAM Foot-
print Results Summary

� Performance Results Summary

� Coverage Results Summary

To specify the precision of your data, click Preferences in the title bar of a Session Control
page or Results Summary. Use the Preferences dialog box to set the following parameters:

� Precision — Zero, one, two, three, or four decimal place precision

� Time — Microseconds, milliseconds, or seconds

� Memory — Bytes, kilobytes or megabytes

The selections made here will affect the session detail displayed in the analysis pages, as they
pertain to units of time or units of memory (size).

You can also specify whether to show the inline help in the Results Summaries for the various
types of Memory analysis. The default is to show the inline help in all results summaries. If
you want to use more of your screen space for displaying results of the Memory analysis, clear
the selection for the types of Memory analysis that will not display inline help in their results
summaries.

Call Graph

When you are tracking down a problem in performance or memory allocation, it is useful to
know the chain of calls leading to a particular method call, and the methods that are subse-
quently called by that method. DevPartner Java Edition presents this information in the Call
Graph.

Note: The Call Graph is one of several graphical features in DevPartner Java
Edition. Although it provides unique benefits as you analyze your application,
it also shares common attributes with the Allocation Trace Graph and object
reference path.

To view a Call Graph for a method, click a method and select View Call Graph from the
Details window. The Call Graph option is available whenever you view a list of methods,
such as in a Results Summary, Method List, Entry Point List, or Source View.

The Call Graph provides useful information about the selected method, such as percent in
parent and in child for Performance analysis. For Memory analysis, the Call Graph presents a
graphical representation of temporary objects in a method, memory leaks, and RAM footprint
statistics. The nodes are displayed from left to right in the order in which they were called.
 DevPartner Java Edition User’s Guide 29

Chapter 2 · Getting Started
Recursive calls are displayed as a series of sequential calls, until the maximum number of
displayable nodes is reached. To view another series of sequential calls, click a different base
node and select View call graph for this method.

The critical path is computed and displayed by default, but DevPartner Java Edition enables
you to navigate the Call Graph based on criteria of your choosing, building your own path.

Click a node in the Detail pane to display complete details, go to the source code, or view a
Call Graph for this method. (The Source View is not available if the session file only includes
method level data.) Clicking View call graph for this method changes the baseline node to
the selected method; a Back button appears in the Graph toolbar so you can revert to the
original base node.

To limit the amount of data shown, clear Show All Nodes. When this option is unselected,
DevPartner Java Edition groups all methods with less than 0.5% with children (or in parents)
except for the first node in a single-method node. When it is selected, each method with less
than 0.5% is displayed in separate method nodes. (Selecting this option can make the overall
Call Graph large and hard to comprehend, so by default it is disabled.)

The active configuration file determines whether DevPartner Java Edition displays trivial
methods in an Allocation Trace Graph, Call Graph, or Method List.

For the Temporary Objects Call Graph, click Node Data Selection to specify which of the
following details appear on each node in the Call Graph:

� % Temporary Objects in Method
� Temporary Bytes
� Temporary Objects
� Temporary Bytes including Children
� Temporary Objects Count including Children

If Assign Categories to Classes and Packages was included in the configuration for the
profile, you can click Node API Pie Chart to display the results grouped by assigned catego-
ries.

The Call Graph shares some features with the Allocation Trace Graph and Object Reference
Path. For more information, see “Call Graph, Allocation Trace Graph, and Object Reference
Path Common Features” on page 42

Critical Paths in a Call Graph

When you display a Call Graph, DevPartner Java Edition computes the critical path for the
selected method by combining the data for each method and all of its children.

� Performance analysis displays the critical path by determining the sequence of child
method calls that resulted in the largest cumulative consumption of CPU clock time for the
selected method.

� Memory analysis displays the critical path by determining the sequence of child method
calls that resulted in the largest cumulative memory allocation for the selected method.
30 DevPartner Java Edition User’s Guide

Chapter 2 · Getting Started
Note: The percentage that appears at the left of each node in the critical path is local
to that path: It represents the time or bytes allocated by the child method (and
its children) as a percentage of the time or bytes allocated in the execution of
that path. On the other hand, the percentage that appears inside the node or
in the Details window is global: it is computed as percentage of time or bytes
allocated by all methods during the session. For more information on calcula-
tion of the percentages for different types of analysis, see “Parent and Child
Percentages Provided in Call Graphs” on page 31.

For ease of understanding, DevPartner Java Edition displays the critical path for the selected
method. This critical path includes up to fifteen levels to the left and/or right of the baseline
node, spanning a maximum of thirty levels from end to end.

Locating the Critical Node

After the critical path for a method is displayed, the next step is to locate the critical node.

� Use Node Data Selection to display additional data in each node of the graph. In addition
to percentage data, you can compare quantitative data, such as execution count and aver-
age/actual time values (performance), or number of bytes allocated and number of objects
allocated (memory). These will help you focus your troubleshooting efforts.

� Use the Details window to view even more data for the selected method. For example, in a
temporary object analysis Details window, DevPartner Java Edition breaks down the tem-
porary object data into short, medium, and long-lived objects, so you can see what kinds
of objects the method is allocating.

� Explore the Call Graphs for different nodes in the critical path. For example, displaying
the Call Graph for a child node will reveal methods other than those in the critical path that
call the selected child method.

Displaying a Different Path in a Call Graph

DevPartner Java Edition provides a browsing capability that enables you to navigate the Call
Graph based on criteria of your choosing.

Change the current baseline node, if necessary, by clicking on a method and selecting View
call graph for this method.

Click the Expand control (the arrow-shaped control on the left or right side of a node) to
collapse either the parents or the children in the critical path; an Expand control then appears
on all other nodes that can be expanded. Because only one path can be displayed at a time,
collapse the critical path before displaying a different path.

Click the Expand control for the node you are interested in to display its parents or children.

Continue expanding the path to browse the Call Graph.

Parent and Child Percentages Provided in Call Graphs

In the Call Graph, DevPartner Java Edition displays percentages outside each node in the call
path for the selected method. These percentages are computed relative to the call path
displayed, as described below.
 DevPartner Java Edition User’s Guide 31

Chapter 2 · Getting Started
Percent in Parent

Percent in Parent is displayed next to the nodes that appear to the left of the base (selected
method) node. This percent is relative to the total amount of time or memory consumed by this
method (including all other methods called from this method) when called from all its parents.

� Performance

This value represents the percentage of time to execute the method (and all methods it
calls), when it is called from a particular parent.

� Memory

� For temporary objects, this value represents the percentage of temporary objects for
this method and its children when called by this parent.

� For RAM footprint, this value represents the percentage of memory consumed by this
method and its children when called by this parent.

� For memory leaks, this value represents the percentage of memory that was leaked for
this method and its children when called by this parent.

Percent in Child

Percent in Child is displayed next to the nodes that appear to the right of the base (selected
method) node.

� Performance

This value represents the percentage of time spent in a child method and its child methods,
relative to the total amount of time spent in the child methods called by this method.

� Memory

� For temporary objects, this value represents the percentage of temporary object bytes
allocated by a child method and all its children, relative to the total temporary object
bytes allocated by the child methods called by this method.

� For RAM footprint, this value represents the percentage of memory consumed by a
child method and all its children, relative to the total memory consumed by the child
methods called by this method.

� For memory leaks, this value represents the percentage of memory that was leaked by
a child method and all its children, relative to the total memory leaked by the child
methods called by this method.

Entry Points Page

The Entry Points page displays a table of all entry points in the session file. This list is avail-
able when viewing Performance or Temporary Object data.

To sort the list, click the column head for the column you want to use as the sort criterion. A
white arrow indicates the current sort criterion. You can sort by ascending or descending order.

Click an entry point to display the Detail window from which you can view a Call Graph or
view source code for the selected entry point.
32 DevPartner Java Edition User’s Guide

Chapter 2 · Getting Started
For lists containing numerous entry points, use Previous, Next, and Show All to display
sections of the list. Click Column Selection to choose the columns to be displayed for perfor-
mance or for temporary objects.

Entry Points Columns — Performance

You can choose to display any of the following columns in the Entry Points page for Perfor-
mance analysis:

� Class — Name of the class.

� Package — Package in which the class resides.

� % Thread Time in Class — The thread time spent in this method (excluding profiled
children) as a proportion of the thread time spent in the other methods of this class.

� % Thread Time in Method — The thread time spent in this method (excluding profiled
children) as a proportion of the total amount of thread time seen during this profiling run.

� Average Clock Time including Children — Amount of clock time spent executing,
including children, divided by the execution count.

� Clock Time including Children — Amount of time spent executing, including children.

� % Thread Time including Children — The thread time spent executing this method and
all the methods it called, as a percentage of the total thread time collected during this run.

� Thread Time including Children — The thread time spent in this method and the meth-
ods it calls, seen during this profiling run.

� Execution Count — Number of times this method was executed.

� Average Thread Time including Children — Average amount of thread time used by
this method and any children it called.

Entry Points Columns — Temporary Objects

You can choose to display any of the following columns in the Entry Points page for tempo-
rary objects:

� Class — Name of the class.

� Package — Package in which the class resides.

� Execution Count — Number of times this method was called.

� Average Temporary Bytes — Average amount of temporary space (short and medium)
used by this method when called (not including its profiled child methods).

� Average Temporary Bytes including Children — Average amount of temporary space
(short and medium) used by this method and its child methods when called.

� Temporary Bytes including Children — Amount of accumulated temporary space
(short-lived and medium-lived) allocated by this method and its child methods.

� % Temporary Bytes including Children — Same as above, but expressed as a percent-
age of the total amount of accumulated temporary space seen in this profiling run.
 DevPartner Java Edition User’s Guide 33

Chapter 2 · Getting Started
� Temporary Objects including Children — Number of accumulated temporary objects
allocated by this method and the child methods it calls.

� Short-lived Bytes including Children — Amount of accumulated short-lived space allo-
cated by this method and the child profiled methods that it called.

� Short-lived Objects including Children — Number of accumulated short-lived objects
allocated by this method and the child methods it calls.

� Medium-lived Bytes including Children — Amount of accumulated medium-lived
space allocated by this method and the child profiled methods that it called.

� Medium-lived Object Count including Children — Number of accumulated medium-
lived objects allocated by this method and the child methods it calls.

� Long-lived Bytes including Children — Amount of accumulated long-lived space allo-
cated by this method and the child profiled methods that it called.

� Long-lived Objects including Children — Number of accumulated long-lived objects
allocated by this method and the child methods it calls.

Note: DevPartner does not consider long-lived space as temporary. Long-lived
space is generally not of great consequence when looking for potential
problems in your application. However, it is included as data in the product to
help you understand the behavior of your program. A long-lived object is one
that remains reachable after the entry point that allocated it completes execu-
tion.

Entry Points with Retained Instances

You can choose to display any of the following columns in the Entry Points page for retained
instances:

� Entry Point — The name of the entry point (externally called method).

� Execution Count — The number of times the method was executed.

� # of Retained Objects — Total number of objects created and retained in memory for the
method, not including child objects.

� # of Retained Objects Including Children

You can sort the list in ascending or descending order by clicking a column head.

To view the Call Graph or the instances for an entry point, click the entry point to display the
Details window, then click the appropriate link.

Method List

The Method List displays methods executed during analysis. By default, all methods are listed.
Use the tree control to display a subset.

Click a method to display details and to view source code; add a Session Control Rule; or, for
Performance analysis and Memory analysis, view the Call Graph.

Click Preferences to select precision (one, two, three, or four decimal positions), and to select
the units in which data is presented.
34 DevPartner Java Edition User’s Guide

Chapter 2 · Getting Started
Click Column Selection to select the columns to be displayed for each method. You can sort
the Method List by clicking a column heading.

To sort the tree control, choose from the Sort By menu. The selections vary depending on
analysis type:

� For Performance analysis, you can sort the tree alphanumerically or by the percent of the
total Execution Time.

� For Coverage analysis, you can sort the tree alphanumerically or by the number of lines
not executed.

� For Memory analysis, sorting options depend on the data being viewed:

� For Temporary Objects, you can sort the tree by temporary bytes, short-lived bytes,
medium-lived bytes, or alphanumerically.

� For Memory Leaks, you can sort the tree by the number of leaked bytes or alphanu-
merically.

� For RAM Footprint, the tree is sorted by percent of total footprint. You can sort any of
the columns by ascending or descending order.

For lists containing numerous methods, use the Previous, Next, and Show All to traverse the
list.

Note: The active Configuration determines whether DevPartner Java Edition
displays trivial methods in an Allocation Trace Graph, Call Graph, or Method
List. If trivial methods are not monitored (default), they do not appear in Call
Graphs, Allocation Trace Graphs, or in the Method List view.

Method List Columns

The columns available from the Method List can be accessed from various places in DevPart-
ner Java Edition, and its contents will vary, depending on the type of analysis that is performed
and the choices made by the user. The column options are grouped below by category:

� Common to All
� Performance
� Coverage
� Temporary Objects
� Leaked Objects
� RAM Footprint

Common to All

The following columns are available for all profiles:

� Method — Name of the method.

� Class — Name of the class in which the method resides.

� Package — Name of the package in which the method resides.
 DevPartner Java Edition User’s Guide 35

Chapter 2 · Getting Started
Performance

The following columns are available for Performance profiles:

� % Thread Time in Class — The thread time spent in this method (excluding profiled
children) as a proportion of the CPU time spent in the other methods of this class.

� % Thread Time in Method — The thread time spent in this method (excluding profiled
children) as a proportion of the total amount of CPU time seen during this profiling run.

� %Thread Time including Children — The thread time spent executing this method and
all the methods it called as a percentage of the total thread time collected during this run.

� Thread Time including Children — The thread time spent in this method and the meth-
ods it calls seen during this profiling run.

� Average Clock Time including Children — Amount of clock time spent executing,
including children, divided by the execution count.

� Clock Time including Children — Amount of time spent executing, including children.

� Execution Count — Number of times this method was executed.

� Average Thread Time — Average time used by this method for each time it executed.

� First Execution Thread Time — Amount of thread time this method used the very first
time it was called. This number is reported separately because Java methods often incur
additional overhead the first time they are called due to the lazy initialization of other
classes that they might call into (either to create a new object or invoke a static method).

� Minimum Thread Time — Least amount of thread time DevPartner Java Edition has
ever seen this method take (excluding time spent in child profiled methods).

� Maximum Thread Time — Greatest amount of thread time DevPartner Java Edition has
ever seen this method take (excluding time spent in child profiled methods).

� Average Thread Time including Children — Average amount of thread time used by
this method and any children it called.

� Thread Time — Accumulated amount of thread time DevPartner Java Edition has
recorded for this method, not including time spent in child profiled methods.

� Clock Time — Accumulated amount of wall-clock time DevPartner Java Edition has
recorded for this method, not including time spent in child profiled methods.

� Wait Time — Accumulated time spent by a method waiting for some other event to pro-
cess.

This time does not include time spent in profiled methods that these methods called. For
example, a method might wait for the I/O to complete, a contended synchronization, or for
the CPU to finish executing another thread or process. In the latter case, this time is
usually inconsequential, and because it is due to relatively small thread time slices, can be
easily ignored.
36 DevPartner Java Edition User’s Guide

Chapter 2 · Getting Started
Coverage

The following columns are available for Code Coverage:

� % Lines Covered — For the number of executable lines in this method, the percentage
that have actually been executed.

� Execution Count — Number of times this method was called.

� Lines not Executed — Number of executable lines in this method that have not been exe-
cuted.

� Lines Executed — Number of executable lines in this method that have been executed.

� Lines — Number of executable lines in this method.

� State — Description of the last observed coverage state of this method.

Temporary Objects

The following columns are available for temporary objects:

� Execution Count — Number of times this method was called.

� Average Temporary Bytes — Average amount of temporary space (short and medium)
used by this method when called (not including its profiled child methods).

� Average Temporary Bytes including children — Average amount of temporary space
(short and medium) used by this method and its child methods when called.

� Temporary Bytes including Children — Amount of accumulated temporary space (short
and medium) allocated by this method and its child methods.

� % Temporary Bytes including Children — Same as above, but expressed as a percent-
age of the total amount of accumulated temporary space seen in this profiling run.

� Temporary Objects including Children — Number of accumulated temporary objects
allocated by this method and the child methods it calls.

� Short lived Bytes including Children — Amount of accumulated short lived space allo-
cated by this method and the child profiled methods that it called.

� Short lived Objects including Children — Number of accumulated short lived objects
allocated by this method and the child methods it calls.

� Medium lived Bytes including Children — Amount of accumulated medium lived space
allocated by this method and the child profiled methods that it called.

� Medium lived Objects including Children — Number of accumulated medium lived
objects allocated by this method and the child methods it calls.

� Long lived Bytes including Children — Amount of accumulated long lived space allo-
cated by this method and the child profiled methods that it called.

� Long lived Objects including Children — Number of accumulated long lived objects
allocated by this method and the child methods it calls.
 DevPartner Java Edition User’s Guide 37

Chapter 2 · Getting Started
Leaked Objects

The following columns are available for leaked objects:

� Execution Count — Number of times this method was called.

� Leaked Bytes — Size of the objects that were leaked.

� % Leaked Bytes — Size of the objects that were leaked as a percentage of the total size of
all leaks.

� Leaked Objects — Number of objects that were leaked.

� Leaked Bytes including Children — Sum of the sizes of leaked objects allocated by this
method and all of the methods it called, including child profiled methods.

� % Leaked Bytes including Children — Leaked Bytes with Children represented as a
percentage of the total amount of leaked space recorded in this profiling run.

� Leaked Objects including Children — Number of leaked objects allocated by this
method, including child profiled methods.

� Total Allocation Bytes — Size of all the objects ever allocated by this method.

� Total Allocations — Number of objects ever allocated by this method.

RAM Footprint

The following columns are available for RAM Footprints:

� Live Bytes — Sum of the sizes of the objects that this method (not including child profiled
methods) allocated that were still alive when this snapshot was taken.

� % Live Bytes — Represented as a percentage of the total size of the profiled objects in the
heap when this snapshot was taken.

� Live Objects — Number of live objects that this method (not including child profiled
methods) allocated that were still alive when this snapshot was taken.

� Live Bytes including Children — Sum of the sizes of the objects that this method and the
methods that it called allocated that were still alive when this snapshot was taken.

� % Live Bytes including Children — Represented as a percentage of the total size of the
profiled objects in the heap when this snapshot was taken.

� Live Objects including Children — Number of objects that this method and the methods
that it called allocated that were still alive when this snapshot was taken.

Computing Total Bytes Including Children

The Method List for Memory Leak or RAM Footprint analysis includes a column for Leaked/
Live Instance Bytes Including Children. (If this column is not visible, click Column Selec-
tion.)

The value for Instance Bytes Including Children is the sum of the bytes allocated by all
instances of the method plus all bytes allocated for all child methods. This value highlights
methods that are responsible for the largest amounts of allocated memory.
38 DevPartner Java Edition User’s Guide

Chapter 2 · Getting Started
Source View

To help you isolate the cause of your performance, memory, or coverage problems, DevPart-
ner Java Edition enables you to drill down into the source code for each object.

To view the source code for an object, select View Source Code from the Details window for
that object. If the configuration used to create this session file does not include the source file
paths for your code, you are prompted to enter a path. The path is then entered automatically
into the configuration file.

The source code view opens in a new browser window. Click Column Selection to select the
columns to be displayed; the columns you select are displayed at the left panes and are right-
aligned. The source code is displayed in the right pane and is left-aligned with tabs. Tooltips
provide additional information about some nodes in the tree view. Statistics are displayed for
every line of code called during program execution.

Highlighting draws your attention to significant lines in the source code:

� Yellow highlighting identifies the first line of the selected method.

� For Performance analysis, blue highlighting identifies the slowest line in each method.

� For Coverage analysis, the following color coding is used:

� Green — Lines that were executed
� Red — Lines that are executable but were not executed

Lines that are comments or are non-executable are not highlighted. Note that, since line statis-
tics are shown only for the selected class, lines in a different class also will not be highlighted.

Click an executed line of code to display its details. You can view instances, go to the declar-
ing method, go to called methods, or update the source path.

Click Printer Friendly Version to display the source code view in a format better suited for
printing than the initial Source View.

Notes:

• DevPartner Java Edition displays the current source code for the selected file. If you
change the source code in a project (for example, by adding or removing lines) and subse-
quently open an old session file, the information in the data columns in the Source tab may
not match the changed source code.

• Class files that were compiled without debugging information will not show up in Coverage
analysis session results. To get coverage information on these classes, recompile them with
debugging information and profile again.

You can sort the tree control by selecting a sort criterion from the Sort By menu. The criteria
vary depending on analysis type:

� Performance — Percentage of total Execution Time, or No Filter.

� Coverage — Number of lines not executed, or No Filter.

� Memory:

� Temporary Objects — % average temporary byes, % temporary bytes, % short-lived
bytes, % medium-lived bytes, or No Filter.
 DevPartner Java Edition User’s Guide 39

Chapter 2 · Getting Started
� Memory Leaks — Number of leaked bytes, or No Filter.

� RAM Footprint — Live bytes, or No Filter.

Note: When No Filter is selected, all packages and classes are listed in alphanu-
meric order.

Path Selection

To view source code, you must provide the source file path.

1 Select the path by browsing or designate the path directly in the Path field.

On Windows only, you can also specify UNC paths.

� Enter \\server to display a list of all shared folders for that UNC server.

� Enter \\server\share\dir\dir\dir to specify a specific path.

2 Click OK to enter the path.

The path is automatically added to the configuration.

For information on setting up NCSP to allow UNC browsing, see “Accessing Source Code on
Remote Computers” on page 44.

Source View Columns

The Source View can be displayed from various places in DevPartner Java Edition. Its
contents depend on the type of analysis performed and the choices you make for those analy-
ses. The column options are grouped below by category:

� Common to All
� Performance
� Coverage
� Temporary Objects
� Leaked Objects
� RAM Footprint

Common to All

The following columns are available for all profiles:

� Execution Count — Number of times this line has been executed.

� Line Number — Source file line number.

� Source / Path — Name of the source file and the complete path to it (shown in the blue
area at the top of the columns in the right pane).

� Source code — Source code (right pane).
40 DevPartner Java Edition User’s Guide

Chapter 2 · Getting Started
Performance

The following columns are available for Performance profiles:

� Child Methods — Number of child methods called by the method on this line.

� Thread Time — CPU time spent on this line (including time spent in any methods this
line calls).

� % Thread Time in Method — Thread Time spent on this line (including time spent in
any methods this line calls) as a proportion of the total amount of Thread Time spent on all
the lines of this method.

� Clock Time — Elapsed time between the start of this line's execution and the end, includ-
ing time spent in any methods this line calls.

� Wait Time — Non-CPU time spent on this line (Clock Time minus Thread Time), includ-
ing time spent in any methods this line calls.

Coverage

The following column is available for Code Coverage:

� Child Methods — Number of child methods called by the method on this line.

Temporary Objects

The following columns are available for temporary objects. These definitions apply, to short-,
medium-, or long-lived objects.

� Child Methods — Number of child methods called by the method on this line.

� Temporary Bytes including Children — Amount of accumulated temporary space
(short-lived and medium-lived) allocated by this method and its child methods.

� % Temporary Bytes including Children — Temporary Bytes with Children as a propor-
tion of the total amount of Temporary Bytes allocated by all the lines of this method.

This statistic is the same as the preceding item, but expressed as a percentage of the total
amount of accumulated temporary space seen in this profiling run.

� Temporary Objects including Children — Number of accumulated temporary objects
allocated by this method and the child methods it calls.

� Short-lived Bytes including Children — Amount of accumulated short-lived space allo-
cated by this method and the child profiled methods that it called.

� % Short-lived Bytes — Percentage of bytes used by short-lived space.

� Short-lived Objects including Children — Number of accumulated short-lived objects
allocated by this method and the child methods it calls.

� % Medium-lived Bytes — Percentage of bytes used by medium-lived space.

� Medium-lived Bytes including Children — Amount of accumulated medium-lived
space allocated by this method and the child profiled methods that it called.
 DevPartner Java Edition User’s Guide 41

Chapter 2 · Getting Started
� Medium-lived Object(s) Count including Children — Number of accumulated
medium-lived objects allocated by this method and the child methods it calls.

� Long-lived Bytes including Children — Amount of accumulated long-lived space allo-
cated by this method and the child profiled methods that it called.

� % Long-lived Bytes — Percentage of bytes used by long-lived space.

� Long-lived Objects including Children — Number of accumulated long-lived objects
allocated by this method and the child methods it calls.

Leaked Objects

The following columns are available for leaked objects:

� Child Methods — Number of child methods called by the method on this line.

� Leaked Bytes including children — Sum of the sizes of leaked objects allocated by this
line, including the child methods it calls.

� % Leaked Bytes including children — Same as the preceding item, but represented as a
percentage of the total amount of leaked space recorded in this profiling run.

� Leaked Objects including children — Number of leaked objects allocated by this line,
including child methods it calls.

RAM Footprint

The following columns are available for RAM Footprints:

� Child Methods — Number of child methods called by the method on this line.

� Live Bytes including children — Sum of the sizes of the objects that this line (including
child methods) allocated that were still alive when this snapshot was taken.

� Live Objects including children — Number of objects that this line (including child
methods) allocated that were still alive when this snapshot was taken.

� % Live Bytes including children — Represented as a percentage of the total size of the
profiled objects in the heap when this snapshot was taken.

Call Graph, Allocation Trace Graph, and Object Reference Path Common
Features

The Call Graph, Allocation Trace Graph and Object Reference Path have these common
features:

� Overview pane
� Detail pane
� Information about selected node
� Node Data selection
� Method of changing the layout
� Splitter bar
42 DevPartner Java Edition User’s Guide

Chapter 2 · Getting Started
Overview Pane

� Call Graph — The Overview pane displays a thumbnail view of the entire graph for the
selected method. Drag the rectangle or click a node to display in the Detail pane.

� Object Reference Graph — The Overview pane displays the entire path to the root object
for the selected instance. Drag the rectangle to select the nodes to be displayed in the
Detail pane.

Detail Pane

� Call Graph — The Detail pane shows the nodes that are visible in the rectangle. You can
drag the rectangle to display specific nodes in the Detail pane. The legend identifies the
colors used to show the baseline node, the critical path to the method, caller methods (par-
ent) to the left of the baseline node, and called methods (children) to the right of the base-
line node.

� Object Reference Graph — The Detail pane shows the nodes selected in the Overview
pane. The links are labeled with the data member that refers to the next class.

Information About Selected Node

� Click a node to display details about a given method. Hover the mouse cursor over a node
for additional information about that node shown in a tooltip.

Node Data Selection

� Click Node Data Selection to select which details will be displayed for each node in the
Call Graph and Allocation Trace Graph only (not available for Object Reference Graph).

Changing Layout

� You can drag a node or a group of nodes (using standard Windows click and drag) over
different nodes to rearrange the view in the Detail pane. Click Restore Layout to resume
the default layout in the Detail pane.

� If the graph overlaps the legend, you can click-and-drag the legend to a different position.

Splitter Bar

� Use the splitter bar to resize the Overview pane to increase the Detail pane's visible area.

� If the size of the graph exceeds the scale of the Overview pane, vertical and/or horizontal
scroll bars will appear, enabling you to navigate to other parts of the path. Click Restore
Layout in the toolbar to return to the default layout.
 DevPartner Java Edition User’s Guide 43

Chapter 2 · Getting Started
Printing Profiling Data

Most of the pages displayed by DevPartner Java Edition can be printed. For best printing
results:

� Set your browser to print background images. For Internet Explorer, select Tools>Inter-
net Options>Advanced>Printing>Print background colors and images. If this option
is not set, the appearance of printed pages might vary from their online appearance.

� In Internet Explorer, select File>Print>Options>As laid out on the screen to print all
frames as displayed on the screen.

� When printing, if black rectangles appear instead of graphics and data, make sure you
have the latest version of the Java plug-in for your browser.

� The width of table columns can be adjusted to fit as much of the table on the page as pos-
sible. Use the Landscape print setting for best results.

� Pages with dynamic information, such as the Session Control page, cannot be printed. In
Windows, you can use the Print Screen key to capture the screen and paste it into an appli-
cation such as Microsoft Word or Microsoft Paint to print.

Accessing Source Code on Remote Computers

Note: This topic applies to Windows environments only.

The DevPartner Java Edition Control Service accesses source code. By default, this service is
installed to log on as the local system. This means the local system cannot see computers on
the network; it can only see what is on the local system. By default, DevPartner Java Edition
cannot access source code that is on another system.

To set up DevPartner Java Edition to access source code on remote computers:

1 Select Start>Settings>Control Panel>Administrative Tools>Services.

2 In the Services window, double-click Micro Focus DevPartner Java Edition Control
Service to display the Properties dialog box.

3 Select the Log On tab.

4 Under Log on as, select This account.

5 In the This account field, enter the domain and user on the DevPartner Java Edition
server, or browse to select a domain and user. The user must be a member of the adminis-
trators group on the server. (The server is the computer where DevPartner Java Edition is
installed and NCSP is running.)

6 Enter a valid password for the selected user and confirm it.

7 Click OK to save the information and close the dialog box.

8 In the Services window, right-click Micro Focus DevPartner Java Edition Control Ser-
vice and select Restart from the menu.
44 DevPartner Java Edition User’s Guide

Chapter 2 · Getting Started
The user or group running NCSP on the remote DevPartner Java Edition server must have the
following privileges to start NCSP on the remote computer:

� Debug programs

� Replace a process level token

To set these rights on the remote server:

1 Select Start>Settings>Control Panel>Administrative Tools>Local Security Policy.

2 In the tree, expand the Local Policies node to display the local policies.

3 Select User Rights Assignment to display the policies in the right pane.

4 Right-click Debug Programs and select Security from the menu to display the Local
Security Policy Setting dialog box.

5 Click Add to display the Select Users or Groups dialog box; select a user or group to add
access, and click OK to save the change and close the dialog box.

6 In the Local Security Setting dialog box, right-click Replace a process level token and
select Security from the menu to display the Local Security Policy Setting dialog box.

7 Click Add to display the Select Users or Groups dialog box; select a user or group to add
access, and click OK to save the change and close the dialog box.

Restart the Micro Focus DevPartner Java Edition service on the local user's computer.

To view source code in DevPartner Java Edition, enter the UNC style path to the source in the
Path field at the bottom of the Path Selection dialog box. For example:

\\remotemachine\source\code-directory

You can also set this UNC path in the configuration for DevPartner Java Edition by selecting
Source File Paths on the Configurations tab. Before you set this configuration, you must
have already enabled Debug Programs and Replace a process level token rights in the Micro
Focus DevPartner Java Edition Control Service properties.

On Windows, you will not be able to use mapped drives, because they belong only to the login
session in which they were created.

Providing Java Plug-ins for Remote Users

If you are a remote user and you start the DevPartner Java Edition user interface on your
computer, the program detects whether you have the required Java plug-in installed. If the
plug-in is not there, DevPartner Java Edition redirects you to the Sun Web site, where you can
download the latest plug-in.

To host the Java plug-ins on the DevPartner Java Edition server, copy the installation files to
the computer. For more information, see “Hosting Java Plug-ins for Remote Users” on page
47.
 DevPartner Java Edition User’s Guide 45

Chapter 2 · Getting Started
Internet Explorer

1 DevPartner Java Edition first looks to see if a plug-in exists on the server. If so, it attempts
to download and install the plug-in on the user's system.

2 If there are no plug-ins on the DevPartner Java Edition server, the browser attempts to
automatically install the plug-in from Sun Corporation.

3 When a security warning is displayed, click OK.

4 Internet Explorer installs the plug-in.

Firefox

DevPartner Java Edition displays a page in which you can select the plug-in to download or
use.

1 Select to download and install the plug-in by following the instructions at the Sun Corpo-
ration Web site.

2 Close all browser windows.

3 Restart DevPartner Java Edition in a new Browser.

Firefox on Windows

Follow the steps in the Installation Instructions section of the Sun installation instructions.

Firefox on Linux and Solaris

Note: On Linux, use Firefox 3 with JDK 1.6.0_10 or higher to ensure the symlink
works properly.

Follow the steps in these sections of the Sun installation instructions:

� Installation of Self-Extracting Binary

� Java Plug-in Installation Instructions

If the plug-in does not work after you follow Sun's instructions, you might need to execute
these additional commands:

cd <firefox-install-directory>/plugins

ln -s <install-directory-for-jre>/plugin/i386/ns7/
libjavaplugin_oji.so libjavaplugin_oji.so .
46 DevPartner Java Edition User’s Guide

Chapter 2 · Getting Started
Hosting Java Plug-ins for Remote Users

To host the Java plug-ins on the DevPartner Java Edition server, copy the installation files to
the computer.

Windows

Download the “Windows Offline Installation” file from Sun Corporation and copy it to
DPJ_dir\tomcat\webapps\DPJ\plugin\, where DPJ_dir is the path of the DevPartner
Java Edition product folder.

UNIX

Download the appropriate “Self-extracting Installation” file from Sun Corporation and copy it
to /opt/Micro Focus/DPJ/tomcat/webapps/DPJ/plugin/.

Using DevPartner Java Edition with Distributed Application Analysis

The distributed application analysis feature in DevPartner Studio monitors Internet Explorer
sessions by default. You can run the distributed application analysis feature and DevPartner
Java Edition at the same time. Micro Focus does not support monitoring of DevPartner Java
Edition code by the distributed application analysis feature. Here is a scenario in which the
distributed application analysis feature will monitor DevPartner Java Edition code.

Problem Scenario

If you are running the distributed application analysis feature and then start DevPartner Java
Edition in an existing Internet Explorer window, the distributed application analysis feature
automatically starts monitoring the DevPartner Java Edition code. This occurs because the
distributed application analysis feature starts monitoring programs running in an Internet
Explorer window automatically once a distributed application analysis session starts.

To check for this, examine the Actions Pane of the distributed application analysis feature. If
you see information about DevPartner browser pages, then the distributed application analysis
feature is monitoring DevPartner Java Edition.

Solution

1 Close the browser in which DevPartner Java Edition is running. If Internet Explorer is
your default browser, close all browser instances. You do not need to stop the distributed
application analysis feature.

2 Restart DevPartner Java Edition. The program will start but will not be profiled by the dis-
tributed application analysis feature.
 DevPartner Java Edition User’s Guide 47

Chapter 2 · Getting Started
Profiling Applets

Applets are Java programs that are written to be run in a special container. This container
might be either an appletviewer, provided in the Java Development Kit (JDK), or a Web
browser.

DevPartner Java Edition provides two ways to profile applets.

� Profiling in the appletviewer — Use the command line nmappletviewer.

� Profiling directly in the browser — In a browser, use the command line nmshell and then
execute the browser in that new shell. All applets loaded in this browser will subsequently
be profiled.

Exit all instances of your browser before starting a new instance through nmshell.

You can profile an applet to analyze memory leaks. There are two possible work flows when
performing memory leak analysis:

� Start tracking, exercise the program, and then view the results.

� Start tracking, exercise the program, stop tracking, exercise the program again, and then
view results.

Typically, applet testers would use the second approach for optimum results.

You can profile any applet on any page. It is not necessary that you own the code or even the
class files.

You can call a Session Control API from within an applet.

Example Using nmshell in Windows

3 Start a DOS command window.

4 Type the command nmshell.

5 To find the name of the Web browser executable to run in nmshell, right-click the
browser's icon and select Properties. From the dialog box that appears, select and copy
the text in the Target field. You might see, for example:

� For Internet Explorer: "C:\Program Files\Internet Explorer\IEX-
PLORE.EXE"

6 Enter the name of the Web browser executable at the nmshell prompt.

7 Access the HTML page where your applet resides.
48 DevPartner Java Edition User’s Guide

Chapter 3

Command Line Utilities
The DevPartner Java Edition command line utilities let you launch and monitor a Java
program directly from the command line, either interactively or in batch mode.

Other capabilities, such as setting up a configuration, are available only from the Web inter-
face for DevPartner Java Edition.

When a program is launched from the command line, a session starts and the Session Control
page appears, unless the program is running in batch mode.

DevPartner Java Edition provides the following command line utilities:

� nmappletviewer — Monitors your Java applets.

� nmextract — Exports data from DevPartner Java Edition session files to either an
ASCII file or an XML file.

� nmjava — Monitors your standalone Java programs.

� nmshell — Monitors Java applets in browsers or any Java program run in the shell, such
as a batch file or executable file.

� nmserver — Monitors your Java code run in an application server (this functionality is
also available through DevPartner Java Edition's Web interface).

� pubmetrics — Publish code coverage metrics to Optimal Delivery Manager. For more
information, see PubMetrics.pdf, in the DevPartner Java Edition installation folder.

nmappletviewer

The nmappletviewer utility enables you to monitor Java applets. The DevPartner Java
Edition Web interface is launched, unless the applet is run in batch mode.
 DevPartner Java Edition User’s Guide 49

Chapter 3 · Command Line Utilities
Syntax

nmappletviewer [-config Configuration-name] {-perf, -mem, -cov} [-
batch] [-nmv] [-javahome <path>] [-help] <normal Java command-line
options>

Table 3-1. nmappletviewer Syntax

Switch Description

-config Configuration-name Specifies the name of the configuration. If Configura-
tion-name does not exist, a configuration with the speci-
fied name and the default configuration settings is created.
If -config is omitted, DevPartner Java Edition assumes

-config JavaAppletName

-perf Monitor for Performance analysis, which is the default if no
analysis type is specified.

-mem Monitor for Memory analysis.

-cov Monitor for Coverage analysis.

-batch Run in batch mode, i.e., do not invoke the Web interface.

-nmv Verbose operation.

-javahome path Select the Java virtual machine to use. By default, DevPart-
ner Java Edition uses the Java virtual machine specified in
your Path environment variable, (the same way it would typ-
ically determine which java.exe to run). If you specify a
Java home location, for example
C:\jdk1.5.0_12, then DevPartner Java Edition runs the
java.exe found in that path instead of the Java path spec-
ified in your Path environment variable.

-help
-h
-?

Displays the help text for the specified command line utility.

nmextract

The nmextract utility exports data from a specified session file for a Performance analysis,
Memory analysis, or Code Coverage analysis session. Use this utility at the command prompt,
first changing to the folder containing the file from which you want to extract data.

By default, the utility creates a text file (.csv extension) containing comma-delimited data
that can be imported into a spreadsheet. You can also export the data to an HTML file; or to an
XML file that can be merged with other XML files, for example, to view data from different
reports in one file. For more information, see “Exported Data File Contents” on page 76.

When the session information is extracted, a confirming message appears in the command
window.
50 DevPartner Java Edition User’s Guide

Chapter 3 · Command Line Utilities
Syntax

nmextract {-perf, -mem, -cov} [-xml {-all [-method, -line], -summary,
-metrics}, -html] <filename.ext> [-out <filename>]

Required: If the full path of the filename contains spaces, enclose the filepath in
double quotation marks, e.g. "C:\Program Data\Micro Focus\DevPart-
ner Java Edition\var\conf\DPJ.conf".

The default command, nmextract filename.ext, detects the analysis type automatically
and exports the data to a .csv file. If you are exporting data to XML or HTML format, you
must specify the analysis type.

The switches used with the nmextract command are described in the following table.

Table 3-2. nmextract Syntax

Switch Description

filename.ext The name of the session file to extract. You must specify the complete file
name with the extension.
Caution: The session file must be in the default location (config is the
folder for the configuration used in the profiling session):
• Windows XP or 2003 Server — C:\Documents and Settings\All
Users\Application Data\Micro Focus\DevPartner Java
Edition\var\sessionfiles\config
(By default, the \Application Data folder is hidden. To display the
\sessionfiles folder and its contents, type the path in the Address
bar of Windows Explorer and press Enter.)

• Other supported Windows operating systems — C:\Program
Data\Micro Focus\DevPartner Java Edition\var\session-
files\config

• Other operating systems — DPJ_dir/var/sessionfiles/config,
where DPJ_dir is the path of the DevPartner Java Edition product folder

Data can be extracted from the following types of session files:
• .tcs — Code coverage
• .tts — Performance
• .mps — Temporary objects, leaked objects, or RAM footprint
• .tcm — Merged Code Coverage sessions
Note: Make sure you use the appropriate switch for the file (analysis) type.

-perf Exports data from a Performance analysis session, by default to a comma-
delimited ASCII text file named filename.csv (where filename is the same
as the source file). If you are exporting the data to a .csv file, this switch is
optional; it is required for other export formats.

-mem Exports data from a Memory analysis session, by default to a comma-
delimited ASCII text file named filename.csv (where filename is the
same as the source file). If you are exporting the data to a .csv file, this
switch is optional; it is required for other export formats.
 DevPartner Java Edition User’s Guide 51

Chapter 3 · Command Line Utilities
The nmextract utility processes one session file at a time and generates one output file for
each session file, with the same name (changing the extension as appropriate). The files are
generated in the folder /var/exports/config, where config is the folder for the configu-
ration used in the profiling session.

Numbers are expressed in the lowest unit (for either microseconds or bytes). The number
precision will always be the maximum.

Note: A sample application is provided for viewing exported line-level Code Cover-
age data in HTML format. The HTML display is similar to the Source View
within DevPartner Java Edition. For more information see “Exporting and
Viewing Line-Level Code Coverage Data” on page 146.

-cov Exports data from a Code Coverage analysis session, by default to a
comma-delimited ASCII text file named filename.csv (where filename is
the same as the source file). If you are exporting the data to a .csv file, this
switch is optional; it is required for other export formats.
Note: When you include -cov in the command line when exporting to a
.csv file, the file contains coverage details for each object analyzed; with-
out this switch, the file contains summary information.

-html Exports the data in HTML format to a file named filename.html, where
filename is the original session file. If you use this switch, you must also
specify the analysis type (-perf, -mem, or -cov).

-xml Exports the data in XML format to a file named filename.xml, where
filename is the original session file. If you use this switch, you must spec-
ify the analysis type (-perf, -mem, or -cov) and you must use the -summary -
all, -method, or -line switch.

-summary Exports the same data as for the .csv and .html format. If you use this
switch, you must also use -xml.

-all Exports detailed information depending on the analysis type (see details in
Table 5-4 on page 76). If you use this switch, you must also use -xml.

-method Includes method-level Code Coverage information in the exported data. It
can be used only with -cov -xml.

-line Includes line-level Code Coverage information in the exported data. It can
be used only with -cov -xml.

-metrics Exports Metrics data from a Coverage session file to an XML file that can
be published to Optimal Delivery Manager. If you use this switch, you must
also use -cov -xml.

-out Exports data to the specified output file name. Do not include the full file-
path or an extension; the file will be created in the default location as
described below, with the extension .xml.

-help
-h
-?

Displays the help text for the specified command line utility.

Table 3-2. (Continued)nmextract Syntax

Switch Description
52 DevPartner Java Edition User’s Guide

Chapter 3 · Command Line Utilities
nmjava

The nmjava utility enables you to monitor Java programs that are not run through an applica-
tion server. The DevPartner Java Edition Web interface is launched, unless the program is
running in batch mode.

Syntax

nmjava [–config Configuration-name] {-perf, -mem, -cov} [-batch] [-
nmv] [-javahome <path>]
[-help] <normal Java command-line options>

Table 3-3. nmjava Syntax

Switch Description

-config Configuration-name Specifies the name of the configuration. If Configuration-
name does not exist, a configuration with the specified name
and the default configuration settings will be created. If -con-
fig is omitted, DevPartner Java Edition assumes

-config JavaAppName

-perf Monitor for Performance analysis, which is the default if no
analysis type is specified.

-mem Monitor for Memory analysis.

-cov Monitor for Coverage analysis.

-batch Run in batch mode, i.e., do not invoke the Web interface.

-nmv Verbose operation.

-javahome path Select the Java virtual machine to use. By default, DevPart-
ner Java Edition uses the Java virtual machine specified in
your Path environment variable, (the same way it would typi-
cally determine which java.exe to run). If you specify a
Java home path, for example
C:\jdk1.5.0_12, then DevPartner Java Edition runs the
java.exe found in that path instead of the Java path speci-
fied in your Path environment variable.

-help
-h
-?

Displays the help text for the specified command line utility.

nmserver

The nmserver utility enables you to profile programs run through an application server
without launching the DevPartner Java Edition Web interface.

Note: If the application server is running as a service under supported Windows
operating systems other than Windows XP or 2003 Server, the Session
Control page will not open automatically when you begin profiling the applica-
tion server. To view the Session Control page, open the DevPartner Java
Edition Start page and select the Application Server Testing tab.
 DevPartner Java Edition User’s Guide 53

Chapter 3 · Command Line Utilities
Syntax

nmserver [-config Configuration-name] {-attach, -detach, -kill} {-
perf, -mem, -cov} [-timeout seconds] [-batch] [-nmv] [-help]
<appserver_name>

Table 3-4. nmserver Syntax

Switch Description

-config Configuration-name Specifies the name of the configuration. If Configuration-
name does not exist, a configuration with the specified name
and the default configuration settings will be created. If -con-
fig is omitted, DevPartner Java Edition assumes

-config JavaAppName

-attach If the application server is running and is available, a new
session is created and the application server is attached to
this session; if the application server is not running, DevPart-
ner Java Edition first starts it and then hooks itself to the
application server.
If a session is already running under the specified configura-
tion, and that session allows multiple processes per session,
the application server is attached to the existing session. To
attach an application server that is already executing, that
application server must have been started by DevPartner
Java Edition.

-detach Stops monitoring the specified application server and the
application server becomes available. It continues running. If
the application server does not exist, an error is output to
standard error, and no other action is taken.

-kill Stops the specified application server.

-perf Monitor for Performance analysis, which is the default if no
analysis type is specified.

-mem Monitor for Memory analysis.

-cov Monitor for Coverage analysis.

-timeout seconds Timeout for server operations; the default is 600 seconds.

-batch Run in batch mode, i.e., do not invoke the Web interface.

-nmv Verbose operation.

appserver_name Specifies the name of the configured application server to run
(for example, WebLogic or WebSphere).

-help
-h
-?

Displays the help text for the specified command line utility.
54 DevPartner Java Edition User’s Guide

Chapter 3 · Command Line Utilities
nmshell

The nmshell utility invokes a new console (shell) in which all Java programs are monitored.
This utility could be used, for example, to launch a browser and profile an applet in that
browser, or to launch a batch file or executable.

To terminate monitoring, exit the shell.

While this command is active, invoking additional nmshell commands in the same console
will result in an error. You can, however, invoke the nmjava or nmserver commands in the
same console; these commands will behave normally, as if they were invoked outside of this
console.

Note: To use nmshell with an unsupported application server, first configure the
server, then use nmshell as usual. For more information, see “Invoking the
Profiler Through the JVM Settings” on page 21.

The nmshell utility cannot be used to profile OC4J Integrated.

Syntax

nmshell -config Configuration-name {-perf, -mem, -cov} [-batch] [-nmv]
[-help]

nmshell -config Configuration-name {-perf, -mem, -cov} [-batch] [-nmv]
[-help] –exec <command>

Table 3-5. nmshell Syntax

Switch Description

-config Configuration-name Specifies the name of the configuration. If Configuration-
name does not exist, a configuration with the specified name
and the default configuration settings is created. This option
is required.

-perf Monitor for Performance analysis, which is the default if no
analysis type is specified.

-mem Monitor for Memory analysis.

-cov Monitor for Coverage analysis.

-batch Run in batch mode (do not launch the DevPartner Java Edi-
tion Start page).

-nmv Verbose operation.

-help
-h
-?

Displays the help text for the specified command line utility.

-exec command Execute this command under this configuration; e.g., -exec
could be followed by the name of a batch file, or by java fol-
lowed by an executable name.
This switch is essentially a shortcut to calling nmshell, then
running the command, and then exiting the shell.
 DevPartner Java Edition User’s Guide 55

Chapter 3 · Command Line Utilities
Metrics Publishing Utility

DevPartner Java Edition calculates two code coverage metrics, Coverage and Volatility, that
can be published to the Optimal Delivery Manager (ODM) using the Metrics Publishing
utility. For complete information about these metrics and the utility, see the PDF file PubMet-
rics.pdf, which is provided in the DevPartner Java Edition installation folder.

Before publishing the metrics, you must export them from DevPartner Java Edition. For more
information, see “Exporting Session Data” on page 75.

Session Control API

DevPartner Java Edition provides an application programming interface (API) that enables
you to programmatically control profiling. The API provides a more focused analysis of the
target code.

The Session Control API can be most useful when performing a session control action
precisely at some arbitrary point in your program, such as method begin or method end. It is
also useful on a conditional basis, when a method is passed certain parameters. For example, if
you must clear the collected data at the beginning of a method, it is probably impossible to
click Clear at exactly that precise point in time. Calling the “clear session control” API,
however, ensures that this action is taken at exactly the right point in your program.

Using a Session Control API

1 Include the DPJSessionControls.jar file in your classpath. The file is in the follow-
ing locations:

� Windows: DPJ_dir\SessionControlAPI

where DPJ_dir is the path of the DevPartner Java Edition product folder.

� Unix: /opt/Micro Focus/DPJ/SessionControlAPI

2 Add the following import statement to your code:

import com.compuware.dpj.SessionControls;

Methods in Class Session Controls

The com.compuware.dpj.SessionControls class includes the following methods.

Table 3-6. com.compuware.dpj.SessionControls Class Methods

Method Description

TakeSnapshot() Requests that the profiler take a snapshot.

ClearData() Requests that the profiler clear all collected data. If you are
interested in the data that was collected, do not call
ClearData() until after you call TakeSnapshot(). Note
that RAM Footprint data is not cleared by ClearData().
56 DevPartner Java Edition User’s Guide

Chapter 3 · Command Line Utilities
Note: The Mark() and UnMark() calls are the programmatic equivalents of the Start
Tracking and Stop Tracking buttons on the Memory analysis Session Control
page. Whether you call UnMark() before or after you call TakeSnapshot()
depends on the data collection scenario appropriate for your application. See
“Memory Leaks” on page 93 for more information on tracking allocated objects
during Memory Leak analysis.

To access the JavaDoc description for each method, select the Session Control API Reference:

� Windows — Start>Programs>Micro Focus>DevPartner Java Edition>Utilities>Ses-
sion Control API Reference

� UNIX — From the DevPartner Java Edition folder

Calling a Session Control API When Profiling an Applet

1 Add an import statement:

import com.compuware.dpj.SessionControls;

2 Code the API call into your applet.

3 Copy the file DPJSessionControls.jar from the DevPartner Java Edition product
folder to the Web location where your applet resides.

4 Include the DPJSessionControls.jar file in your classpath. The file is in the follow-
ing locations:

� Windows: \DPJ_dir\SessionControlAPI

where DPJ_dir is the path of the DevPartner Java Edition product folder

� UNIX: /opt/Micro Focus/DPJ/SessionControlAPI

5 Modify the HTML page or Java Server Page that references the applet to include a refer-
ence to this jar file. For example, using Test.jar:

� Before: <PARAM name="java_archive" value="Test.jar">

� After: <PARAM name="java_archive" value="Test.jar,DPJSessionCon-
trols.jar">

6 Run the applet under the web browser under nmshell.

RequestGarbageCollection() Requests that the VM perform a garbage collection. This is
essentially the same as calling System.gc(*) and Runt-
ime.runFinalization() a few times.

Mark() For memory leaks only, informs the profiler that all objects
that are allocated from this point forward are of interest, as
opposed to just objects allocated within non-excluded code.

UnMark() Reverses the effect of the Mark() call.

Table 3-6. com.compuware.dpj.SessionControls Class Methods

Method Description
 DevPartner Java Edition User’s Guide 57

Chapter 3 · Command Line Utilities
58 DevPartner Java Edition User’s Guide

Chapter 4

Configurations
A configuration is a set of parameters that control how a profiling session will run. Each
configuration may contain the following information:

� Various general parameters, such as whether single or multiple processes are to be moni-
tored per session, the collection level to be used, whether trivial methods are monitored,
whether out-of-order thread synchronization is monitored, and whether Coverage Sessions
are automatically merged.

� Whether to profile specific entry points, not the entire program.

� Packages and classes assigned to categories for analyzing results.

� Objects that are retained in memory after they are no longer needed by the program.

� The packages and classes to include or exclude from profiling.

� Session Control Rules which specify the action that DevPartner Java Edition is to take
when your code enters or exits a method.

� The length of time to display thread activity in the Thread Viewer during Performance
profiling.

� The source file paths for your code (required if you want to view source code during anal-
ysis).

A configuration file is owned by the DevPartner Java Edition server. It is accessible and can be
modified by any user who has access to the DevPartner server. You should not edit a configu-
ration file outside of the Edition server.

More than one session file can be associated with a given configuration.

Use the Configurations tab of the Start page to create configurations, or use the Default
configuration. The Default configuration includes standard configuration settings.

To specify a configuration in a command line, include -config Configuration_name in
the list of parameters for your command line, where Configuration_name is the name of
your configuration.

Configuration files are stored in the following folders:

� Windows XP or 2003 Server — C:\Documents and Settings\All Users\Appli-
cation Data\Micro Focus\DevPartner Java Edition\var\configurations

Note: By default, the Application Data folder is hidden. To display the configu-
rations folder and its contents, type the path in the Address bar of Windows
Explorer and press Enter.
 DevPartner Java Edition User’s Guide 59

Chapter 4 · Configurations
� Other supported Windows operating systems — C:\Program Data\Micro
Focus\DevPartner Java Edition\var\configurations

� UNIX — DPJ_dir/var/configurations
where DPJ_dir is the path of the DevPartner Java Edition product folder

The session files associated with a configuration are stored in the following folders, in a folder
with the same name as the configuration file that generated the session files:

� Windows XP or 2003 Server — C:\Documents and Settings\All Users\Appli-
cation Data\Micro Focus\DevPartner Java Edition\var\sessionfiles

� Other supported Windows operating systems — C:\Program Data\Micro
Focus\DevPartner Java Edition\var\sessionfiles

� UNIX — /opt/Micro Focus/DPJ/var/sessionfiles

You can copy your configuration and session files from one computer to another outside of the
DevPartner Java Edition client. Keep in mind that the content of a session file is controlled by
its configuration file; be careful when moving configuration and/or session files.

Also be careful to keep the folder structures intact when moving configurations and session
files outside of the client. Otherwise, DevPartner Java Edition might not detect configuration/
session file(s) you imported. Or, if you move a session file to a folder associated with another
configuration file, the session file might not behave as you expect.

Creating and Managing Configurations

To create a configuration, select the Configurations tab on the Start page. DevPartner Java
Edition displays the values in the current configuration.

Note: You cannot modify or delete the default configuration.

To view a configuration, select it from the list. To create or manage configurations, use the
following options.

Table 4-1. Options to Create or Manage Configurations

Option Description

New You are prompted for the name of the new configuration.
After you specify the name, DevPartner Java Edition displays the General
Parameters page in which you can adjust the parameters of the configuration.

Copy Create a copy of the configuration.
This option is useful if you have already created a configuration and specified
numerous file names or session control rules, and you want to create a similar
configuration without having to redo all that work. You are prompted for the
name of the copy and can then change any of its configuration parameters.

Delete Remove the selected configuration from the server.
Caution: This option also deletes any session files created under this configu-
ration.
60 DevPartner Java Edition User’s Guide

Chapter 4 · Configurations
A configuration file name can include alphanumeric characters, underscores, hyphens, and
periods. A configuration is accessible by and can be modified by any user who has access to
the server.

To modify a configuration, select the configuration from the list and make the desired changes.

DevPartner Java Edition automatically saves all changes to a configuration as you make them.

To cancel your changes, click Undo Changes.

Viewing Configurations

There are three scenarios in which DevPartner Java Edition displays configurations as read-
only, so that you cannot change the configuration settings.

� Default — DevPartner Java Edition provides a Default configuration file that includes
configuration settings typical for most simple memory and coverage scenarios. These set-
tings can be viewed by selecting Default from the Configuration list in the Configura-
tions tab of the Start page.

� Active Session — The configuration associated with the currently active session cannot
be modified.

� Results Session — The configuration associated with a session file that is being viewed
(i.e., the contents are currently displayed in any Results Summary) cannot be modified.

Configuration — General Parameters

You can specify the following general parameters in a configuration file.

Table 4-2. Configuration — General Parameters

Parameter Description

Processes per Ses-
sion

Select whether to create a new session for every process that is
run, or to allow multiple processes to run in a single session. Note
that Memory analysis always generates a new session for each
process.

Collection level For Performance analysis and Memory analysis, select whether to
collect only method-level data (which is faster), or to collect
source-level data (which produces a more detailed analysis).
• If you collect method level data, information about each method

called during analysis is displayed.
• If you collect source level data, more detailed information about

each line of source code executed during analysis displayed.
Note that for Coverage analysis, only source-level data collection
is supported.
If source level data is not collected for Memory analysis, source
code will not be accessible during analysis.
If you change this setting, you will need to restart your application
server for the change to take effect.
 DevPartner Java Edition User’s Guide 61

Chapter 4 · Configurations
Trivial Methods

A trivial method performs only one of the following operations:

� Returns a constant value or a member, static, or parameter variable.

� Returns the length of an array.

� Puts a constant value, an array length, or a member, static, or parameter variable into a
member or static variable.

� Calls one other function, passing parameters that are constant values, array lengths, or val-
ues that can be retrieved from member, static, or parameter variables.

These characteristics describe approximately 2,400 functions out of the standard Java library
and javax.swing. Some examples of trivial methods are:

public String getName() { return name; }

public void setName(String s) { name = s; }

public String toString() { return getName(); }

By default, trivial methods are not monitored; omitting them from the profiling session signif-
icantly reduces data collection overhead. To monitor all methods, select General in the
Configurations tab of the Start page, then select Monitor “trivial” methods.

Configuration — API Categorization and Transaction

You can focus Performance analysis on just the parts of your program that concern you by
selecting entry points to profile and by assigning categories to classes and packages.

Monitor “trivial” meth-
ods
(See Note.)

When selected, all methods are monitored including trivial meth-
ods. If not selected, DevPartner Java Edition profiles only those
methods that are most important to your analysis.

Monitor out-of-order
thread synchroniza-
tion

When selected, and when this configuration is used for Coverage
analysis, DevPartner Java Edition tracks whether threads are syn-
chronized out of order, (which can cause deadlocks).

Automatically merge
Coverage Sessions

When selected, and when the analysis type is Coverage, merges
all session files created with the current configuration. You must
enter a file name for the Merge File that will be created.

Table 4-2. (Continued)Configuration — General Parameters

Parameter Description
62 DevPartner Java Edition User’s Guide

Chapter 4 · Configurations
Using Entry Points

By default, DevPartner Java Edition profiles all transactions except for those involving
packages and classes in the exclude list for the configuration. The session file may, therefore,
include much data that is of no particular interest to you. You can use the Entry Point Tracking
list to include only specified objects in the session file. This feature enables you to focus on the
objects that may be causing performance problems, without the distraction of irrelevant
details.

The same profiling information is displayed in the Performance Results Summary as for an
unfiltered session.

To track specific entry points, select the Use Entry Point Tracking to Only Profile Transac-
tions option, then click Add to add entry points to the list.

Assigning Categories

Assigning objects to categories enables you to group related objects so the data for those
objects can be displayed together instead of being scattered among the overall results. For
example, if you change one area of code, you can assign all the affected objects to the same
category.

The profile information is displayed in a pie chart on the Performance Results Summary. It can
also be displayed through the Call Graph for any object listed in the results.

Assign Categories to Classes and Packages is enabled by default. The configuration includes
a list of objects assigned to categories and a list of the categories to which objects can be
assigned. You can create your own categories as needed.

Creating a New Category

To create a new category, click Add next to the Categories list. The first character of the
category name must be a letter. The name can contain only alphanumeric characters and
underscores, without spaces.

Configuration — Object Retention

Normally, objects that were garbage-collected are not included in session files. The session
file for a memory analysis, therefore, may not include all objects that affect program perfor-
mance by being retained in memory longer than necessary. You can use the Object Retention
configuration to detect the objects that are retained in memory for the longest time after their
last use by the program.

When you enable Object Retention, you can also choose whether to retain information for
classes that would otherwise be excluded from the analysis.

You can specify the number of objects to retain in the session file after they are garbage
collected; the default is 50. The more objects you track, the larger the session file will be.
DevPartner Java Edition ranks retained object by amount of overhead, calculating the
overhead by multiplying the size of the object by the retention span (number of garbage
collections it survives).
 DevPartner Java Edition User’s Guide 63

Chapter 4 · Configurations
When you enable object retention, session results are displayed in the Object-Lifetimes
Results Summary tab.

Notes:

• Using this feature requires large overhead, so by default, Object Retention is disabled.
• If you are using a generic application server configured through the DevPartner Java Edition

Administration Console and you selected the option Detach session before terminating
app server for the server, the results of object retention analysis may be incomplete or
incorrect because the session may end before all objects are profiled.

• Because an instance is marked as retained depending on when the instance is used via a
method invocation, primitive data types and arrays are not tracked for retention. If an
instance is used via a public member variable, it is not tracked as used because it relies
only on method invocation on the instances.

Configuration — Packages and Classes

You can simplify your analysis and improve the speed of monitoring by decreasing the amount
of analysis data collected. You can reduce the amount of data collected by specifying the
packages and classes to be monitored. All other packages and classes are not analyzed.

By default, DevPartner Java Edition does not monitor the Java Runtime Environment, applica-
tion server, and IDE classes.

To specify the packages and classes to be monitored, display the Packages And Classes
options in the Configurations tab of the Start page.

� To exclude specific packages and classes from analysis, select Collect data for every-
thing except.

� To limit the data collected to a specific set of packages and classes, select Collect data
only for.

Note: These options are mutually exclusive.

Use Add, Modify, and Remove to change the excluded or included packages and classes.

If you change exclusions/inclusions between detaching from and attaching to an application
server, you need to redeploy the application being tested for the changes to exclusions/inclu-
sions to take effect.

Exclusions and inclusions can take two forms: simple wildcard and regular expression.

� You can enter one wildcard character (*) anywhere in a package or class name. Any sub-
sequent wildcard characters are interpreted as actual asterisk characters, not wildcard
characters, in the package or class name. Use standard dotted notation for packages or
classes.

� You can use a tag with syntax @REGEX(<pattern>) to specify a set of packages or classes
that follow the naming pattern expressed in a regular expression. For more information,
see “Regular Expressions” on page 65.

Note: The regular expression @REGEX(^com\.ibm\.(?!_jsp)) is provided in the
Exclusion list by default.
64 DevPartner Java Edition User’s Guide

Chapter 4 · Configurations
To restore the default exclusion list, click Restore Defaults.

Default Exclusions

The default exclusions change from release to release, based on the packages associated with
supported application servers. Reinstalling the same release or installing a newer release into
the existing installation folder does not overwrite the existing default or user-created configu-
rations. Therefore, all your existing settings will be preserved. If you do not need to preserve
your settings and you want to adopt the product defaults when reinstalling, do one of the
following:

� Remove the existing configuration files from the configurations folder to reuse the same
installation folder:

� Windows XP or 2003 Server — C:\Documents and Settings\All
Users\Application Data\Micro Focus\DevPartner Java Edi-
tion\var\configurations

Note: By default, the Application Data folder is hidden. To display the configu-
rations folder and its contents, type the path in the Address bar of Windows
Explorer and press Enter.

� Other supported Windows operating systems — C:\Program Data\Micro
Focus\DevPartner Java Edition\var\configurations

� UNIX — DPJ_dir/var/configurations
where DPJ_dir is the path of the DevPartner Java Edition product folder

� Install DevPartner Java Edition into a different installation folder.

Note: If no configuration files are detected during installation, the default configura-
tion will be provided automatically.

Regular Expressions

You can exclude or include subsets of packages and classes in a profiling session by using
Perl-compatible regular expressions in the Exclusion or Inclusion list in the Packages and
Classes configuration. The regular expression pattern will be expanded against the names of
any packages or classes profiled by DevPartner Java Edition.

To add a regular expression, click Add for either the Exclusion or Inclusion section, as appro-
priate, to display the Package or Class dialog box. To add a regular expression to an item,
select the item and click Modify; the dialog box displays the selected item in the editing field.

A regular expression has the syntax

@REGEX(<pattern>)

where <pattern> defines the subset of packages or classes to be excluded or included.

For example:

� In an Inclusion pattern, to include all com.compuware.vj2ee classes in which the sub-
package starts with s, enter the following in the Collect data only for field:

@REGEX(^com\.compuware\.vj2ee\.s+).
 DevPartner Java Edition User’s Guide 65

Chapter 4 · Configurations
Subpackages with names like com.compuware.vj2ee.serer and com.compu-
ware.vj2ee.snmp will be included, while all other com.compuware.vj2ee.*
packages will not be.

� In an Exclusion pattern, to exclude all com.ibm packages, except where the subpackage
name is _jsp, enter the following in the Collect data for everything except field:

@REGEX(^com\.ibm\.(?!_jsp))

In this example, all com.ibm.* packages will be excluded except for those starting with
com.ibm._jsp. This example would include the JSP-compiled servlets under
WebSphere 6.x.

Note: This expression is provided in the Exclusion list by default.

� To exclude all org.apache.catalina packages, except where the subpackage name is
servlets, enter the following in the Collect data for everything except field:

@REGEX(^org\.apache\.catalina\.(?!servlets))

The syntax for regular expressions includes the following tokens:

� ^ (caret)
The match must start at the beginning of a string.

� + (plus sign)
This token specifies one or more matches.

� \. (backslash followed by a period, without a space between)
This escape sequence explicitly specifies the period.

� ?! (question mark followed by exclamation point, no space between)
The "except for" token defines exceptions to the exclusion or inclusion.

For full details regarding Perl-compatible regular expression usage, review the perlre (Perl
Programmers Reference Guide) man page. Active drafts are available from a number of sites,
including the following:

� Perl.com: The Source for Perl

� Emerson Center at Emory University

� LinuxCommand.org

Configuration — Source File Paths

DevPartner Java Edition does not require source file paths to monitor your code, but if you
want to view the source file during analysis, you must provide the path.

You can provide the source file path in two ways:

� Use the Source File Paths option in the Configurations tab of the Start page to identify
the paths to your source code. You can use this technique to establish paths before you run
a session against this configuration.
66 DevPartner Java Edition User’s Guide

http://www.linuxcommand.org

Chapter 4 · Configurations
� If you try to view a source file for which you have not specified a path, DevPartner Java
Edition prompts you for the path. It adds the specified path to the configuration.

Use Add, Modify, and Remove to change source file paths.

Configuration — Thread Viewer

The Thread Viewer displays thread activity during Performance profiling. It is enabled by
default.

Thread activity is displayed in the Thread Viewer for the number of seconds specified in the
Thread Viewer History in The Live View option. The default value is 30 seconds; you can
specify a minimum of 5 seconds through a maximum of 120 seconds.

Note: A higher value for Thread Viewer History in The Live View requires higher
overhead for retaining the data, and may degrade performance. If Perfor-
mance profiling proceeds unacceptably slowly even at lower values, you may
want disable the Thread Viewer.

Configuration — Session Control Rules

Session Control Rules enable you to control data collection based on a call to a specific
method, so you can get a snapshot at a precise point in the program execution even when
running in batch mode.

For example, you might have a rule that takes a snapshot when the beginSpellCheck()
method ends. When running interactively, you could just run a spell check and then click
Snapshot in the interface. But when running in batch mode, the program is running
unattended, in which case you obviously cannot click a button in the interface.

Session Control Rules enable you to specify that upon entry or exit from a method, DevPartner
Java Edition will do one of the following:

� View Results (i.e., take a snapshot of the data collected to that point).

� Clear all collected data (note that RAM Footprint data is not cleared by this action).

� Start Leak Analysis.

� Perform Garbage Collection.

Because method names are not known by DevPartner Java Edition when a configuration is
first created, you can only add a Session Control Rule after the configuration has been used to
generate a session file. For more information, see “Adding a Session Control Rule” on page
68.

To modify or copy a session control rule:

1 Select a configuration in the Configurations tab, then select Session Control Rules in the
left pane. A list of session control rules is displayed.

2 Select a rule in the list.
 DevPartner Java Edition User’s Guide 67

Chapter 4 · Configurations
3 Click the appropriate button for the action you want to perform. The Configuration dia-
log box appears.

4 Select the desired options for Event and Action, then click OK.

Note: When creating a new session control rule by copying an existing rule, make all
desired changes to the new rule at the time you create it, before closing the
Configuration dialog box. If you modify a copy of a rule, the rule from which it
was copied will also be modified.

To delete a session control rule, select the rule and click Delete.

Note: Deleting a rule is irreversible. When you click Delete, you will not be prompted
to confirm that you want to delete.

If you clear the check box for Enable Session Control Rules, Session Control Rules will be
ignored when a profile runs under the configuration.

If you change a Session Control Rule in a configuration that is to be used on an application
server that you have already begun profiling, you must do one of the following:

� Restart the application server.

� Redeploy the application of interest, if the application server provides this feature (for
example, WebLogic or WebSphere).

Adding a Session Control Rule

Because method names are not known by DevPartner Java Edition when a configuration is
first created, you can only add a Session Control Rule after the configuration has been used to
generate a session file.

To add a Session Control Rule:

1 Open a session file to display the Results Summary for the file.

2 For any graph of methods, click More Details to display the Method List.

3 In the Method List, click the method for which you want to create a rule. The Details win-
dow appears.

4 Click Add Session Control Rule to display the rule configuration window.

5 Select the desired options for the rule, then click OK to create the rule and close the win-
dow.

After a rule has been added, you can modify it through the Configurations tab of the Start
page. For more information, see “Configuration — Session Control Rules” on page 67.
68 DevPartner Java Edition User’s Guide

Chapter 5

Sessions
Analysis of your Java program occurs in the context of a session. A session begins when you
start monitoring a process; it ends when all processes running in the session terminate either
because the program ends or because you use the Session Control page or Session Control
Rules to stop data collection.

A session is a property of the DevPartner Java Edition server on which the program was
started. You can begin a session from DevPartner Java Edition, exit the user interface, start
another instance of the user interface (locally or remotely), and connect to the session you
started previously.

In the Active Sessions tab of the Start page, you can view, select, and control all Active
(running) sessions.

You can have more than one user interface connected and controlling the same session at the
same time. All users see the same session information simultaneously.

The data collected in a session is determined by both of the following:

� The configuration under which the session was started — The configuration determines
what will be monitored, how much data will be collected, and so on.

� The analysis type specified — Memory, Performance, or Coverage.

When a session ends, or when you take a snapshot of data collected to that point, the data is
stored in a session file.

Viewing Active Sessions

On the Active Sessions tab of the Start page, DevPartner Java Edition lists the following infor-
mation:

� Sessions that are currently running for the selected configuration

� The date and time the session began

� Analysis type being performed

Click Open to display the Session Control page for the selected session.

Multiple browsers (multiple users) can view active sessions simultaneously. Actions taken on
that session (e.g., stopping collection) are reflected in all browsers.
 DevPartner Java Edition User’s Guide 69

Chapter 5 · Sessions
Session Results — Session Details Tab

The Session Details tab lists the precise conditions under which the session file was created.
This information can be helpful when tracing obscure problems. The data is presented in a
report format that can be printed or copied. The tab includes information in one or more of the
following categories:

� General
� Machine
� Java Virtual Machine
� Performance Analysis
� Coverage Analysis
� Merged Coverage Files
� Memory Analysis

General Session Details

Table 5-1. General Session Details

Details Description

Session File Name of session file

Started Date and time stamp when the session was started

Ended Date and time stamp when the session was saved (ended)

Analysis Performed Performance, Coverage (merged or not), or Memory

Configuration Name of configuration

Session File Location Path to session file

If there are one or more hosts in a given session:

Host: <Machine Name>

Application Server:
Application Process: <List of all Java programs>
Exit Code:

Host: <Machine Name>

Application Server:
Application Process:
Exit Code:

Application Server:
Application Process:
Exit Code:

Host: <Machine Name>

Application Server:
Application Process:
Exit Code:
70 DevPartner Java Edition User’s Guide

Chapter 5 · Sessions
Machine Session Details

Host: <Machine Name>

Processor:
of Processors:
OS Version:

Host: <Machine Name>

Processor:
of Processors:
OS Version:

Host: <Machine Name>

Processor:
of Processors:
OS Version:

Java Virtual Machine Session Details

Process:

Java VM:
ClassPath:
Command Args:
java.runtime.name:
java.vm.version:
java.vm.name:
java.runtime.version:
java.class.version:
java.library.path:
java.class.path:
java.home:
os.arch:
os.name:
os.version:
user.name:
user.language:
sun.cpu.endian:
sun.os.patch.level:

Performance Analysis Session Details

of Called Methods (with thread starts):
of Calls:
Total Timing (as user-defined: seconds, milliseconds, microseconds):

Coverage Session Details

Percent of Lines Executed:
Number of Lines:
Number of Lines Executed:
 DevPartner Java Edition User’s Guide 71

Chapter 5 · Sessions
Number of Lines Not Executed:
Percent of Methods Called:
Number of Methods:
Number of Methods Executed:
Number of Methods Not Executed:

Merged Coverage File Session Details

The current merged session file includes a current list of all session files in this format.

Memory Analysis Session Details

of Called Methods:
of Calls:
Total Memory Allocated: xxx Bytes
Total size of user-allocated objects (as bytes and % of total VM memory):
Total size of system objects (as bytes and % of total VM memory):
Total size of available memory (as bytes and % of total VM memory):
Total # of temporary objects:
Total bytes leaked:
Total # of objects with leaks:

About Session Files

A session file is created each time you view profiling results (take a snapshot). Multiple
session files can be created during one session. Data is written to a session file:

� When you take a snapshot (e.g., click View Results) on a Session Control page.

� When indicated by a session control rule.

� Programmatically, through execution of a method from the Session Control API.

� When the program ends.

Naming Conventions

DevPartner Java Edition automatically names session files based on the analysis type. For
example, a session file might be named ProgramEndTemp4, indicating that this file contains
temporary object data captured at the end of a session, and that it is the fourth such file for this
configuration. A session file named InteractiveLeak3 contains memory leak data captured
manually while a session was ongoing, and it is the third such file for this configuration.

Table 5-2. Merged Coverage File Session Details

Unsaved Session 11/14/2004 1:39:48 PM Username None

Unsaved Session 11/14/2004 1:40:06 PM Username None

Session1.tcs 11/14/2004 1:41:05 PM Username None
72 DevPartner Java Edition User’s Guide

Chapter 5 · Sessions
Note: When you analyze memory leaks or RAM footprint, DevPartner Java Edition
displays the analysis results in real time. If you stop your application, DevPart-
ner Java Edition asks whether you want to view the session file. When you
click Yes, a temporary object session file is displayed (e.g.,ProgramEndTemp),
because DevPartner Java Edition does not store historical data on memory
leaks or RAM footprint, but it does store temporary object data.

Using Session Files

From the Session Files tab of the Start page, you can view the session files for each configura-
tion.

You can export session file data for any analysis type. For more information, see “Exporting
Session Data” on page 75.

File Errors

DevPartner Java Edition detects problems with a session file such as the following, and
displays an appropriate error message:

� A session file does not contain any data.

� A session file was not created for the session.

� An attempt is made to process a second snapshot request while the first snapshot request is
in process. (This error would only occur if you are calling the DevPartner Java Edition
profiling API).

File Locations

A session file is automatically stored on the same computer as the application server that ran
the generating session. The session file can be viewed at a later time from that computer, and
can be accessed by other developers. The session files associated with a configuration are
stored in the following folders, under a folder with the same name as the configuration file that
generated the session files:

� Windows XP or 2003 Server — C:\Documents and Settings\All Users\Appli-
cation Data\Micro Focus\DevPartner Java Edition\var\sessionfiles

Note: By default, the Application Data folder is hidden. To display the session-
files folder and its contents, type the path in the Address bar of Windows
Explorer and press Enter.

� Other supported Windows operating systems — C:\Program Data\Micro
Focus\DevPartner Java Edition\var\sessionfiles

� UNIX — /opt/Micro Focus/DPJ/var/sessionfiles

You can copy your configuration and session files from one computer to another outside of the
DevPartner Java Edition client. Keep in mind that the content of a session file is controlled by
its configuration file, so you must be careful when moving configuration and/or session files.
 DevPartner Java Edition User’s Guide 73

Chapter 5 · Sessions
Also be careful to keep the folder structures intact when moving configurations and session
files outside of the client. Otherwise, DevPartner Java Edition might not detect configuration/
session file(s) you imported; or if you move a session file to a folder associated with another
configuration file, the session file might not behave as you expect.

Viewing Session Files

The Session Files tab of the Start page displays the following information:

� A list of all session files for the selected configuration

� The date and time the session file was created

� The analysis type

Displaying Session Files

To display the session files for another configuration, select the configuration from the list.

Options in the Session Files Tab

The following table lists the available options.

Deleting a Configuration

To delete a configuration from the Session files for list, delete the corresponding configuration
in the Configurations tab.

1 Select the Configurations tab on the DevPartner Java Edition Start page.

2 From the Configuration list, select the configuration.

3 Click Delete.

Table 5-3. Session Files Tab Options

Option Description

Delete Remove the selected session file from the configuration.

Merge Display the Merge Coverage Files screen, which enables you to merge
coverage data contained in multiple session files.

Open Open the selected session file and displays its data in the Results Sum-
mary.

Refresh List Update the list of session files for the configuration.

Export Export the data from the selected session file to a text, XML, or HTML file.

Rename Change the name of a session file.

Compare Display the Compare Session Files screen, so you can select two perfor-
mance or code-coverage session files to display side by side. This option is
not available for Memory analysis.
74 DevPartner Java Edition User’s Guide

Chapter 5 · Sessions
The corresponding configuration and all associated files are deleted from the Session Files
tab.

Exporting Session Data

You can export session data to a file in text, HTML, or XML format from the command line or
through the Session Files tab of the Start page.

Data can be exported from one session file at a time. The output file is created in the same
folder as the session file and with the same name (changing the extension as appropriate).

Note: For descriptions of the exported data, see “Exported Data File Contents” on
page 76.

Exporting Data from the Command Line

For information on exporting data from the command line, see “nmextract” on page 50.

Exporting Data Through the Session Files Tab

1 Select the desired configuration, then select the session file.

2 Click Export to display the Export dialog box.

3 From the Export into list, select the desired format.

4 The Data list is available for:

� XML format for any type of analysis — Select All or Summary, depending on how
much detail you want exported. For Code Coverage analysis, Method and Line
options are also available to provide method-level or line-level detail as needed. The
All option for Code Coverage includes both method-level and line-level details.

To export metrics for Optimal Delivery Manager, select Metrics. For more
information, see PubMetrics.pdf in the DevPartner Java Edition installation folder.

Note: A sample application is provided for viewing exported line-level Code Cover-
age data in HTML format. The HTML display is similar to the Source View
within DevPartner Java Edition. For more information about this sample appli-
cation, see “Exporting and Viewing Line-Level Code Coverage Data” on page
146.

� Text format for Code Coverage analysis — Select All or Summary, depending on
how much detail you want exported.

5 By default, the session file name is entered in the File Name field. You can change the
name if desired.

6 Click OK to create the file and close the dialog box. A confirming message displays the
file location.
 DevPartner Java Edition User’s Guide 75

Chapter 5 · Sessions
Exported Data File Contents

This topic describes the data exported by specifying different options in the nmextract utility
or the Session Files tab of the Start page.

� Table 5-4 — All analysis types: summary data
� Table 5-5 — Performance analysis and Memory analysis: all data
� Table 5-6 — Code Coverage only: all data, method-level data, and line-level data

Summary Data for All Analysis Types

Table 5-4 describes the summary data exported in the specified formats:

� nmextract

� A text (.csv) file (the default)
� An HTML file (-html)
� An XML file with the summary option (-xml -summary)

� Session Files tab

� A text (.csv) file with the Summary option
� An HTML file
� An XML file with the Summary option

Table 5-4. Exported Summary Data

Type of Analysis Exported Data

Performance Top 20 entry points with the slowest average response time:
• Method name
• Package name
• Total thread time including children
• Total clock time including children
• Average thread time including children
• Average clock time including children
• Percent of thread time including children
• Execution count

Temporary objects Top 20 entry points requiring the most temporary space:
• Method name
• Package name
• Number of temporary bytes including children
• Number of temporary objects including children
• Execution count
76 DevPartner Java Edition User’s Guide

Chapter 5 · Sessions
Memory footprint Object distribution:
• Size of profiled objects (in bytes)
• Size of excluded objects (in bytes)
• Size of JVM Reserved memory (in bytes)
Classes with Most Average Live Instance Bytes Including Children:
• Class name
• Package name
• Number of average live instance bytes including children
• Number of profiled instance bytes
• Count of profiled Instances
• Number of total instance bytes
• Count of total instances

Memory leaks Top 20 Classes with Most Average Leaked Instance Bytes Including
Children:
• Class name
• Package name
• Number of average leaked instance bytes including children
• Number of leaked instance bytes
• Number of leaked instances

Code Coverage Note: For nmextract, this list describes data exported without the
-cov switch; for data exported with the -cov switch, see Table 5-6.
• Overall coverage statistics:

– Percent of methods executed
– Percent of lines executed

• Top 20 methods with the most lines not covered:
– Method name
– Package name
– Number of lines not executed
– Number of lines executed
– Execution count

• Top 20 classes with the most lines not covered:
– Method name
– Package name
– Number of lines not executed
– Number of lines executed

• If the session file is a merged coverage session file, the exported
file also provides the merged session history data:
– Number of the merge file
– Percent of methods executed
– Percent of lines executed
– Percent of volatility.

• If out-of-order thread deadlocks were detected:
– Names of the methods that experienced deadlocks
– Number of deadlocks detected

Table 5-4. (Continued)Exported Summary Data

Type of Analysis Exported Data
 DevPartner Java Edition User’s Guide 77

Chapter 5 · Sessions
Detailed Data for Performance Analysis and Memory Analysis

Table 5-5 describes the detailed data exported in XML format:

� Using nmextract with -xml -all

� In the Session Files tab with the All option

Table 5-5. Exported Data for Performance Analysis and Memory Analysis

Type of
Analysis Exported Data

Performance Package-level data
• Package name
• Percentage of thread time in class
• Percentage of thread time in method
• Average clock time including children
• Total clock time including children
• Percentage of thread time including children
• Total thread time including children
• Execution count from the generated session file
• Average thread time including children
Class-level data — All the data provided at the package level, plus:
• Class name
Method-level data — All the data provided at the package level, plus:
• Class name
• Method name
• First execution thread time
• Minimum thread time
• Maximum thread time
• Thread time
• Clock time
• Wait time

Memory • Profiled objects
• Excluded objects
• JVM reserved memory
• Average live instance bytes including children
• Total instance bytes
78 DevPartner Java Edition User’s Guide

Chapter 5 · Sessions
Detailed Code Coverage Data

Table 5-6 describes the detailed data exported to a text or XML file from a Code Coverage
session.

Table 5-6. Exported Data for Code Covereage

Export
Format

Detail Level
and Options Exported Data

Text
(.csv)

All details
• nmextract:

-cov

• Session Files tab:
All

• Percentage of code covered in each object
• Number of times each object was called
• Number of lines not executed, for each object

XML All details
• nmextract:

-xml -all

• Session Files tab:
All

• Packages
– Package name
– Number of methods in the package
– Number of methods called
– Total number of lines
– Number of lines executed

• Classes
– Class name
– Name of the containing package
– Number of methods in the class
– Number of methods called
– Total number of lines
– Number of lines executed

• Methods, organized by class
– Method name
– Number of times called
– Percentage of the code covered
– Number of lines not executed

• Lines, organized by source
– Line number
– State (4 = covered; 2 = not covered)
– Number of times executed
– Number of child methods

XML Method details
• nmextract:

-xml -method

• Session Files tab:
Method

• The same information for packages, classes, and
methods is included as listed above for All.

• Line information is not included.

XML Line details
• nmextract:

-xml -Line

• Session Files tab:
Line

• The same information for packages, classes, and
lines is included as listed above for All.

• Method information is not included.
 DevPartner Java Edition User’s Guide 79

Chapter 5 · Sessions
Note: A sample application is provided for viewing exported line-level Code Cover-
age data in HTML format. The HTML display is similar to the Source View in
the Web-based interface. For more information about this sample application,
see “Exporting and Viewing Line-Level Code Coverage Data” on page 146.

Comparing Two Sessions

When you generate two or more session files using the same configuration, you can compare
any two files for Performance analysis or Coverage analysis. For example, you can analyze
performance, change the program code, and run another analysis, then compare the two
profiles to see how performance is improved by the change.

To compare session files:

1 At the bottom of the Session Files tab of the Start page, click Compare. The Compare
Session Files screen appears.

2 Select the desired configuration.

3 Select the type of analysis performed in the session.

4 Select two session files.

5 Click Compare.

The Comparison Results Summary displays the results of the two files side by side. Each side
displays all the information provided when you display the Results Summary for an individual
file. The graphical display makes it easy to see the differences between the two results files.
80 DevPartner Java Edition User’s Guide

Chapter 6

Memory Analysis
Automatic memory management is one of the strong points of Java. Nevertheless, memory
mismanagement is still possible with Java; it can degrade the performance, hamper the
scalability, and weaken the robustness of your applications. The Memory analysis capabilities
of DevPartner Java Edition target three principal memory problems often encountered by Java
programs:

� Temporary objects — To help you analyze the scalability and performance of your pro-
gram, DevPartner Java Edition tracks the use of temporary objects by your program.

For a description of how DevPartner Java Edition defines temporary objects, see “Tempo-
rary Objects” on page 97. For a detailed description of temporary objects and their impact
on memory usage and performance, see Chapter 7 of Java Platform Performance.

� Memory leaks — Memory leaks do not occur in Java. Programs can, however, retain ref-
erences to objects that you expect to be handed by garbage collection. Memory Leak anal-
ysis helps you identify memory leaks in your program. By default, the session file does not
include objects that were garbage-collected, but you have the option to include in the ses-
sion configuration a specified number of garbage-collected objects that were retained the
longest.

For a description of how DevPartner Java Edition defines memory leaks, see “Memory
Leaks” on page 93. For a detailed description of memory leaks, see Section 3.2.3 of Java
Platform Performance.

� RAM Footprint — Some Java applications can use very large amounts of memory while
they are running. Relying on the virtual memory of the operating system will probably
degrade the performance of your Java program. RAM Footprint analysis helps you iden-
tify the components using the most memory use in your program.

For a detailed description of RAM footprint, see Section 1.2 of Java Platform Perfor-
mance.

To learn how to begin a Memory analysis session, see “Up and Running in 60 Seconds” on
page 20.
 DevPartner Java Edition User’s Guide 81

http://java.sun.com/docs/books/performance/1st_edition/html/JPMutability.fm.html#19273
http://java.sun.com/docs/books/performance/1st_edition/html/JPMutability.fm.html#19273
http://java.sun.com/docs/books/performance/1st_edition/html/JPMeasurement.fm.html#11310
http://java.sun.com/docs/books/performance/1st_edition/html/JPPerformance.fm.html#10884

Chapter 6 · Memory Analysis
Note: If using the Sun 5.0 JVM, Memory analysis may not work correctly if class data
sharing is enabled, because of an issue in Sun's release of Java 5.0. (See
Sun bug ID 5100404 at http://bugs.sun.com for more information about this
issue.) The Win32 release of the Sun J2SE 5.0 enables class data sharing by
default and it must be explicitly disabled. To disable class data sharing, pass -
Xshare:off as a command line parameter to Java. With DevPartner Java
Edition, you can also disable class data sharing by creating a global environ-
ment variable named NM_VM_OPTIONS and setting it to -Xshare:off.

If you are using WebLogic 9.x, you must use the Sun JDK with it. WebLogic
9.x uses JRockit 5.0 by default, but because of a JRockit bug, Memory analy-
sis cannot be performed on Java applications running under this JVM.

Short-, Medium-, and Long-Lived Objects

DevPartner Java Edition groups objects that have been garbage collected into one of three
categories, based on how long the particular object was alive. These categories are short-lived,
medium-lived, and long-lived objects. The short-lived and medium-lived objects are consid-
ered temporary objects.

Short-Lived Objects

An object is short-lived if it was freed during the first or second garbage collection after it was
allocated.

Short-lived objects do not generally escape generation 0. They are relatively free of perfor-
mance costs other than time spent initializing them. It is recommended that you track down
CPU bottlenecks, such as short-lived objects, by running a Performance analysis. There are
cases, however, where it is more convenient to look for extremely short-lived objects to detect
common performance errors such as using string concatenation when a StringBuffer would
be more appropriate.

Medium-Lived Objects

An object is medium-lived if it survived at least two garbage collections but was freed prior to
or immediately after the end of the entry point in which it was allocated. As with short-lived
objects, medium-lived objects are temporary and are confined to a particular facet of the
program. They are used for a long enough period of time, however, that they escape generation
0 and cause additional strain on the garbage collector. It is valuable to determine whether you
can reduce the amount of time for which they remain alive, perhaps by nulling out some local
variable references earlier in the algorithm, by reducing the number of medium-lived objects,
or by reducing just their size.

Long-Lived Objects

An object is long-lived if it survived past the end of the entry point in which it was allocated,
but then was eventually freed. Long-lived objects are generally a required part of your applica-
tion's architecture. For example, if you allocate a JFrame or an Application Scope Session
Bean, that object needs to be there for some reason that is intrinsic to your application. The
option of trying to get rid of it earlier generally will not apply.
82 DevPartner Java Edition User’s Guide

http://bugs.sun.com
http://bugs.sun.com
http://bugs.sun.com

Chapter 6 · Memory Analysis
Performance and Scalability Implications

In a generational garbage collector, an object's impact on the performance or scalability of
your program is mostly related to how long it lives. By categorizing freed objects as short-
lived, medium-live, or long-lived, DevPartner Java Edition enables you to gain additional
insights into the performance and scalability costs of the objects your code is allocating and
using.

Hotspot's implementation of JVMPI currently interferes with the behavior of the garbage
collector. Specifically, turning on certain memory-related events disables the generational
garbage collector and falls back to using mark-and-sweep. This means that it is not that useful
for DevPartner Java Edition to simply report what happened while it was watching the
program under test. Instead, it employs simple heuristics to estimate how each object would
have affected a generational garbage collector. Note that objects that are still alive are not
reported during temporary object analysis. You can use RAM Footprint analysis to find infor-
mation about them.

Example Demonstrating Object Differentiation

This example uses a JSP as an entry point to your program to illustrate the object differentia-
tion. In this example, the JSP is implemented in the following sequence:

1 Open the text file.

2 Read all the contents into a Vector of Strings (one per line).

3 Enumerate through the last thousand lines.

4 Format these lines.

5 Write the lines out via the JspWriter out.

The JSP then stores the thousand Strings into a String[] in the session bean so that it is not
necessary to re-read the text file the next time it is called. Some time later, the session bean
will time out, and the thousand Strings in this example will be garbage collected.

Recall that short-lived objects are garbage collected the next time garbage collection runs. For
example, any temporary Strings that were used, such as in the following line, would be
deemed short-lived:

String thisFormattedLine = "" + stringVector.get(i) + "";

Assume that the formatting takes long enough that several garbage collections must run while
this formatting is processing. The Vector and all the Strings that were not stored into the
session bean will be considered medium-lived. In other words, these Strings survived several
garbage collections while the JSP was processing; but when the JSP finished, they were
garbage collected.

If you wait to take a snapshot for another thirty minutes, such as when the session bean times
out, the array of a thousand Strings will be considered long-lived. This means that they were
freed but were retained long enough that their duration is probably necessarily the way your
program functions, rather than a problem that can be fixed.
 DevPartner Java Edition User’s Guide 83

Chapter 6 · Memory Analysis
If you took a snapshot before the session timed out, those thousand Strings would be consid-
ered part of the RAM footprint of your application, although a thousand Strings might be
considered relatively small in the grand scheme of things. They might also be hard to find as
part of a RAM Footprint analysis. If, however, you turned on memory leak tracking in
DevPartner Java Edition before executing the JSP, and then generated a snapshot before the
session timed out, the thousand Strings would appear quite emphatically as memory leaks.

Memory Analysis Session Control

While your program is running (unless you are profiling in batch mode), DevPartner Java
Edition displays the Session Control page. On this page, you can watch memory allocation in
real time and control data collection.

The graph is a live display of the amount of available heap memory, as well as the amount of
heap consumed. Color coding reveals what portion of heap consumption is attributed to
excluded objects, and what portion is attributed to profiled objects. (Profiled and excluded
objects are determined by settings in the configuration file for this session.)

With any of the three Memory analysis options, you can perform the following tasks:

� View the real-time graph and class list to monitor data as it is gathered.

� Force a garbage collection.

� Detach from or stop application servers.

� View session output.

� Set your preferences for the precision and units used in this display.

When you click View in the left pane to create a session file, monitoring continues as you view
the Results Summary, until the program ends.

Use the list in the top left of the page to select your analysis type. The options and help text in
the left pane vary depending on the analysis type selected.

RAM Footprint

Click View RAM Footprint to create a snapshot of the session and display the RAM
Footprint Results Summary in a new browser window. A session file is added in the Session
Files tab to the configuration used for this profile.

Note: If, when you click View RAM Footprint, you see the message "Details:
java.lang.OutOfMemoryError", you need to increase the memory allotment.
Quit DevPartner Java Edition, then open the file DPJServer.args. Change -
Xmx128m to -Xmx1024m, then save and close the file. In Windows XP and 2003
Server, this file is located in C:\Documents and Settings\All
Users\Application Data\Micro Focus\DevPartner Java
Edition\var\conf. (By default, the Application Data folder is hidden. To
display the conf folder and its contents, type the path in the Address bar of
Windows Explorer and press Enter.) In other supported Windows operating
systems, it is in C:\Program Data\Micro Focus\DevPartner Java
Edition\var\conf. In other operating systems, it is in DPJ_dir/var/conf,
where DPJ_dir is the product installation folder.
84 DevPartner Java Edition User’s Guide

Chapter 6 · Memory Analysis
Object-Lifetimes Analysis

Object-Lifetimes analysis including analysis of temporary objects).

End the profiling session to display the Object-Lifetimes Results Summary and Temporary
Objects Results Summary tabs in a new browser window. A session file is added in the
Session Files tab to the Configuration used for this profile.

Click Clear Collected Data to discard accumulated statistics for temporary objects.

Note: If collecting data on retained objects, allow the program you are profiling to run
unimpeded until the end of the session. Do not use View Object Lifetimes or
Run Garbage Collection, because these actions may cause objects to be
incorrectly identified as retained objects.

Memory Leaks

Select Track Excluded Objects to include objects allocated from excluded code in the
profile.

Click Start Tracking to begin collecting data on allocation objects. Click Stop Tracking to
stop collecting the data.

Click View Memory Leaks to create a snapshot of the session, and display the Memory Leaks
Results Summary in a new browser window.

Select Include RAM Footprint Information to display the RAM Footprint Results Summary
as well as the Memory Leaks Summary when you click View Memory Leaks or end the
session.

Session Control Tabs

The lower pane of the Session Control window contains three tabs:

� Profiled Classes

� Application Servers

� Session Output

Profiled Classes

The Profiled Classes tab lists the classes for which information is currently being gathered.
The table consists of three columns: Class Name, Bytes, and Objects. The Bytes column
displays the number of bytes attributed to the class. The Objects column lists the number of
currently instantiated objects of that class. By default, the table is sorted by the Bytes column.
You can sort the table in ascending or descending order, by Bytes or Objects, by clicking the
column head.

When you select Memory Leaks as the analysis type and click Start Tracking, two columns
are added to the Profiled Classes table: Tracked Object Bytes and Tracked Objects.

The Filter By field above the table enables you to narrow the list of classes appearing in the
table. Type a letter or string in the field and click Apply to display only the classes whose
names begin with that letter or string.
 DevPartner Java Edition User’s Guide 85

Chapter 6 · Memory Analysis
Application Servers

The Application Servers tab is significant only if the current session is attached to a running
application server. Controls on this tab enable you to detach or stop the application server.

Session Output

The Session Output tab displays a continually updated log of all the activities and commands
carried out by the DevPartner Java Edition analysis server for this session.

Memory Analysis Session Control Class List

The Session Control page for a Memory analysis includes a list of classes being called. The list
is updated in real time. It enables you to monitor the size and count of each class being called.

You can set the number of classes to be displayed from 10 to 100 in increments of 10.

To focus on specific classes, use the Filter By field to filter the class list by package or class.
Wildcard characters are accepted (.*, applies to all classes or sub-packages).

You can sort the list by size or count, in ascending or descending order, by clicking a column
heading. Sorting by class name, however, is not supported.

Memory Analysis Results Summary

The Memory Analysis Results Summary graphically displays the most significant memory
consumption data.

This page includes the Session Details tab plus additional tabs, depending on the type of
analysis you ran:

� Memory Leaks

� Object-Lifetime and Temporary Objects

� Ram Footprint

Each tab includes graphs that show the objects consuming the most memory or creating the
most temporary objects.

From any of the graphs on these tabs, you can drill down for more information by clicking on
one of the classes or methods, or elect to display all classes or methods.

Hints for Analyzing Data

When viewing an Instance List, you may notice that one instance seems unusually large
compared to other instances of the same object. Typically, all instances of an object would
have approximately the same number of bytes. This unusually large size might occur if the
value was not constrained when it was initialized and an abnormally large value was passed.
View an Allocation Trace Graph to determine where this object was allocated. Then display
the Source View to further analyze the problem.
86 DevPartner Java Edition User’s Guide

Chapter 6 · Memory Analysis
When viewing the Call Stack ID, you may notice that many instances are allocated in the same
stack. View an Allocation Trace Graph to see where it was allocated. Then, display the Source
View to see whether you can optimize it.

Classes of Leaked Objects

From the Memory Leaks Results Summary page, you can display a list of all classes of leaked
objects.

Clicking on a class displays the Class window, which shows the instances of that class or the
methods in that class that were leaked.

The following columns are included in this table:

� Class — Name of the class.

� Package — Package in which this class resides.

� Average Leaked Instance Bytes including Children (Bytes)—Average amount of leaked
space referred to by instances of this class, expressed in bytes.

� Leaked Instances — Number of instances of this class that were leaked.

� Leaked Instance Bytes (Bytes) — Sum of the sizes of the Leaked Instances, expressed in
bytes.

� Call Paths — Number of unique Allocation Traces (or call stacks) for the Leaked
Instances of this class.

If Call Path equals 1, all instances of this class were allocated by the same call path.

If Call Path equals 0, there was no user method on the stack when any of the instances of
this class were allocated. This can only happen in a memory leak analysis if you had
selected Track Excluded Objects in the Session Control page during profiling.

� Number of Direct Referrers — Number of direct references to these leaked objects.

If this number is high, there are many references to the leaked objects. As a result, it might
be challenging to get the objects freed. If the number is low, it indicates that there are only
a few references holding these leaked objects in memory, and it might be easy to get them
freed.

For large lists, click Next or Previous to view additional classes.

Click View Instances to see all instances of these leaked objects.

Classes of Live Objects

From the RAM Footprint Results Summary, you can display a list of all classes that were live
when the session file was created. Clicking on a class displays the Details window through
which you can display the instances of that class or the methods in that class.

Columns in this table include:

� Class — Name of the class.

� Package — Package in which this class resides.
 DevPartner Java Edition User’s Guide 87

Chapter 6 · Memory Analysis
� Profiled Instance Bytes (Bytes) — Number of bytes pertaining to this class, which repre-
sents what was in memory when the session file snapshot was taken.

� Profiled Instances — Number of instances of this class that were in memory when the
session file snapshot was taken.

� Total Instance Bytes (Bytes) — Sum of the sizes pertaining to the instances of this class
that were in memory when the session file snapshot was taken.

� Total Instances — Number of profiled instances pertaining to this class that were in
memory when the session file snapshot was taken.

� Average Live Instance Bytes including Children — Average amount of space referred
to by instances of this class.

The current sort order is indicated by a white arrow in the header. Click a column header to
change the sort order.

Note: When you sort by class name, the list expands to reveal all classes, whether
or not there are live instances of a class in the program. This feature enables
you to find a specific class regardless of whether or not there were any live
instances of that class when the session file was created.

For large lists, click Next or Previous to view additional classes.

Classes of Retained Objects

You can display a list of the classes for the retained objects that have the longest average reten-
tion span by clicking More Details for the Classes with the Longest Average Retention
Duration graph in the Object-Lifetimes Results Summary. Clicking a class in this list displays
the Details window, through which you can display the instances for that class.

You can display the following columns for this table:

� Class — Name of the class.

� Package — The package in which the class resides.

� # of Retained Objects — The number of objects for the class that were retained in mem-
ory during the session.

� # of Destroyed Objects — The number of objects for the class that were freed from mem-
ory during the session.

� Total Instances — The total number of instances for the class that still existed when the
session ended. This column is the difference between the # of Retained Objects and # of
Destroyed Objects columns.

� Average Object Retention-Span — The average number of garbage collection cycles the
instances survived.

� Total Retention-Span — The aggregate of all garbage collection cycles of all instances.

To view a list of instances for a class, click the class to display the Details window, then click
View Instances.
88 DevPartner Java Edition User’s Guide

Chapter 6 · Memory Analysis
The current sort order is indicated by a white arrow in the header. Click a column header to
change the sort order.

Allocation Trace Graph

To analyze memory leaks, RAM footprint, and object retention, it is useful to understand the
chain of calls that led to memory being allocated for an object. DevPartner Java Edition
displays this information in the Allocation Trace Graph.

While viewing an Instance List, click an instance and select View Allocation Trace Graph
from the Details window. Below the Instance List a graph is displayed, the nodes of which
represent the method calls that led to allocation of memory for the selected instance.

The Allocation Trace Graph includes two panes:

� Overview — The entire path to the root object for the selected instance. Drag the rectan-
gle to select the nodes to be displayed in the Detail pane.

� Detail — A close-up of the nodes selected in the Overview pane. The legend identifies
the colors that identify the base node, the path leading to this allocation, and caller meth-
ods. (Caller methods do not directly lead to this allocation, but are shown for more com-
plete program understanding.)

The nodes are displayed from left to right in the order in which they were called. Circular calls
are not represented as such; each call is represented by its own node regardless of whether that
method was previously called.

Each node displays details about one method. Click Node Data Selection to choose the details
to display on each node.

Long method names are displayed as ToolTips when you hold the mouse pointer over a node.

You can drag the nodes to rearrange the graph, which is sometimes useful in complex graphs.
Click Restore Layout to restore the default graph layout.

Use the splitter bars to resize the Instance List and Overview pane, for example, to increase
the Detail pane's visible area.

Click a node to display complete details, go to the Source View, or view a Call Graph for this
method. (The Source View is not available if the session file only includes method level data.)

The active Configuration file determines whether DevPartner Java Edition displays trivial
methods in an Allocation Trace Graph, Call Graph, or Method List.

Note: The Allocation Trace Graph shares common attributes with the Call Graph and
Object Reference Path. For more information, see “Call Graph, Allocation
Trace Graph, and Object Reference Path Common Features” on page 42
 DevPartner Java Edition User’s Guide 89

Chapter 6 · Memory Analysis
Instance List

An Instance List provides information about instances related to a selected class in the Results
Summary.

� For Memory Leak and RAM Footprint analyses, the list includes all live instances. A live
object is one on which methods can be invoked. Garbage collection identifies which
objects have valid references (live objects) and which do not (dead objects). After the
objects are marked as live or dead, they are then compacted by the garbage collector.

� For Object-Lifetime analysis, the list includes all retained objects in the session file. The
Instance List is not available for Temporary Objects.

To display all instances of a selected class, click a class in a Results Summary graph, Class
List, or Source View; then, in the Details window, click View Instances.

To drill down, click an instance and select one of the following options (not all options are
available for all Instance Lists):

� View Object Reference Path — Shows why the object is in memory by showing its refer-
ring objects.

� View Allocation Trace Graph — Shows the object that called the method that allocated
the object.

� View Call Graph — Shows the chain of calls leading to a method call, and the methods
that are subsequently called by it.

� View Referenced Objects — Shows a list of instances referenced from the selected
object.

� View Source Code — Shows where the instance is allocated in the code. (The Source
View is not available if the session file only includes method level data.)

Click Column Selection to select the columns to be displayed for each method. You can sort
the Method List by clicking a column heading.

Instance List Columns

You can specify the columns to display in an Instance List by clicking Column Selection. The
available columns vary depending on the type of analysis that is performed.

All Instance Lists

These columns are included in all lists:

� Instance (or Description) — An identifier for the object.

Note: In the Referrers of Leaked Objects list, this column is called Referring
Object.

� Class — The class with which the object is associated.

� Package — The package containing the class.

� Allocation Trace — An identifier for the stack trace that is generated when the object was
allocated
90 DevPartner Java Edition User’s Guide

Chapter 6 · Memory Analysis
Note: This column is not included in the Referrers of Leaked Objects list.

Memory Leak and RAM Footprint

This column is available for Memory Leak and RAM Footprint analyses:

� Referenced Bytes — The total size of the object plus the objects for which is it solely
responsible

Referrers of Leaked Objects

These columns are available for Referrers of Leaked Objects:

� Leaked Bytes — The total memory usage of the leaked objects referred by this instance.

� Leaked Objects — The total number of objects that were leaked.

� Call Paths — The number of unique allocation traces for the leaked objects.

� Number of Direct Referrers — The number of objects that hold direct references to the
leaked objects.

Retained Objects

These columns are available for Retained Objects lists:

� Object Retention-Span — The number of garbage collection cycles for which the object
remained in memory.

� is Garbage Collected — Whether the object was still alive when the profiling session
ended.

� Garbage-Collection Cycle Allocated — The garbage collection cycle during which the
object was created.

� Garbage-Collection Cycle Last-Used — The cycle during which the object was last
accessed by the program.

� Garbage-Collection Cycle Destroyed — For a garbage-collected object, the cycle during
which the object was removed from memory; for a live object, the garbage collection
cycle that was current when the profiling session ended.

The list can be sorted by any column, in ascending or descending order, by clicking the
column heading.

Object Reference Path

When analyzing memory leaks and RAM footprint, to understand why an object has not been
garbage collected, you need to know which objects are holding a reference to that object.
DevPartner Java Edition displays this information in the Object Reference Path.
 DevPartner Java Edition User’s Guide 91

Chapter 6 · Memory Analysis
The Object Reference Path shows you the chain of objects, leading back to a garbage collected
root, that are preventing the selected object from being garbage collected. In the presence of
certain collection implementations and Java inner classes, it is often the case that simply
displaying the transitive closure of incoming references to an object would unnecessarily
obscure this information. DevPartner Java Edition uses a filtering mechanism (loosely based
on a topological sort) that follows only incoming references from objects that do not lead
further away from a garbage collected root.

The Object Reference Path is available through the Instance List. Click on an instance to open
the Details window, then click View Object Reference Graph. Below the Instance List a
graph is displayed, the nodes of which represent the objects that led to the reference to the
selected instance.

Use the Color By list to select how colors display the data:

� Entry Point Allocation — Whether the object was allocated during execution of an entry
point or the object existed before the entry point.

� Profiled versus Excluded Objects — Profiled objects (objects that were instantiated in
included code) and excluded objects (objects that were excluded because they were instan-
tiated in excluded code), and the base node for the object in different colors. The list of
included/excluded code can be found in the Configuration used for this application.

� Size (with children) — The total size used by each object and its associated children.

� Age — The relative age of each object. Age categories are Oldest, Old, Young, and
Youngest. The legend shows the shading for each category.

For large graphs (containing over 150 links), by default DevPartner Java Edition limits the
display to three levels for each branch to speed up the processing of this page. To change this
value, enter a number in the Graph Depth field and click Apply. It is recommended that you
increase the value in small increments until you can see all the instances. If you find that it
takes too long to process the new value, click Back, select Object Reference Path again, and
DevPartner Java Edition restores the default value of 3.

Click on a node to display the source code where the instance was allocated. The Source View
appears in a new browser window. The Source View is not available if the session file only
includes method level data.

Note: The Object Reference Path shares common attributes with the Call Graph and
Allocation Trace Graph. For more information, see “Call Graph, Allocation
Trace Graph, and Object Reference Path Common Features” on page 42.

Freeing Objects with Shared References

When you use the Object Reference Path to view the chain of referrers that are keeping child
objects in memory, you may notice a large parent object that, if released, will free a substantial
amount of memory. Before you attempt to fix the problem, you should be aware of just how
much memory you will be able to free.

In the following example. I is a class instance. The size of each object is given in parentheses.

I1(40) -> I2(10) -> I3(20)
 -> I4(8)

92 DevPartner Java Edition User’s Guide

Chapter 6 · Memory Analysis
I5(50) -> I4(8)
 -> I6(30) -> I7(30)

The Total Bytes Including Children reported for I1 is 40+10+20=70. If you free I1, you
release 70 bytes of memory. Notice that DevPartner Java Edition does not count the 8 bytes
attributable to I4. The reason is that I5 holds a reference to I4, which makes I4 a shared
object.

Now consider another example:

I1(40) -> I2(10) -> I3(20)
 -> I4(8) -> I3(20)

I5(50) -> I4(8)
 -> I6(30) -> I7(30)

This example is almost identical to the first. In this case, however, if you release I1, you only
free 50 bytes of memory, because I4 shares a reference to I3, meaning that I3 is not available
for garbage collection until both I1 and I4 are released.

When examining a complex chain of object references, it is useful to go to the last referred
object and use it as the base node to look at the Object Reference Graph. You will be able to
move back up the chain of referrers to see if there are shared instances. When you view the
Details window for an object, notice the Number of Direct Referrers. This will give an idea
of how easy — or difficult — it will be to free the memory.

Memory Leaks

In Java, memory is leaked via objects. DevPartner Java Edition defines a leaked object as an
object that was allocated at time A, but that has not been gathered by the garbage collector by
later time B. Determining time A is straightforward in most cases; object allocation is either
explicit, or is the result of some method call or operation. Determining time B is less straight-
forward, mainly because object de-allocation is not explicit in Java. It is virtually impossible
for DevPartner Java Edition to deduce whether a given object has been forgotten by an appli-
cation, or is simply being kept alive for future use.

Consequently, when you use the View Results button on the Memory Leaks Session Control
page, it is important to realize that you are setting the end time (time B) for determining which
objects will appear as potentially leaked. View Results causes DevPartner Java Edition to
force a garbage collection and create a session file that shows objects that remain in memory.
You can also force a garbage collection at any time as your application runs.

For more information on memory leaks, see Section 3.2.3 in Java Platform Performance:
Strategies and Tactics.

There are two possible scenarios for locating memory leaks.

Scenario 1

The following sequence of steps represents the simplest case. For example, if your application
sequentially loads JSP pages, and you expect the operation performed on the final page to
result in the clearing of previously allocated objects, you can use the steps below to see if any
objects were left in memory.
 DevPartner Java Edition User’s Guide 93

http://java.sun.com/docs/books/performance/1st_edition/html/JPMeasurement.fm.html#11310

Chapter 6 · Memory Analysis
1 Start your application or applet using the appropriate command line utility with the -mem
option. If the code you want to profile runs on an application server, you can use the
Application Server Testing tab on the Start page to start the session.

2 On the Session Control page, select Memory Leaks.

3 Warm up your application by exercising the functions you plan to test.

4 Click Start Tracking to begin analysis. All objects allocated beginning from that point
will be tracked.

5 Exercise your application and perform whatever functions should clear previously allo-
cated memory.

6 Click View Results. Objects still in memory will be reported as leaked.

Scenario 2

If you click View Leaks before Stop Tracking as described above, all memory allocated and
not freed will be reported as a leak. The following sequence of steps is appropriate for any
Java application or applet for which you normally expect memory to be freed by allocating
new sets of objects. In this scenario, you track object allocation as you exercise the features
you want to test, then stop tracking and exercise the application again. Because you are no
longer tracking memory allocation, none of the second set of objects will be included in the
session data when you view the leaks, but any objects allocated while tracking that have not
been cleared will show up as leaked objects.

You can also use Stop Tracking before viewing the leaks in situations where you expect the
next operation performed by your program to clear old objects but also allocate additional
objects, thus creating unnecessarily complex data. Similarly, you can use Stop Tracking to
limit data collection to specific parts of your application in subsequent analysis sessions.

Note: You can focus data collection with greater precision by using the Session
Control API.

1 Start your application or applet using the appropriate command line utility with the -mem
option.

If you are collecting data for an applet, use nmappletviewer if you normally start the
applet using appletviewer. If your applet requires a browser, use nmshell to launch a
console prompt and start an instance of the browser from the console window. (Close all
open browser instances before running nmshell.)

2 On the Session Control page, select Memory Leaks.

3 Warm up your application by exercising the functions you plan to test.

4 Click Start Tracking to begin analysis. All objects allocated beginning from that point
will be tracked.

5 Exercise your application.

6 Click Stop Tracking. Newly allocated objects will no longer be tracked.

7 Exercise your program to perform whatever function should clear previously allocated
memory.
94 DevPartner Java Edition User’s Guide

Chapter 6 · Memory Analysis
8 Click View Leaks. Any memory that was allocated between Start and Stop and has not
yet been freed will be reported as a leak.

Memory Leaks Results Summary

The Memory Leaks Results Summary displays memory leak analysis data. DevPartner Java
Edition defines a memory leak as any object allocated during a specified period of time that
has not been freed at the point at which you take a snapshot of the memory data. Memory leak
analysis helps to reveal cases where memory has not been freed when you expect it to be freed,
or has not been freed at all after garbage collection.

This summary page displays the following graphs.

� Classes with the Most Average Leaked Instance Bytes Including Children

� Objects that Refer to the Most Leaked Bytes

� Classes with the Most Leaked Bytes

� Methods with the Most Leaked Bytes

Each graph shows the top five classes, objects, or methods that are associated with leaked
memory. Which graphs are most useful in a given situation will depend upon the nature or
complexity of the results data, your knowledge of the source code, and your preference in the
way you think about your code.

Classes with the Most Average Leaked Instance Bytes Including Children

This graph shows classes ordered by the greatest average number of leaked bytes per instance
of the class, including leaked bytes attributable to child classes. These classes have the highest
ratio of leaked bytes per instance of the class. The graph shows the average amount of leaked
memory you can expect to reclaim by eliminating the leak in an instance of the class. If
Memory Leak analysis shows that a number of classes are associated with leaked memory, this
graph enables you to focus on classes for which fixing a relatively small number of instances
can potentially have the largest impact on the amount of memory your application is leaking. It
is important to note that this graph ranks classes based on the highest average number of
leaked bytes. These classes are not necessarily the classes associated with the most leaked
bytes.

Click a class to displays its Details window; in this window, click View Instances to display a
list of Leaked Instances for the class.

Click More Details to display a list of all classes that leaked objects.

Objects that Refer to the Most Leaked Bytes

To understand how much memory is being leaked and where in your application the leaks are
occurring, it helps to see which objects in your application are holding references to the most
leaked bytes. The purpose of the garbage collector is to free the memory used by an object, but
an object cannot be garbage collected when there are references to it. Some objects may be
necessary as long as the program runs, while others are temporary. For optimized perfor-
mance, objects should be freed for garbage collection when they are no longer needed by the
program.
 DevPartner Java Edition User’s Guide 95

Chapter 6 · Memory Analysis
This graph shows the top five objects that are responsible for holding references to the leaked
objects. It is important to identify these types of objects as they cause the greatest memory
impact.

Click a referring object to displays its Details window; in this window, click View Instances
to display a list of Leaked Objects Referenced from the object.

Click More Details to display a list of all referrers of leaked objects.

Classes with the Most Leaked Bytes

This graph focuses on classes responsible for the most leaked memory. It shows the top five
classes that allocated objects that were never garbage collected, and whose leaked bytes
consume the most memory. It provides a different perspective to the same problem: which
classes allocated objects that have not been freed for garbage collection. It helps you see the
kinds of objects that were leaked, as well as the number of instances of classes that leaked
memory. This graph differs from the Classes with the Most Average Leaked Instance Bytes
Including Children graph at the top of the Results Summary in that it does not include
children; and it is based not on class averages, but on the total number of bytes allocated by
that class.

Click a class to display the Details window for that class; in this window, click View
Instances to display the Instance List for the class.

Click More Details displays a list of all classes of leaked objects.

Methods with the Most Leaked Bytes

This graph shows the top five methods that allocated objects that were leaked.

Click a method to display the Details window; through this window, you can display the Call
Graph or the source code for the method.

Click More Details to view the Method List.

Computing Average Bytes Including Children

When you view the Classes with the Most Average Leaked Instance Bytes Including
Children graph on the Memory Leaks Results Summary, or the Classes with the Most
Average Live Instance Bytes Including Children graph on the RAM Footprint Results
Summary, DevPartner Java Edition displays data in terms of an average of the bytes of
memory consumed by leaked (Memory Leak analysis) or live (RAM Footprint analysis)
objects. It also displays the averaged data in the corresponding data column in the Class List
displayed through the More Details link below the graph, and in the Details window.

DevPartner Java Edition computes the average including children by calculating the sum of
the bytes allocated for all instances of an object or class plus all bytes allocated for all children
of the object or class, and dividing that sum by the number of instances of the object or class.
Providing this average highlights classes or objects that are responsible for a large amount of
allocated memory, relative to the number of instances. It is useful for identifying the places in
a program where fixing a small number of instances can have a significant impact on memory
consumption.

Averaging does not always indicate the top memory consumers in your program, but it can
identify the large consumers that are associated with relatively few instances.
96 DevPartner Java Edition User’s Guide

Chapter 6 · Memory Analysis
Note: When you are deciding which objects you want to free to save memory,
consider the possible effect of shared references to the objects you want to
free. For more information, see Freeing Objects with Shared References.

Object Retention

In Java, memory is leaked via objects. When memory is allocated for an object but not
released when the object is no longer needed, overhead increases unnecessarily and may affect
your program's performance.

Normally, the memory is freed when an object no longer used by the program is garbage
collected. Some objects, however, may survive garbage collection. DevPartner Java Edition
can identify the retained objects that are using the most memory. To include retained objects in
the session file, select the Enable Object Retention option for the session configuration.

Temporary Objects

Java does not allocate new objects onto the thread stack in the same way as C or C++. Instead,
all objects are allocated into a heap. While modern garbage collectors are designed so that this
is a relatively cheap operation, excessive object creation has often proven to be the major
performance or scalability issue in a Java application. (Even if you have a generational
garbage collector, methods allocating many short-lived objects often indicate easy-to-fix
performance problems, such as the famous String Concatenation example.)

DevPartner Java Edition tracks object allocations done by your code and categorizes them
based on collection times. The three categories are short-lived, medium-lived, and long-lived.
Because long-lived objects are rarely a problem, a temporary category is also provided; it is
the sum of the short-lived and medium-lived object allocations. Thus, temporary objects are
the short-lived objects and medium-lived objects, considered as a single group.

Short-lived objects are almost free in terms of their impact on garbage collection although
there is still a performance penalty for calling the object's constructor.

Medium-lived objects cause the garbage collector to work harder than necessary. They
consume CPU cycles in such a way that typical performance profilers have difficulty identify-
ing the particular method causing the problem. These objects can cause your program to fail
with an OutOfMemoryError in heavy-load situations.

Long-lived objects are in use for a long time, such as user interface widgets or application
scope JSP beans.

DevPartner Java Edition enables you to drill into your program’s use of temporary objects
(that is, short- and medium-lived objects) to identify problems and improve the overall quality
of your code.

For an in-depth description of temporary objects and their impact on memory usage and
performance, refer to Chapter 7 of Java Platform Performance.

Object-Lifetimes Results Summary

The Object-Lifetimes Results Summary depicts the objects that remain in memory the longest
time after they are no longer used by the program.
 DevPartner Java Edition User’s Guide 97

http://java.sun.com/docs/books/performance/1st_edition/html/JPMutability.fm.html#11095
http://java.sun.com/docs/books/performance/1st_edition/html/JPMutability.fm.html#19273

Chapter 6 · Memory Analysis
Note: Because an instance is marked as retained depending on when the instance
is used via a method invocation, primitive data types and arrays are not
tracked for retention. If an instance is used via a public member variable, it is
not tracked as used because it relies only on method invocation on the
instances.

This summary page displays three graphs:

� Objects Retained the Longest

� Classes with the Longest Average Retention Duration

� Entry Points with the Most Retained Instances

Objects Retained the Longest

This graph shows the five objects that were retained in memory for the longest time, whether
they were freed before the session ended or were still live. The number at the end of each bar
indicates the number of garbage collections the object survived. Click an object to open the
Details window, through which you can display the Allocation Trace Graph for the object or
view its source code.

Click More Details to display a more complete list of retained objects.

Classes with the Longest Average Retention Duration

This graph shows the classes whose instances had the longest average duration. Individual
instances that are retained the longest may be less of a problem than the combined effect of
these averaged instances, so it is helpful to analyze memory usage by class. Click a class to
open the Details window, through which you can display the Instance List for the class.

Click More Details to display a more complete list of classes.

Entry Points with the Most Retained Instances

This graph shows the entry points that, on average, allocated the largest amount of retained
bytes. The associated windows display statistics for the retained objects including child
objects, so you can analyze how the entry points manage memory usage. Click an entry point
to open the Details window, through which you can display the Call Graph or the Instance List
for the entry point.

Click More Details to display a more complete list of entry points.

Note: The Temporary Objects Results Summary also includes a graph that provides
information about entry points.

Temporary Objects Results Summary

The Temporary Objects Results Summary highlights the code that allocates the most tempo-
rary space. This tab is associated with the Object-Lifetimes Results Summary.

This summary includes two graphs:

� Entry Points requiring the Most Temporary Space

� Methods requiring the Most Temporary Space
98 DevPartner Java Edition User’s Guide

Chapter 6 · Memory Analysis
Entry Points requiring the Most Temporary Space

This graph shows entry points whose bytes occupied the most temporary space since the
beginning of the application, or from the last time that data was cleared.

Click an entry point to display the Details window, through which you can display a Call
Graph. From the Call Graph, you can select a method and view the source code.

Click More Details to display a list of all user-code entry points.

Methods requiring the Most Temporary Space

This graph shows methods whose bytes occupied the most temporary space since the begin-
ning of the application, or from the last time that data was cleared.

Click a method to displays the Details window, through which you can display a Call Graph or
source code.

Click More Details to display the complete list of methods called by your program.

RAM Footprint

RAM footprint is the total amount of memory your program needs to run. If the program
consumes too much memory, it might become necessary for the operating system to alter-
nately depend upon virtual memory to run a program.

Virtual memory is a mechanism that quite literally tricks a program into believing that there is
more physical RAM than really exists. But it plays that trick by copying portions of physical
RAM (blocks called pages) to and from the system's hard disk. As a program uses more virtual
memory, more and more pages must be swapped to and from the hard disk. Although modern
hard drives are very fast, they are still far slower than dynamic RAM. This swapping impedes
a program's performance; the more swapping that takes place, the slower the response time.

To optimize the RAM footprint, you need to examine several factors that affect it. Typical
factors include the following:

� Temporary objects that have not been garbage collected

� The number of classes that need to be loaded

� Bytecodes for a class's methods that must also be loaded

� The number and size of objects, and their impact on the program's performance

� Size of data structures created inside the JVM as a result of the class's size

For more information on RAM Footprint, see Chapter 5 in Java Platform Performance Strate-
gies and Tactics.

JVM Reserved Memory

JVM Reserved Memory is the amount of memory that the Java Virtual Memory reports as
allocated but unused. For example, this memory would be allocated by the operating system
for use by Java use but not actually currently in use by any objects.
 DevPartner Java Edition User’s Guide 99

http://java.sun.com/docs/books/performance/1st_edition/html/JPRAMFootprint.fm.html

Chapter 6 · Memory Analysis
JVM Reserved Memory is set with these Java options:

� -Xms — Sets the initial amount of JVM reserved memory

� -Xmx — Sets the maximum possible amount of JVM reserved memory

Note: The JVM Reserved Memory value differs from the total memory reported by
the Windows Task Manager. The Windows Task Manager includes overhead
for Java Virtual Memory, as well as overhead induced by DevPartner Java
Edition.

Profiled Instances vs. Total Instances

By default, DevPartner Java Edition excludes Java Runtime Environment, application server,
and IDE classes while monitoring your application. When you see references to profiled
instance bytes as opposed to total instance bytes in a column header or in the Details window,
profiled refers to memory allocations that occurred in your application code. Total bytes
includes all allocations, whether from your code or system code.

RAM Footprint Results Summary

The RAM Footprint Results Summary shows the classes and objects that were consuming the
most bytes of memory when the session file was created. This summary page includes the
following graphs to help you address the parts of the application code that are consuming large
amounts of memory, which can degrade application performance:

� Object Distribution

� Classes with the Most Average Live Instance Bytes Including Children

� Objects that Refer to the Most Live Bytes

� Classes of Profiled Instances Taking up the Most Space

Object Distribution

It is important to have a high-level view of where the most memory is being allocated within
your application, along with any other overhead. This pie chart depicts where memory was
allocated when the results were generated. It shows the relative sizes of profiled objects (i.e.,
objects allocated in your application code), excluded objects (i.e., objects allocated in JRE,
IDE, application server or other system code), and JVM Reserved Memory.

A larger wedge indicates a greater allocation of memory. If the Profiled Objects wedge is the
largest in the chart, your application code allocates the most memory used by your program;
examine the methods that allocated the profiled objects. If the Profiled Objects wedge is small,
your application code is not the main allocator of memory.

Click View Allocating Methods to display the Method List, which shows statistics for every
method in your user code.

Note: You can control the code that DevPartner Java Edition profiles by including or
excluding packages and classes in your Configuration.
100 DevPartner Java Edition User’s Guide

Chapter 6 · Memory Analysis
Classes with the Most Average Live Instance Bytes Including Children

To reduce memory consumption, it helps to identify the classes in your application whose
instances, on average, use the most memory. This graph focuses on the classes that, with their
children, are responsible for the greatest amount of memory consumed when averaged across
all instances of the class.

The classes in the chart have the highest ratio of live bytes per instance of the class, that is, the
classes for which a smaller number of instances is associated with a larger amount of memory.
This chart enables you to focus on classes for which fixing a relatively small number of
instances can potentially have the largest impact on the amount of memory your application is
leaking. Click a class to display the Details window, through which you can display a list of
the live instances of the class.

Objects that Refer to the Most Live Bytes

When you have a picture of how much and where your application is using the most memory,
it helps to see which objects in your application are holding references to the most live objects.
While a typical Java object might be small, it becomes much larger when you include memory
consumed by objects it refers to, plus other overhead associated with allocation of the parent
and child objects.

This graph helps you focus your tuning efforts on large object allocations in order to reduce
RAM footprint. The size displayed for each object represents the total of all objects referenced
from that particular instance.

Click a referring object to display the Details window, in which you can view the number of
child objects for which the referring object is responsible. Through this window, you can
display a list of classes that contain the child objects for which this referring object is responsi-
ble.

Click More Details to display a list of all the objects in memory at the time the snapshot was
taken.

Classes of Profiled Instances Taking up the Most Space

This graph shows the sum of the profiled instance sizes for each class in memory when the
results snapshot was generated. It provides an overview of the classes in your application code
that are the largest memory consumers. For more information, see “Profiled Instances vs.
Total Instances” on page 100.

Click a class to display the Details window, through which you can display the instances of
this class.

Click More Details to display a list of all classes in memory at the time the session file was
created.
 DevPartner Java Edition User’s Guide 101

Chapter 6 · Memory Analysis
102 DevPartner Java Edition User’s Guide

Chapter 7

Performance Analysis
To produce fast, accurate software that scales to meet your users' needs, you must understand
your program's computational performance as well as its memory usage.

DevPartner Java Edition enables you to quickly find performance bottlenecks anywhere in
your code, third-party components, or virtual machine, even when the source code is not avail-
able. Performance profiling identifies objects that slow your program's performance: entry
points with the slowest average response time and methods that use the most thread time or
spend the most time waiting (e.g. on I/O or a shared resource).

The Thread Viewer provides a view of mechanical behavior of code running under the JVM.
This helps to determine whether code is running as expected, and may help identify where
deadlocks occur. While your program is being profiled, the Thread Viewer displays a real-time
listing of active threads in a graphical depiction of when the threads are waiting, running, and
terminated. The associated table shows how many monitors each thread is holding.

To get more information about deadlocks, run a Coverage analysis session with Monitor out
of order thread synchronization enabled in the configuration.

For an in-depth description of the concepts involved in performance and memory manage-
ment, refer to Chapter 1 of Java Platform Performance, Strategies and Tactics.

Note: This site is external to Micro Focus, which has no responsibility for the
accuracy of its contents. Any questions should be directed to the proprietor of
the site.

To begin a Performance profiling session, see “Up and Running in 60 Seconds” on page 20.

Thread Time

Thread time is synonymous with CPU time. For example, if Thread A executes MethodB(),
then thread time for MethodB() is the amount of time the CPU spends running Thread A
while that thread is executing MethodB().This statistic is distinct from clock time, which is
the total duration from the Thread A entering MethodB() through the thread exiting the
method. Clock time does not take into account the fact that the system is multitasking. While
Thread A is executing MethodB(), the CPU might suspend that Thread A, go execute one or
more other threads, then return to Thread A to complete MethodB(). Thread time measures
only the time spent in MethodB().

Thread time gives a more accurate picture of the performance of a given method, because it
factors out the execution of code that, although executed while the measured method is
running, is not responsible for the target method's final execution duration. Note, however, that
wait time — which might (or might not) be the fault of the measured method — is invisible to
thread time. DevPartner Java Edition provides a separate Wait Time graph on the Perfor-
mance Results Summary so wait time can be analyzed.
 DevPartner Java Edition User’s Guide 103

http://java.sun.com/docs/books/performance/1st_edition/html/JPPerformance.fm.html#15173

Chapter 7 · Performance Analysis
Recursive Calls

A literal profile of an application that uses recursion contains double counts of recursive calls.
When DevPartner Java Edition does Performance analysis, it eliminates this duplication by
detecting when it is already timing a method. It stops timing for the first method call and starts
a new accumulation for the second call.

For example:

1 Method A calls Method B

2 Method B calls Method C

3 Method C calls Method B

4 Method B calls Method D

Method C takes 5 seconds to execute and all other methods take 1 second.

The total time for each method call in this example is as follows.

Without any correction for recursion, DevPartner would calculate the total time spent in each
method plus its child methods as follows.

The two paths out of Method B take 8 seconds and 2 seconds, respectively. In these calcula-
tions, the time for Method D is counted twice. DevPartner Java Edition detects the recursion
and stops timing the first call to Method B when it is called the second time. Using these
calculations, the sum of the time spent in each of the two calls to Method B is equal to the total
time spent in Method A plus its child methods. The resulting times are as follows.

Called Method Time with Children (in seconds)

A 9

B (first call) 8

C 7

B (second call) 2

D 1

Called Method Time with Children (in seconds)

A 9

B 10

C 7

D 1
104 DevPartner Java Edition User’s Guide

Chapter 7 · Performance Analysis
Called Method Time with Children (in seconds)

A 9

B 8

C 7

D 1

Performance Session Control

While the profiled program is running, DevPartner Java Edition displays the Session Control
page (unless you are profiling in batch mode).

When you do Performance profiling, the top of the Session Control page displays the Thread
Viewer, session controls, and three tabs that provide information about the session.

Thread Viewer

The Thread Viewer graph provides a live view of thread states. It lists all the threads that are
currently running or recently terminated. The graph shows how long each thread is running or
waiting (possibly blocked on the monitor), and when the thread is terminated.

The thread names are listed down the Y-axis of the graph; long thread names may be truncated.
The X-axis shows the time intervals. Thread status is identified by color: yellow for running,
red for waiting, purple for blocked, and black for terminated.

Note: The graph refreshes once every second. You may not see a thread's state
change if the state changes too quickly to be captured by the refresh. If a
thread is never listed in the graph, either it runs and terminates too quickly to
be captured (i.e. less than a second), or it was never executed. The thread
data is not saved to a file; it persists only as long as the thread is displayed in
the graph.

The duration for displaying thread states ranges from a minimum of 5 seconds through a
maximum of 120 seconds. The default is 30 seconds.

Note: A higher duration requires higher overhead for retaining the data, and may
degrade performance. If the profiling proceeds unacceptably slowly, disable
the Thread Viewer through the Configurations tab of the Start page. For more
information, see “Configuration — Thread Viewer” on page 67.

A terminated thread continues to be listed only for the number of seconds specified for
Thread Viewer History in The Live View in the session configuration (for example, for
another 30 seconds, if the default duration is used).

The Thread Viewer is enabled by default; you can disable it in the session configuration.
(When it is disabled, the graph is not displayed in the Session Control page.)
 DevPartner Java Edition User’s Guide 105

Chapter 7 · Performance Analysis
Session Controls

To control data collection during Performance profiling, use the buttons below the Thread
Viewer.

� Clear Collected Data — Zero out the data collected to that point and begin collection
again at the next user-code entry point. For example, you may want to clear data that was
gathered during application startup, since an application's performance during startup is
often unlike its steady-state performance.

� View Results — Create a session file containing the data collected since the beginning of
the session (or the last time you clicked Clear Collected Data). You can create multiple
session files while the profiled program continues to run.

You may find it useful to collect data at different stages of execution. For example, you might
want to compare performance of two segments of an application. Clear the collected data at
the point you want to start collecting data, view results at the end of the segment, then clear
again to reset the data for the next segment.

Tabs

The bottom of the Session Control page contains three tabs:

� Threads

� Application Server

� Session Output

Threads

Note: If the Thread Viewer is disabled, this tab does not appear in the Session
Control page.

The table in the Threads tab lists the following information about the threads displayed in the
Thread Viewer:

� Thread name — The thread names are listed in the same order that the threads are dis-
played in the live view.

� Unique ID — Each thread is automatically assigned a unique ID because multiple threads
in a given process may have the same name; and when long thread names are truncated in
the graph, the truncated names may be identical if the names begin with the same charac-
ter string.

� Monitors Held — The number of synchronized methods or blocks of Java code currently
held by the thread.

� State — The current state of the thread; valid values are Running, Waiting or Terminated.

The table is dynamic; information about a thread is displayed only as long as the thread
persists in the live view.
106 DevPartner Java Edition User’s Guide

Chapter 7 · Performance Analysis
Application Server

If the profiled code is running through an application server, the server is listed in this tab. To
terminate the session and create a session file, select the server in the list and click either
Detach or Stop. Detach ends the session but leaves the application server running. Stop both
ends the session and terminates the application server. When you detach the application server,
the server state changes to [Available]. You can reattach the application server through the
Application Server Testing tab. (When you attach the application server, the Session Control
page appears automatically.)

Session Output

The Session Output tab displays a continually updated log of all the activities and commands
carried out by the DevPartner Java Edition analysis server for this session.

Viewing Session Results

To view session results, do one of the following:

� To view cumulative results without ending the profiling session, click the View Results
button. While the results appear in the Performance Results Summary, the session infor-
mation continues to be updated in the Session Control page.

� To end the profiling session without stopping the application, click Home to display the
Start page, select the Application Testing tab, and click Detach. Use the browser's Back
button to return to the Session Control page; a message prompts you to display the session
results. Note that when you detach the application, the session information disappears
from the Session Control page.

To reattach the application, click Home, select the Application Testing tab, and click
Attach. To view the Session Control page, click View; the page appears in the same
browser window. (If necessary, click Refresh to make the Attach or View button avail-
able.)

� To stop the application and end the profiling session, click Close in the Bounce window.
In the Session Control page, a message prompts you to display the session results. Note
that when you stop the application, the session information remains displayed in the Ses-
sion Control page.

When you use any of these methods to display session results, the Performance Results
Summary appears in a new browser window.

Performance Results Summary

The Performance Results Summary displays the most significant execution time data. From
this page, you can drill down into specific areas to analyze performance bottlenecks.

The page includes the following graphs:

� Entry Points with the Slowest Average Response Time
� API Category Statistics
� Methods Using the Most Clock Time
� Methods Spending the Most Time Waiting
 DevPartner Java Edition User’s Guide 107

Chapter 7 · Performance Analysis
The Performance Results Summary also includes a Session Details tab, which provides
detailed information about the session.

If two or more performance analyses are run using the same configuration, the results summa-
ries from any two session files can be compared side by side.

Entry Points with the Slowest Average Response Time

The Entry Points with the Slowest Average Response Time graph shows the top five Entry
Points that accumulated the largest average response time (i.e., the longest time to execute).
Clicking on an entry point displays the Details window. This window provides a comprehen-
sive table of the timing data collected for this entry point, as well as the links to additional
areas of Performance analysis associated with this entry point.

Click View Call Graph to display the execution trace for this entry point. In the Call Graph,
select a method node and click View Source Code.

Click More Details to open a table that lists all the Entry Points.

API Category Statistics

If Assign Categories to Classes and Packages is included in the configuration used for the
profile, the API Category Statistics pie chart displays the categories assigned to the objects
that were profiled. Click a category to display the Method List for each category.

Note: The Assign Categories to Classes and Packages option is enabled by
default.

Methods Using the Most Clock Time

The Methods Using the Most Clock Time graph shows the methods consuming the largest
percentage of time. The size of each bubble is calculated based on the number of times the
method is called and the execution time. You will get the most performance improvement by
analyzing the larger bubbles.

Click a method to display the Details window, through which you can display a Call Graph or
source code.

Click View Source Code to display the Source Code and Method List. (Note that DevPartner
Java Edition automatically positions the Source Code display to the Entry Point selected.)

Click More Details to display the complete list of methods called by your program.

Methods Spending the Most Time Waiting

The Methods Spending the Most Time Waiting graph shows the methods that spent the
most time not executing (waiting).

Click a method to display the Details window, from which you can display a Call Graph or
source code.

Click More Details to display the Method List and Source View.

Note: You cannot collect wait times on AIX, HP-UX, or Linux.
108 DevPartner Java Edition User’s Guide

Chapter 8

Coverage Analysis
To ensure the reliability of your program, you must know how much of your code is being
exercised by your tests and the stability of your code base.

In DevPartner Java Edition, Coverage analysis tracks code execution and code base stability,
helping you locate untested code and areas of volatility. You can use this information to
minimize testing time while maximizing the productivity of your testing efforts.

To learn how to begin a Coverage profiling session, see “Up and Running in 60 Seconds” on
page 20.

Note: Class files that were compiled without debugging information will not be
included in Coverage analysis session results. To get Coverage information on
these classes, recompile them with debugging information and profile again.
For example, classes compiled with the javac compiler should have the -g
flag enabled. Classes compiled with Ant using the javac task should have the
debug="yes" attribute set.

Any classes not compiled with symbols will not have line number tables, there-
fore DevPartner Java Edition cannot properly instrument the methods in the
classes. Those classes will be ignored and will not appear within the Coverage
session results.

Volatility

The volatility metric appears on the Merged Session History graph. Volatility is the measure of
the rate of change, from session to session, of the source code being analyzed. This metric is
expressed as a percentage. For a given session, the percentage is calculated by dividing the
total number of changed methods by the total number of methods loaded for the last session.
The total number of methods does not include any inactive or removed methods.

When volatility is calculated, keep in mind that a method is regarded as changed if any of its
executable content has been altered. Volatility does not measure the extent of change in a
method. Therefore, changing one line in a method has the same effect on the volatility score as
changing ten lines in that same method. In addition, a method is considered changed if it has
been added or removed since the last session.

The purpose of the volatility metric is to draw attention to those sessions where a large degree
of change has taken place in the source code. A high volatility metric for a given session
indicates significant change in the source since the preceding session. So, the first volatility
metric on the graph will always be zero. Obviously, large changes in the source code make that
source code more susceptible to problems As a result, you should more closely examine, test,
and analyze that source code. Conversely, low volatility scores indicate few changes in source
code, which suggests that the code in question has stabilized.
 DevPartner Java Edition User’s Guide 109

Chapter 8 · Coverage Analysis
Out-of-Order Thread Synchronization

Detecting conditions that can cause deadlocks in your program is critical. The most typical,
and hardest to find, deadlock condition occurs when threads enter synchronization regions out
of order. For example, if Java thread T1 synchronizes on objects O1, O2, and O3 in that order
but thread T2 synchronizes on the same objects in a different order (for example, O3, O2, and
O1), a deadlock can occur. This deadlock can be sporadic, making detection difficult.

DevPartner Java Edition detects out-of-order thread synchronization in conjunction with
Coverage analysis to provide a workable solution to this problem.

Note: DevPartner Java Edition does not keep track of synchronization on a per-
thread basis. It tracks a single thread that enters a set of synchronization
objects out of order and will flag it as a problem. DevPartner Java Edition also
enables you to specify which threads to monitor, based on the inclusion/exclu-
sion list.

Java programmers who are writing multi-threaded applications use various techniques to
address deadlocks caused by entering synchronized objects out of order, such as the following:

� Conducting a rigorous manual code analysis to ensure that out-of-order synchronization
does not exist in the code (this approach is tedious and error-prone).

� Attempting to detect a deadlock after it occurs in the code, by testing the code.

When activated, the out-of-order thread synchronization option points you to areas in your
code where Java threads synchronize out of order, whether or not they result in a deadlock
condition. DevPartner Java Edition detects out-of-order synchronization conditions by watch-
ing the execution paths of your application. You can use the resulting data to focus on areas in
your code that could cause deadlocks.

To properly locate potential synchronization problems, you should execute as many paths in
your code as possible, to ensure that no out-of-order synchronization events occur.

Monitoring Out-of-Order Thread Synchronization

By default, detecting out-of-order thread synchronization is turned off, because monitoring for
this condition may significantly slow your program. To turn it on, do the following:

1 On the Configurations tab of the Start page, select the configuration to be used to detect
out-of-order thread synchronization.

2 In the left pane, select General.

3 Select Monitor out of order thread synchronization (Coverage only).

When selected, out-of-order thread synchronization will be monitored in conjunction with
Coverage analysis, and these conditions will be reported on the Results Summary.

4 Use this configuration to run your program under a Coverage session.

When you view a session file from this session, in addition to other Coverage analysis, you
can see out-of-order thread synchronization results. Only out-of-order synchronization condi-
tions in the paths executed in your program are reported. To accurately assess out-of-order
thread synchronization, use the Coverage analysis information to ensure that the majority of
your code has been tested.
110 DevPartner Java Edition User’s Guide

Chapter 8 · Coverage Analysis
Out-of-Order Thread Synchronization Analysis Results

When you run Coverage analysis with out-of-order thread synchronization enabled, the result-
ing Coverage session file will include out-of-order thread synchronization results. All
synchronization traces that have conflicts are available for viewing in a separate window. In
addition, you can quickly navigate to the suspicious areas of the source code.

The Out of Order Thread Synchronizations window shows the following:

� Synchronized blocks and methods involved in the potential deadlock scenario

� Method calls that led up to entry into those sequences

Each frame shows a synchronization trace. A synchronization trace is a list of methods or
blocks, depending on the context. The trace looks like a stack trace; method names are
arranged in a list, from bottom to top, in the order they were called.

A synchronization trace can include the following items:

� Synchronized method — A method that can only be executed by one thread at any given
time.

� Plain method — Any method that is not a synchronized method. The only plain methods
shown in the synchronization traces are those that led up to entry into the conflicting
sequences.

� Synchronized block — Similar to a synchronized method in that only one thread can exe-
cute a synchronized block at any given time. The entire block of code is considered as syn-
chronized, not just a specified method.

� Lock tag — A shorter name that is substituted for a longer method name or a synchronized
block. The form is Lx (where x is an integer, starting with 1 and incremented with each
instance) followed by either the text Synchronization Block or the name of the method
that caused out-of-order thread synchronization. Using lock tags makes it easier for you to
find synchronization traces that occurred out of order, even if the synchronization trace is
quite long.

Out-of-order traces are always presented in pairs: one shows that one thread called the
methods in one order, and the other shows that a different thread called the methods in a differ-
ent order.

Lock tags also help when you are comparing synchronization traces of synchronization blocks.
A lock tag associates a name with a synchronization block. If a synchronization block did not
have an associated symbolic name, it would be harder to compare two synchronization traces.

Note: DevPartner Java Edition labels the synchronization traces with the name of
the last method executed by that thread. Click an element in either the left or
right pane to display the source code for that element on the Source Code
pane.

The Synchronization Trace list in the left pane and the Conflicts with list in the right pane
enable you to select a specific sequence.

Only one conflict pair can display at a time. Select the primary sequence in the Synchroniza-
tion Trace list, and the Conflicts with list is populated with all the secondary sequences that
conflict with the current primary sequence so you can select which secondary trace to display.
 DevPartner Java Edition User’s Guide 111

Chapter 8 · Coverage Analysis
You can determine what out-of-order thread synchronization has occurred by visually compar-
ing the trace elements of the single trace against the trace elements of each conflicting trace.
You can also select a trace element and go to its corresponding source line in the source file.

Any protected sequences are not reported. In a protected sequence, each sequence first
synchronizes on the same object before committing an out-of-order thread synchronization.
These sequences can never cause a deadlock.

Coverage Session Control

The Session Control page is available while your program is running and you are not profiling
in batch mode. The options on this page enable you to focus data collection on the portions of
your code that are significant to you.

On this page, you can control data collection in these ways:

� Clearing collected data will zero out the data collected to that point and will begin collec-
tion again at the next user-code entry point. This is useful, for example, to avoid collecting
data on application startup.

� Viewing results creates a session file containing the data collected from the beginning of
the session (or the last Clear command) to that point. You can create multiple session files
during program execution. If merging coverage data is enabled in the configuration file,
the session data will be merged with existing coverage data.

You might collect data at different stages of execution, for example, to compare code
coverage of two segments of an application. Clear collected data at the point you want to
start collecting data, view results at the end of the segment, then clear again to reset the
data for the next segment.

� Through the Application Testing tab of the Start page, you can detach from and reattach
to the application to create different session files without stopping the application itself.

� If you are running code through an application server, selecting the server in the Applica-
tion Server list and detaching will terminate the session and create a session file.

When you want to analyze the collected data, click View Results. A new browser window
opens, displaying the Results Summary. Monitoring continues in the background until the
program ends.

In the Session Control page you can also view the session output, set your preferences for the
precision and units used in the results, or click Home to return to the Start page.

Coverage Results Summary

The Coverage Results Summary displays code coverage data in graphs. You can drill down
into specific areas to determine how to improve your tests to increase code coverage.

The graphs on this tab show the methods and classes with the most untested code.

� The Overall Coverage Statistics section displays two sets of statistics:
112 DevPartner Java Edition User’s Guide

Chapter 8 · Coverage Analysis
� The number of methods executed, the number of methods in the program, and the per-
centage of methods in the program that were executed.

� The number of lines executed, the number of lines in the program, and the percentage
of lines in the program that were executed.

� The Method with the Most Lines Not Covered graph shows the methods with the largest
number of untested lines of code.

� Click a method to display the Details window, from which you can display the source
code for that method.

� Click More Details to display the complete list of methods called by your program.

� The Classes with the Most Lines Not Covered graph shows the classes with the most
untested methods.

� Click a class to display the Details window, from which you can display the source
code for that class.

� Click More Details to display the complete list of methods called by your program.

� If you are viewing a merged session file, a Merged Session History graph is also dis-
played. This graph shows you the methods and lines covered for each merged file and the
volatility (amount of change from one session to the next) of the code base.

The Coverage Results Summary includes a Session Details tab, which provides detailed infor-
mation about the session.

If two or more coverage analyses are run using the same configuration, the results summaries
from any two session files can be compared side by side.

Merging Session Files

When you are testing your application, it is unlikely that you will execute all of your code in
one session. You will generally gather coverage data over several sessions and then analyze
your total coverage statistics. Merging is the process of accumulating data from multiple
sessions into a single file.

Merge files maintain a record of all the classes and methods that were loaded in any of the
contributing session files. To create a merged file, you can merge existing session files or
merge files automatically with a Configuration setting.

Performing a Merge

When you merge session files, they are listed on the Session Files tab and can be opened just
like any other Coverage session file. DevPartner Java Edition performs the following tasks
when you merge session files.
 DevPartner Java Edition User’s Guide 113

Chapter 8 · Coverage Analysis
Computes the percentage of covered values for lines and methods

These values are calculated so that, as session files are merged in, the coverage reported is the
union of the coverage contributed by the individual files. So, if a session file with 20% cover-
age is merged with a session file with 30% coverage, and if the areas covered are independent
of one another, the resulting coverage calculated will be 50%. If there is a 10% overlap
between the two session files, the resulting coverage will be 40%.

Each session file added to the merge file contributes data points to the Merged Session History
graph on the Results Summary (one data point each for lines covered, methods covered, and
volatility). If multiple session files are merged simultaneously, they are added in chronological
order. Otherwise, they are added in the order you merge them in. Consequently, you can read
the Merged Session History graph from left to right, and see how each addition of a session
file has contributed to the change in net coverage.

The Merged Session History graph shows the aggregate merge session data for the entire
target application. Similar Merged Session History graphs whose contents are limited to the
data gathered from individual packages and classes are available from the Merge Details tab
on the Details page. You can go to the Details page by clicking More Details just above the
Merged Session History graph on the Results Summary. In the Details page, select the
package or class in the left pane, then select the Merge Details tab in the right pane.

Calculates the % Volatility values for each source file and image

The percentage of volatility represents the percentage of methods that changed in your code
between sessions. This value characterizes the stability of your code.

When Merging Causes Differences Between Files

If the code has changed between sessions, DevPartner Java Edition tracks those changes and
adjusts the data accordingly, reporting the volatility of the code as well as the coverage statis-
tics in the merged file.

There are instances when you merge files that differences might exist, for example:

� When methods have been removed from one file but not from the other. Click Removed
Methods on the Methods List source tree for a list of methods that have been removed
since the files were merged.

� When you merge two coverage files, and then merge again. The original merge file might
have been changed or updated in the background, causing a discrepancy. DevPartner Java
Edition detects the differences and indicates that the session file has changed since it was
last accessed. Click Open the updated session file to use the most recent merged data.

Merging Existing Session Files

To merge existing session files:

1 Select the Session Files tab.

2 Click Merge to display the Merge Files page.

3 Select the Configuration used to create the session files to be merged. You cannot merge
files created under different configurations.
114 DevPartner Java Edition User’s Guide

Chapter 8 · Coverage Analysis
4 Hold down the Ctrl key, then select the session files to be merged.

5 Select either Create a new merge file or Add to an existing merge file.

6 Enter or select the name for the merge file, as appropriate. If you are entering a new name,
do not include a file extension; the extension .tcm is added automatically when the file is
created.

7 Click Merge to add the selected session files to the specified merge file.

Automatically Merging Session Files

To automatically merge session files, select that option for the configuration:

1 Select the Configurations tab of the Start page.

2 In the left pane, select General; then select Automatically Merge Coverage Sessions.

3 By default, the merged file will be named mergedCoverageData. To specify another
name, click Change File, then enter a name in the dialog box and click OK to save the
name.

Whenever this Configuration is used for Coverage analysis, multiple session files will
automatically be merged into one file with the specified name.

Merged Session History Graph

The Merged Session History graph displays the progression of values for statistics for the
current merge file. Each point on the graph represents the statistical values after a merge. The
Merge History tab displays data for the item currently selected in the tree pane:

� % Methods Covered — Percentage of methods that were executed from the selected
item.

� % Lines Covered — Percentage of source code lines that were executed from the
selected item.

� % Volatility — Percentage of methods that have changed since the last merge was per-
formed in the current merge file. This value represents the stability of the class. If the
value stays high, it will be difficult to significantly increase the percentage of code that is
covered.

To see more details about a specific session file, click on one of the numbers below the
Merged Session History graph. These numbers are the session file axis numbers. Clicking on
a session file axis number displays the following columns below the Merged Session History
graph:

� File — The axis number representing the session whose information is displayed.

� Merge Date — The date the session file was added to the merged session file.

� Save Date — The date the original session file was saved.

� Session File — The full path to the session file and the name of the session file that was
added to the merged session file.
 DevPartner Java Edition User’s Guide 115

Chapter 8 · Coverage Analysis
Merge States for Methods and Classes

When you merge sessions, DevPartner tracks the state of your methods and classes. For
example, DevPartner knows when you have changed, added, or removed a method. DevPart-
ner displays information about these states in the State column on the Method List and using
filters in the Filter pane.

Methods

DevPartner Java Edition uses the following states for methods.

Notes:

• Removed methods are displayed in the Removed Methods filter. They are not used to cal-
culate coverage statistics.

• DevPartner Java Edition marks a method as changed when you make any change that
affects generated code. For example, adding or removing comments will not cause Dev-
Partner Java Edition to mark a method as changed, but splitting a line of code into two lines
will result in the method being marked as changed. DevPartner Java Edition cannot distin-
guish between major and minor code changes.

• If a method is marked as changed, all previously accumulated line execution counts are dis-
carded.

Classes

Classes can be loaded in one session and not in another. If a class is not loaded, DevPartner
Java Edition cannot determine which methods are in the class, and cannot compare the class
and its methods to find changes in relation to another session.

DevPartner Java Edition uses the following states for classes.

Notes:

• DevPartner Java Edition marks a class as inactive any time it is not loaded. For example, if
your application uses a class but you do not load it during a session, then when you merge
that session with an earlier session that did load the class, the class is marked as Inactive.

• Inactive classes are displayed in the Inactive Source filter. They are not used to calculate
coverage statistics.

When you... DevPartner marks the method as...

Create a new method Added

Make a change to a method Changed

Delete a method Removed

When you... DevPartner marks the class as...

Add a new class Added

Re-load a class that was present in another
session in the merge file

Activated

Remove a class Inactive
116 DevPartner Java Edition User’s Guide

Chapter 8 · Coverage Analysis
Merging Coverage Analysis Results with JUnit Reports

From the command line, you can generate a report that merges DevPartner Java Edition
Coverage analysis results with a JUnit report. This feature uses the DevPartner Java Edition
utility nmextract and the Java utility Ant.

Note: Use only JUnit test cases, not JUnit test suites. Using a JUnit test suite for
your merged report may cause incorrect data.

Prerequisites

� JUnit must be installed (refer to the JUnit documentation for installation instructions), and
junit.jar must be included in the Java classpath.

� The Ant utility must be installed (refer to the Ant documentation for installation instruc-
tions). The variable ANT_HOME must be set, and ANT_HOME/bin must be included in your
path environment variable.

� Java JDK 1.4 or above must be installed, and the environment variable JAVA_HOME must be
set to the location of your JDK.

� The Micro Focus DevPartner Java Edition Control Service (Windows) or daemon (UNIX)
must be running. (If DevPartner Java Edition is installed, the service/daemon starts auto-
matically upon computer startup.)

� The version of your Ant installation must match the version you set for ANT_HOME and the
folder in your PATH. To check the Ant installation, enter ant -version at a command
prompt.

� Your Java version must match the version you set for JAVA_HOME and the folder in your
PATH. To check the Java version, enter java -version at a command prompt.

Note: Run the sample project to learn the steps required to generate the merged
report and to confirm that the process works correctly.

Creating a Merged Report

Before generating the merged report, you must add code to your Ant script. You can copy this
code from the build.xml file for the sample project into the build.xml file for your
project. For more information, see “Ant Script Code for Merging JUnit and Coverage Analysis
Reports” on page 120.

After editing the Ant script, perform the following steps to run the report:

1 Specify the configuration for the Coverage analysis:

a Open the DevPartner Java Edition Start page and select the Configurations tab.

b Click New to create a new configuration with the name defined by the projectName
property that you added to the build.xml file above.

Note: You can use an existing configuration by selecting it from the Configuration
list; the value of the projectName property must be identical to the selected
configuration's name.
 DevPartner Java Edition User’s Guide 117

Chapter 8 · Coverage Analysis
c In the General section of the Configurations tab, make sure Automatically merge
Coverage Sessions is selected. No other configuration option is specifically required
for the merged report.

d Exit the Start page.

2 Compile your Java code.

3 Compile the JUnit test code.

4 Open a command prompt and change to your project folder.

5 Execute the command

ant report

The Ant script (build.xml) performs the following actions:

a Runs the JUnit tests and DevPartner Java Edition Coverage analysis in batch mode.

b Creates a folder structure for the results files (project_dir is the path of your
project folder):

project_dir\report
\dpj (for Coverage results)
\xml (for XML files of Coverage analysis and JUnit test results)
\html (for the merged report)

c Generates XML files for the Coverage analysis and JUnit test results.

d From the XML files, creates the HTML file junit-dpj-report.html containing
the merged report.

You can view junit-dpj-report.html in your Web browser.

The XML files in \dpj and \xml are not needed after junit-dpj-report.html is created.
You can safely delete the folders and all their contents.

Sample Project — Merging Coverage Analysis Results with JUnit Reports

To learn the procedure for generating a merged report for Coverage analysis and JUnit testing,
use the sample project. It is located in

DPJ_dir/junit-dpj-report/JUnit-DPJ-Report-Sample

where DPJ_dir is the DevPartner Java Edition product folder.

Prerequisites

� JUnit must be installed (refer to the JUnit documentation for installation instructions), and
junit.jar must be included in the Java classpath.

� The Ant utility must be installed (refer to the Ant documentation for installation instruc-
tions). The variable ANT_HOME must be set, and ANT_HOME/bin must be included in your
path environment variable.
118 DevPartner Java Edition User’s Guide

Chapter 8 · Coverage Analysis
� Java JDK 1.4 or above must be installed, and the environment variable JAVA_HOME must be
set to the location of your JDK.

� The Micro Focus DevPartner Java Edition Control Service (Windows) or daemon (UNIX)
must be running. (If DevPartner Java Edition is installed, the service/daemon starts auto-
matically upon computer startup.)

� The version of your Ant installation must match the version you set for ANT_HOME and the
folder in your PATH. To check the Ant installation, enter ant -version at a command
prompt.

� Your Java version must match the version you set for JAVA_HOME and the folder in your
PATH. To check the Java version, enter java -version at a command prompt.

Running the Sample Project

1 Open the file build.xml (in the JUnit-DPJ-Report-Sample folder) into a text editor.

2 In the <!-- SETUP VARIABLES --> section, change the default values of the properties to
the values for your system.

<property name="dpj.dir" value="DPJ_dir" />

where DPJ_dir is the path of the DevPartner Java Edition product folder

<property name="junit.jar.path" location="file_location" />

where file_location is the actual location of junit.jar within the JUnit product
folder

<property name="projectName" value="junit-DPJ-report" />

The value junit-DPJ-report is the default name of the configuration for the merged
report. You can keep the default or change it, but the configuration created in the next step
must have the name defined by this property.

3 Specify the configuration for the Coverage analysis:

a Open the DevPartner Java Edition Start page and select the Configurations tab.

b Click New to create a new configuration with the name defined by the projectName
property in the build.xml file above.

Note: You can use an existing configuration by selecting it from the Configuration
list; the value of the projectName property must be identical to the selected
configuration's name.

c In the General section of the Configurations tab, make sure Automatically merge
Coverage Sessions is selected. No other configuration option is specifically required
for the merged report.

d Exit the Start page.

4 Open a command prompt and change to the following folder.

DPJ_dir/junit-dpj-report/JUnit-DPJ-Report-Sample

5 Execute the command
 DevPartner Java Edition User’s Guide 119

Chapter 8 · Coverage Analysis
ant report

The Ant script (build.xml) performs the following actions:

a Compiles the sample Java code.

b Compiles the JUnit test code.

c Runs the JUnit tests and DevPartner Java Edition Coverage analysis in batch mode.

Note: Some of the sample JUnit tests will result in failure because one of the test
samples is an example of a failed test case.

d Creates a folder structure for the results files:

DPJ_dir\junit-dpj-report/JUnit-DPJ-Report-Sample\report

\dpj (for Coverage analysis results)

\xml (for XML files of Coverage analysis and JUnit test results)

\html (for the merged report)

e Generates XML files for the Coverage analysis and JUnit test results.

f From the XML files, creates the HTML file junit-dpj-report.html containing
the merged report.

You can view junit-dpj-report.html in your Web browser.

The XML files in \dpj and \xml are not needed after junit-dpj-report.html is created.
You can safely delete these foldersfolders and all their contents.

Ant Script Code for Merging JUnit and Coverage Analysis Reports

To generate a merged JUnit and Code Coverage report, add the following code to your Ant
script (build.xml).

<!-- SETUP VARIABLES -->
<property name="dpj.dir" value="DPJ_dir" />
<property name="junit.jar.path" location="file_location" />
<property name="projectName" value="junit-DPJ-report" />

The value DPJ_dir is the path of the DevPartner Java Edition product folder, and
file_location is the actual location of junit.jar within the JUnit product folder. The
value junit-DPJ-report is the name of the configuration you will use for the Coverage
analysis. You can keep this default name or change it; make sure the value is identical to the
name of the configuration you create or select for the merged report.

You can copy the following code from the build.xml file provided with the sample project.
(It doesn't matter exactly where in the file you put it.) The file is located in

DPJ_dir/junit-dpj-report/JUnit-DPJ-Report-Sample

where DPJ_dir is the DevPartner Java Edition product folder.

<!-- RUN THE JUNIT TEST AND MAKE _XML_ REPORT -->
<target name="test.java" depends="compile.java, compile.test">
120 DevPartner Java Edition User’s Guide

Chapter 8 · Coverage Analysis
<!-- Setup the Junit xml report folder before running junit -->
<!-- This is done through a call to Junit-DPJ Report Ant library code
(the antcall will call the general do-Junit-DPJ-Report target to do the
actual ant call into the library) -->
<antcall target="do-Junit-DPJ-Report">
 <param name="target" value="target.junit.xml.report.dir.setup"/>
</antcall>
 <junit jvm="${dpj}" printsummary="yes" haltonerror="no" halton
 failure="no" fork="true">
 <formatter type="plain" usefile="false"/>
<!-- for the junit report -->
 <formatter type="xml"/>
 <jvmarg value="-cov"/>
 <jvmarg value="-batch"/>
 <jvmarg value="-config"/>
 <jvmarg value="${projectName}"/>
<!-- These commands actually run the tests. Notice, the 'todir'
parameter has been added. This will output the xml data of the junit
results in the report dir! -->
 <test name="testCalcSuite" todir="${target.junit.xml.report.dir}"
 />
 <test name="testCalc" todir="${target.junit.xml.report.dir}" />
 <test name="testCalc2" todir="${target.junit.xml.report.dir}" />
 <classpath refid="project.classpath">
 </classpath>
</junit>
</target>

<!-- Utility code -->
<target name="do-Junit-DPJ-Report">
 <ant dir="${junit-dpj-report.src.dir}" inheritAll="false"
 target="${target}">
 <property name="target.report.dir"
 location="${target.report.dir}"/>
 <property name="target.junit.xml.report.dir"
 location="${target.junit.xml.report.dir}"/>
 <property name="dpj.session.dir" location="${dpj.session.dir}"/>
 <property name="dpj.configuration.name" value="${projectName}"/>
</ant>
</target>
 DevPartner Java Edition User’s Guide 121

Chapter 8 · Coverage Analysis
122 DevPartner Java Edition User’s Guide

Chapter 9

IDE Integration
DevPartner Java Edition integrates into integrated development environments (IDEs) for Java
program development, enabling you to monitor your standalone programs from inside the
IDE.

Note: DevPartner Java Edition does not profile application servers running as a
service within IDEs.

Use the Java IDE Add-in Manager to integrate DevPartner Java Edition with supported IDEs.

To remove the integration from an IDE, use the Java IDE Add-in Uninstallation utility.

You can also invoke the profiler through your IDE by adding an argument to the JVM settings.
For more information, see “Invoking the Profiler Through the JVM Settings” on page 21.

Using the Java IDE Add-in Manager

The following table lists the supported IDEs and the entry that appears in the Java IDE Add-in
Manager.

To integrate any of these IDEs with DevPartner Java Edition, run the Java IDE Add-in
Manager:

1 Click Start>Programs>Micro Focus>DevPartner Java Edition>Utilities>Java IDE
Add-in Manager to open the utility.

2 From the list, select the IDE; then click Continue. The Installing dialog box appears.

Table 9-1. Supported IDEs in the Add-in Manager

IDE Entry in Add-in Manager

Borland JBuilder X and 2005 Borland JBuilder

Compuware OptimalJ 4.1 and 4.2 Compuware OptimalJ Net-
Beans
Compuware OptimalJ Eclipse

Eclipse 3.3 Eclipse 3.3

Eclipse 3.4 Eclipse 3.4

Eclipse 3.5 Eclipse 3.5

IBM Rational Application Developer v7.0 IBM RAD v7.0

IBM Rational Application Developer v6.0 IBM RAD v7.5
 DevPartner Java Edition User’s Guide 123

Chapter 9 · IDE Integration
3 In the field, type the path of the product folder for the IDE; or click the browse button to
navigate to the folder.

4 Click Install. A confirmation message appears. DevPartner Java Edition is now integrated
into the selected IDE.

Note: If your IDE is not listed in the Java IDE Add-in Manager, you can invoke the
profiler through your IDE by adding an argument to the JVM settings. For
more information, see “Invoking the Profiler Through the JVM Settings” on
page 21.

Borland JBuilder

DevPartner Java Edition does not support JBuilder in the IDE Add-in Manager. To use
JBbuilder, you must manually configure the integration.

Manual integration with JBuilder 2008

Add the -Xrun or -agentlib argument to the JVM Arguments section in JBuilder in order to
invoke DevPartner Java Edition from within JBuilder.

Configuring the Application

To configure the application:

1 Select Run>Open Run Dialog… from the menu.

2 In the Create, manage and run configurations dialog box, create a new launch configura-
tion.

3 Click the Arguments tab.

4 Do one of the following:

� If you are using JVMPI (JDK 5.0 or below), add the -Xrun argument to the VM Argu-
ments field, as described in Using -Xrun to Invoke the Profiler in the online help. A
sample string is listed below:

-XrundpjCore:NM_ANALYSIS_TYPE=performance:NM_CONFIG_NAME=test

� If you are using JVMTI (JDK 6.0 or above), add the -agentlib argument to the VM
Arguments field, as described in Using -agentlib to Invoke the Profiler in the online
help. A sample string is listed below:

-agentlib:dpjJvmtiCore=NM_ANALYSIS_TYPE=perfor-
mance,NM_CONFIG_NAME=test

Configuring the Server

To configure the server:

You will need to modify the server configuration profile used when launching the Application
server or create a configuration profile especially designed for this purpose.
124 DevPartner Java Edition User’s Guide

Chapter 9 · IDE Integration
1 Select Run>Open Run Dialog… from the drop down menu.

2 Select the target server configuration created for this application.

3 Click the Arguments tab.

4 In the dialog box do one of the following:

� If you are using JVMPI (JDK 5.0 or below), add the -Xrun argument to the VM
parameters text box, as described in Using -Xrun to Invoke the Profiler in the online
help. A sample string is listed below.

-XrundpjCore:NM_ANALYSIS_TYPE=performance:NM_CONFIG_NAME=test

Note: Note: This is one string without a newline character inserted. This string must
be inserted before any other arguments in this box.

� If you are using JVMTI (JDK 6.0 or above), add the -agentlib argument to the VM
parameters, as described in Using -agentlib to Invoke the Profiler in the online help. A
sample string is listed below.

-agentlib:dpjJvmtiCore=NM_ANALYSIS_TYPE=perfor-
mance,NM_CONFIG_NAME=test

Note: Note: This is one string without a newline character inserted. Also note the
comma delimiter prior to NM_CONFIG_NAME.This string must be inserted
before any other arguments in this box.

Compuware OptimalJ

You can access DevPartner Java Edition features from within Compuware OptimalJ. OptimalJ
enables you to profile Java applications, applets, JSPs, servlets, and EJBs.

To integrate DevPartner Java Edition with this IDE, use the Java IDE Add-in Manager. For
more information, see “Using the Java IDE Add-in Manager” on page 123.

When you profile an application with DevPartner Java Edition, OptimalJ automatically creates
a DevPartner Java Edition configuration file for the module or class that you are profiling. You
can edit these configuration files by selecting the Configurations tab of the DevPartner Java
Edition Start page.

You can use OptimalJ with DevPartner Java Edition to profile the following:

� An OptimalJ application

� A specific application module

� A specific Java class

Profiling an OptimalJ Application

When you run DevPartner Java Edition profiling on an application from within OptimalJ, the
results are displayed in the DevPartner Java Edition interface after the integrated test environ-
ment starts. All OptimalJ integrated test environment features are available while profiling
your application with DevPartner Java Edition.
 DevPartner Java Edition User’s Guide 125

Chapter 9 · IDE Integration
Note: Users of Internet Explorer should clear the option Reuse windows for launch-
ing shortcuts on the Advanced tab of the Internet Options dialog box,
displayed through the browser’s Tools menu. Otherwise, you might not be
aware of the multiple sessions started.

DevPartner Java Edition profiling messages are displayed with the application server
messages in the Application Server tab of the OptimalJ Output window.

OptimalJ powered by NetBeans

To profile an OptimalJ application, do one of the following:

� On the OptimalJ menu bar, select Debug>Start Application Server under DevPartner;
then select the desired analysis type from the submenu:

� Analyze Memory Usage
� Analyze Performance
� Analyze Coverage

� In the Code Model explorer, locate the file for your application. Right-click the file to dis-
play the popup menu, select Tools>Start Application Server under DevPartner, and
select the desired analysis from the submenu.

OptimalJ built on Eclipse

To profile an application in OptimalJ built on Eclipse, you must be in the Application perspec-
tive. To begin profiling, choose Test>Start Application Server under DevPartner; then
select the desired analysis type from the submenu:

� Analyze Memory Usage
� Analyze Performance
� Analyze Coverage

Profiling a Specific Application Module

It is not possible to deploy both the EJB and Web modules in the integrated test environment
and restrict the DevPartner Java Edition profiling to an individual application module.
DevPartner Java Edition profiles the entire process running your test application server and
any application modules deployed to it during that test session. For example, if you start the
integrated test environment with DevPartner Java Edition profiling enabled and deploy just
your application's EJB module, the profile information covers the running application server
and the deployed EJB module only. If you subsequently deploy the application's Web module
to the existing test session, it will be added to the profiling information from that moment
forward.

Note: If you are testing on JBoss and configured OptimalJ to use the Tomcat instal-
lation provided with the NetBeans IDE, you will not be able to profile the Web
module for your application because it runs in a separate process.

To profile a specific application module:

1 In the Explorer [Code Model], locate the archive file for the application module you want
to profile.

Examples of application archives include the following:
126 DevPartner Java Edition User’s Guide

Chapter 9 · IDE Integration
ejbModuleNameEjb.jar

webModuleNameWeb.war

2 Right-click the file to display the popup menu, then choose the command:

� OptimalJ powered by NetBeans — Tools>Start Application Server under DevPart-
ner

� OptimalJ built under Eclipse — Test>Start Application Server under DevPartner

Then select the desired analysis from the submenu.

The integrated test environment starts and the DevPartner Java Edition profile window
appears. All OptimalJ integrated test environment features are available while profiling your
application with DevPartner Java Edition.

DevPartner Java Edition profiling messages appear with the application server messages in the
Application Server tab of the Output window.

Profiling a Specific Java Class

If your application contains a Java class that requires only the Java Runtime Environment to
execute, you can enable DevPartner Java Edition profiling in the class. OptimalJ displays
DevPartner Java Edition profiling status in the DevPartner tab of the Output window. The
message “Class is profiled” indicates that the class has been executed and profiling is enabled.

OptimalJ powered by NetBeans

To profile an application containing a Java class that requires only the JRE to execute:

1 Compile the code for your application.

2 In the Explorer [Code Model], select the Java class to profile.

3 On the OptimalJ menu bar, select Debug>DevPartner, then select the desired analysis
type from the submenu: Analyze Memory Usage, Analyze Performance, or Analyze
Coverage. OptimalJ enables the DevPartner Java Edition profiling and executes the
selected class in the Java Runtime Environment.

4 OptimalJ displays the profiling status in the DevPartner tab of the Output window. The
message "Class is profiled" indicates that the class has been executed and profiling is
enabled.

OptimalJ built on Eclipse

To profile a class in OptimalJ built on Eclipse, right-click the class in the Code Model view,
then do one of the following:

� Choose Run As from the context menu, then select the desired analysis type from the sub-
menu:

� DevPartner Coverage Analysis
� DevPartner Memory Analysis
� DevPartner Performance Analysis
 DevPartner Java Edition User’s Guide 127

Chapter 9 · IDE Integration
� Choose DevPartner Java from the context menu, then select the desired analysis type
from the submenu:

� Coverage Analysis
� Memory Analysis
� Performance Analysis

Eclipse

You can access DevPartner Java Edition features from within the Eclipse IDE to profile Java
applications, applets, JSPs, servlets, EJBs, and Eclipse Application in PDE (Plug-in Develop-
ment Environment).

To integrate DevPartner Java Edition with this IDE, use the Java IDE Add-in Manager. For
more information, see “Using the Java IDE Add-in Manager” on page 123.

Profiling Within Eclipse

To run DevPartner Java Edition profiles from within Eclipse:

1 In the Eclipse Package Explorer, select the object you want to profile.

2 Do one of the following:

� Right-click the object and select DevPartner Java from the menu, then select the type
of analysis from the submenu.

� Select Run Configuration from the Run menu.

a Select DevPartner Java Applet, DevPartner Java Application, or DevPartner
Java Eclipse Application, as appropriate.

b In the Name field, specify a name for the configuration.

c Use the tabs in the dialog box to define the configuration. In addition to the standard
Eclipse tabs, the dialog box contains an Analysis tab to specify the type of DevPartner
Java Edition analysis to run.

d Click Run to begin profiling.

The program compiles and starts under Eclipse, but with DevPartner Java Edition profiling
enabled. The DevPartner Java Edition user interface displays as the program runs.

Note: If your IDE test server is already running, you must stop and restart that IDE
test server with DevPartner Java Edition in order for DevPartner Java Edition
to properly hook into the IDE test server and profile your application.

Starting JBoss and Tomcat with Eclipse WTP

There are three ways to start JBoss and Tomcat using Eclipse WTP. From WTP Server View:

1 From the Servers tab, Right-click JBoss or Tomcat and choose Profile. The DevPartner
Java Plug-in dialog box appears.

2 Select the desired analysis type and click OK.
128 DevPartner Java Edition User’s Guide

Chapter 9 · IDE Integration
From Profile on Server:

1 From the Package Explorer tab, right-click the package and choose Profile As>Profile
on Server. The Profile on Server dialog box appears.

2 Choose JBoss or Tomcat from the server list and click Next. The Add and Remove
Projects dialog box appears.

3 Add or remove projects as necessary and click Finish. The DevPartner Java Plug-in dialog
box appears.

4 Select the desired analysis type and click OK.

From the Profile Launch Configuration:

1 From the Package Explorer tab, right-click the package and choose Profile As>Open
Profile Dialog. The Profile dialog box appears.

2 Choose JBoss or Tomcat from the server list and click Profile. The DevPartner Java Plug-
in dialog box appears.

3 Select the desired analysis type and click OK.

Starting WebLogic with Eclipse WTP

After you have added your Web server application to Ecipse WTP, you can use DevPartner
Java Edition to profile it.

1 In the Package Explorer pane, right-click on the project you want to profile.

2 Select DevPartner and select one of the following the types of analysis.

� "DevPartner > Run on server with Performance analysis
� "DevPartner > Run on server with Memory analysis
� "DevPartner > Run on server with Coverage analysis

The Server Selection dialog box appears.

3 Select an existing server or define a new server. Refer to Eclipse documentation for more
information on defining a new server.

4 To end, exit and close DevPartner Java Edition.

5 Stop the server.

a In Eclipse, select the Servers tab.

b Select the WebLogic server entry.

c Click the stop server icon in the upper right toolbar of the lower pane.

Note: Due to a third party issue, Eclipse must be restarted whenever trying to profile
the Weblogic server on another analysis type or when starting the server
without DevPartner Java Edition.
 DevPartner Java Edition User’s Guide 129

Chapter 9 · IDE Integration
IBM Rational Application Developer

You can access DevPartner Java Edition features from within IBM Rational Application
Developer.

To integrate DevPartner Java Edition with this IDE, use the Java IDE Add-in Manager. For
more information, see “Using the Java IDE Add-in Manager” on page 123.

You can profile Java applications, Java Beans, applets, JSPs, servlets, and EJBs.

Note: IBM Rational Application Developer 7.5 does not support Java Beans.

� Applications or applets

� Java Beans

� Web server applications

Profiling an Application or Applet

In the Packages pane, select the project to be profiled; then perform one of the following
procedures:

� Click the Run toolbar button or the Run menu, and select Run.

a From the submenu, select DevPartner Java Applet Analysis or DevPartner Java
Application Analysis, as appropriate. The Configuration dialog box appears.

b In the left pane of the dialog box, locate the project; either expand it and select an
existing configuration, or right-click the project to create a new configuration.

c If you are creating a new configuration, use the Main tab to define it.

d On the configuration's Analysis tab, select the type of analysis to perform.

e As needed, use the other tabs to provide required information.

f Click Apply, then click Run to run the configuration.

When you define a configuration for profiling, the configuration is added to the Run
menu, and you can run the profile again by selecting it from the menu.

� If a configuration is already defined for the object, click the Run toolbar button or the
Run menu, then click Run As.

a From the submenu, select DevPartner Java Applet Analysis or DevPartner Java
Application Analysis, as appropriate, to display a list of configurations.

b Select a configuration and click OK to display the Configuration dialog box.

c To change the type of analysis to perform, select the type of analysis to perform from
the Analysis tab.

d Click Apply if needed, then click Run to run the selected configuration.
130 DevPartner Java Edition User’s Guide

Chapter 9 · IDE Integration
Profiling Java Beans

Note: IBM Rational Application Developer 7.5 does not support Java Beans.

In the Packages pane, select the project to be profiled; then click the Run toolbar button
and perform one of the following procedures:

� From the Run menu, select DevPartner Java Bean/Applet Analysis.

a Either select an existing configuration for your application, or right-click to create a
new configuration.

b On the configuration's Analysis tab, select the type of analysis to perform.

c Click Apply, then click Run to run the selected configuration.

� From the Run As menu, select DevPartner Java Bean/Applet Analysis. By default,
DevPartner Java Edition does Performance profiling.

� Select an existing configuration from the list shown in the menu.

a To change the type of analysis to perform, select the type of analysis to perform from
the configuration's Analysis tab.

b Click Run to run the selected configuration.

Profiling a Web Server Application

After you have added your Web server application to Rational Application developer, you can
use DevPartner Java Edition to profile it:

1 In the Package Explorer pane, right-click the project to run.

2 Select DevPartner and select the type of analysis to run:

� DevPartner>Run on server with Performance analysis

� DevPartner>Run on server with Memory analysis

� DevPartner>Run on server with Coverage analysis

3 The Server Selection dialog box appears. Select an existing server or define a new server.
(For details, see the documentation for Rational Application Developer.)

4 To end, exit and close DevPartner Java Edition.

5 To stop the server:

a Select the Servers tab at the bottom of the lower right pane in Rational Application
Developer.

b Select the WebSphere server entry.

c Click the stop server icon in the upper right toolbar of the lower pane.

You can also run Web server applications by performing the following steps:
 DevPartner Java Edition User’s Guide 131

Chapter 9 · IDE Integration
1 Open the Web Content folder.

2 Right-click on the .jsp file to run the application.

3 Select DevPartner and select the type of analysis to run:

� DevPartner>Run on server with Performance analysis

� DevPartner>Run on server with Memory analysis

� DevPartner>Run on server with Coverage analysis

4 The Server Selection dialog box appears. Select an existing server or define a new server.
(For details, see the documentation for Rational Application Developer.)

5 To end, exit and close DevPartner Java Edition.

6 To stop the server:

a Select the Servers tab at the bottom of the lower right pane in Rational Application
Developer.

b Select the WebSphere server entry.

c Click the stop server icon in the upper right toolbar of the lower pane.

Note: If your IDE test server is already running, you must stop and restart that IDE
test server within DevPartner Java Edition for DevPartner Java Edition to
properly hook into the IDE test server and profile your application.

Oracle JDeveloper

The Java IDE Add-in Manager cannot be used to integrate DevPartner Java Edition with
Oracle JDeveloper. You can, however, invoke DevPartner Java Edition from within JDevel-
oper by adding the -Xrun or -agentlib argument to the JVM Arguments section in JDevel-
oper.

In JDeveloper 10.1.2:

1 In the Project Properties dialog box, create a new Profile.

2 In the left pane, select Runner under the Profile.

3 Do one of the following:

� If you are using JVMPI (JDK 5.0 or below), add the -Xrun argument to the Java
Options field, as described in “Using -Xrun to Invoke the Profiler” on page 22.

� If you are using JVMTI (JDK 6.0 or above), add the -agentlib argument to the Java
Options field, as described in “Using -agentlib to Invoke the Profiler” on page 22.

4 Click OK to save the change and close the dialog box.
132 DevPartner Java Edition User’s Guide

Chapter 9 · IDE Integration
In JDeveloper 10.1.3:

1 In the Project Properties dialog box, create a new Run Configuration.

2 Select the new Run Configuration and click Edit to open the Edit Run Configuration
dialog box.

3 In the left pane of the dialog box, select Launch Settings.

4 Do one of the following:

� If you are using JVMPI (JDK 5.0 or below), add the -Xrun argument to the Java
Options field, as described in “Using -Xrun to Invoke the Profiler” on page 22.

� If you are using JVMTI (JDK 6.0 or above), add the -agentlib argument to the Java
Options field, as described in “Using -agentlib to Invoke the Profiler” on page 22.

5 Click OK to save the change and close the dialog box.

When you include the -Xrun argument in the settings, the program is compiled and run under
JDeveloper, but with DevPartner Java Edition profiling enabled.

Notes:

• DevPartner Java Edition does not support the Oracle Java VM, which JDeveloper runs by
default; and does not profile applications run in -minimal or -vanilla VMs.

• JSPs, servlets, and EJBs run in an embedded version of OC4J. To make sure the applica-
tion terminates normally and the DevPartner Java Edition profile is not interrupted before
completion, select Embedded OC4J Server Preferences from the JDeveloper Tools
menu.

• If your IDE test server is already running, you must stop and restart that IDE test server with
DevPartner Java Edition in order for DevPartner Java Edition to properly hook into the IDE
test server and profile your application.

Using the Java IDE Add-in Uninstallation Utility

You can use the Java IDE Add-in Uninstallation utility to remove the DevPartner Java Edition
plug-in for an IDE.

Note: Remove DevPartner Java Edition integration from the IDE before upgrading or
uninstalling/reinstalling the IDE.

1 Click Start>Programs>Micro Focus>DevPartner Java Edition>Utilities>Java IDE
Add-in Uninstallation to open the utility.

2 In the utility window, select the IDE from which you want to remove DevPartner Java
Edition integration

3 Click OK. A confirmation message appears.
 DevPartner Java Edition User’s Guide 133

Chapter 9 · IDE Integration
134 DevPartner Java Edition User’s Guide

Chapter 10

Sample Applications
DevPartner Java Edition provides sample applications that demonstrate the types of analysis
that can be performed.

These applications are located in the following folders:

� Windows — DPJ_dir\samples\app

where DPJ_dir is the path of the DevPartner Java Edition product folder and app is the
folder for the application.

� UNIX — /opt/Micro Focus/DPJ/samples/app

where app is the folder for the application.

The sample applications cover these subject areas:

� Performance analysis

� Computational
� Wait time
� Thread Viewer

� Coverage analysis

� Part 1 — Generate coverage data
� Part 2 — Merge coverage files
� Exporting and Viewing Line-Level Code Coverage Data

� Memory analysis

� Leaks
� Retained objects
� Temporary objects

Performance Analysis

The sample applications for Performance analysis demonstrate how to:

� Find performance bottlenecks.

� Find possible causes of excessive wait times.

� Use the Thread Viewer.
 DevPartner Java Edition User’s Guide 135

Chapter 10 · Sample Applications
Finding Performance Bottlenecks

In the sample application compPerfExample, a set of common operations are performed on:

� Simple array

� ArrayList

� LinkedList

You can compare these operations to see which class has the best performance. You can also
find the bottleneck in the program, that is, what class and method is using the most thread
time. You might get the most performance improvement by changing or improving this code.

This application is located in the following folders:

� Windows — DPJ_dir\samples\compPerfExample

where DPJ_dir is the path of the DevPartner Java Edition product folder

� UNIX — /opt/Micro Focus/DPJ/samples/compPerfExample

To run compPerfExample from the command prompt:

1 Change the folder to

DPJ_dir\samples\compPerfExample

2 Run the appropriate command for your operating system (as one line):

� Windows

nmjava -perf -cp ..;..\..\SessionControlAPI\DPJSessionCon-
trols.jar compPerfExample.CollectionMain

� UNIX

nmjava -perf -cp ..:/opt/Micro Focus/DPJ/SessionControlAPI/
DPJSessionControls.jar compPerfExample.CollectionMain

The DevPartner Java Edition user interface opens in your browser, and displays the
Session Control window.

3 When the program finishes executing, a message prompts you to display the session file.
Click Yes. The Performance Results Summary appears.

Note: For a sample application that demonstrates the Thread Viewer in the Session
Control page, see “Using the Thread Viewer in Performance Profiling ” on
page 141.

4 Examine the Methods Using the Most Thread Time graph. The bubbles represent the
relative amount of thread time used by each method. The list to the right of the graph
shows the ranking of the methods in terms of thread time used. In order of most to least
thread time used, the ranking is doArrayList, LinkedList, and plain array.

Note that all three bubbles are to the right of the Average Thread Time scale, meaning they
have a high value for the average thread time used. But they are low on the Execution
Count scale so they are not called many times.
136 DevPartner Java Edition User’s Guide

Chapter 10 · Sample Applications
5 Click CollectionMain.doArrayList to display the Details window for this method. Note
the Thread Time and Clock Time statistics. They are very close in value.

6 Click CollectionMain.doLinkedList and CollectionMain.doPlainArray. Note that the
doLinkedList and doPlainArray methods spend much more time executing than
waiting. So they are probably running fairly efficiently.

7 In the Details window for doArrayList, click View Source to display the source code
for the method (you may be prompted to navigate to the location).

8 In the Source Code view, click Column Selection and select the Execution Count, %
Thread Time in Method, Thread Time, Wait Time, and Line Number columns. Scroll
to the bottom of the source code. Note the thread time and percentage of thread time in
method values for the three classes: simple array, array list, and linked list. The values are
highest for the linked list and array list while the plain array has relatively low values. So,
looking at the code for the linked list and array list is likely to have the most benefit in
terms of performance.

9 Scan for lines highlighted in red. These are the slowest lines of code in the methods. In this
sample application, the following lines are highlighted in red:

21 array0.init

41 nextItem = array().GetNext(tr)

72 linkedList().populate()

112 cd.doLinkedList()

10 Examine the number of times each of the highlighted methods is executed, the percentage
of total thread time spent in that method, thread time used, and amount of time the method
spent waiting to execute.

Line 21 is executed only once and has relatively low values in the columns. Line 41 has
one of the highest execution counts, and more than 50% of the thread time is spent execut-
ing this line. Line 72 is executed 1,000 times, and one third of the thread time is spent
executing this line; this is the only line in the linked list code. Line 112 is executed only
once, but almost half of the thread time is spent executing this line.

11 Examine the code for the array list; note that almost half the thread time is spent executing
the sort method 1,000 times. In the Thread Time column, you can see that this method
uses the most thread time of any line in the array list code. The biggest performance gain
for this code might involve calling the sort method fewer times or using a more efficient
sorting algorithm.

12 Examine the code for the linked list. About one third of the thread time is spent in the pop-
ulate method and one third is spent getting the next item. The getNext method is called
201,000 times. Both methods take about the same number of time to execute and have the
highest thread time values for the code in the linked list. Reducing the number of calls to
this method might improve the performance of the linked list code.
 DevPartner Java Edition User’s Guide 137

Chapter 10 · Sample Applications
13 Examine the code for the plain array. Note that more than 50% of the thread time is spent
executing the getNext method. It is called 201,000 times. The total thread time for this
method is much lower than for the methods using the most thread time in the array list and
linked list code. Reducing the number of calls to this method might improve the perfor-
mance of the plain array code. But you probably won't gain much performance for the
plain array.

After you have made changes to the code, rerun the sample application and determine whether
your changes improved the performance of the application.

Finding Excessive Wait Times

The sample application waitTimeExample demonstrates how DevPartner Java Edition
analyzes wait times. This feature helps you spot system scalability hotspots, such as lock
contention and disk I/O before they happen in production. This class writes to a very simple
in-memory Log Object, which consists of a small circular buffer. The class runs in two modes:

� Global — All threads use a single synchronized buffer.

� Local — Each thread uses its own buffer.

These modes demonstrate how a program can spend a great deal of time waiting for access to
a synchronized resource; in this sample, more time waiting than doing the actual work.

The application is located in the following folders:

� Windows — DPJ_dir\samples\waitTimeExample

where DPJ_dir is the path of the DevPartner Java Edition product folder

� UNIX — /opt/Micro Focus/DPJ/samples/waitTimeExample

Note: You cannot collect wait times on Linux or AIX.

Global Mode (With Lock Contention)

In the global mode, there is only one Log object. The method Log.log() is synchronized to
prevent data corruption.

To run this sample using a single Log object:

1 At the command prompt, change the folder to

DPJ_dir\samples\waitTimeExample

2 Run the command (on one line)

nmjava -perf -cp .. waitTimeExample.ThreadLogMain global

3 When the Session Control message appears, click Yes.

For a sample application that demonstrates the Thread Viewer in the Session Control page, see
“Using the Thread Viewer in Performance Profiling ” on page 141.

4 In the Performance Results Summary, view the Methods Spending the Most Time Wait-
ing graph.
138 DevPartner Java Edition User’s Guide

Chapter 10 · Sample Applications
Note that out of the five methods listed, Log.log(java.lang.String) and Thread-
LogMain.run() spend the most time waiting.

5 Click each of the methods listed to the right of the graph, starting with
Log.log(java.lang.String). When you click a method, the Details window for that
method appears. Note the Thread Time and Wait Time values for each method. The code
executing ThreadLogMain.run() spends more time waiting than executing. The values
for Thread Time and Wait Time for the method Log.log(java.lang.string) are
much higher than those values for the last three methods shown in the graph.

6 Click More Details.

7 Click Column Selection, then select the Wait time and Thread time including Children
columns for viewing.

Note in the Wait Time column that the run() method spends a significant amount of time
waiting. The Thread Time including Children column shows that it also spends a signif-
icant amount of time executing. This is because five different threads are spinning,
attempting to acquire the same lock.

In a real-world situation, this problem might be resolved by reducing the number of threads.
This would be a good approach if it is simply a tuning parameter to your application server.

Local Mode (No Lock Contention)

Another solution common in high-performance logging applications is for each thread to
perform its own logging and, if necessary, merge later. This greatly reduces the synchroniza-
tion overhead of the log call itself. You could also remove the actual synchronized statements
from the code, but this solution is not necessary for the sample because addressing the lock
contention improved the performance/scalability of the program. (The synchronizations that
did not have lock contention are not a problem.)

1 At the command prompt, change the folder if necessary:

DPJ_dir\samples\waitTimeExample

2 Run the command (as one line)

nmjava -perf -cp .. waitTimeExample.ThreadLogMain local

3 When the Session Control message appears, click Yes.

4 On the Performance Results Summary, view the Methods Spending the Most Time
Waiting graph.

Note that Log.log(java.lang.String) is now the largest bubble. ThreadLog-
Main.run() is smaller than in the global mode, but it is the second-largest bubble in
local mode.

5 View the Methods Using the Most Thread Time graph to see which methods use the
most thread time when running the sample application in local mode. The
Log.log(java.lang.String) bubble is the largest in the graph; it uses the most
thread time of the methods in the sample application. The position of the
Log.log(java.lang.String) bubble is higher on the Execution Count scale than on
the Average Thread Time scale. This tells us that execution count contributes more to the
use of thread time by this method than the average thread time used by this method.
 DevPartner Java Edition User’s Guide 139

Chapter 10 · Sample Applications
In contrast, the second largest bubble, ThreadLogMain.run(), is higher on the Average
Thread Time scale than on the Execution Count scale. This tells us that on average, it uses
a lot of thread time.

6 Click Log.log(java.lang.string) to open the Details window for this method. Note
that the Wait Time value is much higher than the Thread Time value. This means that the
method spends more time waiting to execute than actually executing.

7 Click View Call Graph in the Details window. The Call Graph shows that ThreadLog-
Main.run() [identified in the Call Graph as run()] calls
Log.log(java.lang.string) [identified in the Call Graph as
log(java.lang.string)]. Since only one line connects these two methods, any
changes made to Log.log(java.lang.string) will affect the ThreadLog-
Main.run().

8 In the graph, click Log.log(java.lang.string). The Details window appears.

9 Click View Source to display the source code for Log.log(java.lang.string). If
prompted, browse to the path to the source file for this application.

10 Click Column Selection; select Thread Time and Line Number, then click OK.

In the Source View, DevPartner Java Edition highlights the slow line(s) of code in yellow.
Details about each line of code appear in the columns to the left of the line of code. In this
example, line 20 is highlighted. Note that the Wait Time value is much higher than the
Thread Time value. This means that the method spends more time waiting to execute than
actually executing. Also, notice that this line of code is executed 250,000 times in the
sample application.

One way to improve the performance of this sample application is to reduce the number of
calls to methods that are running slowly. In this sample application, reducing the number of
calls to Log.log(java.lang.string) might improve performance.

Even though the local version finishes faster than the global version, the total amount of CPU
time (thread time) is greater, particularly on single CPU systems. This is because this sample
program is completely CPU-bound; there is no I/O.

Regardless of how many threads you can run simultaneously, the sample program will not run
any faster on a single CPU system. Keep in mind that the differences between profiling on
your desktop computer and profiling on a multi-processor server system means that a dual or
quad processor computer could nearly double or triple the throughput. Although this example
demonstrates scalability, its only bottleneck is the CPU. Therefore, there is no real advantage
in having multiple threads that are capable of running concurrently.

Although this behavior occurs because waitTimeExample is a very simple example for
demonstrating wait time, the example can also serve as a performance optimization lesson. In
the real world, if the CPU is your bottleneck, adding threads will only slow your program
down.
140 DevPartner Java Edition User’s Guide

Chapter 10 · Sample Applications
Using the Thread Viewer in Performance Profiling

The sample application threadExample is located in the following folders:

� Windows

DPJ_dir\samples

where DPJ_dir is the path of the DevPartner Java Edition product folder

� UNIX

/opt/Micro Focus/DPJ/samples

Run the Application

This demonstration uses the default settings in the session configuration. The Thread Viewer is
enabled by default, and the live thread data is retained for 30 seconds.

1 At the command prompt, change the folder to

DPJ_dir\samples

2 Run the command (as one line)

..\bin\nmjava -perf -cp . threadExample.BounceThread

3 The DevPartner Java Edition interface and the Bounce application window open.

4 To start the Bounce application, click Start. A ball appears; it bounces randomly around
the screen 1,000 times, then disappears.

To add more bouncing balls to the screen, click Start again; each new ball is a separate
thread. Use the Clear button to stop all the ball threads, which removes the balls from the
Bounce window.

To increase or decrease the bouncing speed, click the + (plus) or – (minus) buttons.

To stop the application and close the Bounce window, click Close.

View the Session Control Page

As the Bounce application runs, its threads are displayed in the "live view" graph in the
Session Control page. The names of all the currently running threads are listed down the Y-
axis of the graph in alphabetical order. The X-axis shows the time intervals.

Thread status is identified by color: yellow for running, red for waiting, purple for blocked,
and black for terminated. Each time you click Start and a new ball appears in the Bounce
window, a new thread begins running and appears in the graph.

The graph is refreshed every second. If a thread runs and terminates in less than one second, it
may not appear in the graph. For example, it is likely that you will not see main() when you
start the Bounce application. You may also not see state changes from waiting to running and
back again (or vice versa) if a thread runs or waits for less than one second.

The duration for displaying thread states ranges from a minimum of 5 seconds through a
maximum of 120 seconds. The default is 30 seconds.
 DevPartner Java Edition User’s Guide 141

Chapter 10 · Sample Applications
Note: A higher duration requires higher overhead for retaining the data, and may
degrade performance. If the profiling proceeds unacceptably slowly, disable
the Thread Viewer.

A terminated thread continues to be listed only for the number of seconds specified for
Thread Viewer History in The Live View in the session configuration. In this demonstration,
a thread persists for 30 seconds, then disappears from the list.

The thread data is not saved to a file; it persists only as long as the thread is displayed in the
graph.

While the application runs, you use the buttons below the graph to open a Performance Results
Summary window to view the data collected thus far, or to clear the collected data.

The Threads tab at the bottom of the Session Control page displays a table that provides four
columns of information about the currently running threads:

� Thread Name — The threads are listed in the same order as in the graph. A terminated
thread disappears from the table when it disappears from the graph. The ball threads are
named BallName_1, BallName_2, etc.; each new thread is designated with the next higher
number.

� Unique ID — DevPartner Java Edition assigns a unique identifier to each thread because
multiple threads may have the same name, or thread names may be truncated to identical
strings.

� Monitors Held — As each thread runs, this column displays the number of synchronized
methods or blocks of Java code currently held by the thread. You may see the number
change as the thread holds and releases the monitors. A ball can hold up to 5 monitors.

� State — This column displays the current state of the thread: Running, Waiting, or Termi-
nated.

Note: For descriptions of the other two tabs, see “Performance Session Control” on
page 105.

The thread data is available only as long as it is displayed in the Thread Viewer and table. The
data is not included in the session file.

View Results

To view session results, do one of the following:

� To view cumulative results without ending the profiling session, click the View Results
button. While the results appear in the Performance Results Summary, the session infor-
mation continues to be updated in the Session Control page.

� To end the profiling session without stopping the application, click Home to display the
Start page, select the Application Testing tab, and click Detach. Use the browser's Back
button to return to the Session Control page; a message prompts you to display the session
results. Note that when you detach the application, the session information disappears
from the Session Control page.
142 DevPartner Java Edition User’s Guide

Chapter 10 · Sample Applications
� To reattach the application, click Home, select the Application Testing tab, and click
Attach. To view the Session Control page, click View; the page appears in the same
browser window. (If necessary, click Refresh to make the Attach or View button avail-
able.) If you detach and reattach the application, each new ball thread after reattaching is
numbered incrementally from the previous session; for example, if the last thread before
you detached the application was BallName_7, the first ball thread in the new session is
BallName_8.

� To stop the application and end the profiling session, click Close in the Bounce window.
In the Session Control page, a message prompts you to display the session results. Note
that when you stop the application, the session information remains displayed in the Ses-
sion Control page.

When you use any of these methods to display session results, the Performance Results
Summary appears in a new browser window.

Coverage Analysis

The sample applications for Coverage analysis demonstrate how to:

� Generate Code Coverage data.

� Work with merged Code Coverage session files.

� Export and view line-level Code Coverage data.

Coverage Sample — Part 1: Generating Data

This sample application coverageExample takes one parameter consisting of the name of a
class to load, either coverageExample.Class1 (to run Part 1) or coverageExam-
ple.Class2 (to run Part 2).

This application is located in the following folders:

� Windows — DPJ_dir\samples\coverageExample

where DPJ_dir is the path of the DevPartner Java Edition product folder

� UNIX — /opt/Micro Focus/DPJ/samples/coverageExample

To run the first part of this sample:

1 Change the folder to the coverageExample path.

2 Run the command (as one line)

nmjava -cov -cp .. coverageExample.CoverageMain coverageEx-
ample.Class1

The sample application terminates immediately. The Session Control page is displayed,
prompting you to choose whether to view results or clear collected data. Click Yes when
prompted to view the final coverage results.

The Coverage Results Summary presents a high-level view of the application's coverage
statistics in the following sequence.
 DevPartner Java Edition User’s Guide 143

Chapter 10 · Sample Applications
� Two bar graphs depict how many methods and how many lines respectively were covered
overall. It shows what percentage of the methods are called, and what percent of lines are
executed, along with actual counts.

� The number of out of order thread synchronizations found is listed.

� A graph shows the top five methods with the least amount of code coverage. It shows the
percentage of called classes containing methods, and the percentage of lines executed,
along with the actual count of lines not executed.

To determine which lines of code are not covered, and the methods that contain them:

1 Click CoverageMain.main(java.lang.String[]), the method with the most lines of code
not covered, to view specific information about the number of lines that are covered.

2 Click View Source Code to display the source code for this method in a new browser win-
dow.

Two bar graphs appear at the top of the right pane. The first graph shows the number of
methods called, the total number of methods in the class, and the percentage of methods
called. The second shows the number of lines of code executed in the called method, the
total number of lines of code in the called method, and the percentage of lines executed.

The right pane also shows the source code for Coverage-
Main.main(java.lang.String[]). Scroll down the Execution Count column for
instances of 0 (zero), which indicates lines of code that were not executed. For ease of
reference, the Line Number column shows the line numbers for each line of code.

You can also display this information by clicking the hyperlink for CoverageMain, the
class with the most methods/lines of code not covered, which is adjacent to the second
graph on the Coverage Results Summary.

To get an overview of which methods and lines are executed in which class, click More
Details to the right of a graph on the Coverage Results Summary to display a window in
which the left pane shows a tree structure containing classes in your program, branching
each class based upon the package to which it belongs. Fully expand the tree structure if it
is closed. The number to the right represents the sum of its classes' total number of lines
not covered (CoverageMain and Class1). In this case, coverageExample contains
four lines of code not covered, which are in CoverageMain. Class1 does not have any
lines of code that are not covered.

Two bar graphs appear at the top of the right pane. The first graph shows the number of
methods called, the total number of methods in the class, and the percentage of methods
called. The second shows the number of lines of code executed in the called method, the
total number of lines of code in the called method, and the percentage of lines executed.

The right pane also shows the source code for the method Coverage-
Main.main(java.lang.String[]). Scroll down the Execution Count column for
instances of 0 (zero), which indicates lines of code that were not executed. For ease of
reference, the Line Number column shows the line numbers for each line of code.

You can also display this information by clicking the hyperlink for CoverageMain, the
class with the most methods/lines of code not covered, which is adjacent to the second
graph on the Coverage Results Summary.

� To select which columns to display, click Column Selection.
144 DevPartner Java Edition User’s Guide

Chapter 10 · Sample Applications
� To display just the source code window with the execution counts and line number,
click Printer Friendly Version.

Evaluate the need for the methods and/or lines of code that are not covered in your
program. If they are needed, you should consider adding them to your test cases as
your test cases currently do not exercise them adequately, if at all.

In Part 2, you will experiment with the merged file feature of DevPartner Java Edition.

Coverage Sample — Part 2: Working with Merged Files

When you performed Part 1 of the Coverage sample, DevPartner Java Edition created a
Configuration file with default values, named coverageExample.CoverageMain.

To modify this configuration file:

1 In the DevPartner Java Edition interface, click Home to display the Start page.

2 Select the Configurations tab.

3 From the list of configurations, select coverageExample.CoverageMain.

4 Select Automatically merge Coverage Sessions.

5 Click Change File and enter a new name for the merge file in the field in the Explorer
User Prompt dialog box. Click OK to save the merge file with the new name.

6 At the command prompt, change the folder to

DPJ_dir\samples\coverageExample

where DPJ_dir is the path of the DevPartner Java Edition product folder.

7 Run the command (as one line)

nmjava -cov -batch -cp .. coverageExample.CoverageMain coverageEx-
ample.Class1

A merge file is created, containing a single session.

Note: When you use -batch, the Session Control page is not displayed.

8 To view the merge file, select the Session Files tab in the DevPartner Java Edition inter-
face.

9 From the list, select coverageExample.CoverageMain if it is not already selected.

10 Double-click the file name you specified as the merge file when you modified the config-
uration.

The merge Results Summary resembles the Coverage Results Summary, except that it also
has a Merged Session History below the Overall Coverage Statistics graphs. The
Summary depicts the progression of your coverage statistics over time, as session files
from different runs are merged. It also displays volatility, which indicates how much the
code changed from run to run. In general, lower volatility is preferred, because there is
less code to retest.

11 Click Merge Details to view the same graph broken down by class and package.
 DevPartner Java Edition User’s Guide 145

Chapter 10 · Sample Applications
12 Select an entity in the tree in the left pane to view the corresponding graph in the right
pane.

A list of removed methods and Inactive classes also appears in the tree.

13 At the command prompt (DPJ_dir\samples\coverageExample), run the command
(as one line)

nmjava -cov -batch -cp .. coverageExample.CoverageMain coverageEx-
ample.Class2

A second run is added to the merge file.

14 Repeat steps 8 through 12.

15 Click Source Code.

In this run, a new class (Class2) was loaded that was not loaded before. Also, Class1
was not loaded this time.

16 Fully expand the Inactive Source tree.

The merge file now displays Class1 as Inactive Source in the Merge Details view.
Volatility is increased by the addition of the methods in Class2.

17 Comment out the method MethodToRemove() in Class2.java.

18 Recompile Class2.java by running the following command:

javac Class2.java

19 Repeat steps 8 through 12.

20 Click Removed Methods.

The merge file now displays Class2.MethodToRemove() in the Removed Methods
node at the bottom of the tree.

21 Select Class2 in the tree on the Merge Details view.

Volatility for Class2 increased because the class changed since the last run.

22 Select Inactive Source in the tree.

The overall volatility of the application has in fact decreased, because fewer lines of code
have changed between the second and third runs compared to between the first and second
runs.

Exporting and Viewing Line-Level Code Coverage Data

You can export line-level data from Code Coverage sessions in XML format, using either the
utility nmextract or the Export feature in the Session Files tab of the Start page.

The sample application CardGame demonstrates how to use the utility convert2HTML.jar
to display the line-level Code Coverage data in HTML pages. You can adapt this utility to use
with your reporting system (see “Adapting the Conversion Utility” on page 149).
146 DevPartner Java Edition User’s Guide

Chapter 10 · Sample Applications
For example, you may want to generate detailed Code Coverage reports for application source
code as part of a nightly unit test. To create this report, you want to chain together your cover-
age-enabled test suite, the DevPartner Java Edition export facility to generate XML files of
Code Coverage data, and a Web formatting tool to annotate the source files with the Code
Coverage details.

Using the Example Application

Perform these steps to create a Code Coverage session file for the CardGame application,
extract the line-level data, and display it in an HTML browser:

1 Run a Code Coverage session.

2 Export the session file to an XML file.

3 Use convert2HTML.jar to create HTML pages from the exported data.

4 Display the HTML report in your Web browser.

Note: In the procedures below, DPJ_dir is the path of the DevPartner Java Edition
product folder. The location of the \var folder depends on the operating
system:

• Windows XP or 2003 Server — C:\Documents and Settings\All Users\Applica-
tion Data\Micro Focus\DevPartner Java Edition\var (By default, the Appli-
cation Data folder is hidden. To display the var folder and its contents, type the path in
the Address bar of Windows Explorer and press Enter.)

• Other supported Windows operating systems — C:\Program Data\Micro Focus\Dev-
Partner Java Edition\var

• UNIX — DPJ_dir/var/configurations

Run the Code Coverage Session

To run the Code Coverage session:

1 Open a command window.

2 Change to the path of the DevPartner Java Edition product folder.

3 To generate the Code Coverage session file, execute (as one line):

bin\nmjava -cov -jar "samples\nmExtractEx-
ample\CardGame\dist\CardGame.jar"

The session file ProgramEndx.tcs is generated in the folder \var\session-
files\CardGame. In the filename, x is a number generated automatically to uniquely
identify the file. For example, the third time you execute the command, the file name is
ProgramEnd3.tcs.

Note: When nmjava is executed, the Session Control page opens automatically.
When you are prompted to view the session file, click No. You can close the
Session Control page.
 DevPartner Java Edition User’s Guide 147

Chapter 10 · Sample Applications
Export the Data to an XML File

Execute the following command as one line, replacing the x in ProgramEndx.tcs with the
actual number and path with the path for your operating system as listed above:

bin\nmextract -cov -xml

-all "path\var\sessionfiles\CardGame\ProgramEndx.tcs"

-out "path\var\sessionfiles\CardGame\CoverageData"

� -cov — Extract Code Coverage data.

� -xml — Create an XML file of the data.

� -all — Export all data, including line-level.

� -out — Create the export file in the specified folder.

The file CoverageData.xml is generated in the folder path\var\session-
files\CardGame.

Note: You can also export line-level data through the Session Files tab of the Start
page. For details, see “Exporting Session Data” on page 75.

Create the HTML Report

1 Change to the folder DPJ_dir\samples\nmExtractExample.

2 Execute the following as one line, where path is the path for your operation system as
listed above:

java -jar convert2HTML\dist\convert2HTML.jar

-i "path\var\sessionfiles\CardGame\CoverageData.xml"

-p "DPJ_dir\samples\nmExtractExample\CardGame\src"

-o "DPJ_dir\samples\nmExtractExample"

� -i — Input file.
� -p — Path(s) to search for source files; separate multiple paths with commas.
� -o — Location of the output folder.

Note: To display help information for this utility, execute the following command from
DPJ_dir\samples\nmExtractExample:
java -jar convert2HTML\dist\convert2HTML.jar -h

The convert2HTML.jar utility generates HTML files for all the source files listed in the
XML file specified by the -i option, as well as the files it can find in the paths specified by the
-p option.
148 DevPartner Java Edition User’s Guide

Chapter 10 · Sample Applications
A folder named \html is created inside the folder specified by the -o option. Within \html is
a table of contents, (TOC.HTML) and a folderfolder containing an HTML file for each source
file (corresponding to each package in the application).

Note: The convert2HTML.jar utility may display error messages while generating
the HTML files. If the message "Successfully generated HTML files into
destination_directory" appears, then the conversion was successful and the
error messages can be ignored. If an error message appears, followed by
information about convert2HTML.jar usage, check the command for syntax
errors.

Display the HTML Reports

To display the HTML reports, open TOC.HTML into your browser. This page displays a table
that lists the classes for which Code Coverage data was exported.

Click on a class name in the table to display the source code. Each line that was executed is
highlighted in green and identified by a check mark next to the line number; the number to the
right of the check mark indicates how many times the line was executed. Each executable line
that was not executed is highlighted in red, with an X next to the line number and a zero (0) to
the right of the X. This annotation is similar to the Source View in the DevPartner Java Edition
Start page.

The HTML report also displays environment information from the Code Coverage session, in
a scrolling window above the class table. This information is the same as the Process section
of the Session Details tab, which is displayed with the Coverage Results Summary tab when
you open the session file within the DevPartner Java Edition Start page.

Adapting the Conversion Utility

The source code for convert2HTML.jar is provided in DPJ_dir\samples\nmExtract-
Example\convert2HTML\src\convert2html.

You can use the source code to extend or adapt this utility to fit your Web reporting system.

You could also wrap the nmjava, nmextract, and convert2HTML utilities in an Ant script
to further automate the Code Coverage reports.

Memory Analysis

The sample applications for Memory analysis demonstrate how to:

� Find memory leaks.

� Find retained objects.

� Identify temporary objects.
 DevPartner Java Edition User’s Guide 149

Chapter 10 · Sample Applications
Finding Memory Leaks

The sample application stackLeakExample demonstrates memory leaks that can occur
when you push and pop with a stack. Ideally, when you pop each entry, you zero it out. Each
entry has a pointer to a stack entry location. If the entry does not get zeroed out, it cannot get
garbage collected. The bug that is demonstrated in this sample is that none of the pushes are
subsequently popped or zeroed out; therefore, they cannot be garbage collected. This problem
causes memory leaks, which in turn can cause performance degradation.

The application can be found in the following folders:

� Windows — DPJ_dir\samples\stackLeakExample

where DPJ_dir is the path of the DevPartner Java Edition product folder

� UNIX — /opt/Micro Focus/DPJ/samples/stackLeakExample

Run the Application

1 Change the folder to

DPJ_dir\samples\stackLeakExample

2 Run the command (as one line)

nmjava -mem -cp .. stackLeakExample.StackLeakMain

3 The Session Control window appears. From the list in the top left corner, select Memory
Leaks.

4 At the command prompt, enter 40 to simulate performing 40 stack pushes/pops.

5 In the Session Control page, select the Profiled Classes tab if it is not already displayed.

6 In the Filter By field, enter stackLeakExample; click Apply.

Only the classes of the class stackLeakExample are listed.

7 To enable tracking of memory allocations, click Start Tracking.

8 To check for memory leaks, enter 40 at the command prompt to simulate performing 40
stack pushes/pops. The class stackLeakExample.StackEntry shows the number of
Tracked Objects to be 40, representing the number of stack pushes/pops. The real-time
graph shows a spike.

9 Click Stop Tracking to end the tracking of allocated objects.

10 At the command prompt, enter 30 to simulate performing 30 stack pushes/pops.

11 Click Run Garbage Collection.

The count of tracked objects for StackEntry is 10, when it should be 0 (zero). This
indicates that 10 instances of StackEntry have leaked. The memory display in the real-
time graphs did not return to the pre-exercise level. Also, the StackData object has
100,000 leaked objects.
150 DevPartner Java Edition User’s Guide

Chapter 10 · Sample Applications
View the Results

1 Click View Memory Leaks to create a session file. The session file data is displayed in
the Memory Leaks Results Summary.

The session file records the leaked classes, and helps you locate where the memory leak
resides. Note the number of uncollected instances of an object in the Tracked Objects
column.

2 In the Memory Leaks Results Summary, view the Objects that Refer to the Most
Leaked Bytes graph. Use this graph because there is only one set of objects causing the
leaked memory (the Object array).

3 Click the Object link to the right of the graph to display a Details window. Note that this
object refers to over 100,000 leaked objects.

4 Click View Instances to display a list of all the Leaked Objects Referenced from
Object array.

5 If necessary, click the Referenced Bytes column head in the Instance List to sort the list is
descending order. Note that the 10 instances of StackEntry contribute the most leaked
bytes of the objects referenced by Object.

6 Scroll down the Instance List. Note that there are also 10 instances of Object in stack-
LeakExample.StackEntry. Continue scrolling; there are many instances of Stack-
Data, even though each one only leaks 16 bytes. Looking back on the Session Control
page, note that there were 100,000 StackData objects remaining in memory after gar-
bage collection was performed.

7 In the Instance List, click any instance of StackEntry to display the Referring Object
window. Click View Object Reference Path. Drag the divider bar towards the top of the
Instance List to see the Object Reference Path. Click the StackEntry node to display the
source code for the method. Note that two of the objects leaking data (StackData and
StackEntry) were allocated in the method CreateStackEntry. There are 10 leaked
instances of StackEntry and each entry on the stack refers to 10,000 StackData
objects; this results in the 100,000 leaked instances of StackData (10 * 10,000 =
100,000).

8 In the Object Reference Path, click the Object[] node that refers to StackEntry to view
the source code for Stack.java. In the Source View, note that line 33 is highlighted; it is
the line where this Object[] array was allocated in the pop method.

Notice a comment in the code on lines 23-24. The problem that causes memory leaks in
this application is that the referencing variable, elements[size], is not set to null. If
you uncomment line 24, compile the program, and rerun it, the memory leaks no longer
occur.

Most instances of memory leaks in programs occur because a referencing variable either is not
set to null or is overwriting the referencing variable with a reference to a object that is being
used by the program.
 DevPartner Java Edition User’s Guide 151

Chapter 10 · Sample Applications
Finding Retained Objects

The sample application for object retention analysis is called objectRetentionExample. It
is located in the following folders:

� Windows — DPJ_dir\samples\objectRetentionExample

where DPJ_dir is the DevPartner Java Edition product folder

� UNIX — /opt/Micro Focus/DPJ/samples/objectRetentionExample

The application demonstrates how a memory leak can be caused by retaining objects in
memory after they should have been released. It consists of a server and a client. The server
waits for a client to connect to it and replies to queries from the client. To exercise the client,
you enter the following information:

� The hostname of the server

� The number of times to query the server

Using this information, the client requests an instance of DataConnection from Connec-
tionPool the specified number of times. ConnectionPool is initialized with a single
DataConnection instance and keeps track of two collections:

� Connections that are currently unused and available

� Connections currently in use by the client

When the client returns a connection, the pool checks whether it is a connection that the pool
created. If it is, the connection is returned to the “available” collection to be reused for a subse-
quent request.

In this example, however, the connection is not released back to the pool when the client is
finished with it, thus creating a memory leak.

Using the sample application involves four tasks:

1 Create a configuration that has object retention enabled.

2 Run the server.

3 Run the client.

4 Review the results in the Object-Lifetimes Results Summary.

Create the Configuration

Note: If you have previously run this sample application and ObjRetConfig is
included in the list in the Configurations tab, you do not need to create a new
configuration. You can use the existing ObjRetConfig configuration.

1 Open the DevPartner Java Edition Start page and select the Configurations tab.

2 Click New to display the Explorer User Prompt. Type ObjRetConfig for the configuration
name, then click OK to create the new configuration.

3 In the left pane, select Object Retention. The object retention options are displayed in the
tab.
152 DevPartner Java Edition User’s Guide

Chapter 10 · Sample Applications
4 Select Enable Object Retention. You do not need to select or change any other options
for this example.

The new configuration is saved automatically.

Run the Server

1 Open a command console and change to the /samples folder.

2 Enter the command

java objectRetentionExample.PurchasesServerMain

Note: The server continues to run until you press Ctrl-C.

Run the Client

1 Open another command console and change to the /samples folder.

2 Enter the command (as one line)

nmjava -mem -config ObjRetConfig objectRetentionExample.Purchases-
ClientMain

3 The Session Control page opens. The real-time graph at the top of the window shows the
memory usage as the application runs. Select Object-Lifetime Analysis from the list.

4 Return to the console in which you executed the client. It displays the prompt Enter Pur-
chases server hostname. Enter the IP address of the computer on which the server is run-
ning.

5 The console displays the prompt Enter # of times to query the server. Enter 4.

6 Return to the Session Control page. The real-time graph spikes as the queries are executed.
After the fourth query, the client quits. You are prompted to view the last session file that
was created for the session. Click Yes to display the Object-Lifetimes Results Summary.

Note: As the client executes, the console in which you executed it displays a series
of messages, ending with "Completed all requests..." The server console
displays messages confirming the queries. If you do not want to exercise the
client again, press Ctrl-C in the server console to stop the server and close
both consoles.

Review the Results

In the Object-Lifetimes Results Summary, the Objects Retained the Longest graph shows
that the DataConnection instances were retained. The number at the end of each bar
(instance) in the graph shows the number of garbage collections that occurred since the
instance was last used.

Note: For more complex applications than this sample, the graph displays five bars,
for the five objects that were retained in memory for the longest time.

Click More Details to display the list of all instances. This list shows that all the instances are
not yet garbage collected (the is Garbage Collected column lists false for each instance).
 DevPartner Java Edition User’s Guide 153

Chapter 10 · Sample Applications
By default, the Instance List is sorted by the Object-Retention Span column, from largest to
smallest value. Click the first instance to display its Details window, then click View Alloca-
tion Trace Graph. The graph appears below the Instance List. The nodes represent the
method calls that led to allocation of memory for the instance.

The Allocation Trace Graph shows that the instance of DataConnection created during the
initialization of ConnectionPool was retained the longest. This should not have been the
case. Because the server is queried more than once, the connection should have been released,
then reused for another query. That the connection was never reused is a clue that it was
retained in memory. It is a possible cause of a memory leak.

Identifying Temporary Objects

The sample application tempObjExample is located in the following folders:

� Windows — DPJ_dir\samples\tempObjExample

where DPJ_dir is the path of the DevPartner Java Edition product folder

� UNIX — /opt/Micro Focus/DPJ/samples/tempObjExample

Run the Application

1 At the command prompt, change the folder to

DPJ_dir\samples\tempObjExample

2 Run the command (as one line)

nmjava -mem -cp .. tempObjExample.TempObjMain

3 In the Session Control page, select Object-Lifetime Summary from the list of available
analysis types.

4 At the command prompt, enter 1 to warm up the program (to make sure all classes are
loaded and all one-time initializations are run).

5 Click Clear Collected Data to clear what has been collected so far.

6 Click Run Garbage Collection to clear the temporary objects.

7 At the command prompt, enter 1000 to create a large number of temporary objects. Note
the spike in memory use.

View the Results

1 In the Session Control page, click View Temporary Objects to display the Object-Life-
time Results Summary, then select the Temporary Objects Results Summary tab.

2 View the Methods Requiring the Most Temporary Space graph. Note that the method
StringConcat.doConcats uses the most temporary space. The other methods use very
little temporary space. So, examine StingConcat.doConcats to determine which lines
of code are using the most temporary space.
154 DevPartner Java Edition User’s Guide

Chapter 10 · Sample Applications
3 Click StringConcat.doConcats to the right of the graph. Note that this method uses a
high number of temporary bytes. The largest number of temporary objects are short-lived
objects, with a relatively small number of medium-lived objects.

4 In the Details window, click View Call Graph. The Call Graph shows the critical path:
the sequence of child method calls that resulted in the largest total allocation of memory.
In this example, the method doConcats causes the largest allocation. The bubble for this
method shows that this method is responsible for 100% of the temporary bytes allocated.
This method also is responsible for 100% of the temporary objects used by all methods
during the session.

5 Click the doConcats bubble, then click View Source. If prompted, browse to the path to
the source file for this application.

6 Click Column Selection, and select the following columns: Line Number, Temporary
Bytes including Children, Temporary Objects including Children, Short-lived Bytes
including Children, Short-lived Objects including Children, Medium-lived Bytes
including Children, and Medium-lived Objects including Children. Click OK to save
your selections.

7 Note that line number 9 is highlighted in yellow; this is the first line in the selected method
that performs an action. The next line (a for loop), is executed 659 times; it creates the
large numbers of temporary bytes, temporary objects, short-lived bytes, and short-lived
objects, and a lesser number of medium-lived bytes and objects. If you reduce the value of
num (that is, make the number of strings processed smaller), the number of temporary
objects produced by doConcats will decrease.
 DevPartner Java Edition User’s Guide 155

Chapter 10 · Sample Applications
156 DevPartner Java Edition User’s Guide

Index
A
accessing source code on remote computers 44
Administration Console 19
-agentlib parameter 22
agentlib parameter 22
allocation trace graph 42, 89
analyzing data 86
API session control methods 56
applets 48
application servers

configuring 19
profiling code through 24

attaching and detaching a running application 23
average reference bytes 96

B
Borland JBuilder 124
byte code 14

C
call graph 29

common graphical attributes 42
critical path 30
parent and child percentages 31

class list real-time 86
classes

leaked objects 87
live objects 87

collection level 61
command line 20, 117
comparing session files 80
computing memory use 96
configurations

API categories 62
creating 60
entry points 62
general parameters 61
managing 60

object retention 63
packages and classes 64, 65
source file paths 66
specifying a path for source code 40
Thread Viewer 67
trivial methods 62
viewing 61

configuring application servers 19
contacting Customer Care 10
Coverage analysis

merge states 116
merging session files 113, 114
merging with JUnit report 117
session control 112

CPU time 103
creating configurations 60
critical path 30
Customer Care 10

D
DevPartner Java Edition server 15
Distributed Analyzer 47
dpj utility 27

E
Eclipse 128
entry points 15, 62

page 32
performance 33
profiling 62
temporary objects 33

exporting session file data 50, 75
exported file contents 76

H
HTML files of session data 76
157 DevPartner Java Edition User’s Guide

 Index
I
IBM Rational Application Developer 130
IDE (integrated development environment) 124,
128, 130, 132

using -Xrun to profile 22
Instance List 90

J
Java platform performance 16
Java plug-ins 45, 47
JBoss

starting with Eclipse WTP 128
JBuilder 124
JDeveloper 132
JUnit 117

Ant script code 120
sample project 118

JVMPI 22, 23
JVMTI 22, 23

L
licenses 16, 27
long-lived object 82, 97

M
medium-lived object 82, 97
Memory analysis

Method List 35
session control 84

memory leaks 97
Merge Session History graph 115
merging session files 113, 114, 115
Method List 35
multiple processes 14, 61

N
nmappletviewer 49
nmextract 50
nmjava 53
nmserver 53
nmshell 55

O
object lifetimes 82, 97
Object Reference Path 91
object retention 63, 82, 84, 88, 97

sample application 152
objects 82, 97
Oracle JDeveloper 132
out-of-order thread synchronization 61, 110, 111

P
packages and classes 64, 65
Performance analysis 33

results summary 107
session control 105

plug-ins 45
ports 17
printing profiling data 44
processes

multiple in one session file 14
per session 61

profiling 20
applets 48
enabling manually 21, 22
running applications 23
Session Control API 56
specifying JVMPI or JVMTI 23

Q
quick start 20

R
RAM footprint 99, 100
Rational Application Developer 130
recursive calls 104
reference bytes 96
regular expressions 65
releasing DevPartner Java Edition licenses 27
Results Summary 29

coverage 112
memory leaks 95, 96, 100
performance 107
RAM footprint 100
retained objects 97
temporary objects 98
158 DevPartner Java Edition User’s Guide

Index
retained objects 63, 82, 84, 88, 97
reusing browser windows 28

S
sample applications

Coverage analysis 143, 145, 146
Memory analysis 150, 152, 154
merging Code Coverage and JUnit reports 117
Object Retention 152
Performance analysis 136, 138
Thread Viewer 141

Session Control 28
API 56
Coverage analysis 112
Memory analysis 84
Performance analysis 105

Session control rules 67
Session Details tab 70
session files 61, 72, 115

comparing 80
exporting data 50, 75, 76
merging 113, 115
viewing 74

sessions 29, 74
active 69
control rules for 67
deleting from Session Files tab 74

shared references 92
sharing the DevPartner Java Edition server 15
short-lived object 82, 97
source code 39

file path 40, 66
Start page 20, 27
Starting DevPartner Java Edition 20, 27

from the command line 20
through an application server 24, 25
with the dpj utility 27

synchronized source code 39

T
temporary objects 82, 97, 98
text files of session data 76
thread synchronization 61, 110
thread time 35, 40, 103
Thread Viewer 67, 105
Tomcat

starting with Eclipse WTP 128

total instance bytes 38
trivial methods 61, 62

U
UNC path names 40
utilities 49, 50, 53, 55

V
volatility 109, 112

W
wait time 35, 40
WebLogic

starting with Eclipse WTP 129

X
XML files of session data 76
-Xrun parameter 22
Xrun parameter 22
 DevPartner Java Edition User’s Guide 159

 Index
160 DevPartner Java Edition User’s Guide

	Preface
	Who Should Read This Manual
	What This Manual Covers
	Conventions Used In This Manual
	Getting Help
	Contact

	Introduction to DevPartner Java Edition
	DevPartner Java Edition Architecture
	How DevPartner Java Edition Profiles Code
	Improving Program Understanding
	Multiple Processes
	About Entry Points and Transactions
	Sharing the DevPartner Java Edition Server
	Understanding Java Platform Performance

	Licensing
	License Types and Features
	Activating a License for DevPartner Java Edition
	Using a Server License
	Changing the DevPartner Java Edition Web Server Port

	Getting Started
	Configuring Application Servers
	Using the Administration Console
	Invoking the Profiler Through Your Application Server

	Up and Running in 60 Seconds
	Starting from a Command Line
	Manually Invoking the Profiler
	Invoking the Profiler Through the JVM Settings

	Application Testing
	Starting Through an Application Server
	Application Server Status

	DevPartner Java Edition User Interface
	Opening the DevPartner Java Edition User Interface
	DevPartner Java Edition Start Page
	Session Control Page
	Results Summary Page
	Call Graph
	Entry Points Page
	Method List
	Source View
	Call Graph, Allocation Trace Graph, and Object Reference Path Common Features

	Printing Profiling Data
	Accessing Source Code on Remote Computers
	Providing Java Plug-ins for Remote Users
	Hosting Java Plug-ins for Remote Users

	Using DevPartner Java Edition with Distributed Application Analysis
	Problem Scenario
	Solution

	Profiling Applets

	Command Line Utilities
	nmappletviewer
	nmextract
	nmjava
	nmserver
	nmshell
	Metrics Publishing Utility
	Session Control API
	Using a Session Control API
	Methods in Class Session Controls
	Calling a Session Control API When Profiling an Applet

	Configurations
	Creating and Managing Configurations
	Viewing Configurations
	Configuration - General Parameters
	Trivial Methods

	Configuration - API Categorization and Transaction
	Using Entry Points
	Assigning Categories
	Creating a New Category

	Configuration - Object Retention
	Configuration - Packages and Classes
	Default Exclusions
	Regular Expressions

	Configuration - Source File Paths
	Configuration - Thread Viewer
	Configuration - Session Control Rules
	Adding a Session Control Rule

	Sessions
	Viewing Active Sessions
	Session Results - Session Details Tab
	General Session Details
	Machine Session Details
	Java Virtual Machine Session Details
	Performance Analysis Session Details
	Coverage Session Details
	Merged Coverage File Session Details
	Memory Analysis Session Details

	About Session Files
	Naming Conventions
	Using Session Files
	File Errors
	File Locations

	Viewing Session Files
	Displaying Session Files
	Options in the Session Files Tab
	Deleting a Configuration

	Exporting Session Data
	Exporting Data from the Command Line
	Exporting Data Through the Session Files Tab
	Exported Data File Contents

	Comparing Two Sessions

	Memory Analysis
	Short-, Medium-, and Long-Lived Objects
	Short-Lived Objects
	Medium-Lived Objects
	Long-Lived Objects
	Performance and Scalability Implications
	Example Demonstrating Object Differentiation

	Memory Analysis Session Control
	RAM Footprint
	Object-Lifetimes Analysis
	Memory Leaks
	Session Control Tabs
	Memory Analysis Session Control Class List

	Memory Analysis Results Summary
	Hints for Analyzing Data
	Classes of Leaked Objects
	Classes of Live Objects
	Classes of Retained Objects
	Allocation Trace Graph
	Instance List
	Object Reference Path

	Memory Leaks
	Scenario 1
	Scenario 2
	Memory Leaks Results Summary

	Object Retention
	Temporary Objects
	Object-Lifetimes Results Summary
	Temporary Objects Results Summary

	RAM Footprint
	JVM Reserved Memory
	Profiled Instances vs. Total Instances
	RAM Footprint Results Summary

	Performance Analysis
	Thread Time
	Recursive Calls
	Performance Session Control
	Thread Viewer
	Session Controls
	Tabs
	Viewing Session Results

	Performance Results Summary
	Entry Points with the Slowest Average Response Time
	API Category Statistics
	Methods Using the Most Clock Time
	Methods Spending the Most Time Waiting

	Coverage Analysis
	Volatility
	Out-of-Order Thread Synchronization
	Monitoring Out-of-Order Thread Synchronization
	Out-of-Order Thread Synchronization Analysis Results

	Coverage Session Control
	Coverage Results Summary
	Merging Session Files
	Performing a Merge
	When Merging Causes Differences Between Files
	Merging Existing Session Files
	Automatically Merging Session Files
	Merged Session History Graph
	Merge States for Methods and Classes

	Merging Coverage Analysis Results with JUnit Reports
	Prerequisites
	Creating a Merged Report
	Sample Project - Merging Coverage Analysis Results with JUnit Reports
	Ant Script Code for Merging JUnit and Coverage Analysis Reports

	IDE Integration
	Using the Java IDE Add-in Manager
	Borland JBuilder
	Manual integration with JBuilder 2008

	Compuware OptimalJ
	Profiling an OptimalJ Application
	Profiling a Specific Application Module
	Profiling a Specific Java Class

	Eclipse
	Profiling Within Eclipse
	Starting JBoss and Tomcat with Eclipse WTP
	Starting WebLogic with Eclipse WTP

	IBM Rational Application Developer
	Profiling an Application or Applet
	Profiling Java Beans
	Profiling a Web Server Application

	Oracle JDeveloper
	Using the Java IDE Add-in Uninstallation Utility

	Sample Applications
	Performance Analysis
	Finding Performance Bottlenecks
	Finding Excessive Wait Times
	Using the Thread Viewer in Performance Profiling

	Coverage Analysis
	Coverage Sample - Part 1: Generating Data
	Coverage Sample - Part 2: Working with Merged Files
	Exporting and Viewing Line-Level Code Coverage Data

	Memory Analysis
	Finding Memory Leaks
	Finding Retained Objects
	Identifying Temporary Objects

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

